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Abstract: The problem of missing data is common in longitudinal data analysis
and poses methodological challenges in terms of providing unbiased estimation and
statistical inference, owing to informative missingness. In such cases, it is crucial
to correctly identify and appropriately incorporate the missing mechanism into
estimation and inference procedures. Traditional methods, such as the complete-
case analysis and imputation methods, are designed to deal with missing data
under unverifiable assumptions of missing completely at random and missing at
random. We focus on identifying and estimating missing parameters under the
non-ignorable missing assumption, using refreshment samples from two-wave panel
data. Specifically, we propose a full-likelihood approach when a parametric model is
specified for the joint distribution of two-wave data. When such a model is unavail-
able, we propose a semiparametric method to estimate the attrition parameters,
with marginal density estimates obtained using an additional refreshment sample.
We derive several asymptotic properties of the semiparametric estimators, and
demonstrate their numerical performance using simulations. We further propose
an inference on bootstrapping, and assess it using simulations. Lastly, a real-data
application is provided based on the Netherlands Mobility Panel study.

Key words and phrases: Additive non-ignorable missing, asymptotic normality,
kernel density estimator, Netherlands Mobility Panel, wave data.

1. Introduction

Panel or longitudinal studies are widely used in scientific fields to assess
changes at both population and individual levels. However, longitudinal studies
often suffer from attrition, where some subjects are unable to respond to follow-
up studies, resulting in incomplete panel data and significant challenges for
traditional statistical methods. For example, the Netherlands Institute for
Transport Policy Analysis (Hoogendoorn-Lanser, Schaap and OldeKalter, 2015)
has been conducting the Netherlands Mobility Panel (NMP) since 2013. The
panel currently involves two waves of data collection, with the initial wave
consisting of 2,380 households. For the second wave, only 1,685 households
remained after almost 30% dropped out. Bias can be introduced in statistical
inference if attrition is ignored and the missingness is systematically related to
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the responses. Therefore, understanding the missing mechanism is crucial when
making statistical inferences about populations.

Different models have been proposed to explain missingness (Rubinl [2004]),
such as missing completely at random (MCAR), missing at random (MAR), and
missing not at random (MNAR). MCAR assumes the missingness is independent
of all the variables in the data, both observed and missing, whereas MAR allows
the missing mechanism to depend on variables that are always observed. MNAR
further relaxes the assumption for the missing mechanism, and assumes the
missingness depends on both observed and unobserved variables. Numerous
statistical methods have been developed to allow valid estimations and inferences
under these missingness assumptions.

Unfortunately, partially observed panel data alone cannot distinguish among
the various missing mechanisms, and the aforementioned missingness assump-
tions are often unverifiable. A violation of the assumptions could lead to
biased estimation and inference (Deng et al., 2013), and the MNAR model
has identification issues, because the panel data alone are often not sufficient
to make inferences about populations (Rubin) 1976l 2004; Hirano et al., 2001;
Fitzmaurice et al. [2008). |Miao, Ding and Geng (2016 provide sufficient
conditions for model identifiability when the response follows a normal or a
normal mixture distribution. Furthermore, |d’Haultfoeuille, (2010), under a
completeness assumption, and Wang, Shao and Kim, (2014])), using the generalized
method of moments, establish sufficient identifiability conditions for general
data-generating processes by introducing an instrumental variable. Assuming a
semiparametric model on the response mechanism, based on estimating equations,
Morikawa and Kim| (2021) provide a sufficient condition for its identifiability
without needing the instrumental variable assumption.

Hirano et al.| (2001) were the first to explore using refreshment samples to
improve the estimation and inference of the attrition process. A refreshment
sample is a common sampling strategy of collecting a new random sample from
the target population during follow-up waves when attrition occurs. Many large
panel studies now routinely include refreshment samples (Deng et al., 2013).
For instance, many longitudinal studies of the National Center for Education
Statistics, including the Early Childhood Longitudinal Study (Asigbee, Whitney
and Peterson, [2018) and the National Educational Longitudinal Study (Ingels
et al., 2014)), refill their samples once or multiple times during a study. The
NMP completed its initial data survey in 2013, after which a follow-up survey
was administered in 2014 that included a refreshment sample.

Refreshment samples provide an inexpensive way to improve the quality of
longitudinal data, and various methods have been developed to estimate the
attrition process using a refreshment sample. Hirano et al. (2001) propose an
additive non-ignorable model that takes MCAR and MAR models as special
cases to gain insights and make inferences for the attrition process. They provide
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the fundamental identification theory and develop an estimation procedure
for a two-wave binary response. Nevo| (2003) uses a refreshment sample to
compute sampling weights so that the moments of the weighted data match
those observed in the refreshment sample. Bhattacharya| (2008)) converts Hirano’s
fundamental identification theory into conditional moment restrictions. A set
of nonparametric regressions with B-splines are used to construct the objective
function for the parameter estimation. Dengl (2012) and Deng et al. (2013)
extended the additive non-ignorable model by including two refreshment samples
to handle three-wave binary response data, using a fully Bayesian approach and a
Markov chain Monte Carlo estimation. Similarly, Si, Reiter and Hillygus| (2015)
present a semiparametric additive non-ignorable model for analyzing multivariate
categorical responses in a two-wave panel with one refreshment sample. They
use the additive non-ignorable model for the attrition process and model the
multinomial survey responses using a Dirichlet process mixture.

