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The supplemental material provides the proves of Theorems 1-3. For
this purpose, we first introduce several results which help to proving to the

lemmas and theorems hereafter. We define Z* = 7 — X ~ N(0,V).

0F = (1 — B)V.Z + Bix' 3 = ay(A) Z* + 23, (S0.1)

~

078 = (1 — B)W.Z + BB = (a1i(A) + ani(A)) Z* + 28, (502)

(2

where au(A) = (1 - Bi)l/z‘, CLQi(A) = BZ'(ZL’;(X/V_lX)_lX/V_l)/, v; being
the n-dimansional vector of which ¢-th component is one while others are
Zero.

The above ay;(A) and ag;(A) are used throughout our proofs and we have
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under the regularity conditions R1-R3, for large m,

! / A2
CL”VCLM = (1 — BZ‘)QViVVi = A i DZ =A— ng(A), (SO?))
ab,Vag = BXoi(X'V 1 X) ey = gu(A) = O(m™), (S0.4)
ayVay; = Bi(1 — B)z)(X'V X))o, = O(m™1), (S0.5)
iuVall- = iuAVi, (806)

where D; = 1/(4n;) and i, = v/—1. Note that regularity conditions are

given in the main manuscript.

We also prove two more lemmas with some additional notations for

proofs of theorems. Specifically, let

A

A, =A(Z" +iVaw), A= A(Z" —iVay),

08 =08 (7" +i,Vay), 0° = 0F%(Z* —i,Vay,),

OEB =0FB(7* 4+ i,Vay,), 0FF = 0P8 (2% —i,Vay),
where i, = /—1.

Lemma 2. Let Z* =7 — X[ ~ N(0,V), then we have under the reqularity

conditions R1-R3,
(i) E[(Ay — A = Va+o(m™),

(i) E[(Ay — A)(FF — 05)] = i,VaBi(1 - B;) + o(m™),
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(iti) E[0EF —05] = O(m™),

(iv) E[(0FF — 05)%) = goi( A) + gsi(A) = Va(1 = By)2B? + o(m ™),

(v) E[A; — Al = O(m™),

where E[(A — A)?] = V4 +o(m™).

Lemma 3. Under the regularity conditions R1-R3, we have for large m,
(i) Bl —2p)" = O(m™2),

(i) Elxf — i8] =0,

(ili) E[(A - A) (@} — z;8)] = 0.

Lemmas 2 and 3 are shown in S1.2 and S1.3, respectively.

S1 Proofs of Lemmas

We now prove Lemmas 1-3 in this section. Lemma 1 is provided in the body
of the main manuscript. Hereafter, a'”(4) and o (A) denote ay; /0 A’ |
and &7 ay; /OA? K respectively.

Let some n dimensional random vector W,, ~ N (0, X) with non-singular
matrix ¥ and let f(1V,) be some integrable function such that f(W,) € R.

Then
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S1.1 Lemmal

Suppose that W,, ~ N(0,¥) with non-singular matrix ¥ and let f(W,,) be

some integrable function such that f(W,) € R. Then, we get

Elexp (i, W,,) f(W,,)]
B d¥e 1 (W, — i, 2¢)' S~ YW, — i, 2c)
= exp (_ 9 ) (27T)n/2|2|1/2 /f(Wn> exp {_ 9 } dea

_exp (—C f) BLF(W, + iy5c)],

where ¢ denotes some n-dimensional vectors of which components are all
constants.
Lemma 1 then follows from the above noting cos(z) = (exp(i,x)+exp(—i,x))/2

and sin(z) = (exp(i,x) — exp(—iyx))/2i,.

S1.2 Lemma 2

From the assumption, (S0.1)—(S0.5) and the dominated convergence theo-

rem, defining r = r(Z*,i,Vay;), it follows that

Ay —A=AZY+r=A+r, (S1.1)
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0FF — 08 = {a1,(Ay) — au(A) + an(Ay) — agi(A) + ag }(Z* +1i,Vay,)
= {(A — A+r)alP(A) + %(A — A+ )2l (A*)} (Z* +i,Vay,)
+{(A— A+ r)al (A% + ag (A)Y(Z* + i Vayy)
=(67P — ) + (A — A)(a'VY (iVay) + R, (S1.2)
where A* lies betewen A and A. In the above, R* is satisfying that E[R*] =

O(m™') and E[(R*)?] = O(m™?) from the Cauchy-Schwartz inequality and

the assumption on r.

