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The supplemental material provides the proves of Theorems 1-3. For

this purpose, we first introduce several results which help to proving to the

lemmas and theorems hereafter. We define Z∗ = Z −Xβ ∼ N(0, V ).

θ̂Bi = (1−Bi)ν
′
iZ +Bix

′
iβ = a1i(A)

′Z∗ + x′
iβ, (S0.1)

θ̂EB
i = (1− B̂i)ν

′
iZ + B̂ix

′
iβ̂ = (a1i(Â) + a2i(Â))

′Z∗ + x′
iβ, (S0.2)

where a1i(A) = (1 − Bi)νi, a2i(A) = Bi(x
′
i(X

′V −1X)−1X ′V −1)′, νi being

the n-dimansional vector of which i-th component is one while others are

zero.

The above a1i(A) and a2i(A) are used throughout our proofs and we have
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under the regularity conditions R1–R3, for large m,

a′1iV a1i = (1−Bi)
2ν ′

iV νi =
A2

A+Di

= A− g1i(A), (S0.3)

a′2iV a2i = B2
i x

′
i(X

′V −1X)−1xi = g2i(A) = O(m−1), (S0.4)

a′2iV a1i = Bi(1−Bi)x
′
i(X

′V −1X)−1xi = O(m−1), (S0.5)

iuV a1i = iuAνi, (S0.6)

where Di = 1/(4ni) and iu =
√
−1. Note that regularity conditions are

given in the main manuscript.

We also prove two more lemmas with some additional notations for

proofs of theorems. Specifically, let

Â+ =Â(Z∗ + iuV a1i), Â− = Â(Z∗ − iuV a1i),

θ̂Bi+ =θ̂Bi (Z
∗ + iuV a1i), θ̂Bi− = θ̂EB

i (Z∗ − iuV a1i),

θ̂EB
i+ =θ̂EB

i (Z∗ + iuV a1i), θ̂EB
i− = θ̂EB

i (Z∗ − iuV a1i),

where iu =
√
−1.

Lemma 2. Let Z∗ ≡ Z−Xβ ∼ N(0, V ), then we have under the regularity

conditions R1-R3,

(i) E[(Â+ − A)2] = VA + o(m−1),

(ii) E[(Â+ − A)(θ̂EB
i+ − θ̂Bi+)] = iuVABi(1−Bi) + o(m−1),
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(iii) E[θ̂EB
i+ − θ̂Bi+] = O(m−1),

(iv) E[(θ̂EB
i+ − θ̂Bi+)

2] = g2i(A) + g3i(A)− VA(1−Bi)
2B2

i + o(m−1),

(v) E[Â+ − A] = O(m−1),

where E[(Â− A)2] = VA + o(m−1).

Lemma 3. Under the regularity conditions R1-R3, we have for large m,

(i) E[(x′
iβ̂ − x′

iβ)
4] = O(m−2),

(ii) E[x′
iβ̂ − x′

iβ] = 0,

(iii) E[(Â− A)(x′
iβ̂ − x′

iβ)] = 0.

Lemmas 2 and 3 are shown in S1.2 and S1.3, respectively.

S1 Proofs of Lemmas

We now prove Lemmas 1–3 in this section. Lemma 1 is provided in the body

of the main manuscript. Hereafter, a
(j)
1i (A) and a

(j)
2i (A) denote ∂

ja1i/∂A
j
∣∣∣
A

and ∂ja2i/∂A
j
∣∣∣
A
, respectively.

Let some n dimensional random vectorWn ∼ N(0,Σ) with non-singular

matrix Σ and let f(Wn) be some integrable function such that f(Wn) ∈ R.

