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Abstract: The problem of missing data is common in longitudinal data analysis

and poses methodological challenges in terms of providing unbiased estimation and

statistical inference, owing to informative missingness. In such cases, it is crucial

to correctly identify and appropriately incorporate the missing mechanism into

estimation and inference procedures. Traditional methods, such as the complete-

case analysis and imputation methods, are designed to deal with missing data

under unverifiable assumptions of missing completely at random and missing at

random. We focus on identifying and estimating missing parameters under the

non-ignorable missing assumption, using refreshment samples from two-wave panel

data. Specifically, we propose a full-likelihood approach when a parametric model is

specified for the joint distribution of two-wave data. When such a model is unavail-

able, we propose a semiparametric method to estimate the attrition parameters,

with marginal density estimates obtained using an additional refreshment sample.

We derive several asymptotic properties of the semiparametric estimators, and

demonstrate their numerical performance using simulations. We further propose

an inference on bootstrapping, and assess it using simulations. Lastly, a real-data

application is provided based on the Netherlands Mobility Panel study.

Key words and phrases: Additive non-ignorable missing, asymptotic normality,

kernel density estimator, Netherlands Mobility Panel, wave data.

1. Introduction

Panel or longitudinal studies are widely used in scientific fields to assess

changes at both population and individual levels. However, longitudinal studies

often suffer from attrition, where some subjects are unable to respond to follow-

up studies, resulting in incomplete panel data and significant challenges for

traditional statistical methods. For example, the Netherlands Institute for

Transport Policy Analysis (Hoogendoorn-Lanser, Schaap and OldeKalter, 2015)

has been conducting the Netherlands Mobility Panel (NMP) since 2013. The

panel currently involves two waves of data collection, with the initial wave

consisting of 2,380 households. For the second wave, only 1,685 households

remained after almost 30% dropped out. Bias can be introduced in statistical

inference if attrition is ignored and the missingness is systematically related to
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the responses. Therefore, understanding the missing mechanism is crucial when

making statistical inferences about populations.

Different models have been proposed to explain missingness (Rubin, 2004),

such as missing completely at random (MCAR), missing at random (MAR), and

missing not at random (MNAR). MCAR assumes the missingness is independent

of all the variables in the data, both observed and missing, whereas MAR allows

the missing mechanism to depend on variables that are always observed. MNAR

further relaxes the assumption for the missing mechanism, and assumes the

missingness depends on both observed and unobserved variables. Numerous

statistical methods have been developed to allow valid estimations and inferences

under these missingness assumptions.

Unfortunately, partially observed panel data alone cannot distinguish among

the various missing mechanisms, and the aforementioned missingness assump-

tions are often unverifiable. A violation of the assumptions could lead to

biased estimation and inference (Deng et al., 2013), and the MNAR model

has identification issues, because the panel data alone are often not sufficient

to make inferences about populations (Rubin, 1976, 2004; Hirano et al., 2001;

Fitzmaurice et al., 2008). Miao, Ding and Geng (2016) provide sufficient

conditions for model identifiability when the response follows a normal or a

normal mixture distribution. Furthermore, d’Haultfoeuille (2010), under a

completeness assumption, and Wang, Shao and Kim (2014), using the generalized

method of moments, establish sufficient identifiability conditions for general

data-generating processes by introducing an instrumental variable. Assuming a

semiparametric model on the response mechanism, based on estimating equations,

Morikawa and Kim (2021) provide a sufficient condition for its identifiability

without needing the instrumental variable assumption.

Hirano et al. (2001) were the first to explore using refreshment samples to

improve the estimation and inference of the attrition process. A refreshment

sample is a common sampling strategy of collecting a new random sample from

the target population during follow-up waves when attrition occurs. Many large

panel studies now routinely include refreshment samples (Deng et al., 2013).

For instance, many longitudinal studies of the National Center for Education

Statistics, including the Early Childhood Longitudinal Study (Asigbee, Whitney

and Peterson, 2018) and the National Educational Longitudinal Study (Ingels

et al., 2014), refill their samples once or multiple times during a study. The

NMP completed its initial data survey in 2013, after which a follow-up survey

was administered in 2014 that included a refreshment sample.

Refreshment samples provide an inexpensive way to improve the quality of

longitudinal data, and various methods have been developed to estimate the

attrition process using a refreshment sample. Hirano et al. (2001) propose an

additive non-ignorable model that takes MCAR and MAR models as special

cases to gain insights and make inferences for the attrition process. They provide
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the fundamental identification theory and develop an estimation procedure

for a two-wave binary response. Nevo (2003) uses a refreshment sample to

compute sampling weights so that the moments of the weighted data match

those observed in the refreshment sample. Bhattacharya (2008) converts Hirano’s

fundamental identification theory into conditional moment restrictions. A set

of nonparametric regressions with B-splines are used to construct the objective

function for the parameter estimation. Deng (2012) and Deng et al. (2013)

extended the additive non-ignorable model by including two refreshment samples

to handle three-wave binary response data, using a fully Bayesian approach and a

Markov chain Monte Carlo estimation. Similarly, Si, Reiter and Hillygus (2015)

present a semiparametric additive non-ignorable model for analyzing multivariate

categorical responses in a two-wave panel with one refreshment sample. They

use the additive non-ignorable model for the attrition process and model the

multinomial survey responses using a Dirichlet process mixture.

