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Abstract: We introduce a new random matrix model called the distance covariance

matrix, the normalized trace of which is equivalent to the distance covariance.

We first derive a deterministic limit for the eigenvalue distribution of the distance

covariance matrix when the dimensions of the vectors and the sample size tend

to infinity simultaneously. This limit is valid when the vectors are independent

or weakly dependent through a finite-rank perturbation. It is also universal and

independent of the distributions of the vectors. Furthermore, the top eigenvalues

of the distance covariance matrix are shown to obey an exact phase transition

when the dependence of the vectors is of finite rank. This finding enables the

construction of a new detector for weak dependence, where classical methods based

on large sample covariance matrices or sample canonical correlations may fail in the

considered high-dimensional framework.
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1. Introduction

Székely, Rizzo and Bakirov (2007) introduced the concept of the distance

covariance V(x,y) of two random vectors (x,y) ∈ Rp × Rq as a measure of

their dependence. It is defined through an appropriately weighted L2-distance

between the joint characteristic function φx,y(s, t) of (x,y) and the product of

their marginal characteristic functions φx(s)φy(t), namely

V(x,y) =

{
1

cpcq

∫∫
Rp×Rq

|φx,y(s, t)− φx(s)φy(t)|2

‖s‖1+p‖t‖1+q
dsdt

}1/2

, (1.1)

where the normalization constants are cd = π(1+d)/2/Γ((1 + d)/2) (d = p, q).

Clearly, V(x,y) = 0 if and only if x and y are independent.

For a collection of independent and identically distributed (i.i.d.) observa-
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tions (x1,y1), . . . , (xn,yn) from the population (x,y), Székely, Rizzo and Bakirov

(2007) proposed the sample distance covariance Vn(x,y) as

Vn(x,y) = {S1,n + S2,n − 2S3,n}1/2 , (1.2)

where

S1,n =
1

n2

n∑
k,`=1

‖xk − x`‖‖yk − y`‖,

S2,n =
1

n2

n∑
k,`=1

‖xk − x`‖
1

n2

n∑
k,`=1

‖yk − y`‖,

S3,n =
1

n3

n∑
k,`,m=1

‖xk − x`‖‖yk − ym‖.

One remarkable result (Székely, Rizzo and Bakirov (2007, Thm. 2)) is that

whenever E[‖x‖ + ‖y‖] < ∞, Vn(x,y) converges almost surely to V(x,y) as

n→∞. Based on this, a powerful statistic,

Tn =
nV2n(x,y)

S2,n
, (1.3)

was developed to test the independence hypothesis,

H0 : x is independent of y, (1.4)

by establishing the following: (i) under H0, Tn
D−→ Q, a countable mixture of

independent chi-squared distributions; and (ii) if x and y are dependent, Tn →∞
in probability. This asymptotic theory for Tn was established for the large sample

asymptotics, where the two dimensions (p, q) are fixed, and the sample size n

tends to infinity.

When the dimensions (p, q) of the two vectors become large, Székely and

Rizzo (2013) observed that the above test becomes invalid, owing to a non-

negligible bias of the squared sample distance covariance V2n(x,y), and then

proposed a bias-corrected version Ṽ2n(x,y) as a substitution. Using this correc-

tion, the sample distance correlation R̃n(x,y) = Ṽn(x,y)/[Ṽn(x,x)Ṽn(y,y)]1/2 is

employed to test the independence hypothesis, the null distribution of which is

established in a specific asymptotic scheme, where n is kept fixed and p and q

both grow to infinity. We refer to this scheme as the fixed-n asymptotic regime.

However, a recent paper Zhu et al. (2020) reported that even the test based
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on R̃n(x,y) may lose power when detecting nonlinear correlations if all the di-

mensions (p, q, n) grow to infinity. In particular, they demonstrated that for

high-dimensional vectors, their squared sample distance covariance Ṽ2n(x,y) is

asymptotically equivalent to the summation of their squared component-wise

(linear) cross sample covariances. This implies that the distance covariance can

only capture linear correlations in high-dimensional regimes.

