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S1 Histograms of simulated 7.,

In Section 1, we mentioned that the null distribution of Yamada and Sri-
vastaval (2012)’s test statistic T\s may not be approximately normal if it
is blindly applied. To show this, in Figure [S.1| we display the histograms
of the simulated T,s under the null hypothesis for a three-sample one-way
MANOVA problem. It is seen that the shapes of the histograms are mainly
controlled by the value of the tuning parameter p which determines the
correlation among the p-variables of the generated high-dimensional data,
that is, the larger the value of p is, the larger the correlation among the
p-variables. When p = 0.01, the histograms are quite symmetric and bell-

shaped, showing that a normal approximation to the null distribution of T\
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S2. A SIMULATION STUDY ON CONDITION 1}

as suggested by [Yamada and Srivastava, (2012) is adequate. However, when
p = 0.5 and 0.9, the histograms are quite skewed, showing that a normal
approximation to the null distribution of T, is no longer applicable since
the underlying null distribution of T, is actually skewed while a normal

distribution is always symmetric and bell-shaped.

S2 A simulation study on Condition ([2.3)

Scale-invariant tests are generally more powerful than non-scale-invariant
tests but this is not a free lunch since scale-invariant tests often require
larger sample sizes to work well than non-scale-invariant tests. This is be-
cause scale-invariant tests need to estimate the variances o,,.,7 = 1,...,p
of the p-variables of the high-dimensional data accurately to take the vari-
ations of the p-variables into account. In Remark |1, we mentioned that
Condition is crucial for our normal-reference scale-invariant test 7, ,
to work well. Tt requires n should not be too small compared with log(p).
If the sample size n is too small compared with log(p), we cannot estimate
o,'s with ,,.’s accurately as indicated by and we cannot reduce study-
ing the distribution of T, , to studying the distribution of 7}; as indicated
by . Therefore, if Condition is violated, T, , may not have a good

size control.
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A question arises naturally. How large is the sample size n, compared
with log(p), needed for T, , to work well? To answer this question and
to address a comment from an anonymous reviewer, we conduct a small
simulation study using the setup of Simulation 1 in Section[d.1 We consider
five cases of [n/log(p)] as [n/log(p)] € {5,10,20,30,40}, where [z] returns
the nearest integer to x to compare the performance of T, p against Tiyy
and Ti., the two non-scale-invariant tests developed by |[Fujikoshi et al.
(2004)) and Srivastava and Fujikoshi (2006), respectively, and T\, the scale-
invariant test developed by [Yamada and Srivastava (2012)), in terms of size
control.

The empirical sizes of the four tests are shown in Table [S.1} For each
value of [n/log(p)], we display the ARE values of the four tests associated
with three values of p. We first investigate the case when p = 0.01, i.e.,
when the data are nearly uncorrelated. In this case, the null distributions
of all the four tests can be adequately approximated by the normal approx-
imation if the sample size n is sufficiently large. It is seen that when the
sample size is too small compared with log(p), i.e., when [n/log(p)] = 5, 10,
T, is rather liberal with its empirical sizes generally larger than 5% and
some of them even larger than 9% and T, is rather conservative with its

empirical sizes generally smaller than 5% and some of them even smaller
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Table S.1: Empirical sizes (in %, Simulation on Condition (2.3)).

p=10.01 p=0.55 p=0.95

[lognw] Model []97 nl:”%"{i] Tenw Tsr Tys Tn,p Tenw Tsr Tys Tn.p Teuw Tsr Tys Tn,p

[200,7,9,10] 6.44 6.80 499 959 771 806 411 891 9.10 9.36 1.68 827
500,8,10,12] 577 598 3.17 877 703 727 322 873 865 884 141 842
1000,9,11,14] 544 569 234 806 637 6.60 238 832 852 871 120 824
200,7,9,10] 4.72 500 3.65 755 734 769 393 875 9.19 947 1.70 8.00

5 2 500,8,10,12] 486 515 242 695 6.08 633 276 7.87 893 9.18 129 828
200,7,9,10] 589 6.22 342 713 707 735 356 849 887 9.06 1.78 8.30
3 500,8,10,12] 524 550 204 614 6.83 7.09 3.00 841 811 829 137 7.85

[
[
[
[
[1000,9,11,14]  4.51 4.66 1.64 634 596 621 199 739 811 834 119 846
[
[
[

1000,9,11,14] 494 516 134 532 645 6.73 211 7.70 7.88 8.08 1.19 7.85

ARE 10.56 12.98 44.42 46.33 35.20 40.73 39.87 65.71 71.91 76.29 71.53 63.71

[200,14,18,20] 6.38 6.52 479 736 730 740 3.66 7.43 791 8.03 1.04 6.54
[500,16,20,24] 531 544 356 6.60 706 7.16 349 737 804 819 097 6.75
[1000,18,22,28] 558 5.71 3.35 6.52 6.13 6.22 237 642 752 7.66 0.75 6.85
[200,14,18,20] 5.04 518 4.02 643 698 7.03 337 693 792 799 0.73 6.31
10 2 [500,16,20,24] 445 452 333 6.02 6.52 6.66 328 6.75 721 734 1.02 6.37
[
[
[
[

