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Abstract: The inverse probability weighting (IPW) and doubly robust (DR)

estimators are often used to estimate the average treatment effect (ATE), but

are vulnerable to outliers. The IPW/DR median can be used to provide an

outlier-resistant estimation of the ATE, but this resistance is limited, and is

not sufficiently resistant to heavy contamination. We propose extending the

IPW/DR estimators using density power weighting, which eliminates the effects

of outliers almost completely. The resistance of the proposed estimators to outliers

is evaluated using the unbiasedness of the estimating equations. Unlike the

median-based methods, our estimators are resistant to outliers, even under heavy

contamination. Interestingly, the naive extension of the DR estimator requires a bias

correction to maintain its double robustness, even under the most tractable form of

contamination. In addition, the proposed estimators are found to be highly resistant

to outliers in more difficult settings in which the contamination ratio depends on

the covariates. The resistance of our estimators to outliers from the viewpoint

of the influence function is also favorable. We verify our theoretical results using

Monte Carlo simulations and a real-data analysis. The proposed methods are shown

to have greater resistance to outliers than the median-based methods do, and we

estimate the potential mean with a smaller error than that of the median-based

methods.

Key words and phrases: Causal inference, doubly robust, missing data, propensity

score, robust statistics.

1. Introduction

Statistical causal inference provides various estimators for causal quantities

such as the average treatment effect (ATE). To estimate such quantities, the

propensity score is widely applied in, for example, stratification, matching, inverse

probability weighting (IPW), and the doubly robust (DR) estimator (Robins,

Rotnitzky and Zhao (1994); Rosenbaum and Rubin (1983); Bang and Robins

(2005)). These estimators are designed to control confounding, and are consistent

with the target quantity, under some assumptions.
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Figure 1. Three types of outliers.

As discussed later, the IPW and DR estimators are vulnerable to outliers,

because they partially use the sample mean. An outlier in a multivariate

setting is classified as one of three types: a vertical outlier, a good leverage

point, or a bad leverage point (Rousseeuw and van Zomeren (1990)). Figure 1

illustrates the three types of outliers. Canavire-Bacarreza, Castro Peñarrieta

and Ugarte Ontiveros (2021) investigated how these types of outliers affect

the estimators of the ATE, including the IPW, using exhaustive Monte Carlo

simulations, finding that vertical outliers in the outcome variable lead to serious

bias in the ATE estimation. Therefore, we focus on reducing this bias caused by

vertical outliers.

Although there has been numerous research on outlier-resistant statistics,

most work do not consider a causal setting (Huber (2004); Hampel et al. (2011);

Maronna et al. (2019)). In many causal settings, the established methods for

outlier-resistant statistics cannot be applied. The median-based estimators are

the only ones that can be used to estimate the ATE under outlier contamination

(Firpo (2007); Zhang et al. (2012); Dı́az (2017); Sued, Valdora and Yohai (2020)).

It is well known that the sample median is more resistant to outliers than is the

sample mean, but it is still affected. In particular, when the contamination ratio

is not small and the outliers lie on one side of the data-generating density, the

effect becomes so large that it cannot be ignored (Fujisawa and Eguchi (2008)).

In this paper, we propose extensions of the IPW and DR estimators for

the mean of the potential outcome that are more resistant to outliers than the

median-based methods are. We discuss the outlier resistance of these estimators

from the viewpoint of the unbiasedness of the estimating equation and influence

function (IF). In most works on outlier-resistant statistics, the contamination

ratio is assumed to be small and independent of the covariates. Here, we discuss

the outlier resistance of the proposed estimators under more general assumptions,

including the case in which the contamination ratio is not small and is related

to the covariates. Interestingly, a straight extension of the DR estimator loses

its robustness to a model misspecification under contamination. Thus, we also

propose a bias-corrected version of the extended DR estimator that maintains its
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double robustness under contamination. Furthermore, we verify the theoretical

advantages of our estimators using Monte Carlo simulations and a real-data

analysis.

The remainder of this paper is organized as follows. In Section 2, we introduce

the potential outcome framework for causal inference and the basic concept

of outliers. In Section 3, we propose our novel estimators, and discuss their

resistance to outliers from the viewpoint of the unbiasedness of the estimating

equations. In Section 4, we evaluate the outlier resistance of the proposed

estimators in terms of the IF. In Section 5, we discuss their asymptotic properties,

and in Sections 6 and 7, we present the results of our experiments.

2. Preliminaries

2.1. Potential outcome and treatment effect

Let (Y, T,X) be the observable random variables, where X is the outcome,

T is the treatment, and X is the confounder. We assume that Y is continuous

and that T is binary; it is straightforward to extend T to multiple discrete

treatments. We have the observations (Yi, Ti, Xi)
n
i=1 drawn from the distribution

of (Y, T,X) in an independently and identically distributed (i.i.d.) manner.

Denote the potential outcome under T = t by Y (t), and let µ(t) = E[Y (t)].

Here, Y (t) is uniquely defined for every treatment as a random variable, that

is, it is well-defined. Note that the i.i.d. sampling and the well-definedness of

the potential outcome are collectively called the stable unit treatment value

assumption (SUTVA; Imbens and Rubin (2015)). The ATE is defined as

µ(1) − µ(0). The ATE cannot be estimated directly, because we cannot observe

Y (1) and Y (0) simultaneously. Instead, we use the observed variables under the

following common assumptions (e.g., Imbens and Rubin (2015)):

1. Conditional Unconfoundedness: Y (t) ⊥⊥ T |X, for all t ∈ {0, 1};

2. Consistency : Y = Y (t) if T = t;

3. Positivity : P (T = 1|X) > c, for some constant c > 0.

The ATE is identifiable in that it can be estimated from the observed variables

under these assumptions. Hereafter, we assume the triple assumption holds and

focus on the estimation of µ(1), for simplicity. We estimate µ(0) in a similar way.

Then, the ATE is estimated as the difference between the estimates of µ(1) and

µ(0).

We introduce three consistent estimators of the potential mean. The IPW

estimator (Rosenbaum and Rubin (1983)) is based on the propensity score (PS).