In order to detect nonlinear correlations between x and y when all the di-

mensions (p, q, n) grow to infinity, we propose a new random matrix model, called

the distance covariance matrix (DCM). Specifically, denoting two data matrices

as X = (x1, . . . ,xn) and Y = (y1, . . . ,yn), the DCM of X and Y is defined as

Sxy , PnDxPnDyPn, (1.5)

where

Dx ,
1

p
X′X +

1

pn

n∑
i=1

||xi||2In, Dy ,
1

q
Y′Y +

1

qn

n∑
i=1

||yi||2In, (1.6)

and

Pn = In −
1

n
1n1

′
n (1.7)

is a projection matrix. The DCM Sxy is closely connected to the distance co-

variance V(x,y). As discussed in Section 2, a normalized trace of Sxy is asymp-

totically equivalent to the empirical distance covariance Vn(x,y). Therefore, we

believe that the spectrum of Sxy might contain information on the nonlinear

dependence between x and y. To this end, we investigate the first-order asymp-

totic behavior of the whole spectrum of the DCM Sxy under the two-sample

Marčenko–Pastur asymptotic regime,

(n, p, q)→∞, (cn1, cn2) :=

(
p

n
,
q

n

)
→ (c1, c2) ∈ (0,∞)2. (1.8)

Interestingly, we find that instead of the normalized trace of Sxy, its largest

eigenvalues have the ability to detect certain nonlinear correlations between the

two high-dimensional random vectors x and y.

This study contributes to the literature in three ways. Our first result shows

that the test statistic Tn developed in Székely, Rizzo and Bakirov (2007) for

the independence hypothesis H0 degenerates to the unit in the Marčenko–Pastur

asymptotic regime. This extends a similar finding in Székely and Rizzo (2013) for

their fixed-n asymptotic regime. Therefore, the statistic Tn cannot be applied to
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test the independence hypothesis H0 in the Marčenko–Pastur asymptotic regime

(1.8).

As our second result, we derive a deterministic limiting distribution F for

the eigenvalue distribution of Sxy. This means, in particular, that an arbitrary

eigenvalue statistic of the form n−1
∑

i g(λi), where (λi) denotes the eigenvalues

of Sxy, with some smooth function g, converges to
∫
g(x)dF (x). The limiting

distribution F is valid when the vectors are independent or weakly dependent,

corresponding to a finite-rank perturbation of the independence. An important

property is that this limit is universal, in the sense that it does not depend on

the respective distributions of the vectors.

Third, to demonstrate the usefulness of our limiting eigenvalue distribution,

we apply the theory to detect a deviation from the independence hypothesis by

considering a family of finite-rank nonlinear dependence alternatives. We inves-

tigate both the global and local spectral behaviors of Sxy. Globally, because the

dependence is of finite rank, the limiting distribution of the eigenvalues remains

the same as that in the independence case, that is, the universal limit. However

at a local scale, the largest eigenvalues of Sxy converge to some limits outside

the support of this universal limit, as long as the strength of the dependence

is beyond some critical value. Moreover, the locations of these outlying limits

can be completely determined through the model parameters. Actually, these

results under finite-rank dependence parallel what is now known as Baik–Ben–

Arous–Péché transition in random matrix theory; see Baik , Ben-Arous and Péché

(2005), Baik and Silverstein (2006), and Paul (2007). Thus we conclude that the

largest eigenvalues of Sxy can be used to detect such a dependence structure. In

addition, we propose an estimator for the rank of the dependence. This estimator

is based on the ratios of the largest adjacent eigenvalues of Sxy. Its performance

is assessed using simulation experiments.

Technically, our theoretical strategy for deriving the universal limit under in-

dependence is to first derive a system of equations for the corresponding Stieltjes

transform in the Gaussian case. Indeed, when the vectors x and y are Gaussian,

the DCM Sxy is orthogonally invariant; we can thus assume, without loss of gen-

erality, that the two population covariance matrices are diagonal, which greatly

simplifies the analysis. In a second step, we use a generalization of Lindeberg’s

substitution method to obtain an accurate estimate for the difference between

the Stieltjes transforms from Gaussian vectors and those of non-Gaussian ones.

This difference is small enough that the limiting distribution for the global spec-

trum of Sxy is actually universal, regardless of the underlying distributions of the

vectors.
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The rest of the paper is organized as follows. Section 2 presents our model

assumptions and discusses the relation between the DCM Sxy and the sample

distance covariance Vn(x,y). Section 3 establishes the limiting spectral distribu-

tion of Sxy under the Marčenko–Pastur asymptotic regime (1.8) when x and y

are independent. Section 4 applies this theory to detect the finite-rank nonlinear

dependence between two high-dimensional vectors. All proofs of our technical

results are gathered in the online Supplementary Material.

2. DCM

Let Mp be a p×p symmetric or Hermitian matrix with eigenvalues (λj)1≤j≤p.