Then
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S1.1 Lemma 1

Suppose that Wn ∼ N(0,Σ) with non-singular matrix Σ and let f(Wn) be

some integrable function such that f(Wn) ∈ R. Then, we get

E[exp (iuc
′Wn) f(Wn)]

= exp

(
−c′Σc

2

)
1

(2π)n/2|Σ|1/2

∫
f(Wn) exp

{
−(Wn − iuΣc)

′Σ−1(Wn − iuΣc)

2

}
dWn,

=exp

(
−c′Σc

2

)
E[f(Wn + iuΣc)],

where c denotes some n-dimensional vectors of which components are all

constants.

Lemma 1 then follows from the above noting cos(x) = (exp(iux)+exp(−iux))/2

and sin(x) = (exp(iux)− exp(−iux))/2iu.

S1.2 Lemma 2

From the assumption, (S0.1)–(S0.5) and the dominated convergence theo-

rem, defining r = r(Z∗, iuV a1i), it follows that

Â+ − A = Â(Z∗) + r = Â+ r, (S1.1)
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θ̂EB
i+ − θ̂Bi+ = {a1i(Â+)− a1i(A) + a2i(Â+)− a2i(A) + a2i}(Z∗ + iuV a1i)

=

{
(Â− A+ r)a

(1)
1i (A) +

1

2
(Â− A+ r)2a

(2)
1i (A

∗)

}
(Z∗ + iuV a1i)

+ {(Â− A+ r)a
(1)
2i (A

∗) + a2i(A)}′(Z∗ + iuV a1i)

=(θ̂EB
i − θ̂Bi ) + (Â− A)(a

(1)
1i )

′(iuV a1i) +R∗, (S1.2)

where A∗ lies betewen A and Â. In the above, R∗ is satisfying that E[R∗] =

O(m−1) and E[(R∗)2] = O(m−2) from the Cauchy–Schwartz inequality and

the assumption on r.

Using the assumption of Â, (S1.1) and Cauchy-Schwarz inequality,

E[Â+ − A] =E[Â(Z∗)− A] + E[r] = O(m−1), (S1.3)

E[(Â+ − A)2] =E[(Â(Z∗)− A)2] + E[r2] + 2E[(Â(Z∗)− A)r]

=E[(Â(Z∗)− A)2] + o(m−1). (S1.4)

This leads to parts (i) and (v).

Next, we prove parts (iii) and (iv). To this end, we use (S1.2).

E[θ̂EB
i+ − θ̂Bi+] =E[θ̂EB

i − θ̂Bi + (Â− A)(a
(1)
1i )

′(iuV a1i) +R∗], (S1.5)

E[(θ̂EB
i+ − θ̂Bi+)

2] =E[(θ̂EB
i − θ̂Bi )

2 + {(Â− A)(a
(1)
1i )

′(iuV a1i) +R∗}2]

+ 2E[(θ̂EB
i − θ̂Bi ){(Â− A)(a

(1)
1i )

′(iuV a1i) +R∗}],

(S1.6)
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where R∗ is such that E[(R∗)2] = O(m−2).

Using the result of Kackar and Harville (1981), the Cauchy–Schwartz in-

equality and (S0.3), (S1.5) and (S1.6) can be rewritten as

(S1.5) =iuBi(1−Bi)E[Â− A] +O(m−1) = O(m−1),

(S1.6) =g2i(A) + g3i(A)− VAB
2
i (1−Bi)

2 + o(m−1).

The above equalities follow from the result (a
(1)
1i )

′(iuV a1i) = iuBi(1 − Bi)

due to (S0.6) and some results of Prasad and Rao (1990) and Datta and

Lahiri (2000).

Finally, we prove part (ii). With a proof similar as above, (S1.1) and

(S1.2) yield the following.

