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Supplementary Material

This supplementary material contains some additional technical tools and the proofs of
Theorem (1} Theorem [2| Theorem |3 Theorem E| and Theorem [5| of the main paper. Throughout
this supplementary material, || - || denotes the Euclidean norm for vectors, the spectral norm
for matrices and the supremum norm for functions, respectively. C™ and C~ are referred as the
upper and lower half complex plane (real axis excluded). K is used to denote some constant
that can vary from place to place.

A Technical tools

Lemma 1. [El Karoui (2010)] Consider the n x n kernel random matric

M with entries )
- g (=),
p

Let us call ¥ the vector with i-th entry ¥, = ||x;||3/p — 7/2, where 7 =
2tr(3,)/p. We assume that:

(a) n < p, that is, n/p and p/n remain bounded as p — co.

(b) £, is a positive semi-definite p X p matriz, and ||3,| = 01(2,) remains
bounded in p, that is, there exists K > 0, such that 01(3,) < K, for all p.
(¢) There exists £ € R such that lim, . tr(X,)/p = {.

(d) X = (x1,...,X,) and x; = E;/QWZ' fori=1,... n.

(e) The entries of w;, a p-dimensional random vector, are i.i.d. Also, de-
noting by w; the kth entry of w;, we assume that E(w;,) = 0, Var(wy,) = 1
and E(Jw|>T¢) < oo for some € > 0.

(f) f is C® in a neighborhood of T.

Then M can be approximated consistently in operator norm (and in proba-



bility) by the matrix M, defined by

M = f(r)11 + f'(7) {1¢’+¢1’ - 2X;OX
" 2
+ 0 1oy + ot +2pw + 4TSy,

vp = f0)+7f(7) = (7).
In other words,

[|M — MH — 0, in probability.

Lemma 2. [Bai and Silverstein (2010)] Let A and B be two nxn Hermitian
matrices. Then,

1 1
|[FA—FB|| < —rank(A—B) and L*(F* FB) < —trf[(A-B)(A-B)",
n n

where L(F,G) stands for the Lévy distance between the distribution func-
tions F' and G.

Lemma 3. Let f: R® — R be any function of thrice differentiable in
each argument. Let also x = (x1,...,2,) and'y = (Y1,...,yn) be two
random vectors in R™ with i.i.d. elements, respectively, and set U = f(x)

and V = f(y). If
v = max{E|z;|*, Ely;|*,1 < i < n} < oo,
then for any thrice differentiable g : R — R and any K > 0,
[Eg(U) —Eg(V)] < 2C2(g)vnAs(f),

where \3(f) = sup {|0F f(2)|¥* : 2 = (20), 20 € {wp, e}, 1 <i<n,1 <k <3}
and Ca(g) = gll¢'ll + ZHQ loo + 5119 lloc-

This lemma follows directly from Corollary 1.2 in|Chatterjee| (2008]) and
its proof.



B Proofs

At the beginning of this section, we first recall some notations for easy
reading.

_ - 1
Vx = <HXk XEH) ) y = (HYk yf”) ) Pn = In - _1n1;17
b Vi "

n

1 1 1 1 &
Yz = _trzxa Yy = —tr¥ y Rg = X 27 Ry = — Yi 27
0z, o uz, O [

i=1
1 1 1 1
A,=-XX+~I, C,=-YY-+ Yoln, Bn=AiC, A7,
p q
1 1 1
D, = - X'X + k.1, D, = Y'Y + kylp, D, = ~7'7 + k.1,
p q q

s,, = P,D,P,D,P,, S,.=P,D,P,D.P,.

B.1 Proof of Theorem [

The squared sample distance covariance V2(x,y) in (1.2)) can be expressed
as an inner product between the two matrices P,,V,P,, and P,,V,P,, that
is,

Vi(x,y) = YoL4uP,V,P,V,P,.
n
Notice that the matrices V, and V, are exactly the Euclidean distance

kernel matrices discussed in [El Karoui (2010) with kernel function f(x) =
v/z. Applying their main theorem (see Lemma , the matrix

P,V.P,V,P, (B.1)

can be approximated by a simplified random matrix V,, such that as (n, p, q)
tend to infinity,