Its spectral distribution is the probability measure

FMp =
1

p

p∑
j=1

δλj
,

where δb denotes the Dirac mass at b. For a probability measure µ on the real

line (equipped with its Borel σ-algebra), its Stieltjes transform sµ is a map from

C+ onto itself,

sµ(z) =

∫
R

1

x− z
dµ(x), z ∈ C+,

where C+ , {z ∈ C : =(z) > 0}.

Our asymptotic study of the spectrum of the DCM Sxy is developed under

the following assumptions.

Assumption 1. The dimensions (n, p, q) tend to infinity, as in (1.8).

Assumption 2. The data matrices X = (xi) ∈ Rp×n and Y = (yi) ∈ Rq×n

admit the following independent components model:

X = Σ1/2
x W1 and Y = Σ1/2

y W2,

where Σx ∈ Rp×p and Σy ∈ Rq×q denote the population covariance matrices of x

and y, respectively, and (W′
1,W

′
2) = (wij) is an array of i.i.d. random variables

satisfying

E(w11) = 0, E(w2
11) = 1, E|w11|γ <∞,

for some γ ≥ 4.

Assumption 3. The spectral norms of (Σx,Σy) are uniformly bounded, and their

spectral distributions (Hxp, Hyq) , (FΣx , FΣy) converge weakly to two probability



154 LI, WANG AND YAO

Table 1. Empirical mean and standard deviation of the test statistic Tn from 1,000
independent replications with p/n = q/n = 1/2 and p ∈ {50, 100, 200, 400}. Independent
standard normal vectors are used for x and y.

p = 50 p = 100 p = 200 p = 400

mean sd mean sd mean sd mean sd

1.0104 0.0075 1.0048 0.0036 1.0026 0.0018 1.0013 0.0009

distributions (Hx, Hy), which are referred as population spectral distributions

(PSD).

Our first result concerns the connection between our DCM Sxy defined in

(1.5) and the sample distance covariance Vn(x,y) defined in (1.2).

Theorem 1. Suppose that Assumptions 1–3 hold, with some γ > 5. Then, we

have

V2n(x,y) =
1

2n2

√
pq

γxγy
trSxy + op(1). (2.1)

Theorem 1 demonstrates that the squared sample distance covariance V2n(x,y)

is asymptotically equal to the normalized trace of the DCM Sxy. As a first appli-

cation of the DCM Sxy, we use this approximation to establish the degeneracy of

the test statistic Tn given in (1.3) for testing the independence hypothesis (1.4)

under the Marčenko–Pastur asymptotic framework.

Theorem 2. Suppose that Assumptions 1–3 hold, with some γ > 5. Then, under

the null hypothesis H0, we have Tn → 1 in probability.

A simple simulation experiment is conducted to exhibit the degeneracy of

Tn for two independent standard normal vectors. The dimension-to-sample size

ratios are fixed to be p/n = q/n = 1/2, the values of p (= q) range from 50 to

400, and the number of independent replications is 1,000. As shown in Table 1,

as p increases, the empirical mean and standard deviation of Tn converge to one

and zero, respectively. Consequently, the test established in Székely, Rizzo and

Bakirov (2007) using the chi-squared approximation has a much inflated size

tending to one when the dimensions are large compared to the sample size.

3. Limiting Spectral Distribution of Sxy when x and y are Independent

This section presents the first-order convergence of the empirical spectral

distribution FSxy of the DCM Sxy when x and y are independent.

Theorem 3. Suppose that Assumptions 1–3 hold. Then, almost surely, the em-

pirical spectral distribution FSxy converges weakly to a limiting spectral distri-
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Figure 1. Density curves of LSDs for c = 3 (left) and c = 5 (right). The PSDs are
Hx = Hy = δ1.

bution (LSD) F , the Stieltjes transform of which s = s(z), is a solution to the

following system of equations:

s =
wm− 1

z
,

w =

∫
ts+

ts

1 + tc−11 sm
dHx(t),

m =

∫
t+

t

1 + tc−12 w
dHy(t),

(3.1)

where w = w(z) and m = m(z) are two auxiliary analytic functions. The solution

is also unique on the set

{s(z) : s(z) ∈ C+, w(z) ∈ C+,m(z) ∈ C−, z ∈ C+}. (3.2)

Remark 1. The two auxiliary functions w(z) and m(z) are the limits of wn(z)

and mn(z), respectively, defined in (B.9) of the Supplementary Material. Their

construction accounts for the signs of their imaginary parts, as in (3.2).