Using the assumption of A, (S1.1) and Cauchy-Schwarz inequality,
E[A, — A| =E[A(Z*) — A| 4+ E[r] = O(m™), (S1.3)
E[(Ay — A)’] =E[(A(Z") = A)®] + Elr’] + 2E[(A(Z") — A)r]
—EB[(A(Z*) — A + o(m™). (S1.4)

This leads to parts (i) and (v).

Next, we prove parts (iii) and (iv). To this end, we use (S1.2).

E[6FP — 68 ) =E[0PP — 0P + (A— A) (@YY (i,Vayn) + R, (S1.5)
B[(0FF — 08 %) =B[(0FF — 6P)* + {(A — A)(a})) (i.Vay) + R}
+2B[(0FF — 0P){(A - A)(al) (i.Vay) + R},

(S1.6)
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where R* is such that E[(R*)?] = O(m™2).
Using the result of Kackar and Harville (1981), the Cauchy—Schwartz in-

equality and (S0.3), (S1.5) and (S1.6) can be rewritten as

(S1.5) =iy Bi(1 — B;)E[A — A]+ O(m™) = O(m™"),

(51.6) =g2;(A) + gs:(A) — VABZ.Q(l - Bi)2 +o(m™).

The above equalities follow from the result (ag))’(iu\/au) =10, Bi(1 — B;)
due to (S0.6) and some results of Prasad and Rao (1990) and Datta and
Lahiri (2000).

Finally, we prove part (ii). With a proof similar as above, (S1.1) and

(S1.2) yield the following.

~

E[(Ay — A)(0FF - 67))
—E [(A —A+7) {éfB — 98 4+ (A— )@Y (i Var) + R*}] ,

=i, VaBi(1 — B;) +o(m™). (S1.7)

This leads to Lemma 2.
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S1.3 Lemma 3
We first prove part (i). Using Z* = Z — X5 ~ N(0,V), we obtain

Bl(af - #{)?] = B[l (X'V X)XV 12

S O Z (l,’/i(le—lX>—ll,i)k1+k‘2

{(kl ,k2)€{0}UZ+ :k1+ko =l}

= O(m™, (S1.8)

where 3 = B (A), I € Z, and C' is some generic positive constants.

From (S1.8), we obtain the following.

~ 8
E {a‘”—iﬁ } —FE [{x;(X’V’lX)’lX’V’2([—X(X’V’lX)’lX’V’l)Z}g‘

0A |ax A:A*]

<CFE [{x;(x’v—lx)—lX’v—IZ}S) = O(m™),

o
where A* lies between A and A.

From the above results and the Cauchy—Schwartz inequality,
g1 1/2

E[(«}f — 2i6)"] <E[(A - A)*]'*E {— A*} = o(m™),

where A* is lying between A and A.

Consequently, part (i) follows from

E[(«}5 — 2i8)"] <C{E[(f — xiB)*] + El(xi8 — 2;5)"]}

=0(m™?). (S1.9)
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The remaining two parts (ii) (iii) follow immediately from the fact that

2/ — /3 and A — A are odd and even functions of Z* respectively.

S2 Proofs of Theorems

S2.1 Theorem 1

Theorem 1 (i)
We first prove Part (i) of Theorem 1.

The unbiasedness of p?, that is, E[pP — p;] = 0, results in

Elpi? — pi] =Elpi" — 7] + E[p — pil,

=E[pFP — pP). (S2.1)

7

Let C1;(A) define exp(—gi1;(A)/2) hereafter. Then,

(52.1) =3 B[Cy(A) sin(077) — Cuy(4) sin(0)]

:% E |(Cui(A) = Cui(A)) sin(67) + Cui(A)(sin(677) — sin(éf))] ,

=5 (At ), (82.2)

where J; = E[(Cyi(A) — Cui(A))sin(6EB)] and J, = Cy;(A)E[sin(6EB) —

A

sin(65)).

%

For J;, from Lemmas 1, 2 (v) and the dominated convergence theorem,



S52. PROOFS OF THEOREMS

we have,

A~

=E[(A — A)C}P(A) cos(0F — /) sin(2}3)] + O(m™") = O(m™").
(52.3)
where A* lies between A and A. 1In the above, note that C’g)(A) =
dC(A)JOAI B for j =1, 2.
For the third and fourth equalities in the above, we use the assumption on
A, the fact that sin(AFP) — sin(?) convergences to zero in probability and
sin(08 — /) is a odd function of Z* = Z — X .

In addition we use Lemma 2 (iii) and (S0.3) for calculation of J;.