Let π(x;α) ∈ (0, 1) be the PS, which models P (T = 1|x). We assume the PS is

correctly specified, in other words, there exists α∗ such that π(x;α∗) = P (T =

1|x), for every x. The IPW estimator has several forms (Lunceford and Davidian
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(2004)), but we use the weighted average form: µ̂
(1)
IPW = {

∑n
i=1 TiYi/π(Xi; α̂)}/

{
∑n

i=1 Ti/π(Xi; α̂)}, where α̂ is an estimate of α obtained in a consistent

manner, for example, using the maximum likelihood estimation (MLE). The IPW

estimator can be viewed as the root of the following estimating equation:

n∑
i=1

Ti
π(Xi; α̂)

(Yi − µ) = 0. (2.1)

Outcome regression (OR) is also popular. To construct the OR estimator, we

model E[Y |T = 1, X] by some function m1(X;β). Then, the OR estimator is

obtained as n−1
∑n

i=1m1(Xi; β̂), where β̂ is a consistent estimate of β. The

IPW and OR estimators are asymptotically consistent with µ(1) when the model

used in each estimator is specified correctly, but this does not hold if the model

is misspecified. The DR estimator (Scharfstein, Rotnitzky and Robins (1999);

Bang and Robins (2005)) combines the IPW and OR estimators. Because

the DR estimator is consistent with µ(1) when either the PS or OR model is

specified correctly, it is said to be “doubly robust.” Furthermore, if both models

are specified correctly, the DR estimator is semiparametrically efficient (Robins

and Rotnitzky (1995); Tsiatis (2006)). Although many estimators are equipped

with double robustness, we refer to the root of the following special case of the

augmented IPW estimator as the DR estimator µ̂
(1)
DR:

n∑
i=1

[
Ti

π(Xi; α̂)
(Yi − µ)− Ti − π(Xi; α̂)

π(Xi; α̂)
{m1(Xi; β̂)− µ}

]
= 0. (2.2)

2.2. IPW/DR M-estimators

Let
∑n

i=1 ψ(Yi, θ) = 0 be an estimating equation, where ψ is a known vector-

valued map, and θ is the parameter of interest. An estimator θ̂ that solves the

estimating equation is called an M-estimator. M-estimators form a large class of

estimators, including the MLE, IPW, OR, and DR. If the estimating equation

is unbiased, say Eθ[ψ(Y, θ)] = 0, the M-estimator is consistent with the truth,

under some regularity conditions (e.g., Chap. 5 of Van der Vaart (2000)).

By replacing Yi−µ in (2.2) with an estimating function ψ(Yi; θ), the IPW and

DR estimators can be expanded to a general M-estimator. If we are interested

in the same parameter θ with respect to Y (1), we can use the following IPW and

DR M-estimators (Tsiatis (2006)):

n∑
i=1

Ti
π(Xi; α̂)

ψ(Yi; θ) = 0, (2.3)

n∑
i=1

{
Ti

π(Xi; α̂)
ψ(Yi; θ)−

Ti − π(Xi; α̂)

π(Xi; α̂)
Eq̂[ψ(Yi; θ)|T = 1, Xi]

}
= 0. (2.4)
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The conditional expectation Eq̂[ψ(Yi; θ)|T = 1, Xi] is calculated using the

parametric OR model q(y|T = 1, x; β̂) by direct calculation or by using a Monte

Carlo approximation (Hoshino (2007)). When the original M-estimating equation

is unbiased, the IPW/DR estimating equations are unbiased under a proper model

specification. The asymptotic properties of the IPW and DR M-estimators follow

from the standard theory of M-estimators.

2.3. Outlier-resistant estimation

In this section, we review the outlier-resistant estimation of a mean in a

one-variable and non-causal setting. Let g̃ be the density function of a random

variable Z ∈ R. Assume that the density is contaminated as g̃(z) = (1−ε)fµ∗(z)+

εδ(z), where fµ∗ is the density of Z without contamination equipped with the

mean µ∗, ε is the contamination ratio, and δ is the density of outliers. Our

goal is to estimate µ∗ from i.i.d. observations {Z1, . . . , Zn} drawn from g̃. If

we model the contamination in this way, the sample mean converges to (1 −
ε)µ∗ + εEδ[Z]; if the mean of the outliers is far from µ∗, the sample mean is

asymptotically biased. Numerous M-estimators have been proposed to deal with

contamination. The unbiasedness of the estimating equation does not usually

hold under contamination because

Eg̃[ψ(Z, µ∗)] = (1− ε)Efµ∗ [ψ(Z, µ∗)]︸ ︷︷ ︸
=0

+εEδ[ψ(Z, µ∗)] 6= 0. (2.5)

By designing ψ to eliminate or bound Eδ[ψ(Z, µ∗)], we can reduce the influence

of outliers. Let θ∗ψ denote a root of Eg̃[ψ(Z, θ)] = 0. Then, the latent bias is

defined as θ∗ψ − θ∗. If δ is Dirac’s delta and ε is sufficiently small, the latent bias

is approximated by the IF. The IF-based discussion in Section 4 provides some

insights into the outlier resistance of the estimators when the contamination ratio

is small. For a detailed discussion of the latent bias and M-estimators, see Huber

(2004), Fujisawa (2013), and Fujisawa and Eguchi (2008), among others.

2.4. IPW and DR under contamination

Next, we move to a causal setting with vertical outliers. In other words,

we assume that only the outcome Y may be contaminated, and that the

contamination does not affect the causal mechanism among (Y, T,X). A typical

example is the contamination of laboratory values in medical research with foreign

substances. Let δY |TX be the conditional density of the outliers given (T,X), and

let εt(x) be the contamination ratio. Then, the contaminated conditional density

of Y given (T,X) is defined as

g̃Y |TX(y|t, x) = {1− εt(x)}gY |TX(y|t, x) + εt(x)δY |TX(y|t, x), (2.6)
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where g without the tilde denotes the density without contamination; the tilde

indicates that the distribution is contaminated. To simplify the notation, we often

drop the subscripts of the density functions, as long as this does not cause any

confusion, and write δt(y|x) = δY |TX(y|t, x). The contamination ratio and the

density depend on the treatment T and the confounder X. Because we estimate

µ(t) for each treatment separately, the dependence on T is tractable. In contrast,

the dependence on X is critical in our analysis. The X-dependent contamination

is referred to as heterogeneous contamination. We also discuss the special case

in which ε and δ are not dependent on X, called homogeneous contamination.

Note that we do not assume that εt(x) is small enough to be negligible, except

in Section 4.