Next, we show how to calculate the LSD F using the system of equations

(3.1). Considering the case where the two populations x and y are of the same

dimension and both have identity covariance matrices, we thus have

c1 = c2 = c and Hx = Hy = δ1. (3.3)

For this case, a closed-form solution to the system (3.1) does exist; that is, the

Stieltjes transform s = s(z) of the LSD F satisfies the following

c2 − s+ 2cs− 4c2s+ s2 + c2sz − 2s2z + 2cs2z + s3z − s3z2 = 0. (3.4)
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Substituting z = x + iv and s = su + isv into (3.4), and then letting v ↓ 0, we

obtain the following system of equations by separating the real and imaginary

parts on the left-hand side of (3.4):
s2v =

c2 − su + 2csu − 4c2su + c2xsu + s2u − 2xs2u + 2cxs2u + xs3u − x2s3u
1− 2x+ 2cx+ 3xsu − 3x2su

,

s2v =
1− 2c+ 4c2 − c2x− 2su + 4xsu − 4cxsu − 3xs2u + 3x2s2u

−x+ x2
.

(3.5)

Cancelling the variable su from (3.5), we obtain three solutions for s2v as a function

of x. These three functions indeed have closed forms, but are lengthy, and we

omit their explicit expressions here. Then, for each real value of x, only one

solution of s2v is real and nonnegative, which corresponds to the density function

f(x) of the LSD F , that is, f(x) =
√
s2v/π. Using this approach, in Figure 1,

we plot two LSDs for the setting in (3.3) corresponding to c = 3 and c = 5.

However, in general, when there is no closed-form solution for (3.1), we rely

on numerical approximations for the limiting Stieltjes transform s(z) and the

underlying limiting density function. These methods are used in the illustration

below, and also in the simulation experiments in Section 4.

Numerical illustrations of Theorem 3 are conducted under two models:

Model 1 : Hx = Hy = δ1, c1 = c2 = 1, z11 ∼ N(0, 1);

Model 2 : Hx = 0.5δ0.5 + 0.5δ1, Hy = 0.5δ0.25 + 0.5δ0.75, c1 = 2, c2 = 1, and

z11 ∼ (χ2
v−v)/

√
2v, a standardized chi-squared distribution with degrees of

freedom v = 2.

The PSDs in the first model are simple point masses, and the system (3.1) defining

the LSD simplifies to a single equation (z2 − z)s3 − s2 + (3− z)s− 1 = 0 (letting

c = 1 in (3.4)). The second model is a bit more elaborate. The PSDs are mixtures

of two point masses, and the innovations zij follow a chi-squared distribution with

heavy tails.

To exhibit the LSDs defined by Models 1 and 2, we simply approximate

their density functions by f̂(x) = =s(x + i/104)/π, for x ∈ R. This approxi-

mation is justified by the inversion formula of the Stieltjes transforms, that is,

f(x) = limε→0+ =s(x+ iε)/π, provided the limit exists; see Theorem B.10 in Bai

and Silverstein (2010). Obviously, our approximation takes ε = 10−4, which is

small enough for the illustration here. Next, for any given z = x + i/104, we

numerically solve the system of equations in (3.1), and select the unique solution
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Figure 2. Histogram of eigenvalues of the matrix Sxy under Model 1 (left panel), with
dimensions p = q = n = 500, and Model 2 (right panel), with dimensions p = 2q = 2n =
800. The solid line curves are the corresponding densities of the LSDs.

(s(z), w(z),m(z)) satisfying (3.2), which is done automatically in the software

Mathematica. Finally, taking the imaginary part of s(z)/π gives f̂(x).

In this simulation experiment, the empirical PSDs are chosen as their lim-

iting PSDs and the dimensions are (p, q, n) = (500, 500, 500) for Model 1, and

(p, q, n) = (800, 400, 400) for Model 2. All eigenvalues are collected from 100 in-

dependent replications. The averaged histograms of the eigenvalues of Sxy from

these replications are depicted in Figure 2, which shows that these empirical

distributions match well the limiting density curves predicted in Theorem 3.