(éEB+éB> (éEB—éB)]
cos | — |sin | —— ||,
2 2

(éEB+éB ) (éEB—éB>]
sin [ —+ —2!8 | sin | ——— ||,
2 2

. EB — B\ 1 (6EP — 4P fEB — b
Sin(@f —z15) G S R s A A TIM
2 6 2 2

= —2Cy;(A) sin(z;8)E

x F
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where |n| < 1.
Note that sin(0F8 — 68) is odd function of Z* = Z — X/ and sin(z) =
x — 23sin(nz)/6 with |n| < 1 for the above calculation. Also, we use Lia-

pounov’s inequality with the following result which comes from Lemma 3

(i) and the assumption on A.

~

E[(0F" = 07)"] < El(B; = B))'(z — i)' + E[(«} - 2i8)"] = O(m™?).

(S2.5)
Combining (52.2)-(52.4), one gets
(S2.1) = O(m™).
Theorem 1 (ii)
First we use the identity
E((p7" = pi)? = Bl(0;7 —pi)*] + El(677 - 57))- (52.6)

Next we evaluate E[(p? —p;)?] in the right hand side of (52.6). By standard

results,
EI3P — p)?) =BV (pil=0)] = {EIV (sin(8))])]); (527)

V(sin(6;)|z) =E[sin*(6;)|z] — [E(sin(6;)]2)]?,

:%E[l — cos(26;)|z] — [E(sin(6;)]z)]?. (52.8)
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Equation (2.5) and Corollary 1 provide the results:

E[1 — cos(26;)|2] =1 — exp(—2g1;(A)) cos(207); (52.9)
[B(sin(6;)]z)]* = exp(—g1,(A)) sin®(67)
1

=5 exp(—gu(A))[L - cos(207))- (52.10)

Hence, we get from (S2.8)-(S2.10) and Corollary 1 again,

V(sin(6;)]2:) Z%{l — exp(—2g1;(4)) COS(QQAZB)} - %GXP(_QM(A))“ - COS(ZHAZB))a
(S2.11)
E[V (sin(6;)|z)] Z%(l — exp(—g1:(A){1 + exp(—2A + g1,(A)) cos(27;3) }.

(S2.12)

In the above calculation, we used the result 2 ~ N ()3, A(1 — B;)).

Combining (S2.7) and (52.12), we obtain

E[(p7 — pi)?) Zé(l — exp(—g1:(A))){1 + exp(—24 + g1;(A)) cos(22}3) }.

(S2.13)

Next, we find an asymptotic expansion of the second term E[(pFP —

p2)?] in the right hand side of (52.6), correct up to the order O(m™!) for
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large m. Let C1;(A) continue to define exp(—g1;(A)/2),

BIGE® — 5P = B [(Cra(A) sin(8F) — Cru(4) sin(0))]

-3 [{<cu</i> — C1i(A)) sin(B") + C1i(A) (sin(67") — sin(6 >>}2] |

:}1(1 VT4 IIT), (82.14)

where

I =E [(Cu(A) — Cui(4)?sin*(0F7)]
11 =(Cui(A))E [(sin(67%) — sin(0P))?]

111 =20y, (A)E [(CM(A) — Ci(A)) sin(6FP) (sin(9FP) — sin(éf))} :

We first calculate I using Lemma 1 and Lemma 2 (i):

2
I =F

{td- e+ 5 - apean) sm%éfB)]

:%(Cfi)(A))QE (A~ 421~ cos(202))] + o(m™),
:éVA exp(—g15(A))(1 — cos(27, ) exp(—2A + 2g1:(A))) + o(m™1),

(S2.15)

where A* lies between A and A. We note that the second equality holds

due to the dominated convergence theorem, the assumption on A and the

A

result that sin?(078) — sin?(6P) converges to zero in probability.
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<_91EB ulli ) (_91’” - 91-3)]
2 2 ’

= B[(1+ cos(6FF + 6P))(1 — cos(0FF — 6F))),

Next, we prove II;

E {{sin(éfB) _ sin(éf)}j _4E

U N

= E | (1 4 cos(8F8 + 65)) { 5 + o ) cos(n(8FF — éf))}] .

(S2.16)
In the above calculation, the third equality follows from the fact that 1 —
cos(z) = 2%/2 — x* cos(nx) /24 with |n| < 1.
The results (2.2) and (2.3), given in the main paper, for the untransformed
case remind us that go;(A) + g¢3;(A) are second-order approximations of
E[(AEB — 62)2], and recalling (S2.5). Also, note that sin(2(62 — z/3)) is
odd function of Z* = Z — X8 while cos(2(68 — 2/)) is even function of

Z* = Z — X . Moreover, cos(0E8 4 08) — cos(207) converges to zero in

probability. These above results provide the following.