\v,-pP,V,P,V,P,|| =0 (B.2)
in probability, where
1
2V Vy

A
n =

1 , 1 /

in which
[x1]|* = tr2, [y1]* = tr3,
: and v, = — :

Y, = : . :
[¢n[* — tr, [yall* = tr,

1
p



B.2 Proof of Theorem

Then we replace the two traces v, and 7, in A, and C,, with their
unbiased sample counterparts x, and k,, respectively, which does not affect
the convergence in (B.2). Finally in (B.3)), by removing the two rank-

v,

one matrices (87,) "', %, and (8v,) 'ep,1p, (which have bounded spectral

norm, almost surely), we get the conclusion of the theorem. The proof is
thus complete.

B.2 Proof of Theorem [2
Recall the approximation from Theorem [I]

LTS, + 0,(1)

V2(x,y) = —

and notice that

1 1
Ztr(Say) = — t1(PuX'XP,Y'YP,) + Lt2(P,X'X) + —Ztr(P,Y'Y)
n n

npq D ng
n—1
+ KKy
1
= —t1(X'XY'Y) + 377y + 04s(1).
npq

Moreover, from Equation (21) in Li and Yao | (2018)) and the independence
between X and Y,

1 1 1
—tr(X'XY'Y) = ~tr(Z,)-tr(Z,) + 04.5(1).
p— ( ) 5 ( )q (3y) (1)

Collecting the above results yields
Vﬁ(X, Y) = 2\/ Cn1Cn2Yz Yy + Op(l)-
On the other hand, applying Lemma [T, we have

1 1 [pg (1, L,
~ Sy, =— “1D,1-2v, ) ([ —=1D,1 -2 1
o2, 20\ 7y (n2 ’Y) (n2 y Yy | +0p(1)

:2\/ Cn1Cn2YzVy T Op(l)'

Therefore, the statistic T,, = nV2(x,y)/S2, converges to 1 in probability.
The proof is complete.




B.3 Proof of Theorem

B.3 Proof of Theorem 3|

The strategy of the proof is as follows. First, we prove the theorem under
Gaussian assumption. By virtue of rotation invariance property of Gaussian
vectors, we may treat the two population covariance matrices X, and X, as
diagonal ones, which can simplify the proof dramatically. Second, applying
Lindeberg’s replacement trick provided in |(Chatterjee| (2008)), we will remove
the Gaussian assumption and show that the theorem still holds true for
general distributions if the atoms (w;;) have finite fourth moment, as stated
in our Assumption (b).

Gaussian case: First, we have
ke — Y] =30 and |k, — 7| == 0, (B.4)
as (n,p,q) tend to co. jFrom Lemma [2 and (B.4), we get
L3(FSav FBr) 22

Hence, the matrices S,, and B,, share the same limiting spectral distribu-
tion and thus we only focus on the convergence of FBr. We first derive its
limit conditioning on the sequence (A,). Then the result holds uncondi-
tionally if the limit is independent of (A,). Following standard strategies
from random matrix theory, letting sg,(z) be the Stieltjes transform of
FBn the convergence of FB» can be established through three steps:

Step 1: For any fixed z € C*, sg,(z) — Esp,(z) — 0, almost surely.

Step 2: For any fixed z € CT, Esg, (2) — s(z) with s(z) satisfies the
equations in (3)).

Step 3 The uniqueness of the solution s(z) to (3.1)) on the set (3.2)).

Step 1. Almost sure convergence of sg,(z) — Esg, (2).

We assume X, is diagonal, having the form
3, = Diag(m,..., 7).
By this and notations

1
1/2 /
I, = _An/ (wp+k,17 . 7wp+k,n> s ]{3 = 1, ... q,

Va



B.3 Proof of Theorem

the matrix B,, can be expressed as

q
B, = A, + Z TRT KT (B.5)
k=1
It’s “leave-one-out” version is denoted by By, = B,, — 7priry, k=1,...,¢q.
Let Eq(+) be expectation and Eg(-) be conditional expectation givenry, ..., ry.

From the martingale decomposition and the identity

r,.(By, —21,)7 "

) Bn - In = )
rk( : ) 1+ Tkrz(Bk’,n — zIn)—lrk

(B.6)

we have

sB, (z) — Esg, (2) =

S|
M@

(Ex — Exy) [tr(By, — 2L,) " — tr(By,, — 2L,) 7'

e
Il

1
q

(Ex — Ex-1)

=1

Tkrg(Bkm — ZIn)_QI'k
1+ Tkr,/lg(Bk,n — ZIn)_II'k .