4. Application to the Detection of Dependence between Two High-

Dimensional Vectors

Theorem 3 determines a universal limit for the bulk spectrum of the DCM

when the two sets of samples are independent. Here, a natural question arises:

how will this bulk limit evolve when they become dependent? Apparently, if

their inherent dependence is very strong, the spectral limit of the DCM will dif-

fer from the universal limit in Theorem 3. Here, we study a special type of weak

dependence, namely, finite-rank dependence. This concept parallels the idea of

finite-rank perturbation or spiked population models in high-dimensional statis-

tics, which are widely studied in connection with high-dimensional PCA, factor

modeling, and the signal detection problem (Johnstone and Paul (2018)). A strik-

ing finding from our work is that such finite-rank nonlinear dependence can be

detected using the largest eigenvalues of the DCM, which existing methods based

on the sample covariances, sample correlations, or sample canonical correlations

are not able to do.
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4.1. Extreme eigenvalues of DCM under finite-rank dependence

Specifically, we consider two dependent populations x ∈ Rp and z ∈ Rq,
defined as follows:

(i) For a fixed m ∈ N, let (uk)1≤k≤m and (vk)1≤k≤m be two independent se-

quences of i.i.d. vectors distributed uniformly on the unit spheres in Rq and

Rp, respectively.

(ii) Given the sequences (uk) and (vk), the population z is defined as

z = ε

(
m∑
k=1

θkukv
′
k

)
x + y, (4.1)

where

(1) x ∈ Rp and y ∈ Rq satisfy Assumptions (b) and (c);

(2) ε is a standardized random variable with a finite fourth moment.

(3) 0 < θm < · · · < θ1 < ∞ are m constants representing the strengths of the

dependence between x and z.

Remark 2. The pair of random vectors (x, z) in (4.1) are nonlinearly dependent;

that is, they are uncorrelated, but dependent. To see this, consider a particular

case such that ε is a random sign taking values 1 or −1 with equal probability.

Then, it is easy to see that the random sign ε put on the vector x implies the lack

of correlation between the vectors. To establish their dependence, simple algebra

shows that

E
(
‖x‖2

)
E
(
‖z‖2

)
=

1

p
‖θ‖2E2

(
‖x‖2

)
+ E‖x‖2E‖y‖2,

E
(
‖x‖2‖z‖2

)
=

1

p
‖θ‖2E‖x‖4 + E‖x‖2E‖y‖2.

Here, ‖θ‖2 = θ21 + · · · + θ2m. Unless x is a constant vector, E‖x‖4 > E2
(
‖x‖2

)
,

and thus the vectors x and z are dependent.

Suppose we have an i.i.d. sample (x1, z1), . . . , (xn, zn) from the population

(x, z) ∈ Rp×Rq defined in (4.1). Denote by X = (x1, . . . ,xn) and Z = (z1, . . . , zn)

the two data matrices with sizes p × n and q × n, respectively. Similarly to the

matrices in (1.6), we define two matrices Dx and Dz as

Dx =
1

p
X′X + κxIn and Dz =

1

q
Z′Z + κzIn,
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where

κx , (pn)−1
n∑
i=1

||xi||2 and κz , (qn)−1
n∑
i=1

||zi||2.

The corresponding DCM is written as

Sxz , PnDxPnDzPn.

We examine the spectral properties of Sxz for the dependent pair (x, z) defined

in (4.1). First, because the rank of the perturbation is finite, we show that

the limiting spectral distribution of Sxz remains as if the two populations are

independent.

Theorem 4. Suppose that Assumptions 1–3 hold for model (4.1). The limiting

spectral distribution of Sxz is given by the same F defined in Theorem 3.

According to Theorem 4, the global behavior of the eigenvalues of the DCM

Sxz are not useful for distinguishing such weak dependence from the independence

scenario. In the following, we examine the top eigenvalues of Sxz, and show

that the weak dependence structure is encoded in these top eigenvalues. Thus,

detecting this weak dependence becomes possible using these top eigenvalues.

First, we introduce some notation. We denote

λ+ = lim sup
n→∞

‖Sxy‖,

which is finite. On (λ+,∞), define the function

g(λ) = −
∫
tdHx(t)

∫
w(λ)

c2 + tw(λ)
dHy(t), λ > λ+, (4.2)

where w(z) is given in (3). It is easy to verify that g(λ) > 0, g′(λ) < 0, and

limλ→+∞ g(λ) = 0. Next, define

θ0 := lim
λ ↓λ+

[g(λ)]−1/2. (4.3)

Therefore, g is a one-to-one, strictly decreasing, and nonnegative function from

(λ+,∞) to (1/θ20, 0).

Theorem 5. Suppose that Assumptions 1–3 hold for model (4.1) and, for some

k ∈ {1, . . . ,m}, θk > θ0. Then, the kth largest eigenvalue λn,k of the DCM Sxz
converges almost surely to a limit
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Figure 3. Critical value θ0 for c1 = c2 = c and Hx = Hy = δ1.

λk = g−1
(

1

θ2k

)
> λ+, (4.4)

where g−1 denotes the functional inverse of g.