E[(Â+ − A)(θ̂EB
i+ − θ̂Bi+)]

=E
[
(Â− A+ r)

{
θ̂EB
i − θ̂Bi + (Â− A)(a

(1)
1i )

′(iuV a1i) +R∗
}]

,

=iuVABi(1−Bi) + o(m−1). (S1.7)

This leads to Lemma 2.
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S1.3 Lemma 3

We first prove part (i). Using Z∗ = Z −Xβ ∼ N(0, V ), we obtain

E[(x′
iβ̃ − x′

iβ)
2l] = E[{x′

i(X
′V −1X)−1X ′V −1Z∗}2l]

≤ C
∑

{(k1,k2)∈{0}∪Z+:k1+k2=l}

(x′
i(X

′V −1X)−1xi)
k1+k2

= O(m−l), (S1.8)

where β̃ = β̂(A), l ∈ Z+ and C is some generic positive constants.

From (S1.8), we obtain the following.

E

{∂x′
iβ̃

∂A

∣∣∣
A∗

}8
 =E

[
{x′

i(X
′V −1X)−1X ′V −2(I −X(X ′V −1X)−1X ′V −1)Z}8

∣∣∣
A=A∗

]
≤CE

[
{x′

i(X
′V −1X)−1X ′V −1Z}8

∣∣∣
A=A∗

]
= O(m−4),

where A∗ lies between A and Â.

From the above results and the Cauchy–Schwartz inequality,

E[(x′
iβ̂ − x′

iβ̃)
4] ≤E[(Â− A)8]1/2E

{∂x′
iβ̃

∂A

∣∣∣
A∗

}8
1/2

= o(m−2),

where A∗ is lying between A and Â.

Consequently, part (i) follows from

E[(x′
iβ̂ − x′

iβ)
4] ≤C{E[(x′

iβ̂ − x′
iβ̃)

4] + E[(x′
iβ̃ − x′

iβ)
4]}

=O(m−2). (S1.9)



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

The remaining two parts (ii) (iii) follow immediately from the fact that

x′
iβ̂ − x′

iβ and Â− A are odd and even functions of Z∗ respectively.

S2 Proofs of Theorems

S2.1 Theorem 1

Theorem 1 (i)

We first prove Part (i) of Theorem 1.

The unbiasedness of p̂Bi , that is, E[p̂Bi − pi] = 0, results in

E[p̂EB
i − pi] =E[p̂EB

i − p̂Bi ] + E[p̂Bi − pi],

=E[p̂EB
i − p̂Bi ]. (S2.1)

Let C1i(A) define exp(−g1i(A)/2) hereafter. Then,

(S2.1) =
1

2
E[C1i(Â) sin(θ̂

EB
i )− C1i(A) sin(θ̂

B
i )]

=
1

2
E
[
(C1i(Â)− C1i(A)) sin(θ̂

EB
i ) + C1i(A)(sin(θ̂

EB
i )− sin(θ̂Bi ))

]
,

=
1

2
(J1 + J2), (S2.2)

where J1 = E[(C1i(Â) − C1i(A)) sin(θ̂
EB
i )] and J2 = C1i(A)E[sin(θ̂EB

i ) −

sin(θ̂Bi )].

For J1, from Lemmas 1, 2 (v) and the dominated convergence theorem,
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we have,

J1 =E[(C1i(Â)− C1i(A))(sin(θ̂
EB
i )− sin(θ̂Bi ) + sin(θ̂Bi ))]

=E

[{
(Â− A)C

(1)
1i (A) +

1

2
(Â− A)2C

(2)
1i (A

∗)

}
(sin(θ̂EB

i )− sin(θ̂Bi ))

]
+ E

[{
(Â− A)C

(1)
1i (A) +

1

2
(Â− A)2C

(2)
1i (A

∗)

}
sin(θ̂Bi )

]
,

=E[(Â− A)C
(1)
1i (A) cos(θ̂

B
i − x′

iβ) sin(x
′
iβ)] +O(m−1) = O(m−1).

(S2.3)

where A∗ lies between Â and A. In the above, note that C
(j)
1i (A) =

∂jC1i(A)/∂A
j
∣∣∣
A
for j = 1, 2.