This paper proposes two new approaches for handling MNAR data in a
two-wave panel with one refreshment sample. The first method is a fully
parametric method based on likelihood. Inferences for the population use
maximum likelihood estimators, and we use an adaptive Gaussian quadrature
to overcome the integration difficulty introduced by the missing data in the
construction of the likelihood. The second method is a semiparametric approach
that uses the kernel density estimator as the nonparametric component, and the
additive non-ignorable attrition model (Hirano et al., 2001) as the parametric
component. The proposed semiparametric method is based on matching the
marginal densities recovered from the panel data with the observed marginal
densities from the first wave and the refreshment sample. The proposed method
is easy to implement and fast to compute. When the likelihood is specified
correctly, the full-likelihood approach provides the most efficient estimators and
acts as a benchmark for MNAR data analysis methods in a two-wave panel.
However, when the likelihood is misspecified, the full-likelihood method results
in bias and invalid inferences. On the other hand, the semiparametric method
is more robust and flexible in terms of the distributional specification and
provides consistent inferences for the attrition process under different population
conditions. Simulation results support the finding that the kernel density-based
semiparametric estimators exhibit better numerical performance than that of the
method proposed by |[Bhattacharya (2008)).

The first contribution of this study follows from combining the advantages
of Hirano’s fundamental identification theory (Hirano et al., 2001)) with kernel
density estimators. The proposed semiparametric method does not require
a specification of the joint distribution of the data and provides a unified
estimation procedure for the additive MNAR model. The second contribution
is the theoretical justification of the proposed estimators. While no asymptotic
justification is given in Hirano et al.| (2001) or Deng et al.| (2013), we show that the
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semiparametric estimator is consistent and asymptotically normal, and develop
inference tools are developed for testing the MCAR and MAR assumptions based
on asymptotic formulae and bootstrapping methods. The proposed methods
differ fundamentally from those designed for binary data (Hirano et al., 2001;
Deng et al., 2013)), because the distribution of binary data can be characterized
using a few parameters, and the estimation procedure involves only moments. In
contrast, the continuous case requires parameters of infinite dimension, creating
challenges in both computation and theory development.

The rest of the paper is organized as follows. Section 2 introduces the
refreshment sample and the additive non-ignorable model. Section 3 presents
methods for the estimation and inference of the attribution parameters. Extensive
simulation results are given in Section 4. An application using the NMP is
discussed in Section 5. Finally, Section 6 concludes the paper.

2. Refreshment Sample and Models

In the presence of missingness, it is often assumed that the data are missing
completely at random (MCAR) or missing at random (MAR). However, these
assumptions are untestable given the panel data alone. When the data are
MNAR, the missing mechanism often cannot be identified without additional
data or information. |[Hirano et al. (2001) propose using a refreshment sample
to resolve this identification problem and to provide an approach for testing the
MCAR and MAR assumptions.

A refreshment sample is an additional independent random sample drawn
from the population during follow-up waves when attrition starts to occur.
Suppose {Y; = (Y;1,Y; )}Z\il are independent and identically distributed (i.i.d.)
bivariate responses observed on NN subjects from a given population. We assume
that the responses in the first wave {Yﬂ}i]\;l are fully observed, and that responses
in the second wave {Yﬁ}f;l are potentially missing. Let W, be the missingness
indicator, with W, = 1 if Y}, is observed, and W; = 0 otherwise. In addition to
the panel data, a refreshment sample of size n is observed at the second wave, and
is denoted as {Y;5}"_ . With the refreshment sample appended to the original
data, the data structure is shown in Table 1.

For the two-wave data in Table 1, Hirano et al.|(2001]) proposed an additive
non-ignorable model for the missing mechanism, of the form

PW =11y1,y2) = g{ko + K1(y1) + ra(y2)}, (2.1)

where g is a monotone function bounded in [0, 1], and ko, £1(+), k2(-) are constant
or arbitrary functions. Model includes the MCAR and MAR models as
special cases. It leads to the MCAR model if both k; and k, are zero, and
to the MAR model if only ky is zero. When k, is nonzero, the data are
MNAR. Therefore, the model provides a way of testing for MCAR or MAR
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Table 1. Two-wave data with refreshment sample.

Obs Y1 Y, W
Complete Set : : : :
Ne Yoo Yo.2 Wy, =1
ne+1 Yaoo4n Wier1=0
Incomplete Set : : :
N Y1 Wxn=0
1 YT
Refreshment sample :
n Yo,

mechanisms by testing for nonzero x. This model still includes an untestable
assumption that the missingness depends additively on the responses, without
any interactions. According to Hirano et al.| (2001)), this is the weakest assumption
that is identifiable and estimable using a refreshment sample.

When both Y;; and Y}, are binary, Hirano et al.|(2001)) provide two fundamen-
tal identification constraints for the attrition parameters and propose estimating
these parameters using the method of moments. The authors do not provide an
implementation of the additive non-ignorable model continuous responses. We
aim to extend the approach of Hirano et al. (2001) to estimate the attrition
mechanism for continuous responses using the data observed in Table 1.