This paper proposes two new approaches for handling MNAR data in a

two-wave panel with one refreshment sample. The first method is a fully

parametric method based on likelihood. Inferences for the population use

maximum likelihood estimators, and we use an adaptive Gaussian quadrature

to overcome the integration difficulty introduced by the missing data in the

construction of the likelihood. The second method is a semiparametric approach

that uses the kernel density estimator as the nonparametric component, and the

additive non-ignorable attrition model (Hirano et al., 2001) as the parametric

component. The proposed semiparametric method is based on matching the

marginal densities recovered from the panel data with the observed marginal

densities from the first wave and the refreshment sample. The proposed method

is easy to implement and fast to compute. When the likelihood is specified

correctly, the full-likelihood approach provides the most efficient estimators and

acts as a benchmark for MNAR data analysis methods in a two-wave panel.

However, when the likelihood is misspecified, the full-likelihood method results

in bias and invalid inferences. On the other hand, the semiparametric method

is more robust and flexible in terms of the distributional specification and

provides consistent inferences for the attrition process under different population

conditions. Simulation results support the finding that the kernel density-based

semiparametric estimators exhibit better numerical performance than that of the

method proposed by Bhattacharya (2008).

The first contribution of this study follows from combining the advantages

of Hirano’s fundamental identification theory (Hirano et al., 2001) with kernel

density estimators. The proposed semiparametric method does not require

a specification of the joint distribution of the data and provides a unified

estimation procedure for the additive MNAR model. The second contribution

is the theoretical justification of the proposed estimators. While no asymptotic

justification is given in Hirano et al. (2001) or Deng et al. (2013), we show that the
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semiparametric estimator is consistent and asymptotically normal, and develop

inference tools are developed for testing the MCAR and MAR assumptions based

on asymptotic formulae and bootstrapping methods. The proposed methods

differ fundamentally from those designed for binary data (Hirano et al., 2001;

Deng et al., 2013), because the distribution of binary data can be characterized

using a few parameters, and the estimation procedure involves only moments. In

contrast, the continuous case requires parameters of infinite dimension, creating

challenges in both computation and theory development.

The rest of the paper is organized as follows. Section 2 introduces the

refreshment sample and the additive non-ignorable model. Section 3 presents

methods for the estimation and inference of the attribution parameters. Extensive

simulation results are given in Section 4. An application using the NMP is

discussed in Section 5. Finally, Section 6 concludes the paper.

2. Refreshment Sample and Models

In the presence of missingness, it is often assumed that the data are missing

completely at random (MCAR) or missing at random (MAR). However, these

assumptions are untestable given the panel data alone. When the data are

MNAR, the missing mechanism often cannot be identified without additional

data or information. Hirano et al. (2001) propose using a refreshment sample

to resolve this identification problem and to provide an approach for testing the

MCAR and MAR assumptions.

A refreshment sample is an additional independent random sample drawn

from the population during follow-up waves when attrition starts to occur.

Suppose {Yi = (Yi1, Yi2)}Ni=1 are independent and identically distributed (i.i.d.)

bivariate responses observed on N subjects from a given population. We assume

that the responses in the first wave {Yi1}Ni=1 are fully observed, and that responses

in the second wave {Yi2}Ni=1 are potentially missing. Let Wi be the missingness

indicator, with Wi = 1 if Yi2 is observed, and Wi = 0 otherwise. In addition to

the panel data, a refreshment sample of size n is observed at the second wave, and

is denoted as {Y r
i2}

n

i=1. With the refreshment sample appended to the original

data, the data structure is shown in Table 1.

For the two-wave data in Table 1, Hirano et al. (2001) proposed an additive

non-ignorable model for the missing mechanism, of the form

P (W = 1 | y1, y2) = g {κ0 + κ1(y1) + κ2(y2)} , (2.1)

where g is a monotone function bounded in [0, 1], and κ0, κ1(·), κ2(·) are constant
or arbitrary functions. Model (2.1) includes the MCAR and MAR models as

special cases. It leads to the MCAR model if both κ1 and κ2 are zero, and

to the MAR model if only κ2 is zero. When κ2 is nonzero, the data are

MNAR. Therefore, the model provides a way of testing for MCAR or MAR
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Table 1. Two-wave data with refreshment sample.

Obs Y1 Y2 W

1 Y11 Y12 W1=1

Complete Set
...

...
...

...

nc Ync1 Ync2 Wnc=1

nc + 1 Y(nc+1)1 Wnc+1=0

Incomplete Set
...

...
...

N YN1 WN=0

1 Y r
12

Refreshment sample
...

...

n Y r
n2

mechanisms by testing for nonzero κ. This model still includes an untestable

assumption that the missingness depends additively on the responses, without

any interactions. According to Hirano et al. (2001), this is the weakest assumption

that is identifiable and estimable using a refreshment sample.

When both Yi1 and Yi2 are binary, Hirano et al. (2001) provide two fundamen-

tal identification constraints for the attrition parameters and propose estimating

these parameters using the method of moments. The authors do not provide an

implementation of the additive non-ignorable model continuous responses. We

aim to extend the approach of Hirano et al. (2001) to estimate the attrition

mechanism for continuous responses using the data observed in Table 1.