For the third and fourth equalities in the above, we use the assumption on

Â, the fact that sin(θ̂EB
i )− sin(θ̂Bi ) convergences to zero in probability and

sin(θ̂Bi − x′
iβ) is a odd function of Z∗ = Z −Xβ.

In addition we use Lemma 2 (iii) and (S0.3) for calculation of J2.

J2 =2C1i(A)E

[
cos

(
θ̂EB
i + θ̂Bi

2

)
sin

(
θ̂EB
i − θ̂Bi

2

)]
,

=− 2C1i(A) sin(x
′
iβ)E

[
sin

(
θ̂EB
i + θ̂Bi

2
− x′

iβ

)
sin

(
θ̂EB
i − θ̂Bi

2

)]
,

=− 2C1i(A) sin(x
′
iβ)

× E

sin(θ̂Bi − x′
iβ)


(
θ̂EB
i − θ̂Bi

2

)
− 1

6

(
θ̂EB
i − θ̂Bi

2

)3

sin

(
η
(θ̂EB

i − θ̂Bi )

2

)


+O(m−1) = O(m−1), (S2.4)
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where |η| < 1.

Note that sin(θ̂EB
i − θ̂Bi ) is odd function of Z∗ = Z − Xβ and sin(x) =

x − x3 sin(ηx)/6 with |η| < 1 for the above calculation. Also, we use Lia-

pounov’s inequality with the following result which comes from Lemma 3

(i) and the assumption on Â.

E[(θ̂EB
i − θ̂Bi )

4] ≤ E[(Bi − B̂i)
4(zi − x′

iβ)
4] + E[(x′

iβ̂ − x′
iβ)

4] = O(m−2).

(S2.5)

Combining (S2.2)-(S2.4), one gets

(S2.1) = O(m−1).

Theorem 1 (ii)

First we use the identity

E[(p̂EB
i − pi)

2] = E[(p̂Bi − pi)
2] + E[(p̂EB

i − p̂Bi )
2]. (S2.6)

Next we evaluate E[(p̂Bi −pi)
2] in the right hand side of (S2.6). By standard

results,

E[(p̂Bi − pi)
2] =E[V (pi|zi)] =

1

4
E[V (sin(θi)|zi)]; (S2.7)

V (sin(θi)|zi) =E[sin2(θi)|zi]− [E(sin(θi)|zi)]2,

=
1

2
E[1− cos(2θi)|zi]− [E(sin(θi)|zi)]2. (S2.8)
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Equation (2.5) and Corollary 1 provide the results:

E[1− cos(2θi)|zi] =1− exp(−2g1i(A)) cos(2θ̂
B
i ); (S2.9)

[E(sin(θi)|zi)]2 =exp(−g1i(A)) sin
2(θ̂Bi )

=
1

2
exp(−g1i(A))[1− cos(2θ̂Bi )]. (S2.10)

Hence, we get from (S2.8)-(S2.10) and Corollary 1 again,

V (sin(θi)|zi) =
1

2
{1− exp(−2g1i(A)) cos(2θ̂

B
i )} −

1

2
exp(−g1i(A))(1− cos(2θ̂Bi )),

(S2.11)

E[V (sin(θi)|zi)] =
1

2
(1− exp(−g1i(A))){1 + exp(−2A+ g1i(A)) cos(2x

′
iβ)}.

(S2.12)

In the above calculation, we used the result θ̂Bi ∼ N(x′
iβ,A(1−Bi)).

Combining (S2.7) and (S2.12), we obtain

E[(p̂Bi − pi)
2] =

1

8
(1− exp(−g1i(A))){1 + exp(−2A+ g1i(A)) cos(2x

′
iβ)}.