We are interested in the marginal mean of Y (1). Let fY (1)(y;µ(1)) be the

true marginal density of Y (1), obtained by integrating X out from gY |TX(y|T,X)

under T = 1:

fY (1)(y;µ(1)) =

∫
gY (1)|X(y|x)gX(x)dx =

∫
gY |TX(y|1, x)gX(x)dx. (2.7)

The second equality holds from the triple assumption in Section 2.1. We often

write fY (1)(y;µ(1)) as f1(y), for simplicity.

Under contamination, the IPW estimating equation is severely biased, even

if the true PS is obtained as π(X|α∗) = P (T = 1|X):

Eg̃
[

T

π(X|α∗)
(Y − µ(1))

]
= Eg

[
ε1(X)E−g+δ

[
(Y − µ(1))|X

]]
6= 0. (2.8)

The remaining term contains the expectation of Y with respect to δ, which implies

that the estimating equation is severely affected by outliers. The DR estimating

equation is similarly biased. To estimate µ(1) accurately, we have to remove the

influence of contamination.

3. Outlier-Resistant Extensions of the IPW and DR

Before we propose novel estimators, we introduce an assumption on outliers.

Intuitively, we assume that the outliers are sufficiently far from the main outcome

density. Figure 2 shows real examples of outliers that satisfy this assumption,

where the outliers are far from the main body of the density, both conditionally

and marginally.

To formalize this assumption, we introduce density power weighting. The

density power weight is used to enhance the outlier resistance in noncausal

settings (Windham (1995); Basu et al. (1998); Jones et al. (2001); Fujisawa

and Eguchi (2008)). Let h(y;µ)γ (γ > 0) be a density power weight for Y (1),

where h(y;µ) is a symmetric density function with location parameter µ. The

density h(y;µ(1)) is not necessarily equal to the true marginal density f1(y), but
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Figure 2. Real examples of outliers that satisfy Assumption 1. All data sets are included
in the R package “robustbase” (Maechler et al. (2021)): airmay (left), condroz (center),
education (right).

we assume that both h and the true density f1(y) are symmetric about µ(1).

The assumption of symmetry is common in outlier-resistant estimation, and is a

prerequisite for using the sample median as an estimator of the population mean.

Any symmetric density can be used for h, as long as it satisfies Assumption

1. Typically, we assume h is Gaussian. The tuning parameter γ controls

the variability of the weight, leading to a trade-off between outlier resistance

and asymptotic efficiency. Assumption 1 formally describes the assumption on

outliers.

Assumption 1. Let h(y;µ) be a weighting density symmetric about µ. Then,

there exists γ > 0 such that

ξ1(X, γ) =

∫
δ1(y|X)h(y;µ(1))γ(y − µ(1))dy ≈ 0 a.e. (3.1)

Denote an arbitrary bounded function by φ(x). Assumption 1 implies that

ν1(φ) := E[φ(X)ξ1(X, γ)] =

∫
φ(x)ξ1(x, γ)gX(x)dx ≈ 0. (3.2)

In particular, let φ(x) = 1. Then, the outliers are marginally negligible:

ν1(1) = E[ξ1(X, γ)] =

∫
δ1(y)h(y;µ(1))γ(y − µ(1))dy ≈ 0. (3.3)

Throughout this paper, we assume that γ is sufficiently large that Assumption 1

holds. Assumption 1 reduces to a simpler form when δ1(y|X) is Dirac’s delta at

y0. This is one of the core assumptions in Section 4.

Assumption 1a. Let h(y;µ) be a weighting density that is symmetric about µ,

and assume that the density of the outliers is Dirac’s delta at y0 (6= µ(1)), say
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δy0(y). Then, there exists γ > 0 such that∫
δy0(y)h(y;µ(1))γ(y − µ(1))dy = h(y0;µ

(1))γ(y0 − µ(1)) ≈ 0. (3.4)

For example, if h is a Gaussian density with mean µ(1) and fixed variance, (3.4)

tends to zero as |y0| → ∞, for fixed γ > 0, because h(y0;µ
(1))γ(y0 − µ(1)) ∝

exp {−γ(y0 − µ(1))2}(y0 − µ(1)).

3.1. IPW-type estimator

First, we introduce an extension of the IPW estimator, called the density

power inverse probability weighting (DP-IPW) estimator. The DP-IPW estima-

tor is defined as a root of the following estimating equation:

n∑
i=1

Ti
π(Xi; α̂)

h(Yi;µ)γ(Yi − µ) = 0. (3.5)

In the case of no contamination, the DP-IPW estimating equation is unbiased.

Theorem 1. Assume that the true propensity score π(X;α∗) is given. Then,

under no contamination, we have

Eg
[

T

π(X;α∗)
h(Y ;µ(1))γ(Y − µ(1))

]
= 0. (3.6)

In practice, we often only have an estimate π(X; α̂), but the asymptotic

consistency of (DP-)IPW still holds if the model π(X;α) is correctly specified.

Now, we consider the contaminated case. The bias of the DP-IPW estimating

equation takes a different form from (2.8).

Theorem 2. Assume Y is contaminated as (2.6). Under the same assumptions

as those in Theorem 1, the expectation of the DP-IPW estimating equation is

expressed as

Eg̃
[

T

π(X;α∗)
h(Y ;µ(1))γ(Y − µ(1))

]
= B1 + ν1(ε1), (3.7)

where B1 = −
∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx.

In particular, under homogeneous contamination, B1 reduces to zero.

The DP-IPW estimating equation is still biased, even if ν1(ε1) is small. Because

we assume that ν1(ε1) is negligible, B1 is dominant. However, compared with

(2.8), the dominant bias of DP-IPW does not contain δ1, implying that the bias

of DP-IPW is not strongly affected by the absolute values of the outliers. Under

homogeneous contamination, the dominant term disappears, and so the bias is

negligible.
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3.2. DR-type estimator

Next, we introduce the density power doubly robust (DP-DR) estimator.

The DP-DR estimator is a straight application of the DR M-estimator, and is

defined as a root of the following estimating equation:

n∑
i=1

{
Tih(Yi;µ)γ

π(Xi; α̂)
(Yi − µ)− Ti − π(Xi; α̂)

π(Xi; α̂)
Eq̂ [h(Y ;µ)γ(Y − µ)|T = 1, X]

}
= 0.