1000,18,22,28] 4.66 4.76 2.39 557 5.61 575 263 6.07 722 742 0.73 6.56
200,14,18,20] 536 553 3.72 595 751 767 3.71 7.51 8.02 809 095 6.49
500,16,20,24] 542 5.63 3.51 6.10 687 7.04 333 696 7.63 773 085 6.51
1000,18,22,28]  4.97 5.09 245 539 6.17 6.30 285 6.41 7.50 7.57 1.04 6.74

ARE 8.91 10.71 30.84 24.31 33.67 36.07 36.24 37.44 53.27 55.60 82.04 31.38

[200,28,36,40] 575 585 448 591 696 7.03 341 6.06 7.79 7.88 0.72 6.25
[500,32,40,48] 583 593 425 5.67 648 6.57 3.36 597 747 752 080 5.89
[1000,36,44,56] 5.59 5.68 3.93 591 6.04 6.10 3.00 548 7.38 7.41 0.85 6.03
[200,28,36,40] 565 5.71 4.55 5.68 7.06 7.12 347 6.35 7.42 751 0.79 5.78
20 2 [500,32,40,48] 464 475 379 532 6.19 626 3.53 620 7.53 7.61 081 587
[ 4
[
[
[

1000,36,44,56] 4.97 5.02 3.53 535 6.18 6.23 3.34 583 694 7.01 0.61 5.82
200,28,36,40) 556 5.61 4.33 5.73 638 643 3.04 571 7.22 728 050 5.79
500,32,40,48] 565 570 439 592 6.51 655 3.11 548 6.92 697 0.65 6.03
1000,36,44,56] 5.24 531 3.60 509 597 6.05 3.32 569 7.18 7.25 0.79 5.78

o

oot

ARE 10.36 11.24 18.11 12.40 28.38 29.64 34.27 17.27 46.33 47.64 85.51 18.31

[200,42,54,60] 6.23 6.31 492 584 6.68 6.81 338 591 732 734 0.63 5.53
[500,48,60,72] 569 572 439 556 6.20 6.24 387 6.21 734 736 059 6.16
[1000,54,66,84] 4.66 4.71 3.77 5.03 557 5.64 320 533 6.88 693 0.85 5.66
[200,42,54,60] 541 547 4.62 559 691 695 326 595 691 694 047 5.18
30 2 [500,48,60,72] 540 549 424 519 637 640 3.33 564 713 716 062 543
[
[
[
[

1000,54,66,84] 4.563 457 3.63 493 578 581 344 541 6.68 6.70 0.70 5.55
200,42,54,60) 549 550 4.25 5.19 6.50 6.57 3.23 6.32 7.63 7.65 0.69 5.64
500,48,60,72] 553 558 4.06 497 593 598 3.11 5.07 6.85 6.89 053 519
1000,54,66,84] 5.64 5.67 4.09 526 6.11 6.18 347 544 6.75 6.77 0.77 5.39

ARE 11.56 12.13 15.62 6.13 24.56 25.73 32.69 13.96 41.09 41.64 87.00 10.51

[200,56,72,80] 584 584 525 592 7.02 707 328 574 701 7.02 0.59 540
[500,64,80,96] 565 5.69 4.75 548 6.77 680 3.71 587 7.18 7.18 0.56 5.57
[1000,72,88,112] 5.50 5.51 4.42 531 6.05 6.07 3.69 533 6.68 6.72 0.74 5.41
[200,56,72,80] 5.72 574 481 542 7.06 7.09 342 546 729 734 0.75 5.51
40 2 [500,64,80,96] 532 534 433 507 6.12 6.15 331 542 735 738 082 573
[
[
[
[

1000,72,88,112] 4.69 4.72 3.76 4.62 6.25 6.30 3.60 554 6.92 6.92 070 5.31
200,56,72,80] 596 6.00 5.16 571 6.88 6.93 3.09 553 746 747 0.60 5.77
500,64,80,96] 535 542 452 532 6.00 6.03 342 537 746 748 0.56 5.89
1000,72,88,112] 547 550 4.34 537 6.08 6.12 3.73 551 6.53 6.58 0.53 5.32

ARE 11.38 11.82 9.96 8.84 29.40 30.13 30.56 10.60 41.96 42.42 87.00 10.91




TIANMING ZHU, LIANG ZHANG AND JIN-TING ZHANG

than 2%. However, in this case, both T, and T, still perform well with
their empirical sizes around 5% to 6%. This shows that scale-invariant tests
indeed need larger sample sizes than non-scale-invariant tests to work well,
as expected. It is also seen that when the sample size is sufficiently large
compared with log(p), i.e., when [n/log(p)] = 20,30, 40, all the four tests
perform reasonably well with their empirical sizes around 5%.