(S2.13)

Next, we find an asymptotic expansion of the second term E[(p̂EB
i −

p̂Bi )
2] in the right hand side of (S2.6), correct up to the order O(m−1) for
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large m. Let C1i(A) continue to define exp(−g1i(A)/2),

E[(p̂EB
i − p̂Bi )

2] =
1

4
E
[
(C1i(Â) sin(θ̂

EB
i )− C1i(A) sin(θ̂

B
i ))

2
]
,

=
1

4
E

[{
(C1i(Â)− C1i(A)) sin(θ̂

EB
i ) + C1i(A)(sin(θ̂

EB
i )− sin(θ̂Bi ))

}2
]
,

=
1

4
(I + II + III), (S2.14)

where

I =E
[
(C1i(Â)− C1i(A))

2 sin2(θ̂EB
i )
]
,

II =(C1i(A))
2E
[
(sin(θ̂EB

i )− sin(θ̂Bi ))
2
]
,

III =2C1i(A)E
[
(C1i(Â)− C1i(A)) sin(θ̂

EB
i )(sin(θ̂EB

i )− sin(θ̂Bi ))
]
.

We first calculate I using Lemma 1 and Lemma 2 (i):

I =E

[{
(Â− A)C

(1)
1i (A) +

1

2
(Â− A)2C

(2)
1i (A

∗)

}2

sin2(θ̂EB
i )

]

=
1

2
(C

(1)
1i (A))

2E
[
(Â− A)2(1− cos(2θ̂Bi ))

]
+ o(m−1),

=
B4

i

8
VA exp(−g1i(A))(1− cos(2x′

iβ) exp(−2A+ 2g1i(A))) + o(m−1),

(S2.15)

where A∗ lies between A and Â. We note that the second equality holds

due to the dominated convergence theorem, the assumption on Â and the

result that sin2(θ̂EB
i )− sin2(θ̂Bi ) converges to zero in probability.
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Next, we prove II;

E

[{
sin(θ̂EB

i )− sin(θ̂Bi )
}2
]
= 4E

[
cos2

(
θ̂EB
i + θ̂Bi

2

)
sin2

(
θ̂EB
i − θ̂Bi

2

)]
,

= E[(1 + cos(θ̂EB
i + θ̂Bi ))(1− cos(θ̂EB

i − θ̂Bi ))],

= E

[
(1 + cos(θ̂EB

i + θ̂Bi ))

{
(θ̂EB

i − θ̂Bi )
2

2
+

(θ̂EB
i − θ̂Bi )

4

24
cos(η(θ̂EB

i − θ̂Bi ))

}]
.

(S2.16)

In the above calculation, the third equality follows from the fact that 1 −

cos(x) = x2/2− x4 cos(ηx)/24 with |η| < 1.

The results (2.2) and (2.3), given in the main paper, for the untransformed

case remind us that g2i(A) + g3i(A) are second-order approximations of

E[(θ̂EB
i − θ̂Bi )

2], and recalling (S2.5). Also, note that sin(2(θ̂Bi − x′
iβ)) is

odd function of Z∗ = Z − Xβ while cos(2(θ̂Bi − x′
iβ)) is even function of

Z∗ = Z − Xβ. Moreover, cos(θ̂EB
i + θ̂Bi ) − cos(2θ̂Bi ) converges to zero in

probability. These above results provide the following.

(S2.16) =
1

2

{
g2i(A) + g3i(A) + E

[
cos(θ̂EB

i + θ̂Bi )(θ̂
EB
i − θ̂Bi )

2
]}

+ o(m−1),

=
1

2

{
g2i(A) + g3i(A) + E

[
cos(2θ̂Bi − 2x′

iβ + 2x′
iβ)(θ̂

EB
i − θ̂Bi )

2
]}

+ o(m−1),

=
1

2

{
g2i(A) + g3i(A) + cos(2x′

iβ)E
[
cos(2θ̂Bi − 2x′

iβ)(θ̂
EB
i − θ̂Bi )

2
]}

+ o(m−1).