(B.7)

S|
S

Similar to the arguments on pages 435-436 of Bai and Zhou/ (2008)), the
summands in (B.7) form a bounded martingale difference sequence, and
hence sg,(z) — Esg,(z) — 0, almost surely.

Step 2. Convergence of Esg, (z).

Let sa, (2) be the Stieltjes transform of F4». From Silverstein| (1995),
sa, (2z) converges almost surely to sa(z), which satisfies

1 t
z = _SA(Z) —+ /t—i- dex(t) (BS)

Define two functions w,(z) and m,(z) as

q

1 1 Tk
n(z) = =Etr(B, — z1,) 'A,  and  my(2) =, + - :
wp(z) " r( z1,) and m,(2) =, . kz:; . +ch,;21wn(z)
(B.9)
We first show that
m, " (2)sa, [zm;"(z)] —Esp,(z) = 0, n — oco. (B.10)



B.3 Proof of Theorem

In fact, applying the identity , we have

1 1
—tr [ma(2)A, — 21, — —tr(B,, — 2L,) 7}
n

:%tr [mn(2)A, — 2L,] 7" <Z TerkTy — (mp(2) — 'yy)An> (B, — 2I,)"

1 zq: k2 (Brn — 2L) 7 (ma(2) A, — zIn]_1 r;
n = 1+ 7x} (B — 21,) "y,

), (), - L] AL(B, - 1)

1 g dekz
-y ,

— 1+ ThCig W (2)

ol

B 1+ Thepwn(2)
N 1+ Ter(Bk,n — zIn)*lrk

r),(Bin — 2L,) 7" [ma(2)A,, — zInT1 Iy
1

— Ztr[mn(2)A, — 2L,V AL (B, — 21,) 7L
q

Following similar arguments on pages 85-87 of |Bai and Silverstein| (2010)),
one may obtain

max E(dy) — 0.
This result together with the fact
inf |1+ 7uC0 wy(2)] > inf Tcy |S(w,(2))] > 0

imply the convergence in (B.10)).

We next find another link between Esg, (2) and w,(z) by proving

1 & TEWn (2)
1+ zEsg, (2) — ywa(2) — —

——— — 0. B.11
n = Cny + Tpwn(2) ( )

k



B.3 Proof of Theorem

;From the expression of B,, in (B.5)) and the identity in (B.G), we have
L, + 2B, 20" =B,(B, —zI,)"

_'yyA ( —f-ZTkI‘kI‘k In) !
Tkrkrk Bkn z1 )71
=v,A,(B, — 1)~ )
Yy - +Zl+7krkBkn_Zl)lrk
(B.12)
Taking the trace on both sides of (B.12)) and dividing by n, we get
1 B 1 Tl (B — 21 ) ry
1+ z=—tr(B,, — 2I,,) ' =v,~tr(B, )tA, k
—i—zn r( 21,) 'Yyn r( + = Zl—i-TkI'k Bkn—zl) Lry

1 TECoaw
=v,—tr(B, — 2I,) A, n2 Un + €,
T i N T Z 1+ e an(z)

where

1 Z [Cpawn(2) = 13(Brn — 2L,) "1y

[1+ 7t (B — 2L,) trg] [1 4 70¢p wa(2)]
JFrom the proof of (2.3) in Silverstein (1995), almost surely,
inf Hl + 731 (B — 2L,) 7] [1 + chgzlwn(z)]} > 0.

Moreover, following similar arguments on page 87 of Bai and Silverstein
(2010), one may get

- ZE et (2) — v4(Brn — 20,) e > = 0.

Therefore E(e,) — 0 and hence the convergence in (B.11]) holds.