We assume non-ignorable missingness and an additive non-ignorable attrition
model with the logistic regression form

POW =1y, 40) = exp(Bo + Bryr + Pay2) (2.2)

1+ exp(Bo + Biyi + Bay)’

where 5y, 81, and (35 are attrition parameters. The logistic model is a popular
parametric form for describing a missing mechanism (Rubin, |1976; |[Hirano et al.,
2001} Nevo, [2003; Bhattacharyal, 2008; [Kim, |2009; Little and Rubin, [2019), as is
the probit model. |Miao, Ding and Gengj (2016|) provide sufficient conditions for
the probit model to be identified when the response variable follows a normal or
normal mixture distribution without using a refreshment sample. Our proposed
method can be extended to other parametric attrition models, including the
probit model. It can also be extended to a more flexible attrition model with
either a nonparametric link function or an additive function of y; and y, without
specifying the functional forms of y; and ys,.
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3. The Proposed Method

We develop two new methods for handling two-wave MNAR, data with con-
tinuous responses rather than binary responses. These methods use refreshment
samples to estimate the unknown attrition parameters in . We first describe
a likelihood-based fully parametric method in subsection 3.1. Then, in subsection
3.2, we introduce a kernel density-based semiparametric method to estimate the
attrition parameters based on Hirano’s constraints. The asymptotic theory of
the semiparametric estimator is developed in subsection 3.3, and we describe
hypothesis testing for the attrition parameters and estimating the corresponding
power functions in subsection 3.4.

3.1. Full-likelihood parametric method

We estimate the attrition parameters by maximizing the full likelihood
function. The first- and second-wave responses, Y; and Y, are assumed to
be bivariate normal. Let 0 = (Ml,MQ,O'll,O'lg,UQQ)T and 8 = (50,51,/6’2)T
be the unknown parameters in the bivariate normal and the attrition model,
respectively. The three subsets of the data in Table 1 contribute to the
likelihood independently. Specifically, in the complete set, responses from both
waves are observed, and the likelihood of the complete data is L.(0,5) =
[T f(yinsyio, Wi = 11 0,8) = TLZ) f(yin, yil ) P(Wi = 1 | yir, Yio, B), Where
f(y1,92|0) is the bivariate normal density function. In the incomplete panel, only
the first wave is observed, and its contribution to the likelihood is L;.(6,5) =
H?{:nc“ [y, W; =010,8) = Hj\;nchl ff(ymyzw)P(Wi = 0| yi1,y2, B)dyz. In
the refreshment sample, only the second wave is observed, and its contribution
to the likelihood is L,(8) = T[]\, fa(y|0). Then, the full likelihood is the
product of the above three components as L(0,3) = L.(0, 5)L;.(0, 3)L.(6). The
maximum likelihood estimates (§M LE, BM rE) can be obtained by maximizing the
full likelihood L(#, B) with respect to all parameters.

Calculating the likelihood of the incomplete set is challenging because it
requires integrating a joint density for each incomplete data point, and there
is no closed-form solution. To address this, we propose using an adaptive
Gaussian—Hermite quadrature (Skrondal and Rabe-Hesketh, [2004; [Rabe-Hesketh,
Skrondal and Pickles, |2005; [Skrondal and Rabe-Hesketh) |2009) for the numerical
approximation. The Gaussian—Hermite quadrature is a commonly used technique
for generalized linear mixed models (Molenberghs and Verbeke, [2005)).

In the parametric approach, the refreshment sample helps to identify the
parameters # and [ in the observed likelihood L(6, ). |[Miao, Ding and Geng
(2016) provide sufficient identifiable conditions for a normal response or normal
mixture in a probit model. Without using refreshment samples, the model
parameters are, in general, unidentifiable (Hirano et al., 2001)). Therefore, the
parametric method is infeasible in general non-ignorable missingness scenarios.
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The maximum likelihood estimators are most efficient if the underlying popula-
tion and the attrition models are specified correctly. However, a misspecification
of either model can lead to biased estimation and inference. In the next section,
we introduce a semiparametric method that does not require a specification of
the population distribution and extends Hirano’s constraints to the continuous
response setting. The parametric method serves as a benchmark to assess the
performance of the semiparametric method in simulation studies.