We next investigate the case when p = 0.55 and 0.95, i.e., when the
data are moderately or highly correlated. In these two cases, the null dis-
tributions of all the four tests cannot be well approximated by the normal
approximation even when the sample size n is sufficiently large. There-
fore, in terms of size control, it is expected that Ty, Ty and T, will
not perform well even when the sample size is sufficiently large, i.e., when
[n/log(p)] = 20,30, 40. This is actually confirmed by the empirical sizes of
the three tests presented in Table from which, it is seen that both T},
and Ty, are liberal with their empirical sizes larger than 5% and many of
them around 7%, while T is conservative with its empirical sizes smaller
than 5% and many of them even smaller than 1%. Nevertheless, T,, , per-
forms differently: when [n/log(p)] = 5,10, T, is rather liberal with its
empirical sizes generally larger than 5% and some of them even larger than

8% and when [n/log(p)] = 20, 30,40, T,,, performs well with its empirical
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sizes around 5%.

The above simulation study partially demonstrates that scale-invariant
tests require larger sample sizes than non-scale-invariant tests to work well
and when the sample size n is large enough compared with log(p), i.e., when
Condition holds approximately, in terms of size control, T, , performs
well regardless of whether the data are nearly uncorrelated, moderately
correlated, or highly correlated and it outperforms T, Ts. and T,s sub-
stantially. This latter conclusion is consistent with those drawn from the

simulation studies presented in Section [

S3 Comparing 7,,,, 7, ,,1, o and T, by simulation

n,p’

To address a comment from an anonymous reviewer, in this section, we

compare 1y, ,, T T>

oo I oo, and T via their kernel density estimates (KDE)

to assess if the theories established in Section [2] are valid, i.e., if the proba-
bility density functions (pdfs) of T;,, and T}, , are close to each other and if
the pdfs of T}, , and T} are close to each other. Under Conditions C1-C4
and , as n,p — 0o, we have , meaning that for large samples, the
KDEs of T,,, and T} , should be close to each other and under the condi-
tions of Theorem , for large samples, the KDEs of T}, and T, should

be close to each other. In real data analysis, T 7T, , and 17, are not
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Figure S.2: KDEs of the simulated T}, , Ty p0 and T (Tnp: black solid curves

n ,p’
with triangles, T, ,: red dashed curves with diamonds, Ty , o: dark blue dotted curves

with squares, T, o: orange dot-dashed curves with circles) under the null hypothesis as-

sociated with parameters [ni,ng, ng, p, p| from the settings under Model 1 in Simulation

1 of Section[{1]
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Figure S.3: Same caption as that of Figure except under Model 2 in Simulation 1 of

Section [{.1]

computable but they are used to simplify the deriving process of the main
results presented in Section 2]
We first generate the high-dimensional data using the setup of Simula-

tion 1 in Section 4.1} Each time, based on the simulated data, we calculate
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Figure S.4: Same caption as that of Figure except under Model 3 in Simulation 1 of

Section [{.1]

the values of T, ,, T ), and T); , using the formulas in (1.6), (2.2), and

n7p7

(2.6)), respectively. That is,

s ~ -1 . n—k—2 -1
Top = (o=ipgt(SkD ), T3, = (=5 tr(SkD ™), and (S3.1)

T po = (pg)~'tr(e HeD ™).
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At the same time, to compute T, 2 (pq) 1> N A A, s Xg, we ran-

1 p

domly generate z. ~ x2,7 =1...,p and compute T, as (pg) ™' >"_,

AprZp.
Note that in the above computations, we use the true values of D, A, ,.,r =
1,...,p which are not available in real data applications but they are avail-
able in the simulation studies. We repeat the above process for 10,000

times so that for each of T, ,, Ty  Tx

. :
wp Lo por and T7q, we have an indepen-

dent sample of size 10,000 which can be used to compute the KDEs of

Top, T, T

wpr Lopos and 17, respectively. To compute the KDEs, we use the

R-function “density” directly, i.e., the default kernel and bandwidth are
used directly without adjustment.

We first compare the KDEs of T,,,,, T . T>

*
nps Lnpos and T2y when the null

hypothesis is valid. Figures [S.2] [S.3 and display the KDEs of the

simulated T,, ,, T T*

nps I Ty oo and T (T, 0 black solid curves with triangles,

T, - red dashed curves with diamonds, T}, , ;: dark blue dotted curves with
squares, 177 orange dot-dashed curves with circles) associated with param-

eters [ny, ng, n3, p, p| from the settings under Models 1, 2, and 3, respectively

of Simulation . It is seen that the KDEs of the simulated T}, ,, T;x ,, T7r o,
and T7, are nearly the same under various configurations. This is consis-

tent with those theories established in Section 2l This is reasonable since

we have n/log(p) = 35 so that Condition ([2.3) is approximately valid.
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Figure S.5: KDEs of Ty p, Ty, ,, 1)y , 0 and Ty under an alternative hypothesis associ-

n,p’ - n

ated with parameters [ny,na, 3, p, p| from the settings under Model 1 in Simulation 1 of