(3.8)

As discussed in Section 2.1, Eq̂ [h(Y ;µ)γ(Y − µ)|T = 1, X] is obtained by direct

calculation or using a Monte Carlo approximation based on the parametric OR

model q̂ := q(y|T = 1, X; β̂). In the Appendix, we present the explicit forms of

Eq̂ [h(Y ;µ)γ(Y − µ)|T = 1, X] when h and q are assumed to be Gaussian. The

parameter β is usually estimated in an outlier-resistant manner; for example, see

the Huber regression (Huber (2004, Chap. 7)), MM estimator (Yohai (1987)),

density power regression (Basu et al. (1998); Kanamori and Fujisawa (2015)), and

γ-regression (Fujisawa and Eguchi (2008); Kawashima and Fujisawa (2017)),

among others.

The DP-DR estimator is doubly robust under no contamination, as with the

general DR M-estimator.

Theorem 3. Assume either the true PS or the true OR model is given. Then,

if there is no contamination, the DP-DR estimating equation is unbiased.

Now, we evaluate the bias of the DP-DR estimating equation under

contamination.

Theorem 4. Assume that Y is contaminated as (2.6). If the true PS model is

given, the expectation of the DP-DR estimating equation is expressed as

−
∫
ε1(x)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1(ε1). (3.9)

In particular, under homogeneous contamination, (3.9) reduces to ν1(ε1). If the

true OR model is given, the expectation of the DP-DR estimating equation is

expressed as

−
∫
ε1(x)

P (T = 1|x)

π(x;α)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1

{
ε1P (T = 1|·)

π(·;α)

}
.

(3.10)

Under homogeneous contamination, (3.10) becomes

−ε1
∫
P (T = 1|x)

π(x;α)

∫
h(y;µ(1))γ(y − µ(1))g(y|x)dy g(x)dx+ ν1

{
ε1P (T = 1|·)

π(·;α)

}
.

(3.11)
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Assuming that π(·;α) is bounded away from zero and one, we find that P (T =

1|·)/π(·;α) is bounded. Then, from Assumption 1, ν1{ε1P (T = 1|·)/π(·;α)} is

negligible. As with the DP-IPW, the dominant bias is independent of δ, indicating

that the influence of outliers is reduced. Unfortunately, DP-DR is still biased in

the PS-incorrect and OR-correct cases, even under homogeneous contamination,

because the dominant term of (3.11) is not eliminated.

In the OR-correct case, the DP-DR is biased under homogeneous contami-

nation because, under Assumption 1, the expectation of the DP-DR estimating

function becomes

Eg
[
P (T = 1|X)

π(X;α)

{
Eg̃[ψ(Y (1);µ(1))|X]− Eg[ψ(Y (1);µ(1))|X]

}]
≈ Eg

[
P (T = 1|X)

π(X;α)

{
(1− ε1)Eg[ψ(Y (1);µ(1))|X]− Eg[ψ(Y (1);µ(1))|X]

}]
,

where we denote the density power estimating function by ψ. In the last formula,

the terms in curly brackets do not cancel, because the first term is reduced by

1−ε1. As such, we propose a bias-corrected version of the DP-DR, called the εDP-

DR estimator, that is designed to cancel the dominant bias under homogeneous

contamination. The εDP-DR estimator is a root of the following estimating

equation:

n∑
i=1

{
Tih(Yi;µ)γ

π(Xi; α̂)
(Yi − µ)− Ti − π(Xi; α̂)

π(Xi; α̂)
(1− ε̂1)Eq̂ [h(Y ;µ)γ(Y − µ)|T = 1, X]

}
= 0, (3.12)

where ε̂1 is a consistent estimator of the expected contamination ratio ε1 =∫
ε1(x)g(x)dx. Here, ε̂1 can be obtained simultaneously with the parametric OR

model using unnormalized modeling with the density power score (Kanamori and

Fujisawa (2015)), for example. While the DP-DR is a special case of the DR M-

estimator, the εDP-DR goes beyond this framework, owing to the bias correction.

Under no contamination, the εDP-DR estimating equation is asymptotically

identical to the DP-DR estimating equation. The εDP-DR estimating equation is

also biased under heterogeneous contamination; however, the bias takes a different

form.

Corollary 1. If the true PS model is given, the expectation of the εDP-DR

estimating equation is equal to (3.9). If the true OR model is given, the

expectation of the εDP-DR estimating equation is expressed as

Eg
[
(ε1 − ε1(X))

P (T = 1|X)

π(X;α)
Eg[h(Y (1);µ(1))γ(Y (1) − µ(1))|X]

]
+ν1

{
ε1P (T = 1|·)

π(·;α)

}
. (3.13)
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Table 1. Summary of the biases of the proposed estimating equations. The function
φ(X) differs in each cell. PS-correct means that the PS model is correctly specified and
the OR model may not be; OR-correct means the opposite.

Contamination model DP-IPW DP-DR εDP-DR

No contamination PS-correct 0 0 0

OR-correct - 0 0

homogeneous: ε PS-correct ≈ 0 ≈ 0 ≈ 0

OR-correct - ≈ εE[φ(X)] ≈ 0

heterogeneous: ε(X) PS-correct ≈ E[ε(X)φ(X)] ≈ E[ε(X)φ(X)] ≈ E[ε(X)φ(X)]

OR-correct - ≈ E[ε(X)φ(X)] ≈ E[(ε− ε(X))φ(X)]

The first term disappears under homogeneous contamination.

Proof. The derivation is the same as that of Theorem 4. If ε1(X) is a constant

ε1, the first term disappears, because ε1 = ε1
∫
g(x)dx = ε1.

Similarly to (3.11), the second term of (3.13) is approximately zero if we

assume that π(·;α) is bounded away from zero and one.

Remark 1. Note that “ε(X)”DP-DR may work better than εDP-DR under

heterogeneous contamination. In fact, the bias (3.13) disappears if we replace

ε with ε(X). However, it is necessary to model ε(X) correctly for a consistent

estimation of “ε(X)”DP-DR. To the best of our knowledge, no easy method is

available for this purpose.

3.3. Summary

We have proposed three types of outlier-resistant semiparametric estimators:

DP-IPW, DP-DR, and εDP-DR. Table 1 shows the bias of the estimating equa-

tions under the conditions discussed above. Under heterogeneous contamination,

all estimators are biased, but the bias is little affected by the absolute values of the

outliers. Furthermore, as discussed in Section 4, outliers have negligible influence

if the contamination ratio is sufficiently small. Here, the εDP-DR improves on

the DP-DR in the OR-correct case under homogeneous contamination, but we

continue to discuss DP-DR for the following three reasons: the contamination

ratio is sometimes difficult to estimate, the bias (3.11) is not serious if π(X;α) is

close to P (T = 1|X), and the simulation results presented in Section 6 indicate

that the DP-DR outperforms existing methods, even in the OR-correct case.