(S2.17)

The third equality follows from the result that sin(2θ̂Bi − 2x′
iβ)(θ̂

EB
i − θ̂Bi )

2

is a odd function of Z∗ with zero mean.
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Using Lemma 1 and (S0.3),

(S2.17) =
1

2
(g2i(A) + g3i(A))

+
exp(−2A+ 2g1i(A))

4
cos(2x′

iβ)
{
E[(θ̂EB

i+ − θ̂EB
i+ )2] + E[(θ̂EB

i− − θ̂EB
i− )2]

}
+ o(m−1). (S2.18)

Lemma 2 (iv) yields

(S2.18) =
1

2
(g2i(A) + g3i(A))

+
exp(−2A+ 2g1i(A))

2
cos(2x′

iβ){g2i(A) + g3i(A)− VA(1−Bi)
2B2

i }

+ o(m−1), (S2.19)

where E[(Â− A)2] = VA + o(m−1).

Hence,

II =
1

2
exp(−g1i(A))(g2i(A) + g3i(A))(1 + cos(2x′

iβ) exp(−2A+ 2g1i(A)))

− 1

2
cos(2x′

iβ) exp(−2A+ g1i(A))VA(1−Bi)
2B2

i + o(m−1). (S2.20)

We finally calculate III.

III =2C1i(A)E
[
(C1i(Â)− C1i(A))(sin(θ̂

EB
i )− sin(θ̂Bi ) + sin(θ̂Bi ))(sin(θ̂

EB
i )− sin(θ̂Bi ))

]
,

=2C1i(A)E

[{
(Â− A)C

(1)
1i (A) +

1

2
(Â− A)2C

(2)
1i (A

∗)

}
(sin(θ̂EB

i )− sin(θ̂Bi ))
2

]
+ 2C1i(A)E

[{
(Â− A)C

(1)
1i (A) +

1

2
(Â− A)2C

(2)
1i (A

∗)

}
sin(θ̂Bi )(sin(θ̂

EB
i )− sin(θ̂Bi ))

]
=2C1i(A)C

(1)
1i (A)E

[
(Â− A) sin(θ̂Bi )(sin(θ̂

EB
i )− sin(θ̂Bi ))

]
+ o(m−1).

(S2.21)
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Using the results that (θ̂EB
i − θ̂Bi ) and cos(2(θ̂Bi −x′

iβ)) are respectively

odd and even functions of Z∗ = Z −Xβ, we obtain

(S2.21) =2C1i(A)C
(1)
1i (A)

× E

[
(Â− A) sin(θ̂Bi )

{
(θ̂EB

i − θ̂Bi ) cos(θ̂
B
i )−

1

2
(θ̂EB

i − θ̂Bi )
2 sin(η(θ̂EB

i − θ̂Bi ))

}]
+ o(m−1),

=C1i(A)C
(1)
1i (A) cos(2x

′
iβ)E[(Â− A) sin(2(θ̂Bi − x′

iβ))(θ̂
EB
i − θ̂Bi )] + o(m−1),

=C1i(A)C
(1)
1i (A) cos(2x

′
iβ)

1

2iu
exp(−2A+ 2g1i(A))

×
{
E
[
(Â+ − A)(θ̂EB

i+ − θ̂Bi+)
]
− E

[
(Â− − A)(θ̂EB

i− − θ̂Bi−)
]}

+ o(m−1),

(S2.22)

where |η| < 1. For the last equality, Lemma 1 is used.

From Lemma 2 (ii) and (S2.22), we can rewrite (S2.21) as

−1

2
VA cos(2x′

iβ) exp(−2A+ g1i(A))B
3
i (1−Bi) + o(m−1). (S2.23)

From (S2.15), (S2.20), and (S2.23), (S2.14) can be approximated up to

the order of O(m−1) as

(S2.14) =
1

8
exp(−g1i(A))

{
g2i(A) + g3i(A) +

B4
i

4
VA

}
+

1

8
cos(2x′

iβ) exp(−2A+ g1i(A))

{
g2i(A) + g3i(A)−

B2
i (Bi − 2)2

4
VA

}
+ o(m−1). (S2.24)
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S2.2 Theorem 2

We first prove part (i).