Section [{1]

We next compare the KDEs of T, ,,, T 1T~

*
nps L pos and Tp’0 when an al-

ternative hypothesis is valid. Figures ~ [5.7] display the KDEs of the

simulated T, ,, T, T ,0 and T, under an alternative hypothesis. It is
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Figure S.6: Same caption as that of Figure[S.] except under Model 2 in Simulation 1 of

Section [{.1]

seen that the KDEs of T;,, and T}; ) are close to each other, and the KDEs

T, ,0 and T are close to each other. However, the KDEs of T}, ,, T}, , and

n,

those of T} 4,1 are very different. This is not surprise since under an

n,p,07

alternative hypothesis, Ty  and T}, ), do not have the same distribution.
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Figure S.7: Same caption as that of Figure[S.] except under Model 8 in Simulation 1 of

Section [{.1]

From the above simulation study, we can see that for large samples,
under null or alternative hypotheses, it is reasonable to approximate the
distribution of T;,, using that of T); = as guaranteed theoretically by (2.2

and it is reasonable to approximate the distribution of 77  ; using that of
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Tr, as guaranteed by Theorem .

S4 Comparison with some tests by |Li et al. (2020)

To address a comment from an anonymous reviewer, we examine the per-
formance of T}, , against the tests proposed by Li et al.| (2020) for the GLHT
problem under the three-sample one-way MANOVA framework con-
sidered in Simulation 1. |Li et al. (2020)) proposed several tests with dif-
ferent shrinkage methods to regularize the spectrum of 3. To save space,
we only compare 7, , against the composite ridge-regularized tests of Algo-
rithm 4.2 in |Li et al.| (2020), denoted respectively as LR., LH., and BN P,,
which are implemented via the R codes kindly provided by the first au-
thor of |Li et al| (2020). Figures 1 ~ 3 of [Li et al. (2020) indicate that
these three tests outperform or perform not worse than other tests pro-
posed in their paper. Without loss of generality, we consider the contrast
test Hy : py + 2 py — 3 p3 = 0, which can be written in the form of the
GLHT problem with @ = ( gy, po, p3)" and C = (1,2, —3). Other
tuning parameters are set to be the same as those specified in Simulation 1
except we now take ¢ = 0.03,0.045,0.07 for p = 0.01, 0.55, 0.95 respectively.

Table displays the empirical sizes of the four tests under various

configurations. It is seen that in terms of size control, T;, , performs well
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Table S.2: Empirical sizes (in %) of LR.,LH., BNP, and T, .

p =001 p =055 p =095
Model p  no  LR. LH, BNP. T., LR. LH, BNP. T.,, LR. LH, BNP. T.,
80 753 883 638 506 853 935  7.55 536 874 923 819  4.98

200 100 758 854 671 532 7.99 862  T.39 537 889 932 858 457

120 765 833 68 555 824 878 773 505 876 907 843 527

80  7.66 880 661 573 797 922 685 539 865 949 806  5.39

1 500 100 713 829 600 547 766 860  6.62 543 938 994 855 590
120 6.66  7.84 561 509 7.63 846 675 535 841 899 798 512

80  7.67 840 700 533 704 818 598 502 819 912 721 551

1000 100 742 821 666 523 754 860 652 554 839 939 758 545

120 662 738 590 498 675  7.82 593 494 7.83 847  7.05 541

80 699 834 603 519 833 932 758 555 841 887  7.90  4.80

200 100 681 785 599 523 855 920 800 559 879 915 837 524

120 712 781 642 509 808 869 750 570 819 835  7.90 518

80 714 825 614 522 776 900 648 529 7.98 860  7.17 488

2 500 100 676 821 561 546  7.87 908 6.8 536 824 897  7.64 536
120 650 746 549 501 715 808 643 515 860 915 806  5.39

80 728 810 657 533 748 86l 636 567 871 977  7.82 549

1000 100 653  7.34 580 524 672 801 586 523 837 909 742 513

120 627 719 565 471 704 804 628 525 804 879 731 532

80 757 867 658 510 852 950 778 618 846 910  7.98  4.90

200 100 716 790 636 48 771 840 711 521 861 892 822 521

120 714 774 648 520  7.67 822 714 538 893 930 864 514

80  7.00 809 615 542 779 917 674 541 859 934 791 534

3 500 100 689 810 597 531 780 896 682 588 832 890 776  5.35
120 666 789 569 514 782 880 693 555 844 900 793 570