4. Influence-function-based Analysis of Outlier Resistance

As discussed in the previous section, the proposed estimators suffer less from

outliers than ordinary estimators do in terms of the unbiasedness of the estimating

equation. In this section, we demonstrate that they are outlier-resistant from the

viewpoint of the IF.
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Here, we briefly review the IF for the univariate M-estimator, and then

expand it to evaluate our estimators. Let G be the distribution of Z ∈ R, and let

T (G) be a functional of G, which is the parameter of interest. The IF of T (G) is

defined as

IF (z0;G) := lim
ε→0

T{(1− ε)G+ ε∆z0} − T (G)

ε

=
∂

∂ε
[T{(1− ε)G+ ε∆z0} − T (G)]

∣∣∣∣
ε=0

, (4.1)

where ∆z0 is a degenerate distribution at z0. Furthermore, the latent bias T{(1−
ε)G + ε∆z0} − T (G) is approximated by εIF (z0;G). Therefore, the behavior of

the IF approximates that of the latent bias. In the population, the M-estimator

TM(G) satisfies
∫
ψ{z, TM(G)}dG(z) = 0. Then, the IF for TM(G) is obtained

by differentiating
∫
ψ[z, TM{(1 − ε)G + ε∆z0}]d{(1 − ε)G + ε∆z0}(z) = 0 with

respect to ε. This yields

IF (z0;G) = −E
[
∂

∂η
ψ(Z, η)

∣∣∣∣
η=TM (G)

]−1
ψ{z0, TM(G)}. (4.2)

The function ψ is said to have a redescending property if ψ{z0, TM(G)} appro-

aches zero as the outlier |z0| increases. Therefore, when ψ has the redescending

property and z0 is an outlier, the latent bias is sufficiently small. This is favorable

for outlier resistance.

Because ε1 depends on X, we cannot apply the IF directly to our estimators.

To overcome this issue, we consider an IF with fixed covariates {Xi}ni=1; this

approach is similar to the fixed carrier model in Hampel et al. (2011, Chap. 6).

Consider the following estimating equation:

1

n

n∑
i=1

Eg̃ [ψ(Y, T,Xi;µ)|Xi] = 0. (4.3)

If the fixed sample {Xi}ni=1 consists of i.i.d. observations, then the left-hand side

of (4.3) converges to Eg̃[ψ(Y, T,X;µ)] as n → ∞. Let µ̃(1)
n denote a root of

(4.3), and let µ̃(1) be a root of Eg̃[ψ(Y, T,X;µ)]. Then, µ̃(1)
n also converges to µ̃(1).

Therefore, µ̃(1)
n exhibits roughly the same behavior as that of the target estimator

µ̃(1). The contaminated density g̃ is defined as (2.6), and δ1(y|Xi) is assumed to

be Dirac’s delta at y0. The IF of Tn(G̃) at Xi is obtained by differentiating (4.3)

with respect to ε1(Xi) at ε1(Xi) = 0.

To conserve space, we discuss only the εDP-DR. Assume that ε1 = (1/n)∑n
i=1 ε1(Xi). Then, the IF of the εDP-DR is
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− Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1{
P (T = 1|Xi)

π(Xi;α)
h(y0 − µ(1)

n )γ(y0 − µ(1)
n )

−n− 1

n

P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
Eq̂
[
h(Y ;µ(1)

n )γ(Y − µ(1)
n )|T = 1, X

]}
. (4.4)

In the PS-correct case, the second term in square brackets is equal to zero, and

the IF tends to zero as |y0| → ∞. In the OR-correct case, the second term does

not disappear. Considering the limit of |y0| → ∞, the IF converges to

n− 1

n
Eg

[
∂ψ

∂µ

∣∣∣∣
µ=µ

(1)
n

∣∣∣∣∣Xi

]−1
{
P (T = 1|Xi)− π(Xi;α)

π(Xi;α)
Eq̂[h(Y ;µ(1)

n )γ(Y − µ(1)
n )|T = 1, Xi]

}
. (4.5)

Thus, the εDP-DR estimator has the redescending property only in the PS-correct

case. In the OR-correct case, the effects of outliers cannot be eliminated, but the

IF tends to a constant when |y0| tends to infinity, implying that these effects

are not serious. The DP-DR has an IF similar to that of the εDP-DR, and the

DP-IPW has an IF similar to that of the εDP-DR, which has a correct PS. The

derivations of all IFs are presented in the Appendix.

Under homogeneous contamination, the ordinary IF is applicable, and the

proposed estimators have the redescending property in the PS-correct case. In

addition, the εDP-DR has the redescending property even in the OR-correct

case. This result is consistent with Corollary 1. An IF-based analysis under

homogeneous contamination is presented in the Appendix.

5. Asymptotic Properties

In this section, we discuss the asymptotic properties of the εDP-DR

estimator. For the other proposed estimators, we obtain similar results, with

small changes. The asymptotic properties can be obtained as in Hoshino (2007).

Assume that the PS and OR models are regular and are estimated consistently

if the models are correctly specified. Furthermore, the contamination ratio ε1
is known. Note that when the contamination ratio is consistently estimated

simultaneously using the OR model of Kanamori and Fujisawa (2015), we can

replace β with (ε1, β
T )T in the following discussion.

We write (3.12) as (1/n)
∑n

i=1 ψi(µ; α̂, β̂), and let (1/n)
∑n

i=1 s
PS
i (α) = 0 and

(1/n)
∑n

i=1 s
OR
i (β) = 0 be the estimating equations for the PS and OR models,

respectively. Let λ = (µ, αT , βT )T be the parameter vector, and let the full

estimating equation be defined as
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n∑
i=1

Si(λ) =
n∑
i=1

ψi(µ;α, β)

sPSi (α)

sORi (β)

 = 0. (5.1)

Let λ∗ = (µ∗, α∗T , β∗T )T be a root of (5.1) in the population. Note that, in this

section, a ∗ does not necessarily mean that the model is specified correctly. With

the results presented in Van der Vaart (2000, Chap. 5), the following theorem

holds under some regularity conditions.