By considering a subsequence {ny} such that wy,, (z) — w(z), from

(B.8), (B.10) and (B.11)), we have
t

. P — dH(8) 2 m(2),
M) = [t ) £ mi

wosh(s)

28p, (2) = =1+ w(z) /t + dey(t),




B.3 Proof of Theorem

as k — o0o. These results demonstrate that s, (z) has a limit, say s(z),
which together with (w(z),m(z), sa(z)) satisfy the following system of

equations:
(o)

zs(z) = —1+w(z) /t + mdﬁ[y(t),

1 t
vt —  dH, ),
sa(z) / + 1 +tcflsA(z) ®)

t

Cancelling the function sa(z) from the above system yields an equivalent
but simpler system of equations as shown in . Hence, the convergence
of s,(2) is established if the system has a unique solution on the set (3.2)).

Step 3. Uniqueness of the solution to (3)).

\

The system of equations in is equivalent to

14+ zs = wm,

t
— [+ —"dH, 1),
" / 1 +teytw (1) (B.13)
t
= t+ dH,(t).
v 8/ 1+ ter (14 zs)w1s Q

Bringing s = [wm — 1]/z into the third equation in (B.13]), we have

w = /E<wm - 1) + twm —1) dH,(t). (B.14)

z z+ cl_ltm(wm - 1)

Now suppose the LSD F' # §y and we have two solutions (s, w,m) and
(8,w,m) to the system on the set (3.2)) for a common z € C*. Then, from

(B.13)) and (B.14]), we can obtain

w—w = (wm — wm)

tz
8 / [; * (z + ¢ tm(wm — 1)) (2 + ¢; 'tm(dm — 1)) 4H(?)

5 t2e;t (wm — 1) (dwm — 1)
+ (7 —m) / Gt e m(wm — 1)(z + ¢ (@ — 1) =)

(B.15)




B.3 Proof of Theorem

- A — i 2yt
m—m = (w ) / (1 n tcglw) (1 n tcglw) dH, (1), (B.16)

t

—wm = (w — W L+ dH,(t). (B.17

wm — win = (w w)/( (1+t021w)(1+t021u~))> y(). ( )
Combining (B.15)-(B.17)), if w # @, we have

B1B2 + 0102 = ]_, (B18)
where
t tz
B = [ - dH,(t),
! / 2 - (z + ¢ tm(wm — 1)) (2 + ¢y "tm(wm — 1)) Q
t
By= [t dH, (1),
o= [+ (i) (i) )
Zer (wm — 1) (W — 1
c, :/ _ tic; (wm )(wT?1 i )~ ] A, (D).
(z+ ¢ tm(wm — 1))(z + ¢ tm(wm — 1))

C —/ they” dH, (1)
) (U ttGg w) (1t ta)

By the Cauchy-Schwarz inequality, we have
22|
B\By| ‘ dH,(t
B Bof / ]z + e ftm(wm — 1))2 (®)
|t2|
|z + ¢ 'tm(wm — 1) ]2

t t
X t+—dHt/t+—~dHt
/ 11+ tey 'wl? /(1) 11+ tey 'wl? (1)

dH, (1)

¢ It2| / ¢
=/ |- dH(t) | t + ————5dH,(t
|z + ¢ tm(wm — 1) Q 11+ tey twl? /(1)
|tz] / t
———— dH (t) [ t + ———=5dH,(t
/ ‘ |z 4 ¢y Htm(wm — 1)) ®) |1+ tey twl? (1)
BlB2 )
752—1 _12 2—1"”"_12
C1Ca? < LR ULk SFY7NT)
|z + ¢ tm(wm — 1)2 |z + ¢ tm(wm — 1)]2
2yt t2cy?
—————dH,(t) —————=dH,(t
11+ tey twl? ol )|1 + tey tw? (1)

10



B.3 Proof of Theorem

—1 2 2 —1
-1 t
/ e 21 gy [
|z—|—c1 tm(wm — 1)|2 |1+ te; wl|?