We assume non-ignorable missingness and an additive non-ignorable attrition

model with the logistic regression form

P (W = 1 | y1, y2) =
exp(β0 + β1y1 + β2y2)

1 + exp(β0 + β1y1 + β2y2)
, (2.2)

where β0, β1, and β2 are attrition parameters. The logistic model is a popular

parametric form for describing a missing mechanism (Rubin, 1976; Hirano et al.,

2001; Nevo, 2003; Bhattacharya, 2008; Kim, 2009; Little and Rubin, 2019), as is

the probit model. Miao, Ding and Geng (2016) provide sufficient conditions for

the probit model to be identified when the response variable follows a normal or

normal mixture distribution without using a refreshment sample. Our proposed

method can be extended to other parametric attrition models, including the

probit model. It can also be extended to a more flexible attrition model with

either a nonparametric link function or an additive function of y1 and y2 without

specifying the functional forms of y1 and y2.
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3. The Proposed Method

We develop two new methods for handling two-wave MNAR data with con-

tinuous responses rather than binary responses. These methods use refreshment

samples to estimate the unknown attrition parameters in (2.2). We first describe

a likelihood-based fully parametric method in subsection 3.1. Then, in subsection

3.2, we introduce a kernel density-based semiparametric method to estimate the

attrition parameters based on Hirano’s constraints. The asymptotic theory of

the semiparametric estimator is developed in subsection 3.3, and we describe

hypothesis testing for the attrition parameters and estimating the corresponding

power functions in subsection 3.4.

3.1. Full-likelihood parametric method

We estimate the attrition parameters by maximizing the full likelihood

function. The first- and second-wave responses, Y1 and Y2, are assumed to

be bivariate normal. Let θ = (µ1, µ2, σ11, σ12, σ22)
T

and β = (β0, β1, β2)
T

be the unknown parameters in the bivariate normal and the attrition model,

respectively. The three subsets of the data in Table 1 contribute to the

likelihood independently. Specifically, in the complete set, responses from both

waves are observed, and the likelihood of the complete data is Lc(θ, β) =∏nc

i=1 f(yi1, yi2,Wi = 1 | θ, β) =
∏nc

i=1 f(yi1, yi2|θ)P (Wi = 1 | yi1, yi2, β), where
f(y1, y2|θ) is the bivariate normal density function. In the incomplete panel, only

the first wave is observed, and its contribution to the likelihood is Lic(θ, β) =∏N
i=nc+1 f(yi1,Wi = 0 | θ, β) =

∏N
i=nc+1

∫
f(yi1, y2|θ)P (Wi = 0 | yi1, y2, β)dy2. In

the refreshment sample, only the second wave is observed, and its contribution

to the likelihood is Lr(θ) =
∏n

i=1 f2(y
r
i2|θ). Then, the full likelihood is the

product of the above three components as L(θ, β) = Lc(θ, β)Lic(θ, β)Lr(θ). The

maximum likelihood estimates (θ̂MLE, β̂MLE) can be obtained by maximizing the

full likelihood L(θ, β) with respect to all parameters.

Calculating the likelihood of the incomplete set is challenging because it

requires integrating a joint density for each incomplete data point, and there

is no closed-form solution. To address this, we propose using an adaptive

Gaussian–Hermite quadrature (Skrondal and Rabe-Hesketh, 2004; Rabe-Hesketh,

Skrondal and Pickles, 2005; Skrondal and Rabe-Hesketh, 2009) for the numerical

approximation. The Gaussian–Hermite quadrature is a commonly used technique

for generalized linear mixed models (Molenberghs and Verbeke, 2005).

In the parametric approach, the refreshment sample helps to identify the

parameters θ and β in the observed likelihood L(θ, β). Miao, Ding and Geng

(2016) provide sufficient identifiable conditions for a normal response or normal

mixture in a probit model. Without using refreshment samples, the model

parameters are, in general, unidentifiable (Hirano et al., 2001). Therefore, the

parametric method is infeasible in general non-ignorable missingness scenarios.
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The maximum likelihood estimators are most efficient if the underlying popula-

tion and the attrition models are specified correctly. However, a misspecification

of either model can lead to biased estimation and inference. In the next section,

we introduce a semiparametric method that does not require a specification of

the population distribution and extends Hirano’s constraints to the continuous

response setting. The parametric method serves as a benchmark to assess the

performance of the semiparametric method in simulation studies.

3.2. Kernel density based semiparametric method

Our approach is motivated by the identification equations in Hirano et al.

(2001). Let f(y1, y2 | W = 1) be the joint density of (Y1, Y2) on the complete

panel, and f(y1, y2) be the joint density in the population. When the missing

mechanism is specified correctly, we can reconstruct the unobserved joint density

f(y1, y2) from the observed counterpart f(y1, y2 | W = 1) by f(y1, y2) =

{P (W = 1)/P (W = 1|y1, y2)}f(y1, y2 | W = 1). As a result, for marginal

densities, we have∫
P (W = 1)

P (W = 1|y1, y2)
f(y1, y2 | W = 1)dy2 = f1(y1),∫

P (W = 1)

P (W = 1|y1, y2)
f(y1, y2 | W = 1)dy1 = f2(y2), (3.1)

where f1 and f2 are the marginal densities for Y1 and Y2 respectively. Our main

estimation idea is to find the values of β that correctly transform the joint density

in the complete set f(y1, y2 | W = 1) back into the joint density in the population

f(y1, y2).