Theorem 5. Under the regularity conditions presented in the Appendix, the

following asymptotic properties hold:

λ̂
p→ λ∗, (5.2)

√
n(λ̂− λ∗) d→ N

(
0,Vg̃(λ∗)

)
, (5.3)

where Vg̃(λ∗) = Jg̃(λ∗)−1Kg̃(λ∗){Jg̃(λ∗)T}−1, Jg̃(λ∗) = Eg̃ [∂Si(λ
∗)/∂λT ], and

Kg̃(λ∗) = Eg̃ [Si(λ
∗)Si(λ

∗)T ].

Using this and applying the results presented in Section 3.2, we find that the

limit µ∗ is in the neighborhood of µ(1).

Theorem 6. Let λ∗∗ = (µ(1), α∗T , β∗T )T and assume that Jg̃11(λ) is nonzero within

the interval [λ∗, λ∗∗]. Under Assumption 1 and homogeneous contamination, if

either the PS or the OR model is correct, it then holds that

µ∗ = µ(1) +O{ν1(φ)}, (5.4)

where φ(·) = ε1 (constant) in the PS-correct case, and φ(·) = ε1P (T = 1|·)/π(·;α)

in the OR-correct case.

The proof of Theorem 6 and further discussions on the asymptotic variance are

available in the Appendix.

6. Monte Carlo Simulation

We conduct Monte Carlo simulations to evaluate the performance of the

proposed estimators. Here, we compare our methods with the naive IPW and

DR estimators, as well as some existing outlier-resistant methods (Firpo (2007);

Zhang et al. (2012); Dı́az (2017); Sued, Valdora and Yohai (2020)). Because

these methods focus on the median of the potential outcome, they are resistant

to outliers, up to a point, but are not resistant to heavy contamination. To the

best of our knowledge, the proposed method is the first to offer resistance to

outliers that is greater than that of the median. Firpo’s IPW estimator (Firpo

(2007)) is defined as
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µ̂Firpo = argmin
µ

n∑
i=1

Ti
π(Xi; α̂)

(Yi − µ){0.5− I(Yi ≤ µ)}, (6.1)

where the function I is an indicator function. Zhang’s IPW median (Zhang

et al. (2012)) is based on the IPW-empirical distribution. Firpo’s IPW and

Zhang’s IPW are almost equivalent, except for a slight difference in their

computation. Zhang’s and Sued’s DR methods (Zhang et al. (2012); Sued,

Valdora and Yohai (2020)) estimate the empirical distribution in a doubly

robust way by incorporating an IPW-type estimator into the first term. The

remaining term of Zhang’s DR is based on the Gaussian cumulative distribution

function of Y given X. In contrast, Sued’s DR constructs the remaining term

in a nonparametric manner. Diaz’s DR median (Dı́az (2017)) offers a different

approach by using the targeted maximum likelihood estimator (TMLE) (Van

der Laan and Rubin (2006)). We implemented our methods, Zhang’s IPW/DR,

and Sued’s DR in R. For Firpo’s IPW and the TMLE, we used the causalquantile

package (https://github.com/idiazst/causalquantile; updated on August

31, 2017).

6.1. Numerical algorithm for the proposed methods

Because the proposed estimating equations cannot be solved explicitly, we

develop an iterative algorithm. Various algorithms are available, but we propose

a standard algorithm for M-estimators (Huber (2004); Hampel et al. (2011)). A

detailed version of the algorithm is available in the Appendix. Hereafter, we

suppose h and q are Gaussian, and we provide explicit updating formulae in this

case. Note that some additional parameters of h should be estimated in a roughly

unbiased and outlier-resistant way.

6.2. Simulation model

We simulate random observations based on a simple causal setting. The

confounders (X1, X2) are drawn independently from a Gaussian or uniform

distribution with mean zero and unit variance. The treatment T is assigned

with the conditional probability P (T = 1|X1, X2), which is defined as a sigmoid

function of 0.8X1+0.2X2. The potential outcomes (Y (1), Y (0)) are generated from

linear functions of (X1, X2) with a Gaussian error: Y (1) = µ(1)+1.2X1+0.3X2+e

and Y (0) = µ(0) + 1.2X1 + 0.3X2 + e. Here, µ(1) and µ(0) are set to three

and zero, respectively. The standard deviation (SD) of e is set to
√

0.72;

then, SD[Y (1)] = SD[Y (0)] = 1.5. When the confounders are not Gaussian,

the potential outcomes are not Gaussian. The observed outcome Y is defined

as Y = TY (1) + (1 − T )Y (1) under no contamination. Outliers are drawn

from N (µ(t) + 10σ(t), 1), with σ(t) = SD[Y (t)] = 1.5. For the homogeneous

contamination settings, the contamination ratio is set to a constant εt. For the

heterogeneous contamination settings, the contamination ratio is set to 1.5εt if

https://github.com/idiazst/causalquantile
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X1 + X2 ≤ 0, and 0.5εt if X1 + X2 > 0. The average contamination ratio is

set to εt ∈ {0, 0.05, 0.1, 0.2}. Then, the observations of Y are replaced randomly

with outliers according to the contamination ratio. The sample size is fixed to

n = 100 throughout the simulations. Furthermore, we generate data sets in which

the outcome follows a symmetric and heavy-tailed distribution. We draw the

error term of Y (t) from the standard Cauchy distribution, rather than inserting

outliers.

6.3. Results

First, we perform a comparative study. The potential mean µ(1) is

estimated using various aforementioned methods. In this experiment, we use

all settings described in the previous section. The propensity score is estimated

using a logistic regression. The parametric OR is conducted in two ways: a

Gaussian MLE with nonoutliers, and unnormalized Gaussian modeling (the

tuning parameter is set to 0.5) (Kanamori and Fujisawa (2015)). For the

DR estimators, we investigate three patterns of model misspecification: PS-

correct/OR-correct, PS-correct/OR-incorrect, and PS-incorrect/OR-correct. For

the model-correct case, we include an intercept and (X1, X2) as covariates. For

the model-incorrect case, we include only an intercept and X2. We perform

10,000 simulations for every setting and method. Table 2 and 3 show the results

of the comparative study of the IPW-type estimators and that of the DR-type

estimators, respectively. To save space, only the results when the covariates are

Gaussian are presented. The estimation error is measured as the root mean

squared error (RMSE). The mean and SD of all estimates, mean computation

time, and results for the other settings are provided in the Appendix. In Table 2,

the naive IPW estimator shows a significantly larger RMSE under contamination.