E[M̂1i] =
1

8
E[1− exp(−g1i(Â))] +

1

8
E[cos(2x′

iβ̂) exp(−2Â+ g1i(Â))]

− 1

8
E[cos(2x′

iβ̂) exp(−2Â)],

=
1

8
− 1

8
exp(−g1i(A))E[exp{−(g1i(Â)− g1i(A))}]

+
1

8
exp(−2A+ g1i(A))E[cos(2x′

iβ̂) exp{−2(Â− A) + (g1i(Â)− g1i(A))}]

− 1

8
exp(−2A)E[cos(2x′

iβ̂) exp{−2(Â− A)}],

=
1

8
− 1

8
{exp(−g1i(A))T1 + exp(−2A+ g1i(A))T2 − exp(−2A)T3} ,

(S2.25)

where

T1 =E[exp{−(g1i(Â)− g1i(A))}];

T2 =E[cos(2x′
iβ̂) exp{−2(Â− A) + (g1i(Â)− g1i(A))}];

T3 =E[cos(2x′
iβ̂) exp{−2(Â− A)}].

The results of Prasad and Rao (1990) and Datta and Lahiri (2000) lead

to the following :

T1 =E

[
1− (g1i(Â)− g1i(A)) +

1

2
(g1i(Â)− g1i(A))

2

]
− E

[
1

6
(g1i(Â)− g1i(A))

3 exp{η(g1i(Â)− g1i(A))}
]
,
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=1 + g3i(A)− bAB
2
i +

B4
i

2
VA + o(m−1), (S2.26)

where bA = E[Â− A] + o(m−1) and |η| < 1.

In the above calculation, we use

E[(g1i(Â)− g1i(A))
2] = E[(Â− A)2B4

i ] + o(m−1) = B4
i VA + o(m−1)

and

E[(g1i(Â)− g1i(A))
3] = o(m−1),

the latter following from the dominated convergence theorem.

We next evaluate T2. Consider some integrable functions f1(·) and f2(·).

Then Lemma 3 (ii) and (iii) yield

E[f1(Â− A)f2(x
′
iβ̂ − x′

iβ)] =Cov(f1(Â− A), f2(x
′
iβ̂ − x′

iβ))

+ E[f1(Â− A)]E[f2(x
′
iβ̂ − x′

iβ)],

=E[f1(Â− A)]E[f2(x
′
iβ̂ − x′

iβ)]. (S2.27)

Using (S2.27), we obtain as

T2 =cos(2x′
iβ)E[cos(2(x′

iβ̂ − x′
iβ))]E[exp{−2(Â− A) + (g1i(Â)− g1i(A))}].

On the set S = {Â : |Â − A| < δ} with some constant value δ > 0, by
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Corollary 1, T2 reduces to

T2 =cos(2x′
iβ)E[cos(2(x′

iβ̂ − x′
iβ))]

× E[1− 2(Â− A) + (g1i(Â)− g1i(A)) + 2(Â− A)2 +
1

2
(g1i(Â)− g1i(A))

2 : S ],

− cos(2x′
iβ)E[cos(2(x′

iβ̂ − x′
iβ))]E[2(Â− A)(g1i(Â)− g1i(A)) : S ]

+
1

6
cos(2x′

iβ)E[cos(2(x′
iβ̂ − x′

iβ))]

× E[{−2(Â− A) + (g1i(Â)− g1i(A))}3 exp{η(−2(Â− A) + (g1i(Â)− g1i(A)))} : S ],

=cos(2x′
iβ)

{
1− 2g2i(A)

B2
i

}{
1− g3i(A) + bA(B

2
i − 2) +

(B2
i − 2)2

2
VA

}
+ o(m−1),

=cos(2x′
iβ)

{
1− 2g2i(A)

B2
i

− g3i(A) + bA(B
2
i − 2) +

(B2
i − 2)2

2
VA

}
+ o(m−1),

(S2.28)

where |η| < 1. Note that, in the above calculation, some terms of odd

function with zero mean vanish.