The estimation starts with a two-dimensional kernel density estimator for

f(y1, y2 | W = 1). For any y = (y1, y2)
T , the kernel density estimator is f̂H(y |

W = 1) = (1/nc)
∑nc

i=1 KH(y −Yi), where Yi = (Yi1, Yi2)
T , for i = 1, 2, . . . , nc,

are data points in the complete set; H is a 2 × 2 bandwidth matrix which is

symmetric and positive definite; and KH(y) = |H|−1/2K(H−1/2y), where K is

the bivariate normal kernel function defined as K(y) = (2π)−1 exp(−yTy/2).

In addition, P (W = 1) can be estimated consistently by P̂ (W = 1) = nc/N .

For a given β = (β0, β1, β2)
T , an estimator for the joint density is given as f̃(y1, y2 |

β) = P̂ (W = 1)f̂H(y1, y2 | W = 1)/logistic(β0 + β1y1 + β2y2).

We can compute the marginal densities of Y1 and Y2 by numerically integrat-

ing the joint distribution f̃(y1, y2 | β). In particular, for a given y1, the marginal

density of Y1 can be computed as f̃1(y1 | β) =
∫
f̃(y1, y2 | β)dy2. For a given y2,

f̃2(y2 | β) is defined similarly. Due to missingness, we use the refreshment sample

rather than the data observed in the second wave to generate the range of Y2 for

the grid points. The resulting marginal density estimates f̃1(y1 | β) and f̃2(y2 | β)
are the semiparametric estimators, which rely on the parametric specification of
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the attrition model. They are consistent estimates of the true marginal densities

only when the attrition model is specified correctly.

The marginal densities on the right-hand side of Equation (3.1) can be

estimated directly from the first wave and the refreshment sample. Let {Yi1}Ni=1

be the data from the first wave and {Y r
i2}

n

i=1 be the refreshment sample. We define

one-dimensional kernel density estimators as f̂1(y1) =
∑N

i=1 Kh1
(y1−Yi1)/N , and

f̂2(y2) =
∑n

i=1 Kh2
(y2 − Y r

i2)/n, where K is the univariate density function, and

Khi
(y) = h−1

i K(y/hi), with hi being the corresponding bandwidth for i = 1, 2.

In our simulation and numerical studies, we use the plug-in method to select

the bandwidths in the kernel density estimators and implement it using the R

function hpi in the ks package.

The estimator β̂ of the attrition parameters is defined as the minimizer of

the objective function MN,n(β) with

MN,n(β) = MN(β) +Mn(β)

=
1

N

N∑
i=1

e2i1

{
f̃1(Yi1 | β)− f̂1(Yi1)

}2

+
1

n

n∑
i=1

e2i2

{
f̃2(Y

r
i2 | β)− f̂2(Y

r
i2)

}2

, (3.2)

where e2i1 and e2i2 are prespecified weights. Intuitively, MN(β) andMn(β) measure

the differences between two estimators of marginal density: the semiparametric

estimator based on the attrition model and the nonparametric kernel estimator

using either the first wave or the refreshment sample. Only with the true attrition

parameters do the semiparametric estimators provide consistent estimates of the

marginals with the objective function MN,n being close to zero. Our estimator β̂

is the minimizer such that MN,n is as close to zero as possible.

In (3.2), the weights e2i1 and e2i2 enable us to adaptively compare the

differences between the two types of marginal density estimators. For example, it

is well known that the performance of kernel density estimators is less satisfactory

at the boundary due to the edge effect. Our simulation studies suggest that

weighting, specifically trimming out data near the boundary, can potentially

improve the estimation performance for two-wave data with a distribution that

has a heavy tail. However, the advantage of weighting diminishes as the

sample size increases. In addition, for distributions with light tails, such as the

normal distribution, no weighting, with ei1 = ei2 = 1, gives better estimation

performance. In practice, no weighting is recommended, in general, unless there

is prior information on the distribution of the data or there is a preference for

which regions to focus on when comparing these marginal density estimators.

3.3. Asymptotic theory

To establish our asymptotic results, we need the following conditions.
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(A1) Let S = {(y1, y2) : f(y1, y2) > 0} be the compact support of (Y1, Y2).

Assume S = [−t, t]× [−u, u], and the support of f(y1, y2 | W = 1) coincides

with S.

(A2) The densities f(y1, y2) and f(y1, y2 | W = 1) are uniformly continuous and

bounded away from zero on S.

(A3) The parameters β = (β0, β1, β2) belong to a compact set Θ, and without

loss of generality, β0 ∈ [−b0, b0], β1 ∈ [−b1, b1], and β2 ∈ [−b2, b2].

(A4) The kernel function K(y) is a probability density function and satisfies

|y|2+δK(y) → 0 as |y| → +∞, for some δ > 0.

(A5) For the two-dimensional kernel, the bandwidth H = hI2, where I2 is a 2× 2

identity matrix and h → 0 and nch
4/ log(nc) → +∞ as nc → +∞.

(A6) The bandwidths h1 and h2 satisfy h1 → 0 and h2 → 0, and (Nh2
1)

−1 logN →
0 as N → +∞ and (nh2

2)
−1 log n → 0 as n → +∞, where N is the panel

size, and n is the refreshment sample size.

Conditions (A1)–(A6) are common in the literature. Conditions similar

to (A1)–(A3) are also considered in Hirano et al. (2001) and Bhattacharya

(2008). Conditions (A4)–(A6) are needed to ensure the uniform consistency of

the univariate and bivariate kernel density estimators, as in Devroye and Wagner

(1980).