3.2. Kernel density based semiparametric method

Our approach is motivated by the identification equations in [Hirano et al.
(2001). Let f(y1,y2 | W = 1) be the joint density of (Y3,Y2) on the complete
panel, and f(y;,y2) be the joint density in the population. When the missing
mechanism is specified correctly, we can reconstruct the unobserved joint density
f(y1,y2) from the observed counterpart f(yi,y2 | W = 1) by f(y1,42) =
{PW =1)/P(W =1|y1,y2) } f(y1,92 | W = 1). As a result, for marginal
densities, we have

P(W =1) B B
/P _Hyl: 2)f(y17y2 ‘W_l)dyQ_fl(yl)’

/P — Hyh)yz)f(yl,yz | W = 1)dy, = fa(y2), (3.1)
where f; and f, are the marginal densities for Y; and Y5 respectively. Our main
estimation idea is to find the values of 8 that correctly transform the joint density
in the complete set f(y1,y2 | W = 1) back into the joint density in the population
f(y1,y2)-

The estimation starts with a two-dimensional kernel density estimator for
f(y1,92 | W =1). For any y = (y1,¥2)", the kernel density estimator is fH(y |
W =1)=(1/n.) >0 Ku(ly —Y;), where Y; = (Yi1,Yn)", for i = 1,2,. o
are data points in the complete set; H is a 2 x 2 bandwidth matrix Wthh is
symmetric and positive definite; and Kpy(y) = |H|"Y2K(H"'/?y), where K is
the bivariate normal kernel function defined as K(y) = (27) ! exp(—y’y/2).

In addition, P(W = 1) can be estimated consistently by P(W = 1) = n./N.
For a given 3 = (ﬁo, B1,B2)T, an estimator for the joint density is given as f(y1, y» |
B) = P(W =1)fu(ys,y2 | W = 1) /logistic(Bo + Biys + Bays)-

We can compute the marginal densities of Y; and Y5 by numerically integrat-
ing the joint distribution f(yl,yg | B). In particular, for a given y;, the marginal
density of Y; can be computed as fl(yl |8)=J f(yl,yg | B)dys. For a given ys,
ﬁ(yz | B) is defined similarly. Due to missingness, we use the refreshment sample
rather than the data observed in the second wave to generate the range of Y, for
the grid points. The resulting marginal density estimates ﬁ(yl | B) and ]?;(yg | B)
are the semiparametric estimators, which rely on the parametric specification of
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the attrition model. They are consistent estimates of the true marginal densities
only when the attrition model is specified correctly.

The marginal densities on the right-hand side of Equation can be
estimated directly from the first wave and the refreshment sample. Let {Yﬂ}N
be the data from the first wave and {Y;5})"_, be the refreshment sample. We define
one-dimensional kernel density estimators as f;(y;) = SN Kp, (y1 —Yn)/N, and
ﬁ(yz) =>"  Kpn,(y2 — Y3)/n, where K is the univariate density function, and
Ky, (y) = h;'K(y/h;), with h; being the corresponding bandwidth for i = 1,2.
In our simulation and numerical studies, we use the plug-in method to select
the bandwidths in the kernel density estimators and implement it using the R
function hpi in the ks package.

The estimator B of the attrition parameters is defined as the minimizer of
the objective function My ,(3) with

MNn(ﬂ) = Mx(B) + M(5)

NZen{fl Ya | B) - Av)) + zezQ{fQ Yl 8) - Ry}, (32

where €2, and €2, are prespecified weights. Intuitively, My (8) and M,,(3) measure
the differences between two estimators of marginal density: the semiparametric
estimator based on the attrition model and the nonparametric kernel estimator
using either the first wave or the refreshment sample. Only with the true attrition
parameters do the semiparametric estimators provide consistent estimates of the
marginals with the objective function My , being close to zero. Our estimator B
is the minimizer such that My, is as close to zero as possible.

In , the weights e and €7 enable us to adaptively compare the
differences between the two types of marginal density estimators. For example, it
is well known that the performance of kernel density estimators is less satisfactory
at the boundary due to the edge effect. Our simulation studies suggest that
weighting, specifically trimming out data near the boundary, can potentially
improve the estimation performance for two-wave data with a distribution that
has a heavy tail. However, the advantage of weighting diminishes as the
sample size increases. In addition, for distributions with light tails, such as the
normal distribution, no weighting, with e;; = e;5 = 1, gives better estimation
performance. In practice, no weighting is recommended, in general, unless there
is prior information on the distribution of the data or there is a preference for
which regions to focus on when comparing these marginal density estimators.

3.3. Asymptotic theory

To establish our asymptotic results, we need the following conditions.
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(A1) Let S = {(y1,%2) : f(y1,y2) > 0} be the compact support of (Yi,Y53).
Assume S = [—t,t] X [~u, u], and the support of f(y1,y2 | W = 1) coincides
with S.

(A2) The densities f(y;,y2) and f(y;,y2 | W = 1) are uniformly continuous and
bounded away from zero on S.

(A3) The parameters 8 = (8o, £1,52) belong to a compact set ©, and without
loss of generality, /BQ S [—bo, bo], 51 S [_bl) b]_], and /82 S [—bQ, bg]

(A4) The kernel function K(y) is a probability density function and satisfies
ly|**° K (y) — 0 as |y| = +oo, for some § > 0.

(A5) For the two-dimensional kernel, the bandwidth H = hl,, where I, is a 2 x 2
identity matrix and h — 0 and n.h*/log(n.) — +o0c as n, — +oo.

(A6) The bandwidths hy and hy satisfy hy — 0 and hy — 0, and (Nh3)"'log N —
0 as N — +oo and (nh3) 'logn — 0 as n — 400, where N is the panel
size, and n is the refreshment sample size.