(52.16) == { 92:(A) + g3i(A) + E [cos(éfB +07)(FP — éf)?] } +o(m™Y),

{92:(4) + 9ai(A) + B [cos(28 — 21 + 2(8) (07 — 67| | + o(m™),

{92:(4) + gai(A) + cos(2B) B [cos(207 — 2(8) OFF — 67)2 | } + o(m ™).
(52.17)

The third equality follows from the result that sin(208 — 2/3)(0EB — §5)2

is a odd function of Z* with zero mean.
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Using Lemma 1 and (S0.3),

(52.17) :%(921'(14) + g3i(A))

exp(—2A + 2¢1;(A))
+ 4

cos(2018){ EI(BEE — 057)7] + E[(6F7 — 0777}
+o(m™). (52.18)
Lemma 2 (iv) yields

(52.18) =5 (g(4) + g5u(4))

+ 2

cos(20)) {9 (A) + gi(A) — Va(1 — Bi)2B2)
+o(m™), (S2.19)
where E[(A — A)?] = V4 + o(m™).
Hence,
T = exp(=g1s(A)) (g2(4) + () (1 + con(2415) exp(~24 + 291,(4))
— 5 cos(2rB) exp(~24 + gu(A)Va(1 — BB +o(m ™). (5220)
We finally calculate I11.
11T =2C,(A [ (Cra(A) — Cri(A)) (sin(0FF) — sin(0F) + sin(6)) (sin(§EF) — sm(éf))] ,
a0 [{ A= APC(A) | (@) — sin(62))
+204(A)E H(A — AP (A) + 5(121 —Ac? (A*)} sin(07) (sin(0FP) — sin(é?))]
=204 (A (A)E [(A = 4)sin(87)(sin(0F7) — sin(07))] + o(m ™).

(S2.21)
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Using the results that (028 — 08) and cos(2(08 — 23)) are respectively

odd and even functions of Z* = Z — X 3, we obtain

(S2.21) =2C3;(A)C(A)

< (4= A)sin@) { (657 — 0F) cos(8P) — 5(05° — 02 Psin(u(@F° — 6 })

+o(m™),
=Cui(A)CL (A) cos(22]8) E[(A — A) sin(2(6 — 218)) (67 — 67)] + o(m™"),
=Cu(A)C(4) 005(2:10;5)% exp(—24 + 2g1:(A))
< {B (A, = A)OEP = 08)] - B[(A- - A)0EF —02)] | +o(m™),
(S2.22)

where |n| < 1. For the last equality, Lemma 1 is used.

From Lemma 2 (ii) and (S2.22), we can rewrite (S2.21) as
1
—5Va cos(2753) exp(—2A + g1:(A)) B} (1 — B;) + o(m™). (S2.23)

From (S2.15), (S2.20), and (52.23), (S2.14) can be approximated up to

the order of O(m™!) as
1 B4
(52.14) 3 exp(—g1:(A)) {gm(A) + g3i(A) + TVA}
g os(2a)exp(-24-+ gu() { () + gat) - P =2w )

+o(m™1). (52.24)
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S2.2 Theorem 2

We first prove part (i).

BINy) =S BIL — expl(—gu(A))] + 5 Eleos(2e!) exp(—24 + g1 ()]
— < Bleos(2u5) exp(~24),
—5 5 Pl A) Elexp{~(g1:(A) ~ gu(4))
+ 5 exp(=24+ guu(A) Eleos(2e!) exp{ ~2(4 — 4) + (g0 () — (AN}

- é exp(—2A4) Efcos(2a}3) exp{—2(A — A)}],

= — 5 {xp(—gu(ANTi + exp(~24 + g1i(A)Ts — exp(~24) T3},

(S2.25)

where

A

Ty =Elexp{—(g1i(A) — gu(A)};
Ty =E[cos(22 ) exp{ —2(A — A) + (g1;(A) — g (A)}:

Ty =E[cos(22.5) exp{—2(A — A)}].

The results of Prasad and Rao (1990) and Datta and Lahiri (2000) lead

to the following :

1= [1 = (o) = ) +  (0u(4) — gu()]

= B [§lould) ~ 9u(A) explntan(A) = (A0}
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B
=1+ g3;(A) — by B? + S Va+t o(m™), (S2.26)

where by = E[A — A] + o(m™") and || < 1.