—1/? 2071
e LRl PP (S oS
\z—l—cl Ym(wm — 1) 11+ teg wl?
—(C1Cy)?.
Then (B.18) implies

1 = |B1By + C1C%)|

< (B + (B + )

t
)Pde(t)/tJr — _dH,(t)

11+ te; w2 Y

_ { t |tz
2er wm — 112 t2c; ! 12
/ A1) [ (1)
\z—l—cl tm(wm — 1)|? 11+ tey twl?
|tz] t

|z + ¢y tm(wm — 1
X ——— dH,(t) [ t+ ———=5dH,(t
{ |z + ¢ 'tm(wm — 1) 2 ( )/ 11+ tey tw)? (1)

eV am — 1) / £2c; ! 1/2
+ ——— dH,(t ———dH,(t .
/ |z + ey tm(wm — 1)) ®) |1+ tey twl? (1)
(B.19)

On the other hand taking the imaginary part on both sides of the second

equation in and -, we obtain

S(m) = / %d&,(ﬂ, (B.20)
S(w) = S(wmz — z) / # + P clltmt(wm =) ‘Qde(t)
+ S(m) . iﬁ%@ 1_\21)|2de(75). (B.21)
Further, if it holds
S(wmz —2) > |2[S(w) / t+ mdffy(t), (B.22)

then for w € C*, combining the above three equations (B.20)), (B.21]) and

11



B.3 Proof of Theorem

(B.22)) will lead to
t 2] / t
1> [ —+ dH,(t) [ t + ————5dH,(t
/ 12| |z + e tm(wm — 1) 2 0 |1+ tey twl? (1)

t2e;1
dH,(t) | ——2——dH,(t). (B.23
‘2 ( ) |1 +tc2—1w’2 y( ) ( )

t2er Hwm — 1)?

|z + ¢ ' tm(wm — 1)
Such inequality also holds true if we replace w and m by w and m, that is,

¢ t|z| / t
L> )=+ dH,(t) | t + —————dH,(t
/|Z| |z+cf1tﬁ1(u~)ﬁz—1)]2 ®) 11+ tey '|? u(t)

2 —1p =~ 12 2 —1
+/ o jom — 17y (t)/LdH (1) (B.24)

|z + ¢y tm(am — )27 11+ teytw2 Y

Combining (B.23]) and (B.24]) will lead to a contradiction to (B.19), which

means that we could only have one solution (s, w,m) satisfying the system

of equations (3.1)) on the set (3.2)).
So it is sufficient to prove the assertion (B.22]) on some open set of C™.
(B.13

In fact, using the first and second equations in (B.13)), we have

S(wmz — z) = |2]*3(s),
t

J(zs) = S(wm) = /t + md]{y(t)%(w).
Then assertion (B.22) is equivalent to
1
S(s) > ﬂ%(zs). (B.25)
2
Actually, for any subsequence {n;} such that
1
Snp.(2) = —Etr(B,, — 21,) "
ng

converges, the empirical distribution FB+ has a limit F' (may depend on
{ni}), as k — oo, whose support is bounded upward by a constant, say K,
which dose not depend on {n,}. Moreover, the limit s(z) of s, (z) is the
Stieltjes transform of F i.e.

s(z) = / L are).

r—z

12



B.3 Proof of Theorem

This implies

Therefore, (B.25)) is true whenever |z| > K, which completes our proof.

Non-Gaussian case: since the two sets of samples {x;} and {y;} are inde-
pendent, we first fix the sequence of matrices (A,,) and show that, without
the Gaussian assumption, the empirical spectral distribution FS=v will still
converge weakly to the same spectral distribution F' under Assumptions
(a)-(c). Next, the same trick can be applied to {x;}, which will not be
detailed here. Our strategy to remove the Gaussian assumption is based
on Lemma [3] an extension of Lindeberg’s argument for general smooth
functions, see also Corollary 1.2 in (Chatterjee (2008]). As a special case,
letting g be the identity function and f be the Stieltjes transform, the the-
orem will ensure that the order of the difference in expectation between
the two Stieltjes transforms under the Gaussian distribution and a non-
Gaussian one is O(n~'/2) whenever the two distributions match the first
two moments and have finite fourth moment. Hence, such difference can
be negligible as n — oo, by which and the “Step 1”7 for Gaussian case the
proof is done.
Recall that

1 1
B, = A7lz/2 <_Y/Y + 'YyI> A7ll/2 = A711/2 (—W/EyW + 7y1> Ai/zv
q q

where the table W consists i.i.d. standard Gaussian random variables and
we vectorize it as a gn-dimensional random vector, denoted as w = (wy;).
Therefore, the Stieltjes transform s,(z) of FB» can be viewed as a function
of the random vector w, defined as