Conditions (A1)-(A6) are common in the literature. Conditions similar
o (A1)—(A3) are also considered in |Hirano et al| (2001) and Bhattacharya

(2008). Conditions (A4)—(A6) are needed to ensure the uniform consistency of
the univariate and bivariate kernel density estimators, as in |Devroye and Wagner
(1980)).

Let 8° = (Bo, B1,32) be the true attrition parameters. Theorem 1 shows
that 8° is identified based on the marginal distributions of Y; and Y5. Our main
theoretical results are presented in Theorems 2 and 3, which establish the con-
sistency and asymptotic normality, respectively, of the proposed semiparametric
estimator.

Lemma 1. Suppose conditions (A1) and (A2) are satisfied. Then for almost all
(y1,y2) € S, there is a unique set of parameters (Bo, 1, B2) satisfying

=1)
logistic( 50 + Biyr + Pay2)

=1)
logistic( 50 + Biy1 + Pay2)

fyr,ye | W = 1)dya = fi(y1),

fyy2 | W = 1)dys = fa(ys). (3.3)

Proof of Lemma 1. The proof follows from Theorem 1 of Hirano et al.[(2001).

Theorem 1 (Identifiability). Under assumptions (A1)—(A2), the two con-
straints in Equation (3.3) are uniquely satisfied by the true parameters 3° =

(85, BY B3)-

Proof of Theorem 1. Given the attrition model as P(W = 1 | yi,y2) =
logistic(8) + 8%y + 89y ), it is sufficient to show that 3° satisfies Equation (3.3)),
with P(W = 1) f(y1,y2 | W = 1)/logistic(8y + Bly1 + Bay2) = f(y1,y2)-
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Theorem 2 (Consistency). Under assumptions (A1)—(A6), as n,N — o0,
the minimizer B of My ,(B8) converges in probability to 3°, which is the unique

minimizer of E{fi(Y1 | 8) — A(Y1)}* + E{fa(Ya | B) — fo(Y2)}?.

The proof of Theorem 2 is presented in the Supplemental Material. It
contains two main steps. First, My, () is shown to converge to its probability
limit uniformly. Second, we show that this probability limit has a unique
minimizer 3°. Then, the consistency follows from Theorem 5.7 of van der Vaart
(2000).

Theorem 3 (Asymptotic Normality). Suppose N/n — r, for a constant r >
0. Under assumptions (A1)—(A6), we have VN (B — 8°) ~ N(0,V-1(V-1)T),
where V.= E{0? My (8°) /008" } + E{0*M,,(5°)/0BOBT} and X = 43, + g +
4r¥gs + 43X.,,, defined in (A6) and (A7), respectively, Supplementary Material.

The asymptotic property of B is evaluated using a Z-estimator by taking
the derivative of My, (8). There are two parts in My, () from , namely,
My (B) and M, (5). In the proof included in the Supplemental Material, we
tackle each part separately. Theorem 3 combines the asymptotic expansions of
these two parts.

3.4. Hypothesis testing

The asymptotic theory developed in subsection 3.3 can be used to perform
hypothesis testing for missing mechanisms by testing the attrition parameters
B and 5 in the additive non-ignorable model. For MCAR, MAR, and MNAR,
consider Hy: By =0and 8, =0, Hy: B, =0, and Hy: Py # 0, respectively. A
Wald-type test statistic can be constructed based on the asymptotic normality
of the semiparametric estimators Bl-,

B@ — Bio BZ

Sk SEp

7 —

fori=1,2, (3.4)

where SE3 are corresponding standard errors. The 100(1 — «)% confidence
interval can be defined as Bi + zl,a/QSEAi, for ¢« = 1,2, where 2,_,/2 is the
(1 — a/2)th quantile of the standard normal distribution. The asymptotic theory
in Theorem 3 gives the asymptotic formula for computing the standard errors.
However, it requires both the true population density functions and the true
attrition parameters, which are often unavailable in practice. Therefore, we
propose using a bootstrap to approximate the standard errors numerically. The
accuracy of this bootstrap SE is assessed numerically by comparing it to the
empirical SE in the simulation studies. In addition, we compare the power
functions of the test statistics defined in with different standard errors.
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4. Simulation Studies

This section evaluates the numerical performance of the proposed full likeli-
hood and kernel-based semiparametric methods. Each simulation in this section
includes 1,000 replications.

4.1. Comparison of three estimation methods

We first compare the finite-sample performance of the proposed full likeli-
hood (or parametric) and semiparametric methods with that of Bhattacharya’s
conditional moment restriction (CMR) method. Data sets are generated from the
bivariate normal and gamma-t distributions. The gamma-t distribution is used
to understand the effect of a model misspecification.