Let β0 = (β0, β1, β2) be the true attrition parameters. Theorem 1 shows

that β0 is identified based on the marginal distributions of Y1 and Y2. Our main

theoretical results are presented in Theorems 2 and 3, which establish the con-

sistency and asymptotic normality, respectively, of the proposed semiparametric

estimator.

Lemma 1. Suppose conditions (A1) and (A2) are satisfied. Then for almost all

(y1, y2) ∈ S, there is a unique set of parameters (β0, β1, β2) satisfying∫
P (W = 1)

logistic(β0 + β1y1 + β2y2)
f(y1, y2 | W = 1)dy2 = f1(y1),∫

P (W = 1)

logistic(β0 + β1y1 + β2y2)
f(y1, y2 | W = 1)dy1 = f2(y2). (3.3)

Proof of Lemma 1. The proof follows from Theorem 1 of Hirano et al. (2001).

Theorem 1 (Identifiability). Under assumptions (A1)–(A2), the two con-

straints in Equation (3.3) are uniquely satisfied by the true parameters β0 =

(β0
0 , β

0
1 , β

0
2).

Proof of Theorem 1. Given the attrition model as P (W = 1 | y1, y2) =

logistic(β0
0 +β0

1y1 +β0
2y2), it is sufficient to show that β0 satisfies Equation (3.3),

with P (W = 1)f(y1, y2 | W = 1)/logistic(β0
0 + β0

1y1 + β0
2y2) = f(y1, y2).
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Theorem 2 (Consistency). Under assumptions (A1)–(A6), as n,N → +∞,

the minimizer β̂ of MN,n(β) converges in probability to β0, which is the unique

minimizer of E {f1(Y1 | β)− f1(Y1)}2 + E {f2(Y2 | β)− f2(Y2)}2.

The proof of Theorem 2 is presented in the Supplemental Material. It

contains two main steps. First, MN,n(β) is shown to converge to its probability

limit uniformly. Second, we show that this probability limit has a unique

minimizer β0. Then, the consistency follows from Theorem 5.7 of van der Vaart

(2000).

Theorem 3 (Asymptotic Normality). Suppose N/n → r, for a constant r >

0. Under assumptions (A1)–(A6), we have
√
N(β̂ − β0) ∼ N(0,V−1Σ(V−1)T ),

where V = E{∂2MN(β
0)/∂β∂βT}+E{∂2Mn(β

0)/∂β∂βT} and Σ = 4Σ1+Σ21+

4rΣ22 + 4Σcov, defined in (A6) and (A7), respectively, Supplementary Material.

The asymptotic property of β̂ is evaluated using a Z-estimator by taking

the derivative of MN,n (β). There are two parts in MN,n (β) from (3.2), namely,

MN (β) and Mn (β). In the proof included in the Supplemental Material, we

tackle each part separately. Theorem 3 combines the asymptotic expansions of

these two parts.

3.4. Hypothesis testing

The asymptotic theory developed in subsection 3.3 can be used to perform

hypothesis testing for missing mechanisms by testing the attrition parameters

β1 and β2 in the additive non-ignorable model. For MCAR, MAR, and MNAR,

consider H0 : β1 = 0 and β2 = 0, H0 : β2 = 0, and H0 : β2 ̸= 0, respectively. A

Wald-type test statistic can be constructed based on the asymptotic normality

of the semiparametric estimators β̂i,

Z =
β̂i − βi0

SEβ̂i

=
β̂i

SEβ̂i

, for i = 1, 2, (3.4)

where SEβ̂i
are corresponding standard errors. The 100(1 − α)% confidence

interval can be defined as β̂i ± z1−α/2SEβ̂i
, for i = 1, 2, where z1−α/2 is the

(1−α/2)th quantile of the standard normal distribution. The asymptotic theory

in Theorem 3 gives the asymptotic formula for computing the standard errors.

However, it requires both the true population density functions and the true

attrition parameters, which are often unavailable in practice. Therefore, we

propose using a bootstrap to approximate the standard errors numerically. The

accuracy of this bootstrap SE is assessed numerically by comparing it to the

empirical SE in the simulation studies. In addition, we compare the power

functions of the test statistics defined in (3.4) with different standard errors.
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4. Simulation Studies

This section evaluates the numerical performance of the proposed full likeli-

hood and kernel-based semiparametric methods. Each simulation in this section

includes 1,000 replications.

4.1. Comparison of three estimation methods

We first compare the finite-sample performance of the proposed full likeli-

hood (or parametric) and semiparametric methods with that of Bhattacharya’s

conditional moment restriction (CMR) method. Data sets are generated from the

bivariate normal and gamma-t distributions. The gamma-t distribution is used

to understand the effect of a model misspecification.

Two-wave data (Y1, Y2) are generated independently from a bivariate normal

distribution with mean 0, marginal variances 10, and correlation coefficient 0.5.