In a similar way on S , T3 reduces to

T3 =cos(2x′
iβ)E[cos(2(x′

iβ̂ − x′
iβ))]

× E
[
1− 2(Â− A) + 2(Â− A)2 − 4

3
(Â− A)3 exp{2η(Â− A)} : S

]
,

=cos(2x′
iβ)

(
1− 2g2i(A)

B2
i

)
(1− 2bA + 2VA) + o(m−1),

=cos(2x′
iβ)

(
1− 2g2i(A)

B2
i

− 2bA + 2VA

)
+ o(m−1). (S2.29)
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From (S2.25), (S2.26), (S2.28) and (S2.29), we find on S ,

E[M̂1i −M1i : S ] = −1

8
exp(−g1i(A))

(
g3i(A)− bAB

2
i +

B4
i

2
VA

)
− 1

8
exp(−2A+ g1i(A)) cos(2x

′
iβ)

{
2g2i(A)

B2
i

+ g3i(A)− bA(B
2
i − 2)− (B2

i − 2)2

2
VA

}
− 1

8
exp(−2A) cos(2x′

iβ)

(
2VA − 2bA − 2g2i(A)

B2
i

)
+ o(m−1). (S2.30)

Then, Part (i) is obtained from (S2.30) with 0 < s < 1 using a proof similar

to that of Das, et al. (2004). Specifically,

|E[M̂1i −M1i − bM(λ)]| =|E[M̂1i −M1i − bM(λ) : S ] + E[M̂1i −M1i : S c]|,

≤o(m−1) + CmsE[(Â− A)4]

δ4
.

=o(m−1). (S2.31)

We next prove part (ii). From the regularity conditions, M2i(λ) and

bM(λ) are of the order O(m−1) for large m and these are every bounded

continuous functions with a finite λ. Continuous mapping theorem and

dominated convergence theorem provide the following with s < 1:

|E[M2i(λ̂)−M2i(λ)]| =|E[M2i(λ̂)−M2i(λ) : S ] + E[M2i(λ̂)−M2i(λ) : S c]|

≤ o(m−1) + CmsE[(Â− A)4]

δ4
= o(m−1).

where C is some positive constants.
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Similarly, we get

E[bM(λ̂)− bM(λ)] = o(m−1).

The results follow.

S2.3 Theorem 3 (i)

From Lemma 3 (i) and assumption on Â, with some constant value s > 0,

E[(M̂0
i (λ̂)−Mi(λ))

4] =E[(M̂0
i (λ̂)−Mi(λ))

4 : S ] + E[(M̂0
i (λ̂)−Mi)

4 : S c]

≤O(m−2) + Cm4sE[(Â− A)8]

δ8
= O(m−2∨4(s−1)).

(S2.32)

where C(> 0) is some constants.

We then get from (S2.32),

P (M̂0
i (λ̂) ≤ 0) ≤ P (|M̂0

i (λ̂)−Mi| ≥ Mi),

≤ E[(M̂0
i (λ̂)−Mi)

4]

M4
i

= O(m−2∨4(s−1)). (S2.33)

We now let M define a set such that {M̂0
i > 0}. Then the result (S2.33)

and Theorem 2 lead to the following result with 0 < s < 3/5.

|E[M̂i −Mi]| =|E[M̂i −Mi : M ] + E[M̂i −Mi : M c]|

≤|E[M̂0
i (λ̂)−Mi]|+ CmsP (M̂0

i (λ̂) ≤ 0),

=o(m−1) +O(m(s−2)∨(5s−4)) = o(m−1).

We thus get part (i).
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