80 775 866  7.00 524 742 871 629 578 842 946  7.46 583

1000 100 7.35 813 662 544 716 837 616 562 830 923 772 508

120 685 753 622 496 7.08 801 624 527 841 906 774 551

ARE 41.99 61.39 24.87 5.13 53.63 73.19 36.21 8.62 69.67 82.27 57.47 6.81

and generally outperforms the other three tests regardless of whether the
simulated data are nearly uncorrelated, moderately correlated, or highly
correlated while LR., LH., and BN P, are in general rather liberal as most
of their empirical sizes are larger than 7%. The empirical powers of the
four considered tests are displayed in Figure (LH,: black solid curves
with triangles, LR,.: red dashed curves with diamonds, BN P.: green dotted
curves with squares, and 7),,: blue dot-dashed curves with circles). It is

seen that when p = 0.01 and 0.55, LR,., LH., and BN P, almost have no
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Figure S.8: Empirical powers (in %) of LR.,LH., BNP, and T, , (LH.: black solid
curves with triangles, LR.: red dashed curves with diamonds, BN P.: green dotted curves
with squares, and T, ,,: blue dot-dashed curves with circles) associated with parameters
[p,no] from the settings under Model 1 (1st row), Model 2 (2nd row), and Model 3 (8rd

row).
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powers under the various configurations. When p = 0.95, LR., LH., and
BN P, have higher powers than 7, , only in the first three settings when
p = 200 and they have much lower powers than 7, , in the remaining

settings when p = 500, 1000.

S5 Some asymptotical properties of ¢,

To address a comment from an anonymous reviewer, we derive some asymp-

totical properties of the adjustment coefficient ¢, ;, used in the test statistic

Tys (1.4) of Yamada and Srivastaval (2012). By (1.5), (2.16) and (2.17]),

some simple algebra yields

(n—k—l)(n—k—l—Q)q\{}_?_'_ VP

=1
Cnp N (n—Fk—2)2 d n—k

where d is the estimated approximate degrees of freedom defined in ([2.17)).

Under Conditions C1-C4 and ({2.4)), by Theorem , as n,p — 0o, we have
Cnp = (1 + %) 1+ 0,(1)]. (S5.2)

According to the discussion presented in Section [2.2] when d is bounded for

all p, the normal-reference distribution of 77y 5, i.e., the distribution of 77,

P07
will not tend to normal and in this case, by (55.2)), we have ¢,, — oo in

probability. That is to say, when d is small and Cnp is large, as in the corneal

surface data example presented in Section [5| (see Table , the underlying



S5. SOME ASYMPTOTICAL PROPERTIES OF ¢, ,

null distributions of T;, ,, T\« and 77, are unlikely to be normal and hence
the normal approximation to the null distributions of 7, ,,, T\ and 77, is no
longer applicable.

Recall that under Conditions C1-C5, by Theorem (a), as n,p — 0o,
both Tn,pp and T;O will tend to (, a non-normal random variable and under
Conditions C1-C4, and C6, by Theorem (b), as n,p — 0o, both Tn,p,o and
T o will tend to N(0,1). Then by and Remark (1} under Conditions
C1-C5 and , as n,p — oo, the limiting null distribution of T, , after
normalization is not normal and under Conditions C1-C4, C6, and ,
as n,p — oo, the limiting null distribution of 7, , after normalization is
normal. In these two cases, we can show that ¢, , will tend to oo and 1
respectively.

In fact, under Condition C5 and by (2.15)), as n,p — oo, we have

= _( d —];))Qtr o (Z pr> < 0. (S5.3)

Then under Conditions C1-C5 and (2.4)), we have (S5.2) so that as n,p —

oo, we have ¢, , — oo in probability. Further, under Condition C6 and by

(2.15), as n,p — oo, we have

12,2
g (n=k7pq _

-k 2eu®) o T oWI=00) (S5.4)

where a is a finite constant defined in Condition C6. Then under Conditions
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C1-C4, C6, and , we have so that as n,p — oo, we have ¢, , =
(1 %) 11+ 0,(1)] = 1 in probability.

The above theoretical results, together with the relationship , ie.,
T, =T/ V/Cnp clearly explain why when Conditions C1-C4, C6 and
are satisfied, i.e., when the distributions of 7\ and 77, are nearly normal,
the empirical sizes and powers of T, are close to those of 77, and when
Conditions C1-C5 and are satisfied, i.e., when the distributions of T\

and 717, are unlikely normal, the empirical sizes and powers of T\ are much

smaller than those of T

Ys?

as seen from Table [T and Figure [I] presented in
Section Ml

From the above analysis, we may loosely suggest that the tests T\ and
T;, can be used only when the value of ¢, ), is very close to 1 and they
should not be used when the value of ¢, , is much larger than 1. However,
according to the simulation results presented in Section 4 and in Section [S4]
the proposed test 7T}, , can work well regardless of what value the adjustment

coefficient ¢, ,, takes.
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S6 Technical proofs

S6.1 Proofs of (2.1) and (2.2)

Recall that 6,,,7 = 1,...,p and o,.,7 = 1,...,p are the diagonal entries
of ¥ and X, respectively. Let s, denote the r-th diagonal entry of S, in

(1.3). Then we have
n—=Fk—2 A1 _n—k—? b 1
(n — k)pg (n — k)pg

— n_—Hiﬁ Irr 4 +1
a (n - k)pq r—1 Orr a'rr

Tn,p =

It follows that

|Tn7p - T;,p| =

n—k—2<= S (O
I
(TL - k)pq —1 Orr \Orr

P
Sn—k—QZﬁ Opr
(n_k)pq r—1 Orr

(36.5)