The true attrition follows a logistic regression with attrition parameters of β0 = 0,

β1 = 0.3, and β2 = 0.4. Three methods are applied to obtain estimates of the

attrition parameters. Figure 1 compares the finite-sample performance in terms

of the empirical squared bias, variance, and MSE for β̂1 and β̂2. The x-axis

shows panel size and refreshment sample size combinations, with both sample

sizes increasing along the x-axis. Figure 1 clearly shows that the MSEs of both

the parametric and the semiparametric methods decrease as the sample sizes

increase, corroborating the asymptotic results. In addition, the parametric and

semiparametric methods outperform the CMR method, where the latter has the

largest MSE in all sample size combinations. In particular, for a panel size of 5,000

and a refreshment size of 2500, the parametric estimator of β1 has about one-third

the variance of the semiparametric estimator, which, in turn, has nearly one-third

the variance of the CMR estimator. Due to the attrition in the second wave, the

variances of β̂2 are larger for all three methods. The parametric estimator of β2

has about half the variance of the semiparametric estimator, which, in turn, has

about half the variance of the CMR estimator.

To generate non-normal data, we consider the marginal distributions of the

first and second waves as Gamma(3, 2) and t(6), respectively. To make the

distributions comparable with the previous bivariate normal case, we shift the

Gamma distribution to a center at zero, and the t distribution is scaled by

three. Copulas are used to create a non-normal joint density with the given

marginals and a correlation coefficient of 0.5 (Yan, 2007). As a result, the

joint distribution centers at zero, and the Gamma marginal has a variance of

12, and the t-distribution has a variance of 13.5. Compared with the bivariate

normal distribution, this distribution has the same zero means and slightly larger

marginal variances.

For the performance of β̂1, Figure 2 shows that the parametric method

performs better in terms of the MSE. However, as the sample size increases, the
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(a) Finite-sample performance of β̂1 (b) Finite-sample performance of β̂2

Figure 1. Comparison of finite-sample performance of three estimation methods:
parametric (triangle), semiparametric (circle), and CMR (x) for bivariate normal
responses. The dash, dot-dash, and solid lines represent the empirical squared bias,
variance, and MSE, respectively.

Table 2. Gamma-t population. Empirical squared bias, variance, and MSE of β̂1 and β̂2

for parametric and semiparametric methods with a panel size of 5,000 and refreshment
sample size of 2,500.

Squared Bias (10−3) Variance (10−3) MSE (10−3)

β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

Semiparametric 0.0087 0.5082 1.1457 1.5718 1.1544 2.0801

Parametric 0.2161 4.2440 0.3026 1.2451 0.5183 5.4891

parametric method has a nondecreasing bias, whereas the semiparametric method

has a decreasing bias. The variance of the semiparametric estimator β̂1 is still

larger than that of the parametric estimator. However, for β̂2, the parametric

method gives a noticeably larger bias, and leads to a larger MSE than does the

semiparametric method. The same observations are evident in Table 2, which

reports the empirical squared bias, variance, and MSE of the parametric and

semiparametric estimators for a panel size of 5,000 and a refreshment sample size

of 2,500.

In the bivariate normal setting, our proposed parametric and semiparametric

methods outperform the CMR method. When the joint distribution is specified

correctly, the parametric method outperforms the other two methods. However,

when the distribution is misspecified, there is bias in the parametric estimator,

whereas the semiparametric estimator, which is free of distributional assumptions,

yields a consistent performance in the presence of non-normal populations.
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(a) Finite-sample performance of β̂1 (b) Finite-sample performance of β̂2

Figure 2. Comparison of finite-sample performance with gamma-t responses: parametric
(triangle) and semiparametric (circle). For both methods, the dash, dot-dash, and solid
lines represent the empirical squared bias, variance, and MSE, respectively.

4.2. Effect of weighting

As discussed in section 3.2, weight assignments allow us to prioritize the

comparison of the density function estimates over different regions of interest.

To investigate the effect of weights, we generate data from three distinct distri-

butions: a bivariate normal, as in subsection 4.1, a uniform distribution, and a

beta distribution. For the uniform and beta distributions, the two-wave data Y1

and Y2 are independent, and both follow either a Unif(−
√
30,

√
30) or a scaled

beta distribution with location and scale parameters 0.5 and 0.5, respectively, and

a minimum of −2
√
5 and a maximum of 2

√
5. In all three distributions, the two-

wave data have the same marginal mean of zero and variance of 10. We consider

two weighting strategies, e1,i1 = e1,i2 = 1, e2,i1 = I(q1,0.05 ≤ Yi1 ≤ q1,0.95) and

e2,i2 = I(q2,0.05 ≤ Yi2 ≤ q2,0.95). Here, q1,α and q2,α are the αth sample quantiles

for Y1 and Y2, respectively. The first set e1,i1, e1,i2 imposes no weighting, and the

second set e2,i1, e2,i2 considers only the middle 90% of the data.

Table 3 reports the empirical squared bias, variance, and MSE of β̂1 and

β̂2 for the proposed semiparametric estimator under the two weighting schemes.

For the normal distribution, the estimators without a weighting (e1) perform

better, with smaller MSEs for both sample size combinations. However, for both

the uniform and the beta distributions, the estimators with the weighting (e2)

perform slightly better. This indicates that weighting can be useful in mitigating

the edge effect of a kernel density estimation, especially for distributions with

heavy tails. However, the advantage of weighting diminishes as the sample size

increases.
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Table 3. Empirical squared bias, variance, and MSE of β̂1 and β̂2 for semiparametric
methods with two weights, e1: no weight, and e2: a weight that uses only 90% of the
data under different distributions.