Remark 3. In general, the function g and the critical value θ0 have no analytic

formulae; however both can be found numerically for any given model setting. In

some cases, for example, the setting considered in (3.3), the function g(λ) given

in (4.2) is a solution to

cg3(λ) + (1 + 4c)g2(λ) + g(λ)(3 + 4c− cλ) + 2 = 0. (4.5)

In fact, there are three solutions to (4.5), all of which have explicit, but lengthy

expressions. Here, we choose the one that monotonically decreases to zero as

λ tends to infinity, which is our target function g(λ). Then, the critical value

θ0 = [g(λ+)]−1/2 can be obtained accordingly. Note that the right edge λ+ of the

LSD F can be derived theoretically by setting the density function f(x) to zero.

As an illustration, we show the relation between the value θ0 and the ratio c for

the case (3.3) in Figure 3.

The limit λk in (4.4) is outside the support of the LSD F . A technical point

here is that Theorem 5 does not tell us what happens to λn,k if θk ≤ θ0. By

assuming the convergence of the largest eigenvalue of the base component Sxy
to the right edge point of the LSD, we can establish the following exact phase

transition for the top eigenvalues λn,k (1 ≤ k ≤ m).

Corollary 1. In addition to Assumptions 1–3 for model (4.1), suppose that the

largest eigenvalue of the DCM Sxy converges to λ+, which is the right edge point
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of the LSD F . Then, for k = 1, . . . ,m,

λn,k
a.s.−−→

{
λk if θk > θ0,

λ+ if θk ≤ θ0,

where θ0 and λk are given in (4.3) and (4.4), respectively.

Corollary 1 follows directly from the proof of Theorem 5 and the classic

interlacing theorem. It implies that the value θ0 is the exact critical value for

the phase transition of the top eigenvalues of the DCM Sxz. Note that the

convergence of the largest eigenvalue of the (null) DCM Sxy to λ+ is needed and

assumed here to ensure the convergence of those sub-critical spike eigenvalues,

that is, θk ≤ θ0, to the same right edge point λ+. On the other hand, it is very

likely that this largest eigenvalue does converge. However, the proof for such

convergence is lengthy and technical, and thus left for future investigation.

4.2. Monte Carlo experiments

This section examines the finite-sample properties of the outlier eigenvalues of

Sxz. To simplify the exposition, we consider only the rank-one situation (m = 1)

in this section. Higher dependence ranks with m > 1 are discussed in Section 4.3.

Three models are considered under normal populations:

Model 4 : Hx = Hy = δ1, c1 = c2 = 2;

Model 5 : Hx = Hy = δ1, c1 = 0.1, c2 = 0.2;

Model 6 : Hx = 0.5δ0.5 + 0.5δ1, Hy = 0.5δ1 + 0.5δ1.5, c1 = 1, c2 = 2.

Models 4 and 5 are both standard normal populations, with different dimension-

to-sample size ratios. Model 6 is more general by employing two discrete PSDs.

All statistics are calculated using 1,000 independent replications.

We begin with the convergence of the largest eigenvalue of Sxz under Model

4. Theoretically, the largest eigenvalue becomes an outlier when θ > θ0 =1.52

(see Figure 3 for the critical value). The parameter θ is thus set to θ = 0, 1, 2, 3.

The sample size n ranges from 100 to 1,600. The empirical mean and standard

deviation of the largest eigenvalue are shown in Table 2. It shows that, for θ = 0

and 1 (second to fifth columns), the largest eigenvalue increases with a decreasing

standard error as n grows and is close to λ+ = 9.95, the right edge point of F .

When θ = 2 and 3 (last four columns), the largest eigenvalue converges to its

theoretical limit λ = 10.6875 for θ = 2, and λ = 15.0123 for θ = 3. These results

fully coincide with the conclusions of Theorem 5.
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Table 2. Empirical mean and standard deviation of the largest eigenvalue under Model
4. The setting is cn1 = cn2 = 2 with varying n and 1,000 independent replications. The
right edge point of the LSD is λ+ = 9.95.