O-T'T'
-1

*
T

— — 1| < max |—
Orp 1<r<p | Oy

Ter — 1’. Under Condition C1, we have

Orr

Next, we aim to study maxi<,<p
€ = (€1,...,€p) = T'v;,i = 1,...,n which are i.i.d. p-vectors with
E(e;) = 0 and Cov(e;) = . The usual unbiased estimator of ¥ is 3 =
(n — k)~!'S,, where S, is defined in and also can be written as S, =
€' (I, — Px)e, where I, is the usual n x n identity matrix, and Py =

X(XTX)™'X". Let p; denote the (4,7)-th entry of Py, then we have

6 = (n—Fk)7! <Z?:1 e >, E;LZI eirejrpij), where €;, is the r-th entry
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of €; with E(¢;) = 0 and Var(e;,.) = 0,,. It follows that

(j : 2 :j : 67,7”6]7"p1]
g
r =1 j=1

O—’I"’l"
GTT
Then we have
Opr n
—-1) = r r rr)|
i (82 =1) = 2 U = 1 )
where
Ly = V(e 'S & - 1), and
" (S6.6)
-[7‘2 = <Z?:1 2?11 eirejrpij) - karr
1. Let vj¢,5,¢ = 1,...,p denote the

o.l€) =

It is easy to note that E(
=D Virvi

(7,€)-th entry of I'. Then under Condition C1, we have ¢,
=1 7Vjr- Furthermore, under Conditions C1-C3, we have

Z f}/jr’yﬁrvm 'Lé)

and o, =
ir 2 2
E(o'_Q)—U E(Z’YJT ”>+30' E(
J#s
p P
B+ A)o2 > v 4302 vive = Ao? Y 4k +3
j=1 L j=1
<3+ A,
where we use the fact that o ; 177‘}]- <o ?:1 Vei)? = o202 = 1.
Therefore, together with Condition C4, for all r =1 , P, we have
2) <2+ A < oo, (S6.7)

CTT :Var( 7‘7‘ zr
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uniformly for all 7. By the central limit theorem, for any r € {1,...,p}, as
n — oo, we have
Iy =n —lf Gy Ly N(0,¢G)
rl = Vn{n — = s Srr ).
1 i—1 Orr

We now consider I,5. We first have E(/,5) = 0. Since ¢;,.,i = 1,....n

are i.i.d., E(e;.) = 0, and Var(e;,.) = 0,-, under Conditions C1-C3, we have

Var = Var <Z pm Urr) +2 ijéejr‘E&")

j<t
= Zp?iVar@?T —ow) +4)_ phor,
i=1 j<t
< ZP?Z o2 (2+ A) +4Zp§€03r’

j<t

where we use the fact that by (S6.7), we have Var(e2. —0,.,.) = 2 Var(o,,'e2) <

Tr o Tir

02 (2+ A). Tt follows that

n n

V&I‘ 7'2 < Aarr Zpu +20TT ZZPU

=1 j=1

(A +2)o Zzpw

=1 j=1

= (A +2)kay,,
where we use the fact that Y7, pf < Y7, Y0 pf; = tr(P%) = tr(Px) =

k. It follows that as n — oo, we have

Var [I,2/(v/no,,)] = Var(L2)/(no?,) < (A +2)k/n — 0,
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uniformly for all » = 1,...,p. Therefore, as n — oo, we have I.5/(y/no,,)
converges to 0 in probability uniformly. Thus, for any r € {1,...,p}, as

n — oo, under Conditions C1-C4, we have

/i (a _ 1) L5 N(0, G,

0-7'7"

Set g(x) = 1/z,x > 0. We have ¢'(x) = —1/22. Set \,, = E <M> =1.1It

Orr

follows that for any r € {1,...,p}, as n — oo, we have

\/a{g <”> —y (M)} N {o, [g’(Aw)]QCM} :

rr

Since g(Arr) = 1 and [¢/(A)]2 = (=1/X2)% = 1, for any 7 € {1,...,p}, we

have

Then we have

Pr [2% Z — 1‘ > /2(2 + A)log(p) /n]
< ZéPr {\/ﬁ (Z — 1) > /22 +A) log(p)]

=2§3{1—@{wu2+An%@VQJ}u+oan

<2p{1-[v2l0g(p)] } [1 +0(1)]
< 7 log(p) 1+ o(1)] — 0,

asp — 00. Asn,p — 0o, we then have max;<,<,

= =1 = 0, [ log(p)],

(ox
&r

resulting in (2.1). The expression (2.2 follows from (S6.5) immediately.
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The proof is complete.