U:=f(w)= ltr(Bn — 2D,

n

Similarly, we denote by

Vi f(w)

the non-Gaussian counterpart of U, where w = (10;;) have the same first two
moments as {w;; } and finite fourth moment. Let w = (w;;) be a mixture of

13



B.3 Proof of Theorem

w and w by taking w;; € {w;j, wy;} fori =p+1,... ,p+ and j=1,...,n,

whose matrix form is denoted by W. Applying Lemma [3| one gets

[E(U) —E(V)| < Kqnas(f), (B.26)
where

3/k

"
o) = sup {\a S

Hence, the remaining work is to find a bound for A3(f), which can be
achieved from bounding the first three derivatives of f with respect to w;;.
To this end, following the same truncation, centralization and rescaling
steps as in \Bai and Silverstein| (2010)) (see Eq. (4.3.4)) and the “no eigenval-
ues” argument under finite fourth moment condition in |Bai and Silverstein
(1998), without loss of generality, we assume that the atoms (w;;) satisfy
the following;:

;p+1§i§p+q,1gjgn,1§k:§3,v—vem<q"}.

E(QZJU) = 0, VGT(QDU) = 1, |7I]Z]| S \/ﬁ, e;WW'ei S Kn,

for all 7 and j, where the vector e; is the ith canonical basis on R?. For
convenience, we still use notations (w;;, w, W) instead of (w;;, w, W) in
what follows.
Let G = (B, — 2I)7!, then the first three derivatives of f(w) with
respect to w;; are the following:
0 1 1
0f(w) = —trG' = ——trB/,G?,
ow;; n n
0*f(w)
ang
o3 4 6 2
/ (:V> = —trB’G’B!, — —trB,G*B/,GB. G + ~trB/,G*B"G,
ow;; n n n

1 1 2
= —tr(B/G? 4+ 2B/ GG') = ——trB"G? + “trB/ G*B. G,
n n n

where
G' = -GB.G,
B, = éAi/ *(e;€]Z, W + WS e.e)) A%,
B = 2 AleelS e Al

and the vector e; is the jth canonical basis on R".

14



B.3 Proof of Theorem

For the first derivative of f, since X, AY? and G2 are all normal, we
have

Of (w)
8’[1)1']'

su
p g n

1 1
< sup{ — [trA)%e;e[ S, WA)/2G?| + — |[trA)*W'S e;e}A}* G|
A ) n ng n Y Jtn

K K
< sup { ey W+ [ Werlle ]}
< Kn=3/2 (B.27)

For the second derivative, we have

1 2 K
‘—trBZGZ = —|trA,e;e; S eie) AP G| < —|lej| - [lefesef|| < Kn~?
n nq nq
and
2 / 21/
~trB,,G’B,G
n
2
= trAL?(e;e]2, W + W'S e} )AL’ G* AL (e;e] 2, W + W'S e,e)A)/°G]
K
S i (llejllllefWe;e; W1 + [le; ||} WW'esef|| + [W'e;| [[efe;e; W] + [[W'e|[|eW'e;ej]|)
K
< o (n+Vn - |wyl)
< Kn~?

which leads to the conclusion that
0*f(w)
8wi2j
Similarly, we could bound the third derivative as follows,
9*f (w) ‘

3
ij

sup

‘ < Kn2 (B.28)

sup

K
< sup § —5 (lefW[Jwi;|? + 2wy ||e;WW'e;| + [le]W || |e;WW'e;|)
ng3

K
s (W + oy}
< Kn™%2, (B.29)
Finally, combing (B27), (B25) and (B20) sives
} = Kn’5/2,

3 WAL 3
Ag(f)zsup{'af i

) )

15



B.4 Proof of Theorem

which together with (B.26]) imply
IE(U) —E(V)| < Kn~Y? -0, asn— oo.

The proof is done.