Two-wave data (Y7, Y5) are generated independently from a bivariate normal
distribution with mean 0, marginal variances 10, and correlation coefficient 0.5.
The true attrition follows a logistic regression with attrition parameters of 5y = 0,
81 = 0.3, and B3 = 0.4. Three methods are applied to obtain estimates of the
attrition parameters. Figure 1 compares the finite-sample performance in terms
of the empirical squared bias, variance, and MSE for Bl and Bz- The x-axis
shows panel size and refreshment sample size combinations, with both sample
sizes increasing along the x-axis. Figure 1 clearly shows that the MSEs of both
the parametric and the semiparametric methods decrease as the sample sizes
increase, corroborating the asymptotic results. In addition, the parametric and
semiparametric methods outperform the CMR method, where the latter has the
largest MSE in all sample size combinations. In particular, for a panel size of 5,000
and a refreshment size of 2500, the parametric estimator of 8; has about one-third
the variance of the semiparametric estimator, which, in turn, has nearly one-third
the variance of the CMR estimator. Due to the attrition in the second wave, the
variances of 32 are larger for all three methods. The parametric estimator of 3,
has about half the variance of the semiparametric estimator, which, in turn, has
about half the variance of the CMR estimator.

To generate non-normal data, we consider the marginal distributions of the
first and second waves as Gamma(3,2) and ¢(6), respectively. To make the
distributions comparable with the previous bivariate normal case, we shift the
Gamma distribution to a center at zero, and the t distribution is scaled by
three. Copulas are used to create a non-normal joint density with the given
marginals and a correlation coefficient of 0.5 (Yan, 2007). As a result, the
joint distribution centers at zero, and the Gamma marginal has a variance of
12, and the t-distribution has a variance of 13.5. Compared with the bivariate
normal distribution, this distribution has the same zero means and slightly larger
marginal variances.

For the performance of Bl, Figure 2 shows that the parametric method
performs better in terms of the MSE. However, as the sample size increases, the
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Figure 1. Comparison of finite-sample performance of three estimation methods:
parametric (triangle), semiparametric (circle), and CMR (x) for bivariate normal
responses. The dash, dot-dash, and solid lines represent the empirical squared bias,
variance, and MSE, respectively.

Table 2. Gamma-t population. Empirical squared bias, variance, and MSE of 31 and 32
for parametric and semiparametric methods with a panel size of 5,000 and refreshment
sample size of 2,500.

Squared Bias (1073)  Variance (1073) MSE (1073)

Bl 32 Bl 32 Bl 32
Semiparametric ~ 0.0087 0.5082 1.1457  1.5718 1.1544  2.0801
Parametric 0.2161 4.2440 0.3026  1.2451  0.5183  5.4891

parametric method has a nondecreasing bias, whereas the semiparametric method
has a decreasing bias. The variance of the semiparametric estimator 31 is still
larger than that of the parametric estimator. However, for 32, the parametric
method gives a noticeably larger bias, and leads to a larger MSE than does the
semiparametric method. The same observations are evident in Table 2, which
reports the empirical squared bias, variance, and MSE of the parametric and
semiparametric estimators for a panel size of 5,000 and a refreshment sample size
of 2,500.

In the bivariate normal setting, our proposed parametric and semiparametric
methods outperform the CMR, method. When the joint distribution is specified
correctly, the parametric method outperforms the other two methods. However,
when the distribution is misspecified, there is bias in the parametric estimator,
whereas the semiparametric estimator, which is free of distributional assumptions,
yields a consistent performance in the presence of non-normal populations.
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Figure 2. Comparison of finite-sample performance with gamma-t responses: parametric
(triangle) and semiparametric (circle). For both methods, the dash, dot-dash, and solid
lines represent the empirical squared bias, variance, and MSE, respectively.

4.2. Effect of weighting

As discussed in section 3.2, weight assignments allow us to prioritize the
comparison of the density function estimates over different regions of interest.
To investigate the effect of weights, we generate data from three distinct distri-
butions: a bivariate normal, as in subsection 4.1, a uniform distribution, and a
beta distribution. For the uniform and beta distributions, the two-wave data Y;
and Y, are independent, and both follow either a Unif(—+/30,/30) or a scaled
beta distribution with location and scale parameters 0.5 and 0.5, respectively, and
a minimum of —2+v/5 and a maximum of 2v/5. In all three distributions, the two-
wave data have the same marginal mean of zero and variance of 10. We consider
two weighting strategies, e;;1 = €150 = 1, €21 = I(q1005 < Yi1 < q1095) and
€22 = 1(q2.0.05 < Yio < qo095). Here, ¢1 o and ¢z, are the ath sample quantiles
for Y7 and Y3, respectively. The first set ey ;1, €1, imposes no weighting, and the
second set es 1, €2 considers only the middle 90% of the data.

Table 3 reports the empirical squared bias, variance, and MSE of Bl and
Bg for the proposed semiparametric estimator under the two weighting schemes.
For the normal distribution, the estimators without a weighting (e;) perform
better, with smaller MSEs for both sample size combinations. However, for both
the uniform and the beta distributions, the estimators with the weighting (e;)
perform slightly better. This indicates that weighting can be useful in mitigating
the edge effect of a kernel density estimation, especially for distributions with
heavy tails. However, the advantage of weighting diminishes as the sample size
increases.
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Table 3. Empirical squared bias, variance, and MSE of B\l and 32 for semiparametric
methods with two weights, e1: no weight, and e;: a weight that uses only 90% of the
data under different distributions.