The median-based methods and DP-IPW both dramatically reduce the RMSE.

The RMSE increases as the contamination ratio increases. The RMSE tends to

be larger for heterogeneous contamination than for homogeneous contamination.

With the optimal γ, the proposed method outperforms the comparative methods

and has the smallest RMSE for all settings. In Table 3, the results for the DR-type

estimators are similar to those for the IPW estimators. The proposed method

with a proper γ again outperforms the comparative methods and has the smallest

RMSE in all settings. The DP-DR and εDP-DR perform similarly, although

the εDP-DR is slightly superior in many settings. The TMLE performs best of

the median-based methods, but it takes much longer than the other methods,

including the proposed methods, and occasionally (< 1%) failed to converge.

Table 4 shows the RMSE of each method for the data with the Cauchy error.

As before, the proposed method outperforms the comparative methods. In this

setting, we use unnormalized Gaussian modeling for the OR for the DR-type

estimators. Only in the PS-correct/OR-incorrect case does, the median (TMLE)

perform slightly better than the proposed method.
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Table 2. RMSE of the IPW-type estimators. X is drawn from a Gaussian distribution.

Homogeneous Heterogeneous

ε 0.00 0.05 0.10 0.20 0.05 0.10 0.20

Naive 0.222 0.957 1.683 3.153 0.993 1.752 3.253

median (Firpo) 0.257 0.294 0.367 0.649 0.306 0.409 0.769

median (Zhang-IPW) 0.257 0.294 0.367 0.649 0.306 0.409 0.769

DP-IPW (γ = 0.1) 0.218 0.276 0.531 2.263 0.293 0.609 2.377

DP-IPW (γ = 0.5) 0.227 0.249 0.272 0.639 0.245 0.287 0.726

DP-IPW (γ = 1.0) 0.261 0.271 0.275 0.413 0.262 0.281 0.498

Next, we conduct a γ-sensitivity study, and estimate µ(1) using the proposed

methods with different γ. Here, X follows a Gaussian distribution, and the con-

tamination ratio varies in {0, 0.05, 0.1, 0.2} under homogeneous contamination.

For the DR-type estimators, we perform the OR using the Gaussian MLE with

nonoutliers. We simulated 10,000 data sets for every setting and method. Table

5 shows the results of the γ-sensitivity study. As in the comparative study,

the bias increases with the ratio of the outliers. Larger γ results in increased

variance. When the contamination ratio is small, it is sufficient to use a small γ,

such as γ = 0.1 or 0.2, to remove the adverse effects of outliers. Even in highly

contaminated cases, γ > 1.0 is not needed. Comparing the DP-DR and εDP-DR

estimates in the PS-incorrect/OR-correct case, we find that the DP-DR estimates

are biased, especially when ε is large. In contrast, the εDP-DR estimates are

not biased, demonstrating that the bias correction by 1 − ε̂ works well in our

experiments.

As in many other outlier-resistant statistical methods, parameter tuning is

challenging. We suggest a possible method based on the solution paths of the

proposed estimators, provided in the Appendix. The effects of the outliers on the

paths decrease as γ increases, and the paths became stable around the true value

after reaching a certain γ. Thus, we suggest using the smallest γ for which the

estimate is stable.

7. Real-Data Analysis

In this section, we use the proposed method to estimate the ATE on a real

data set. We use data from the National Health and Nutrition Examination

Survey Data I Epidemiologic Follow-up Study (NHEFS). The NHEFS is a

national longitudinal study performed by U.S. public agencies. We use a

processed data set, available online (Hernán and Robins (2020, https://www.

hsph.harvard.edu/miguel-hernan/causal-inference-book/). The NHEFS

data set contains 1,566 observations of smokers who enrolled in the study from

1971 to 1975. By the follow-up visit in 1982, 403 (25.7%) participants had quit

smoking. The goal of the study was to evaluate the treatment effect of smoking

https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
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Table 3. RMSE of the DR-type estimators. X is drawn from a Gaussian distribution.
The OR model is obtained using Gaussian MLE using nonoutliers.

Homogeneous Heterogeneous

ε 0.00 0.05 0.10 0.20 0.05 0.10 0.20

(PS-correct/OR-correct)

Naive 0.184 0.957 1.684 3.154 0.997 1.758 3.265

median (Zhang-DR) 0.239 0.317 0.391 0.733 0.330 0.452 0.905

median (Sued) 0.238 0.316 0.388 0.693 0.329 0.450 0.869

median (TMLE) 0.237 0.280 0.359 0.603 0.295 0.402 0.701

DP-DR (γ = 0.1) 0.183 0.302 0.564 2.262 0.318 0.649 2.394

DP-DR (γ = 0.5) 0.202 0.285 0.326 0.697 0.274 0.349 0.834

DP-DR (γ = 1.0) 0.240 0.288 0.307 0.524 0.287 0.336 0.669

εDP-DR (γ = 0.1) 0.183 0.296 0.554 2.255 0.314 0.636 2.385

εDP-DR (γ = 0.5) 0.202 0.264 0.302 0.669 0.271 0.323 0.793

εDP-DR (γ = 1.0) 0.240 0.287 0.299 0.513 0.286 0.335 0.648

(correct/incorrect)

Naive 0.237 0.963 1.686 3.156 1.001 1.758 3.262

median (Zhang-DR) 0.275 0.342 0.408 0.741 0.350 0.465 0.912

median (Sued) 0.275 0.342 0.407 0.699 0.350 0.464 0.872

median (TMLE) 0.242 0.284 0.363 0.622 0.297 0.404 0.719

DP-DR (γ = 0.1) 0.237 0.314 0.561 2.267 0.330 0.644 2.393

DP-DR (γ = 0.5) 0.247 0.319 0.349 0.714 0.319 0.361 0.839

DP-DR (γ = 1.0) 0.280 0.334 0.347 0.581 0.329 0.372 0.709

εDP-DR (γ = 0.1) 0.237 0.311 0.557 2.264 0.328 0.640 2.388

εDP-DR (γ = 0.5) 0.247 0.317 0.344 0.694 0.313 0.356 0.817

εDP-DR (γ = 1.0) 0.280 0.333 0.338 0.551 0.327 0.369 0.708

(incorrect/correct)