S6.2 Proof of Theorem [

We first prove the first expression of Part (a). Write Ty, = (pq)~"tr(Z"HZ),

n

where Z = eD™ /2 = (z1,...,2,)" with z1,...,2, beingii.d. with E(z,) =

0 and Cov(z;) = R. Let u,1, ..., u,, denote the orthonormal eigenvectors
associated with the eigenvalues A, 1,...,,, of R in descending order. We
can write z; = > 0_ & Wyt = 1,...,n. It is known that &,,r =1,...,p

are uncorrelated with E(&;,) = 0 and Var(§,) = A,,. It follows that
Z?Zi = f:l gzzr and ZzTZj = ];:1 §ir&jr- Thus, o = (pq)~" I;:l B,

n

where B,,, = ETH €, with &, = (&, &n) |, 7 =1,...,p. Set
W, = [C(X"X)!CT]2Cc(X X)X T, (S6.8)

a ¢ x n matrix of rank ¢. We have H = W/ W, and W, W =1, In
addition, we have tr(H) = ¢ and tr(H?) = q.

Let h;; denote the (i, j)-th entry of H. We have B, , = Y ©' | hu&2 +
221§i<j§n hij&i&jr, = 1,...,p. Tt follows that E(B,,) = > " huX,, =
qApr and Var(B,,) = 1L hiVar(§2) +437, ., h3;A; . Under Condi-

tion C1, we have €2 = (z;/ u,,)? = v] Sv; where E(v;) = 0 and Cov(v;) =1,

and S = R"?u,,ul R"?. Then we have tr(S?) = (u),Ru,,)? = A2 . Un-

der Conditions C1, C2, and C4, applying Lemma 6.1 (b) of Srivastava and
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Kubokawal (2013), we have Var(¢2.) = Var(v, Sv;) = AY P 52 +2tr(S?) <

r=1<rr

(A +2)tr(S?) = (A +2)\?

- where s,.’s denote the diagonal entries of S.

It follows that

Var(B ZhQVar )44 D hEA, < 2q+AZh2 A2, (S6.9)
1<i<j<n
where we use the fact that Y1, Y27 2, = tr(H?) =

Write 7,0 = [paT 0 — air(R)]/200r(R2)]Y2 =[S0, (B,., — ahp)]/

[2qtr(R?)]/2. Set T ) [Z;”zl(Bm—q)\p7r)]/[2qtr(R2)]1/2. By (S6.9), we

have
B (T30~ T200) = B{T 0 a(Bur — ah)/[2010(R2)]2)°

= Var (S0, Bur) /200(R)] < [T, Var(Bn,r)]2 /[2qtr(R2)]
< 20+ AX 02) (X, dr) /[2atr(R?)
- (H’quz 1 zz)( r= m+1pp7")
It follows that
Vre ()~ O < 1 [B(T,0 — Tim7]

1/2
< 1t (1+2qu1 B2) S i P

where ¢T~;7P (t) and 7 n(;no)( ) are the characteristic functions of T o and

T;(p 0) , Tespectively.

Let t be fixed. By Condition C5, for any fixed m, as p — oo, we have

Yoo pr <00 and

p p m o] m [e'e)
Z ppvrzzppﬂ"_zpp,r%ZPT—ZM% Z Or.

r=m+1 r=1 r=1 r=1 r=1 r=m+1
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By letting m — oo, we further have ) > 41 pr — 0. Notice that under
Condition C3, we have Y ", h%, = O(n~'). Thus, for any given e > 0,
there exist P, My and Ny, depending on ¢ and ¢, such that for any p > P,

m > M, and n > Np, we have

¥z

n,p,0

(8) = Yzem ()] < €. (S6.10)

Set C,, =W, §,,r=1,...,p where W, is defined in (56.8). Then
EHE = | Coyll®>s7 = 1,...,p. For any fixed finite 7, by the

central limit theorem, as n — oo, we have (,,, Ly ¢, ~ Ny (0,),,1I,) and
hence B, , 2 Ap Ay, Ay~ Xg- Therefore, for any fixed p > P;,m > Mj,
as n — 00, we have Tn(ﬁ,) — T ) where T ™ = =" ppr(Ar — @) /2.

That is, under Condition C3, there exists Ny, depending on p,m,t and e,

such that for any n > Ny we have

|9 et ( ) = Ygm (t)] <e (S6.11)

np()

Recall that ¢ = Y °% p,.(A, — ¢)/v/2q. Set (™ = 3" p.(A, — q)//2q.
Then, under Condition C5, for any fixed m, as p — oo, we have Tp(jg)

¢ That is, there exists a P, depending on m,t and ¢, such that for any

p > P we have

|¢T<m> — Y ()] < e (S6.12)
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Furthermore, we have

25 1/2

el v < {E| S, (4, = /v |
1/2

< ] Vor | £, 4, — 0]}

1/2
- |t|(zr . pr) < w(zr - m)

which, under Condition C5, tends to 0 as m — oo. Thus, there exists M,

depending on t and €, such that for any m > M, we have

[ (8) = v (t)] < (S6.13)

It follows from ([S6.10)—(S6.13|) that for any n > max(Ny, N3), p > max(P;, P»)

and m > max (M7, M,) we have

[V,

n,p,0

— U(t ‘ |¢T w:ﬁ;% (t)} + W;ﬁ;% (t) — w;ﬁ;jg) (t)|
+ |z <m) — etm) ()| 4 |eom (£) — e (t)] < 4e.