Squared Bias (107%)  Variance (1073) MSE (10~3)

Distribution ny no B\l EQ Bl 32 B\l B\Q
Normal 100 50 e 0.82 1.26 33.43 70.53 34.25  71.79
es 1.10 1.63 42.93 84.19 44.03  85.83
500 250 e; 094 1.59 5.01 10.89 5.95 1248
es 0.80 1.40 6.39 14.57 719 1597
Uniform 100 50 e; 2.80 5.26 8.88 36.43 11.69  41.69
es 1.8 3.02 9.95 33.63 11.80  36.66
500 250 e 234 4.51 3.91 5.02 6.25 9.53
D) 2.19 3.12 4.02 5.27 6.22 8.39
Beta 100 50 e 6.07 9.12 9.46 38.60 15.53  47.72
es 5.65 8.41 9.47 39.05 15.12  47.47
500 250 e; 5.59 7.34 1.99 3.52 7.59  10.85
es  4.95 6.42 2.13 3.78 7.08 10.19

4.3. Bootstrapping in applications

We evaluate the numerical performance of the proposed Wald test using three
approaches to calculate the standard error: empirical SE (ESE), asymptotic SE
(ASE), and bootstrap SE (BSE). The ESEs are calculated from 1,000 simulation
replications, and serve as a benchmark for comparison, but are not available
in practice. The ASEs are based on the asymptotic variance in Theorem 3,
which requires knowledge of the true parameter values and population density
functions, making it often impractical. Thus, we propose using a bootstrap as an
alternative to approximate the standard errors. We compare the performance of
these approaches based on the power of the corresponding test statistics.

In the bootstrap method, 500 bootstrap samples are created. Each bootstrap
sample consists of a bootstrapped panel and a bootstrapped refreshment sample,
which are bootstrap samples from the original panel and the refreshment sample,
respectively. The semiparametric method is applied to each bootstrap sample
to estimate the attrition parameters, and the standard deviation of these 500
estimates is the BSE.

A total of 200 samples with panel size 5,000 and refreshment size 2,500 are
drawn from a bivariate normal population, each with the marginal mean zero,
variance 10, and correlation coefficient 0.5. For each sample, we perform the
Wald test at the significance level of a = 0.05. In the Wald test statistic, three
different SEs are considered. The proportion of rejecting the null hypotheses in
the 200 replications is calculated as the empirical power for each method, and is
evaluated at (0,0.05,0.1,0.2,0.3) for 8, and (0,0.05,0.1,0.13,0.2,0.4) for S,.
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Figure 3. Power function comparison. The solid, dash, and dot-dash lines represent the
power functions based on the bootstrap SE (BSE), asymptotic SE (ASE), and empirical
SE (ESE), respectively. The dash line at the bottom indicates the significance level, 0.05.

Figure 3 gives the power functions based on the BSE (solid), ASE (dash),
and ESE (dot-dash). For all three methods, the power is close to the significance
level of 0.05 when 5; = 0. In addition, the power increases quickly to one as
the true value of §; moves away from the hypothesized value of zero for all three
methods, indicating that the proposed Wald test works reasonably well. More
importantly, the power functions based on the BSE and ESE are close to each
other, and both have overall higher power than those based on the ASE. This
shows that the Wald test based on the bootstrap SE works reasonably well.

In addition, the 95% confidence intervals for 5, and 3, are constructed based
on the ASE and BSE. Table 4 reports the empirical coverage probabilities of these
confidence intervals for different choices of 8; and p5. Overall, the confidence
intervals based on the BSE have empirical coverage probabilities closer to the
nominal level of 95%. In contrast, the confidence intervals based on the ASE are
more conservative, with empirical coverage probabilities higher than 95%.

5. Netherlands Mobility Panel

The Netherlands Institute for Transport Policy Analysis has conducted the
Netherlands Mobility Panel (NMP) since 2013, a multiple-wave longitudinal
study aimed at understanding changes in travel behavior over time. Detailed
information can be found in|Hoogendoorn-Lanser, Schaap and OldeKalter| (2015)).

The NMP samples households as survey units and collects travel infor-
mation by distributing questionnaires to members in each household. The
NMP conducted the initial and second wave of the data survey in 2013 and
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Table 4. Coverage probabilities of 95% _confidence intervals for 1 and B> based on
200 replications. The standard errors of 61 and 62 are computed using the asymptotic
formula and bootstrapping. The panel size is 5,000, and the refreshment sample size
is 2,500. The coverage probabilities are calculated for different true values of attrition
parameters 31 and [s.

Asymptotic Formula Boostrap
B B2 By Ba B Ba
0 0 1 0.995 0.985  0.945
0.05 0.05 1 1 0.975  0.955
0.1 0.1 1 1 0.990 0.965
0.2 0.2 1 1 0.985  0.940
0.3 0.4 1 0.980 0.990  0.960

2014, respectively. The database consists of three components: household data,
personal data, and individual travel diary data. Based on the household data,
there were 3,572 households in the initial wave, and 4,685 households in the
second wave. In the first wave, 2,380 households provided household information
and travel diary data. Of the 2,380 complete cases, 1,685 households continued to
report their travel behaviors during the second wave of the data collection, while
the remaining 695 households did not respond. A refreshment sample of 1,382
households with household information and travel diary data was identified and
collected simultaneously as the second wave. These sets of 2380, 695, and 1382
households represent the complete set, incomplete set, and refreshment sample,
respectively.