Squared Bias (10−3) Variance (10−3) MSE (10−3)

Distribution n1 n2 β̂1 β̂2 β̂1 β̂2 β̂1 β̂2

Normal 100 50 e1 0.82 1.26 33.43 70.53 34.25 71.79

e2 1.10 1.63 42.93 84.19 44.03 85.83

500 250 e1 0.94 1.59 5.01 10.89 5.95 12.48

e2 0.80 1.40 6.39 14.57 7.19 15.97

Uniform 100 50 e1 2.80 5.26 8.88 36.43 11.69 41.69

e2 1.85 3.02 9.95 33.63 11.80 36.66

500 250 e1 2.34 4.51 3.91 5.02 6.25 9.53

e2 2.19 3.12 4.02 5.27 6.22 8.39

Beta 100 50 e1 6.07 9.12 9.46 38.60 15.53 47.72

e2 5.65 8.41 9.47 39.05 15.12 47.47

500 250 e1 5.59 7.34 1.99 3.52 7.59 10.85

e2 4.95 6.42 2.13 3.78 7.08 10.19

4.3. Bootstrapping in applications

We evaluate the numerical performance of the proposed Wald test using three

approaches to calculate the standard error: empirical SE (ESE), asymptotic SE

(ASE), and bootstrap SE (BSE). The ESEs are calculated from 1,000 simulation

replications, and serve as a benchmark for comparison, but are not available

in practice. The ASEs are based on the asymptotic variance in Theorem 3,

which requires knowledge of the true parameter values and population density

functions, making it often impractical. Thus, we propose using a bootstrap as an

alternative to approximate the standard errors. We compare the performance of

these approaches based on the power of the corresponding test statistics.

In the bootstrap method, 500 bootstrap samples are created. Each bootstrap

sample consists of a bootstrapped panel and a bootstrapped refreshment sample,

which are bootstrap samples from the original panel and the refreshment sample,

respectively. The semiparametric method is applied to each bootstrap sample

to estimate the attrition parameters, and the standard deviation of these 500

estimates is the BSE.

A total of 200 samples with panel size 5,000 and refreshment size 2,500 are

drawn from a bivariate normal population, each with the marginal mean zero,

variance 10, and correlation coefficient 0.5. For each sample, we perform the

Wald test at the significance level of α = 0.05. In the Wald test statistic, three

different SEs are considered. The proportion of rejecting the null hypotheses in

the 200 replications is calculated as the empirical power for each method, and is

evaluated at (0, 0.05, 0.1, 0.2, 0.3) for β1 and (0, 0.05, 0.1, 0.13, 0.2, 0.4) for β2.
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Figure 3. Power function comparison. The solid, dash, and dot-dash lines represent the
power functions based on the bootstrap SE (BSE), asymptotic SE (ASE), and empirical
SE (ESE), respectively. The dash line at the bottom indicates the significance level, 0.05.

Figure 3 gives the power functions based on the BSE (solid), ASE (dash),

and ESE (dot-dash). For all three methods, the power is close to the significance

level of 0.05 when βi = 0. In addition, the power increases quickly to one as

the true value of βi moves away from the hypothesized value of zero for all three

methods, indicating that the proposed Wald test works reasonably well. More

importantly, the power functions based on the BSE and ESE are close to each

other, and both have overall higher power than those based on the ASE. This

shows that the Wald test based on the bootstrap SE works reasonably well.

In addition, the 95% confidence intervals for β1 and β2 are constructed based

on the ASE and BSE. Table 4 reports the empirical coverage probabilities of these

confidence intervals for different choices of β1 and β2. Overall, the confidence

intervals based on the BSE have empirical coverage probabilities closer to the

nominal level of 95%. In contrast, the confidence intervals based on the ASE are

more conservative, with empirical coverage probabilities higher than 95%.

5. Netherlands Mobility Panel

The Netherlands Institute for Transport Policy Analysis has conducted the

Netherlands Mobility Panel (NMP) since 2013, a multiple-wave longitudinal

study aimed at understanding changes in travel behavior over time. Detailed

information can be found in Hoogendoorn-Lanser, Schaap and OldeKalter (2015).

The NMP samples households as survey units and collects travel infor-

mation by distributing questionnaires to members in each household. The

NMP conducted the initial and second wave of the data survey in 2013 and
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Table 4. Coverage probabilities of 95% confidence intervals for β1 and β2 based on
200 replications. The standard errors of β̂1 and β̂2 are computed using the asymptotic
formula and bootstrapping. The panel size is 5,000, and the refreshment sample size
is 2,500. The coverage probabilities are calculated for different true values of attrition
parameters β1 and β2.

Asymptotic Formula Boostrap

β1 β2 β̂1 β̂2 β̂1 β̂2

0 0 1 0.995 0.985 0.945

0.05 0.05 1 1 0.975 0.955

0.1 0.1 1 1 0.990 0.965

0.2 0.2 1 1 0.985 0.940

0.3 0.4 1 0.980 0.990 0.960

2014, respectively. The database consists of three components: household data,

personal data, and individual travel diary data. Based on the household data,

there were 3,572 households in the initial wave, and 4,685 households in the

second wave. In the first wave, 2,380 households provided household information

and travel diary data. Of the 2,380 complete cases, 1,685 households continued to

report their travel behaviors during the second wave of the data collection, while

the remaining 695 households did not respond. A refreshment sample of 1,382

households with household information and travel diary data was identified and

collected simultaneously as the second wave. These sets of 2380, 695, and 1382

households represent the complete set, incomplete set, and refreshment sample,

respectively.