The convergence in distribution of T, wpo to ¢ given in D follows as we
can let € — 0. The first expression of Theorem [If(a) is then proved.
When the measurement error matrix € are normally distributed, Con-

ditions C1 and C2 are automatically satisfied and we have T},

so that under Conditions C3, C4, and C5, the second expression of (2.11])

follows immediately.

We now prove (b). Under Conditions C1-C4, and C6, the first expres-
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sion of ([2.12)) follows from Theorem 2.1 of |Srivastava and Kubokawa| (2013).
Again, when the measurement error matrix € are normally distributed, Con-

. d

ditions C1 and C2 are automatically satisfied and we have T}, =

15 so
that the second expression of follows immediately too.

Set & = (z — 1)/ [2p ¢ 'tr(R?)] "2 for any real number z. Since the
limit ¢ is a continuous random variable, by Lemma 2.11 of Vaart| (1998]),
the uniform convergence result given in follows directly from the

convergence in distribution of both T;M and T;,o to ¢ and the triangular

inequality:

n7p70 -

sup | Pr(T7) o < ) — Pr(Tr < )| = sup | Pr(T: , < %) — Pr(T:

< sup | Pr(if’pvo < &) —Pr(¢ < )| +sup)| Pr(T;O <) —Pr(¢ <) —0,

as n,p — 00. The theorem is then proved.

S6.3 Proof of Theorem [2

Notice that we can treat R as the covariance matrix of “the transformed
data” € = D 2¢,,i=1,...,n. Under Conditions C1-C3, by [Zhang et al.

(2020), the ratio-consistent estimator of tr(R?) is given by

(n —k)? ~ 2 1 5=
m—k—1)(n—k+2) tr(R)_n—ktr (R
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where R = D™/23D /2. Notice that under Conditions C1-C4, by {)

and l} we can write D = D~ ![1 + 0,(1)]. It follows that tr(R) =

~ A

tr(R)[1 + 0,(1)] and tr(R”) = tr(R*)[1 + 0,(1)]. Therefore,

= (n —k)? ~2

tr(R?) = RS ey tr(R") — tr?(R)] ,

is ratio-consistent for tr(R2) as desired. That is, as n,p — 0o, we have
tr(R?)/tr(R?) — 1 in probability. It follows that as n,p — oo, we have

d /d — 1 in probability. The theorem is proved.

S6.4 Proof of Theorem [3l

First of all, under Conditions C1-C4 and , by Theorem , d is a
ratio-consistent estimator of d . We now prove (a). Under , we
have T,,, = T,y [1 + 0,(1)]. This, together with and , we have
Top = [T7 o+ (pq)~'tr( 2D )][1+0,(1)]. Under Conditions C1-C5, Theo-

n

rem(a) indicates that as n, p — oo, we have (T} 1)/[2p~2¢" r(R?)]/? N

n,p,0
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(. We then have

Pr |Tp = \3()/d]

= Pt T;po > \3(a)/d — (pg) " tr( D] [1 +o(1)]

T o1 x3(a)/d—1 tr( QD_I)}
= PI‘ n.p,0 > A — 1 + 0] 1
_\/2p*2q ltl"(Rz) N \/2p*2q*1t1"(R2) \/QQU(RQ) [ ( )]
—1
o _ /a1 tr( QD )] L+ of1
C \/2p—2 -1tr(R%) \/thr(RQ) [ @)

-1
_ Py >xd(a)d_trQD )]1+01.
_C — vV \/2qtr(R2) | (L)

= Pr

Part (a) is proved.
Next we prove Part (b). Under Conditions C1-C4 and C6, by Theo-

reml ), we have T*

w0 — 1)/[207 % er(RY)]2 =5 N(0,1) and (T, —
1)/[2p2q 1tr(R?)]1/? L N(0,1) as n,p — oo. Since T, is a chi-square
type mixture, by Theorems 4 and 5 of [Zhang et al.| (2020), we have d —
0o as p — oo. It follows that (x2 — d)/v2d N N(0,1) and hence
[X3(e) — d]/v2d — z, where z, denotes the upper 100% percentile of

N(0,1). It follows that under the given conditions, as n,p — oo, we have
Pr Tn,p > sz(oc)/d]

= Pr[T;,0 = (@)/d = (pg) 'tx( QD7) [1+ o(1)]

_ [ 2(a)—d  tr( QD‘l)]
= Pr 2.0 > Xd - 1+o0(1
_\/2p72 itrR? ~ VM \/thr(RQ) [ (1)
—1
- d {—Za 4 ng)} 1+ o(1)],
2¢tr(R")

where ®(-) denotes the cumulative distribution of N(0,1). The proof is

complete.
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