In the above calculation, we use
El(91(A) = 9(A))*] = E[(A = A’Bf] + o(m™) = B{Va + o(m™")
and
El(g1(A) = 91:(A4))"] = o(m™"),
the latter following from the dominated convergence theorem.

We next evaluate 7. Consider some integrable functions fi(-) and fo(-).

Then Lemma 3 (ii) and (iii) yield

E[fi(A— A) fo(aB — 2B)] =Cov(f1(A — A), fo(z}B — z/B))
+ E[fi(A = A)E[fo(«} — 2iB)],

=E[fi(A = A)E[fs(«}f — 2i)].  (S2.27)
Using (S2.27), we obtain as
T, = cos(218) Elcos(2(x}5 — 218))] Elexp{—2(A — A) + (gus(4) — g1:(A)}.

On the set ¥ = {A : |[A — A| < §} with some constant value § > 0, by
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Corollary 1, T3 reduces to

Ty = cos(2}3) E[cos(2(x}8 — x}8))]
x B[1—2(A— A) + (g1(A) — gui(A)) + 2(A — A)* + %(912@4) —gu(A))?: 7],
— cos(22}B8) Elcos(2(3 — B))| E[2(A — A)(g1(A) — gu(4)) : 7]

+ écos(Zx;/B)E[COS(Z(RC;B — 7;8))]

x E[{=2(A — A) + (g1:(A) — 91(A))}” exp{n(—2(A — A) + (9u:(A) — g1:(A)))} : 7],
= cos(22/3) {1 —~ 292&;‘4)} {1 — g3i(A) + ba(B? —2) + MVA} +o(m™),
—cost2atp) {1 = 228 — gy oz -2+ Py o,

(S2.28)

where |n| < 1. Note that, in the above calculation, some terms of odd

function with zero mean vanish.

In a similar way on ., T3 reduces to

~

Ty = cos(2x)8) E[cos(2(z5 — x.53))]

< B[1 - 2(A— A) +2(A— A - %(A ~ AP exp{2n(A - A)}: 7],

:COS(Q:L';ﬂ) (1 — 2925?214)> (1 — 2ba + QVA) + 0(m71),

(2

:COS(QJJ;ﬁ) (1 - 292i(A) —2bs + 2VA> + O(m_l). (82.29)

%
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From (S2.25), (52.26), (S2.28) and (52.29), we find on .77,

. 1 B4
BIN = My 7] = g exp(-gul) (gu) — baB? + V2 )

2
2G2i (A)
B2

1 exp(—2A4 + g1;(A)) cos(2z;5) {

2 (B} —2)?
3 + g3i(A) — ba(B; — 2) — —VA}

2

B2

(2

— %exp(—2A) cos(2x3) (QVA — 2by — 292i<A))
+o(m™1). (S2.30)

Then, Part (i) is obtained from (S2.30) with 0 < s < 1 using a proof similar

to that of Das, et al. (2004). Specifically,

E[(A— A)"
54

=o(m™). (S2.31)

<o(m™) + Cm?

We next prove part (ii). From the regularity conditions, Ms;(\) and
bar(N) are of the order O(m™!) for large m and these are every bounded
continuous functions with a finite \. Continuous mapping theorem and

dominated convergence theorem provide the following with s < 1:

|E[Mai(A) — Ma;(N)]| =|E[Mai(A) — Mai(N) : 7] + E[Mai(X) — My (N) : 7|

<o(m ')+ Cmsw =o(m™).

where C' is some positive constants.
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Similarly, we get
Elba(A) = ba (V)] = o(m™).

The results follow.

S2.3 Theorem 3 (i)

From Lemma 3 (i) and assumption on A, with some constant value s > 0,

E[(M{(A) = M;(\)'] =E[(M(A) = My(\)* = Z]+ B[(MP(X) — My)* - 7]

<0ty + Cnt FAZA) _ o, v,
(S2.32)
where C'(> 0) is some constants.
We then get from (S2.32),
P(MP(X) < 0) < P(M(X) = M;| > M),
CEORO =M ey, (sa

)

We now let .7 define a set such that {M° > 0}. Then the result (S2.33)

and Theorem 2 lead to the following result with 0 < s < 3/5.
|E[M; — Mj]| =|E[M; — M; : M)+ E[M; — M; : A°]|
<|BIMP(A) = Mi]| + Cm P(M(A) <0),
—o(m™Y) + O(mE=VEs=4) = o(m~1).

We thus get part (i).
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