Naive 0.181 0.879 1.591 3.026 0.826 1.490 2.813

median (Zhang-DR) 0.237 0.263 0.316 0.503 0.269 0.337 0.548

median (Sued) 0.236 0.272 0.346 0.599 0.277 0.364 0.627

median (TMLE) 0.234 0.260 0.309 0.478 0.265 0.328 0.522

DP-DR (γ = 0.1) 0.182 0.192 0.345 2.057 0.191 0.299 1.681

DP-DR (γ = 0.5) 0.199 0.206 0.218 0.366 0.203 0.209 0.283

DP-DR (γ = 1.0) 0.230 0.232 0.239 0.273 0.230 0.233 0.242

εDP-DR (γ = 0.1) 0.182 0.193 0.381 2.207 0.194 0.335 1.839

εDP-DR (γ = 0.5) 0.199 0.203 0.208 0.376 0.203 0.212 0.318

εDP-DR (γ = 1.0) 0.230 0.230 0.231 0.243 0.231 0.237 0.260

cessation (T = 1) on weight gain (Y ). Other than the treatment and outcome,

several baseline variables were collected, including sex, age, race, education level,

intensity and duration of smoking, physical activity in daily life, recreational

exercise, and baseline weight. We use all of these to control for confounding

in a similar manner to that of Hernán and Robins (2020). We include linear
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Table 4. RMSE of the comparative study using heavy-tailed data. The covariate X
is drawn from a Gaussian distribution. The OR model for the DR-type estimators is
obtained using unnormalized Gaussian modeling.

IPW

Naive 274.024

median (Firpo) 0.414

median (Zhang-IPW) 0.414

DP-IPW (γ = 0.1) 0.443

DP-IPW (γ = 0.5) 0.367

DP-IPW (γ = 1.0) 0.380

DR

PS/OR correct/correct correct/incorrect incorrect/correct

Naive 275.447 275.446 263.629

median (Zhang-DR) 0.415 0.456 0.390

median (Sued) 0.408 0.436 0.373

median (TMLE) 0.392 0.394 0.389

DP-DR (γ = 0.1) 0.501 0.514 0.390

DP-DR (γ = 0.5) 0.363 0.404 0.358

DP-DR (γ = 1.0) 0.372 0.418 0.364

εDP-DR (γ = 0.1) 0.487 0.503 0.377

εDP-DR (γ = 0.5) 0.361 0.399 0.328

εDP-DR (γ = 1.0) 0.370 0.412 0.334

and quadratic terms for all continuous covariates (age, intensity and duration of

smoking, and baseline weight), and dummy terms for the discrete covariates. We

estimate the propensity score using a logistic regression, and perform the outcome

regression using unnormalized Gaussian modeling (the tuning parameter is set

to 0.2). The original data set does not contain obvious outliers. Therefore, we

randomly replace 10% of the observations with outliers drawn from N (100, 52).

Then, we estimated µ(1), µ(0), and the ATE using the same methods as those in

the Monte Carlo simulations. This process is repeated 10,000 times. The results

are summarized in Table 6. For reference, we estimated every target quantity

using the naive IPW/DR from the original data.

For the IPW-type estimators, the median-based methods give larger esti-

mates of µ(1) and µ(0) than those in the case of IPW (no outliers), particularly

for µ(0). As a result, using the median-based methods, the ATE is estimated

to be smaller than that in the case of IPW (no outliers). In contrast, DP-IPW

overestimates µ(1) with γ = 0.05, and underestimates µ(1) with γ ≥ 0.10. It

overestimates µ(0) compared with the case of IPW (no outliers), and this tendency

strengthened with increasing γ. However, because the overestimation of µ(0) is

smaller than that of the median-based methods, the estimate of the ATE by
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Table 6. Results of the NHEFS data analysis. Each figure shows the mean (sd) of 10,000
estimates.

Target Quantities

µ(1) µ(0) ATE

IPW (no outliers) 5.221 (-) 1.780 (-) 3.441 (-)

IPW 14.718 (1.57) 11.607 (0.87) 3.111 (1.78)

median (Firpo) 5.439 (0.21) 2.753 (0.10) 2.686 (0.24)

median (Zhang-IPW) 5.439 (0.21) 2.753 (0.10) 2.686 (0.24)

DP-IPW (γ = 0.05) 5.597 (0.30) 1.851 (0.07) 3.746 (0.31)

DP-IPW (γ = 0.10) 5.157 (0.15) 1.819 (0.07) 3.338 (0.17)

DP-IPW (γ = 0.20) 5.089 (0.15) 1.875 (0.06) 3.215 (0.16)

DP-IPW (γ = 0.50) 4.949 (0.15) 2.007 (0.06) 2.941 (0.16)

DR (no outliers) 5.136 (-) 1.772 (-) 3.364 (-)

DR 14.574 (1.57) 11.589 (0.90) 2.985 (1.81)

median (Zhang-DR) 5.352 (0.20) 2.743 (0.10) 2.609 (0.22)

median (Sued) 5.353 (0.20) 2.744 (0.10) 2.609 (0.23)

median (TMLE) 5.363 (0.21) 2.739 (0.10) 2.624 (0.23)

DP-DR (γ = 0.05) 5.478 (0.27) 1.842 (0.07) 3.636 (0.28)

DP-DR (γ = 0.10) 5.057 (0.16) 1.810 (0.07) 3.248 (0.17)

DP-DR (γ = 0.20) 4.983 (0.16) 1.865 (0.06) 3.119 (0.17)

DP-DR (γ = 0.50) 4.834 (0.16) 1.997 (0.06) 2.837 (0.17)

εDP-DR (γ = 0.05) 5.574 (0.29) 1.851 (0.07) 3.723 (0.30)

εDP-DR (γ = 0.10) 5.148 (0.15) 1.819 (0.07) 3.330 (0.17)

εDP-DR (γ = 0.20) 5.080 (0.15) 1.874 (0.06) 3.206 (0.17)

εDP-DR (γ = 0.50) 4.937 (0.15) 2.007 (0.06) 2.930 (0.16)

the DP-IPW is closer to that obtained using IPW (no outliers) than when using

the median-based methods. The DR-type estimators show similar results. The

median-based methods overestimate µ(1) and µ(0), and the DP-DR and εDP-DR

underestimate µ(1) and overestimate µ(0). The DP-DR and εDP-DR estimate the

ATE better than the median-based methods do. In addition, the DP-DR and

εDP-DR exhibit the same tendency of estimation bias and γ; a larger value of γ

increases the bias.
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The online Supplementary Material contains appendices and additional

tables.
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