The NMP examines travel behavior over time, and various studies have

analyzed these data to gain insights into such behaviors. For instance, Kroesen

and Goulias (2016) investigates the relationship between attitudes and travel

behaviors using the complete data set. Hoogendoorn-Lanser, Schaap and Old-

eKalter (2015) estimates the nonresponse bias by modeling the nonresponse

behavior using a logistic regression and a MAR assumption. Puello and Geurs

(2016) explores the effects of nonrandom attrition on mobility rates using trip

diary data. Their analysis assumed MAR assumption and attrition was evaluated

only through observed demographic data.

The aforementioned studies assume MCAR or MAR in their analyses of

the NMP data. In contrast, we relax the missing mechanism assumption and

consider MNAR. We use the refreshment sample to estimate and draw inferences

about the MNAR attrition parameters, which yields insights into the true missing

mechanism. Specifically, we focus on total travel time as the variable of interest

and investigate whether the missing mechanism is related to this variable. The

travel diary records all trips made by each household over three days, and we

calculate the total travel time by summing the travel times and rescaling the

sum using a natural log transformation.
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Figure 4. Marginal density comparison of NMP on the first and second wave.

Figure 4 compares the marginal densities of the log-transformed total travel

time on each wave. Here, Y1 and Y2 are the total travel times on the natural log

scale at the initial and second waves, respectively. In the left panel of Figure 4,

the estimated marginal density of Y1 based on the complete set is shown in gray,

while the one based on the full panel Y1 is in dark gray. In the right panel, the

estimated marginal density of Y2 based on the complete set is shown in gray, and

the density based on the refreshment sample is shown in dark gray. The estimated

marginal densities of Y1 and Y2 based on the complete set can be biased due to

missingness in the data. In contrast, the full panel Y1 and the refreshment sample

provide more accurate estimates for the true marginal densities.

We consider three possible attrition models corresponding to the three

missing mechanisms, MCAR, MAR, and MNAR. Let Wi denote the missingness

(attrition) indicator for the ith subject with Wi = 1 if Y2 is observed for subject i

and Wi = 0 otherwise. We assume an additive logistic model for the probability

of Wi = 1 as πMNAR = P (Wi = 1 | y1, y2, β) = logistic(β0 + β1y1 + β2y2). This

reduces to MCAR when β1 = β2 = 0 and to MAR when β2 = 0.

Table 5 gives the estimation results of the attrition parameters and their 95%

confidence intervals under the three missing mechanisms. Under MNAR, neither

of the confidence intervals for β1 and β2 contain zero, indicating strong evidence

that the missingness is related to Y1 and Y2. Therefore, neither MCAR nor MAR

are adequate assumptions for the NMP. In addition, the positive estimate of β1

indicates that the probability of being observed in the second wave increases as the

value of the total travel time in the first wave increases, and the negative estimate

of β2 indicates that the probability of being observed decreases with the value of

total travel time in the second wave. This is also consistent with the observation

in Figure 4 that the complete set has a density leaning toward lower values of Y2,
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Figure 5. Sampling distributions of bootstrapped semiparametric estimators in NMP
application.

Table 5. Point estimates and 95% confidence intervals for attrition parameters for NMP
data.

Attrition model MCAR MAR MNAR

logit(π) = β0 β0 + β1y1 β0 + β1y1 + β2y2

β̂0 0.89 (0.80, 0.97) 0.03 (-0.47, 0.54) 7.11 (5.09, 8.91)

β̂1 0.15 (0.06, 0.24) 0.71 (0.50, 0.88)

β̂2 -1.64 (-1.97, -1.25)

compared with the marginal density from the refreshment sample. Under MNAR,

the 95% confidence intervals are constructed using bootstrapping. Figure 5 plots

the sampling distributions of the bootstrapped semiparametric estimators. The

vertical lines represent the point estimates from the original data.

6. Conclusion

We extend the method of Hirano et al. (2001) for identifying and estimat-

ing the non-ignorable attrition mechanism for binary responses to continuous

responses, using a refreshment sample in two-wave panel data. The introduction

of refreshment samples into missing data analysis enables researchers to test the

missing mechanism assumption. The proposed full likelihood method relies on

the correct specification of the underlying population and attrition mechanism,

which is impractical in practice. The kernel-based semiparametric method is

the primary approach we propose to reduce the unavoidable bias due to model

misspecification. We show the consistency and asymptotic normality of the

additive attrition estimators in the semiparametric model.



NON-IGNORABLE MISSINGNESS WITH REFRESHMENT SAMPLE 149

Current methods are limited to data with only two waves. Extending our

methods to multi-wave data is challenging, owing to the curse of dimensionality

in a multivariate nonparametric density estimation. However, our method can be

extended to a more flexible attrition model by using a nonparametric or additive

link function. These generalizations increase the robustness of our method and

enable its application to data with a more general structure, which is worth

future investigation. Furthermore, the current model setup does not consider

any covariates. We extend the proposed method in the Supplemental Material to

include binary or discrete covariates. However, investigating the case with more

general covariates is left to future research.

Supplementary Material

The online Supplementary Material includes an extension to binary covari-

ates, an additional simulation, necessary lemmas, and detailed proofs.
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