B.4 Proof of Theorem 4]

Under our model setting (4.1)), the three data matrices X, Y and Z are
related as:

7 —TXS+Y,
where I' = )" O,u,v) and S = Diag(ey,...,e,). So we have
1 / 1 ! 1 m/ 1 Anl 1 /
77 =-Y'Y +-SX'T'TXS + -SXTY + -Y'TXS
q q q q q
1
£2YY+H,
q
where
1 m/ ]' m/ 1 /
H = ~SXT'TXS + -SXT'Y + - Y'TXS (B.30)
q q q

is a matrix of finite rank, at most 2m. Denote

~ 1 ~ 1

S.. = AY? (—z’z + %In> A2 and S,,=Al? (—Y’Y + %In) Al2
q q

where

1 1 —

i=1
Applying Lemma [2| to B,,, §m and §m, we have

|FSes — FS=|| 50 and L3(FB FS=) -0, (B.32)

almost surely, as (n,p,q) tend to infinty. Combining (B.32)) and the fact

that S,. shares the same LSD as S,., we conclude that FS=: converges
weakly to the LSD F defined by (3)). The proof is thus complete.
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B.5 Proof of Theorem

B.5 Proof of Theorem [5

We first note that, from the convergence in (B.4]) and (B.31]), asymptotically,
the largest eigenvalues of S, are the same as those of

- 1
sz = A711/2 (_Y/Y +H+ fnyn) A711/27
q

where H is given in (B.30). So it’s equivalent to prove the theorem for S,..
Next, from [Bai and Silverstein (1998) and the inequality

AL 2ChA ] < [|An]] - [ICall,

we know that the spectral norm ||A71/ 2C,AY ?|| is bounded in n, almost

surely. Define
A = limsup [|A°C, AL

n—oo

we consider the existence of spiked eigenvalues (A, ¢) of S.. in the interval
(A4, +00). That is, for each ¢ € {1,...,k}, A,/ is an eigenvalue of S, but

not an eigenvalue of Al 2CnAi/ 2, ie.
AL, —S..| =0 and |\, —A}?C,A}?| #£0, (B.33)

for A€ {1, Ak}
In the following, we will show the limits of A is defined in (4.4)). Under
the assumptions in (B.33]), we have

I, — (AL, — A/2C,AY?) " AYHAY?

= 0. (B.34)

Recall the definition of H in (B.30)), then with a little bit calculation, this
matrix can be decomposed as

A\ O .- 0 0
0 Oy - 0 0
1
H:—(al b1 A, bm) . . ‘. :
q 0 0 0.\ 0
0 0 0 O Am2
(B.35)
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B.5 Proof of Theorem

where

a; = uﬂSX/VZ- + wilY'ui,

bi = 'LLZ'QSX/VZ‘ + wigY'ui,

1/2
VAIY w2 + 07X vi[* + 6: [ SX'vi|
VAIY ]2 + 07[[SX"vi12 — 6,]|SX v 7
1/2

VAIY w2 + 62X vi |2 — 6:]SX"vi|
VAIY'w [ + 2[SXvi |2 + 6:]|SX v |

Ain = [[SXvi[[ Y ui {

Az = —[ISX Vi [ [ Yy {

1/2
1 1 N 0:]|SX"v|
Uil = T5o 3=
FISX 2 2 /A P+ SXv P

1/2
1 1 0| SX"vi|
U2 = 7o, 3= — ’
FTISXV 2 2 A+ GRSV

1/2
Wil =75 135 ’
w2 2/AIwE T ESXE

1/2
Wio = — — .
LYl | 2 2 /4Y w2 + 02Xy, |2
In addition, it’s straightforward to verify the following relations,

)\ﬂ’d?l + )\Z'QU?Q = 91',
/\ilwi21 + /\i2wi22 =0, (B.36)
AilUi1Wi1 + NigUjowio = 1.

-1
Denote D, = A* (AL, — AY*C,AL?) ALY and

a’l 6’1/\11 0 cee 0

[ v 0 Oy - O

M, = - : [D.(a; by -+ a, by) : D :
T 0 0 .

bl 0 0 0

Then (B34) and (B:33) imply
fa(A) = I — M, | = 0.
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B.5 Proof of Theorem

We next find the limit of f,,(\). Let

1 1
Oy = EtTSDnS(An - ’yx:[n) and 571 = Etan(C” o ,yy:[”)’

one may get for any i € {1,...,m},
a’D,a; u? w?
= Ay, + B, 4 045 (1),
q Cn2 Cn2
aD,b;, wu;u W, W;
i nMq _ il z2an + il 126n + Oa,s,(l),
q Cn2 Cn2
b'D,b;, u? w?
= _ZQQn + Zzﬁn + Oa.s.(l) s
q Cn2 Cn2

and for any i # j € {1,...,m},

!/
a;D,a;