The NMP examines travel behavior over time, and various studies have
analyzed these data to gain insights into such behaviors. For instance, [Kroesen
and Goulias| (2016) investigates the relationship between attitudes and travel
behaviors using the complete data set. [Hoogendoorn-Lanser, Schaap and Old-
eKalter| (2015) estimates the nonresponse bias by modeling the nonresponse
behavior using a logistic regression and a MAR assumption. [Puello and Geurs
(2016) explores the effects of nonrandom attrition on mobility rates using trip
diary data. Their analysis assumed MAR assumption and attrition was evaluated
only through observed demographic data.

The aforementioned studies assume MCAR or MAR in their analyses of
the NMP data. In contrast, we relax the missing mechanism assumption and
consider MNAR. We use the refreshment sample to estimate and draw inferences
about the MNAR attrition parameters, which yields insights into the true missing
mechanism. Specifically, we focus on total travel time as the variable of interest
and investigate whether the missing mechanism is related to this variable. The
travel diary records all trips made by each household over three days, and we
calculate the total travel time by summing the travel times and rescaling the
sum using a natural log transformation.
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Figure 4. Marginal density comparison of NMP on the first and second wave.

Figure 4 compares the marginal densities of the log-transformed total travel
time on each wave. Here, Y; and Y, are the total travel times on the natural log
scale at the initial and second waves, respectively. In the left panel of Figure 4,
the estimated marginal density of Y; based on the complete set is shown in gray,
while the one based on the full panel Y; is in dark gray. In the right panel, the
estimated marginal density of Y5 based on the complete set is shown in gray, and
the density based on the refreshment sample is shown in dark gray. The estimated
marginal densities of Y; and Y, based on the complete set can be biased due to
missingness in the data. In contrast, the full panel Y; and the refreshment sample
provide more accurate estimates for the true marginal densities.

We consider three possible attrition models corresponding to the three
missing mechanisms, MCAR, MAR, and MNAR. Let W; denote the missingness
(attrition) indicator for the ith subject with W; = 1 if Y5 is observed for subject i
and W, = 0 otherwise. We assume an additive logistic model for the probability
of Wi =1 as munar = P(W; = 1 | y1,¥2,8) = logistic(8y + Biy1 + B2y2). This
reduces to MCAR when 8, = 35, = 0 and to MAR when 5, = 0.

Table 5 gives the estimation results of the attrition parameters and their 95%
confidence intervals under the three missing mechanisms. Under MNAR, neither
of the confidence intervals for 5, and 5 contain zero, indicating strong evidence
that the missingness is related to Y; and Y. Therefore, neither MCAR nor MAR
are adequate assumptions for the NMP. In addition, the positive estimate of 3,
indicates that the probability of being observed in the second wave increases as the
value of the total travel time in the first wave increases, and the negative estimate
of B, indicates that the probability of being observed decreases with the value of
total travel time in the second wave. This is also consistent with the observation
in Figure 4 that the complete set has a density leaning toward lower values of Y5,
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Figure 5. Sampling distributions of bootstrapped semiparametric estimators in NMP
application.

Table 5. Point estimates and 95% confidence intervals for attrition parameters for NMP
data.

Attrition model MCAR MAR MNAR
logit(m) = Bo Bo + By Bo + Bry1 + B2y2
Bo 0.89 (0.80, 0.97) 0.03 (-0.47, 0.54) 7.1 (5.09, 8.91)
By 0.15 (0.06, 0.24)  0.71 (0.50, 0.88)
Ba -1.64 (-1.97, -1.25)

compared with the marginal density from the refreshment sample. Under MNAR,
the 95% confidence intervals are constructed using bootstrapping. Figure 5 plots
the sampling distributions of the bootstrapped semiparametric estimators. The
vertical lines represent the point estimates from the original data.

6. Conclusion

We extend the method of Hirano et al. (2001)) for identifying and estimat-
ing the non-ignorable attrition mechanism for binary responses to continuous
responses, using a refreshment sample in two-wave panel data. The introduction
of refreshment samples into missing data analysis enables researchers to test the
missing mechanism assumption. The proposed full likelihood method relies on
the correct specification of the underlying population and attrition mechanism,
which is impractical in practice. The kernel-based semiparametric method is
the primary approach we propose to reduce the unavoidable bias due to model
misspecification. We show the consistency and asymptotic normality of the
additive attrition estimators in the semiparametric model.
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Current methods are limited to data with only two waves. Extending our
methods to multi-wave data is challenging, owing to the curse of dimensionality
in a multivariate nonparametric density estimation. However, our method can be
extended to a more flexible attrition model by using a nonparametric or additive
link function. These generalizations increase the robustness of our method and
enable its application to data with a more general structure, which is worth
future investigation. Furthermore, the current model setup does not consider
any covariates. We extend the proposed method in the Supplemental Material to
include binary or discrete covariates. However, investigating the case with more
general covariates is left to future research.

Supplementary Material

The online Supplementary Material includes an extension to binary covari-
ates, an additional simulation, necessary lemmas, and detailed proofs.
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