θ = 0 θ = 1 (θ, λ) = (2, 10.6875) (θ, λ) = (3, 15.0123)

n mean sd mean sd mean sd mean sd

100 9.5732 0.3126 9.6443 0.3419 10.7285 0.7055 15.1056 1.5770

200 9.7247 0.1972 9.7486 0.2013 10.7219 0.5048 15.0821 1.1099

400 9.8094 0.1302 9.8209 0.1239 10.7114 0.3500 15.0446 0.7458

800 9.8587 0.0769 9.8729 0.0796 10.7079 0.2531 14.9985 0.5505

1,600 9.8950 0.0479 9.8966 0.0502 10.6985 0.1745 15.0249 0.3794
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Figure 4. The average of the largest eigenvalue under Model 5 (left panel) and Model
6 (right panel) from 1,000 independent replications, with ±1 standard deviations (blue
bars). The solid red line is the limiting curve of the function λ(θ), and the dashed red
line represents the right boundary of the LSD’s support.

Next, we study the evolution of the outlier limit λ(θ) in functions of the

dependence strength θ. Models 5 and 6 are considered, with the dimensions fixed

at (p, q, n) = (200, 400, 2000) for Model 5, and at (p, q, n) = (800, 800, 400) for

Model 6. The parameter θ ranges from 0 to 2.5 for Model 5, and from 0 to 5 for

Model 6. Figure 4 displays the average of the largest eigenvalue with ±1 standard

deviations (vertical bars). The dashed red lines mark the right boundary of F ,

and the solid red lines are the theoretical curves of λ = λ(θ). Both graphs in

Figure 4 exhibit a common trend that the largest eigenvalue departs from the

bulk when θ crosses a critical value and goes up with an increasing standard

deviation.

Lastly, we compare the performance of using the largest eigenvalues of our

DCM model with that of a high-dimensional canonical correlation analysis (CCA)

(Yang and Pan (2015); Bao et al. (2019)) for detecting dependence between two
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groups of random samples. As is well known, a direct application of CCA often

fails to detect dependence when the two sample sets are dependent, but uncor-

related. Thus, Yang and Pan (2015) suggest transforming the data in a suitable

way before applying a CCA, if one has some prior knowledge of the dependence

structure. We refer to this variant of CCA as TCCA in the following.

Model 5 is employed in this experiment. The parameter settings are θ =

2, 4, 10 and (p, q, n) = (100, 200, 1000). For the TCCA method, we use the expo-

nential function f(x) = ex to transform each coordinate of the sample vectors,

and then conduct the CCA procedure. In this way, the two sets of transformed

data are linearly correlated.

Histograms of the bulk eigenvalues and the largest eigenvalue are plotted in

Figure 5. In the left panel, the eigenvalues are from the DCM Sxz. Clearly, the

empirical SD of the bulk eigenvalues (black strips) is perfectly predicted by its

LSD density curve (red lines). Moreover, the largest eigenvalues (blue strips)

are centered at λ = 69.83, 187.5, and 1041.5 (blue lines) for θ = 2, 4 and 10,

respectively, which are clearly separated from the bulks. Similar statistics from

the CCA are shown in the middle panel. This demonstrates that the largest

eigenvalues for θ = 2, 4, 10 are all centered at λ = 0.49, which is smaller than the

right edge point λ+ = 0.5 of the LSD. The results from the TCCA are plotted in

the right panel, where the largest eigenvalues are centered at λ = 0.49, 0.50, 0.52

for θ = 2, 4, 10, respectively. On the other hand, Figure 6 reports the sequences

of sample ratios {λn,i+1/λn,i} with ±2 standard deviations. For θ = 2, 4, 10, the

first ratio {λn,2/λn,1} from the DCM model is well separated from the rest, while

those from the CCA and TCCA models have no clear separation. Therefore, the

nonlinear correlation between x and z is entirely captured by the DCM model,

whereas the CCA and TCCA both fail to identify it efficiently. Note that the

TCCA method has some potential for the detection because, on average, the

largest eigenvalue from the TCCA surpasses the right edge limit 0.5 of the LSD

as the parameter θ increases. However, its power is weak compared with that of

our proposed method for the studied cases. Some other transforms are also tested

under the same settings, such as polynomial functions, Box–Cox transforms, and

trigonometric functions. Their performance is either comparable with, or less

superior to that of the exponential function.