'D,,b;
== Oa.s.(l) y a ]

= Og.s. 1).
. . (1)

JFrom the above approximations and the identities in (B.36|), we have

fn<)\) = H ‘12 - Mnk‘ + Oa.s(l)
k=1

where

O (a, O 0, 1
Y o Y T
Let € = (e1,...,&,)’, then

1 . 1 S
a, = —trSD,,SA,, — ltrSDnS =—¢'(D,0A,)e— ls’Dlag(Dn)s,
n n n n
(B.38)

(1)

where “o” denotes the Hadamard product of two matrices. According to
Theorem 1 of |[Varberg (1968), we have

1 1 a.s.
—e'(D,o0A,)e——E[g'(D,0A,)e] =0, (B.39)
n n

1 1 as.

—e'Diag(D,,)e — —EtrD,, — 0. (B.40)
n n
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B.5 Proof of Theorem

Further,
1., 1 .
—E[e' (D, o A,)e] = —Etr[D, Diag(A,,)]
n n
1 ) 2%
= —Etr[D, (Diag(A,) — 27.1,) | + —=EtrD,
n
2%

EtrD,, + o(1), (B.41)

where the last equahty is due to the following convergence,
]_ 1 a.s
—tr[D,, - (Diag(A,) — 27,1,,) | ' < —||Dy]| - tr| A, = 29,1, | =0
n n

Collecting results in (B.38)-(B.41)), we get
= () 000 (1) =5 a 2 —wy) [WHL0, (B2

where w, () is defined in (B.9), whose domain can be expanded to (A4, +00)
for all large n. For f3,,, we have
1
B, = —tr(D,C,) — 2tuD,
n n

A )
— 1+ 2tr (AL - A;ﬂan}/?) ' Jvep,
n

1 q Tkwn
=y 4 o,(1)
n 1 Cn2 + Tkwn )

giﬁé_@/ w()dH,(0) (B.43)

co + tw(A)

where the third equality is from (B.11)) with (73) being the eigenvalues of
3,. Collecting results in (B.37)),(B.42) and (B.43)), we get

fa(N) é]‘_[ 1_629

k=1

where the function g is given in . With the definition of the critical
value 6y in (4.3)), we find that for any k& € {1,...,m} and 6 > 6, there
are k zeros Ay > -+- > X\ of f(A) on (A;,00). By continuity arguments,
see Lemma 6.1 in [Benaych-Georges and Nadakuditi (2011)), we verify the
existence of the spikes A, 1, ..., A\, whose limits are Ay, ..., A\g, respectively.
The proof is then complete.

20



REFERENCES

References

BA1, Z.D. AND SILVERSTEIN, J.W. (1998) No eigenvalues outside the

support of the limiting spectral distribution of large dimensional random
matrices. Ann. Probab., 26, 316-345.

BAl, Z.D. AND SILVERSTEIN, J.W. (2010) Spectral analysis of large di-
mensional random matrices, 2nd ed., Springer, New York.

BaArl, Z.D. AND ZHOU, W. (2008) Large sample covariance matrices with-
out independence structures in columns. Stat. Sinica, 18, 425-442.

BENAYCH-GEORGES, F. AND NADAKUDITI, R.R. (2011) The eigenvalues

and eigenvectors of finite, low rank perturbations of large random matri-
ces. Adv. Math., 227(1), 494-521.

CHATTERJEE, S. (2008) A simple invariance theorem. Preprint, available
at arXiv: http://arxiv.org/pdf/math/0508213.pdfmath/0508213.

EL Karoul, N. (2010) The spectrum of kernel random matrices. Ann.
Stat., 38, 1-50.

Li, W.M. AND Yao, J.F. (2018) On structure testing for component
covariance matrices of a high dimensional mixture. J. Roy. Stat. Soc.
Ser. B, 80(2), 293-318.

SILVERSTEIN, J.W. (1995) Strong convergence of the empirical distribu-
tion of eigenvalues of large-dimensional random matrices. J. Multivariate
Anal., 55, 331-339.

VARBERG, DALE E. (1968) Almost sure convergence of quadratic forms in
independent random variable. Ann. Math. Statist., 39(5), 1502-1506.

21



	Technical tools
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5