4.3. A consistent estimator for the order of finite-rank dependence

Assume that among the m dependence strengths (θk)1≤k≤m := θ, there are

m0 strengths above the critical value θ0 given in (4.3). According to Corollary 1,

the m0 largest eigenvalues λn,k of the DCM Sxz will converge almost surely to
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Figure 5. Histograms of bulk eigenvalues (black strips) and the largest eigenvalue (blue
strips) from 1,000 independent replications under Model 5, with θ = 2, 4, and 10. The
red solid line curves are LSD densities, and the green vertical lines show the averages
of the largest eigenvalues. The plots in the left panel are based on the DCM Sxz, and
those in the middle and left panels are based on the CCA and TCCA, respectively. The
dimensions are (p, q, n) = (100, 200, 1000).

m0 limits λk, for 1 ≤ k ≤ m0, which are outside the support of F and given in

(4.4). At the same time, the following eigenvalues of any given number, say s,

λn,m0+1, . . . , λn,m0+s will all converge to the right edge λ+ of the LSD F . The

rank m0 corresponds to the detectable rank of the weak dependence considered

here. In a sense, the remaining m −m0 dependence strengths {θm0+1, . . . , θm}
below the critical value θ0 are too weak for detection. Following the popular ratio

estimator for the number of factors or spikes developed in Onatski (2010) and
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Figure 6. The average of the sequences of sample ratios {λn,i+1/λn,i} from 1,000 inde-
pendent replications under Model 5, with θ = 2, 4. The plots in the left panel are based
on the DCM Sxz, and those in the middle and right panels are based on the CCA and
TCCA, respectively. The dimensions are (p, q, n) = (100, 200, 1000).

Li, Wang and Yao (2017), we introduce a consistent estimator for the detectable

dependence rank m0 in model (4.1), as follows. Note that for j = 1, . . . ,m0,

the ratios λn,j+1/λn,j converge almost surely to a number in (0, 1), whereas for

j ≥ m0+1, these ratios converge to one. Let 0 < dn < 1 be a sequence of positive

and vanishing constants, and consider the following estimator for the dependence

rank m0:

m̂0 =

{
first j ≥ 1 such that

λn,j+1

λn,j
> 1− dn

}
− 1.



166 LI, WANG AND YAO

Table 3. Frequencies of m̂0 under Model 5 with θ = (4, 3, 2) and m0 = 3 from 1,000
independent replications. The dimensional settings are cn1 = 0.1, cn2 = 0.2 and n ranging
from 100 to 1,600.

m̂0 = 0 m̂0 = 1 m̂0 = 2 m̂0 = 3 m̂0 = 4
n = 100 0.045 0.649 0.293 0.013 0
n = 200 0 0.144 0.676 0.176 0.004
n = 400 0 0.020 0.406 0.561 0.013
n = 800 0 0 0.057 0.942 0.001
n = 1,600 0 0 0 0.995 0.005

Table 4. Frequencies of m̂0 under Model 6 with θ = (4, 3, 2, 1) and m0 = 2 from 1,000
independent replications. The dimensional settings are cn1 = 1, cn2 = 2 and n ranging
from 100 to 1,600.

m̂0 = 0 m̂0 = 1 m̂0 = 2 m̂0 = 3
n = 100 0.122 0.743 0.135 0
n = 200 0.016 0.625 0.357 0.002
n = 400 0 0.409 0.584 0.007
n = 800 0 0.179 0.813 0.008
n = 1,600 0 0.039 0.953 0.008

Under conditions similar to those of Theorem 3.1 in Li, Wang and Yao (2017),

one can show that m̂0 converges to m0 almost surely.

It remains to set up an appropriate value for the tuning parameter dn. The-

oretically, any vanishing sequence dn → 0 is sufficient for the consistency of m̂0.

Here, we follow the calibration proposed in Li, Wang and Yao (2017). Specifically,

we empirically find qn,p,q,0.5%, the lower 0.5% quantile of n2/3
(
ν2/ν1 − 1

)
, where

ν1 and ν2 are the top two sample eigenvalues of the DCM Sxy under the null

model with x ∼ N(0, Ip) and y ∼ N(0, Iq). Then, we set dn = n−2/3|qn,p,q,0.5%|.
Note that dn vanishes at the rate n−2/3. This tuned value of dn is used for all

the simulation experiments in this section.

We now examine the performance of m̂0 in finite-sample situations. Models

5 and 6 are adopted again when generating samples of x and y. Under Model

5, we take m = 3 and θ = (4, 3, 2). The critical value θ0 is 1.2, and thus the

detectable dependence rank is m0 = 3. Under Model 6, we take m = 4 and

θ = (4, 3, 2, 1). In this case θ0 = 2.5 and m0 = 2. The frequencies of m̂0 are

calculated from 1,000 independent replications under the two models, with the

sample size n ranging from 100 to 1,600. The results are shown in Tables 3 and

4, which verify the convergence of the proposed estimator.
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Supplementary Material

An online Supplementary Material contains additional technical tools used

in this paper and proofs of Theorems 1, 2, 3, 4 and 5.
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