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Abstract: In ordering problems, the goal is to find the optimal order. Each ex-

perimental run of an order problem is a permutation of m components. Because

m! is typically large, it is necessary to select a subset of the m! sequences. Ex-

isting selection methods are based on parametric models. However, it is difficult

to determine a good approximate model for an ordering problem before collecting

the experimental data. With this in mind, we propose a method for choosing the

subset for searching for the optimal order without assuming a prespecified model.

The proposed method explores the inherent characteristics of the possible orders

by using the distance between the positions of the components. We propose a sys-

tematic construction method for selecting a subset with a flexible run size, and also

show its optimality. Compared with existing model-based methods, the proposed

method is more appropriate when the model choice is not clear a priori.

Key words and phrases: Design of experiments, fractional order of addition design,

pair-wise ordering distance.

1. Introduction

A wide variety of practical problems involve ordering, including scheduling

problems and order of addition (OofA) experiments. The goal of such prob-

lems is to find the optimal sequence among all possible orderings. An important

feature of an ordering problem is that the performance of the response may

depend on the order of the m components. The scheduling problem is an opti-

mization problem. The classical job scheduling problem sequences m jobs under

given constraints, and its purpose is to find the optimal sequence that minimizes

the total penalty. The scheduling problem can be viewed as an application of

the ordering problem. For comprehensive discussions on scheduling problems,

can refer to Townsend (1978), Leung (2004), Pinedo (2016), Hermelin et al.

(2019), Wei (2019), and the references therein. More OofA experiments can

be found in Fuleki and Francis (1968), Shinohara and Ogawa (1998), Karim,

McCormick and Kappagoda (2000), Ding et al. (2015), Lin and Peng (2019),
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Peng, Mukerjee and Lin (2019), Voelkel (2019), Chen, Mukerjee and Lin (2020),

Mee (2020), Winker, Chen and Lin (2020), Yang, Sun and Xu (2021), Chen,

Peng and Lin (2021), and Zhao, Lin and Liu (2021), among others. Other ap-

plications of ordering problems can be found in the bio-chemistry, nutritional

science, pharmaceutical sciences, and engineering.

Usually, performing all m! experiments is infeasible, because m! is typically

large. For example, 10! ≈ 3.6 million. Hence, we need to select a subset of the

possible m! orders to reduce the computational burden when determining the

optimal order. Experimental designs are efficient procedures for planning exper-

iments so that the obtained design can be analyzed to yield valid and objective

conclusions, with substantially fewer experimental runs.

This study seeks a new direction for ordering problems by designing of exper-

iments without assuming a prespecified model. Denote the m!×m matrix of all

such permutations as Fm. Here, Fm is the full design, and a subset of its rows is a

fractional design. We propose a novel approach for selecting a subset of Fm, such

that the subset keeps as much of the information of Fm as possible. For selecting

a subset of Fm, existing selection methods are based on approximate models, such

as the pair-wise ordering (PWO) model (van Nostrand (1995); Voelkel (2019))

and component position (CP) model (Yang, Sun and Xu (2021); Stokes and Xu

(2022)). However, there is no evidence that the approximate model reveals the

true relationship between the effect of the process order and the response if one

has no prior information. This motivates our development of a novel method of

exploring the inherent characteristics of all m! possible orders Fm, because it is

necessary to consider a model-free method in order to select the most informative

design.

The main idea of our construction method for such a fractional design is

to keep as much information of the full design Fm as possible. To satisfy this

requirement, we first study the inherent characteristics of Fm. Next, we determine

the exact distances between all components in each row, and then obtain a pair-

wise ordering distance (PWOD) array from all possible ordering designs. Some

new criteria are proposed to measure the similarity between a fractional design

and the full design Fm. Based on the criteria, we propose a construction method

for model-free fractional designs with a flexible run size n.

The rest of the paper is organized as follows. Section 2 introduces the ter-

minology. Some optimality criteria are considered in Section 3. A construction

method for model-free fractional OofA designs is proposed in Section 4. The

theoretical properties of the obtained fractional designs are shown in Section 5.

Section 6 presents two case studies that illustrate the usefulness of the proposed
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Table 1. The full design F4 and the PWOD array P4.

F4 P ∗
4 P4\P ∗

4 F4 P ∗
4 P4\P ∗

4

Run Order δ01 δ02 δ03 δ12 δ13 δ23 Run Order δ01 δ02 δ03 δ12 δ13 δ23
1 0123 1 2 3 1 2 1 13 0312 2 3 1 1 −1 −2

2 1023 −1 1 2 2 3 1 14 1302 −2 1 −1 3 1 −2

3 0213 2 1 3 −1 1 2 15 0321 3 2 1 −1 −2 −1

4 1203 −2 −1 1 1 3 2 16 1320 −3 −1 −2 2 1 −1

5 2013 1 −1 2 −2 1 3 17 2301 1 −2 −1 −3 −2 1

6 2103 −1 −2 1 −1 2 3 18 2310 −1 −3 −2 −2 −1 1

7 0132 1 3 2 2 1 −1 19 3012 1 2 −1 1 −2 −3

8 1032 −1 2 1 3 2 −1 20 3102 −1 1 −2 2 −1 −3

9 0231 3 1 2 −2 −1 1 21 3021 2 1 −1 −1 −3 −2

10 1230 −3 −2 −1 1 2 1 22 3120 −2 −1 −3 1 −1 −2

11 2031 2 −1 1 −3 −1 2 23 3201 1 −1 −2 −2 −3 −1

12 2130 −2 −3 −1 −1 1 2 24 3210 −1 −2 −3 −1 −2 −1

Note: P ∗
4 denotes the first three columns in P4; the bold symbols are explained in Section

4.

method. Concluding remarks are given in Section 7. The proofs of the proposi-

tions and theorems are provided in the Supplementary Material.

2. PWOD Array

Denote Φ(i) as the position of component i in a permutation of m compo-

nents, Zm = {0, 1, . . . ,m − 1}. Let δij = Φ(j) − Φ(i) be the directed distance

between the components i and j. Thus, each permutation on Zm is one to one,

and determined by the m − 1 directed distances δij , for a given i. For example,

for the order {1, 0, 2, 3}, we have δ01 = −1, δ02 = 1, and δ03 = 2. Considering all

pairs (i, j) with 1 ≤ i < j ≤ m, we obtain a new PWOD array. For simplicity,

we denote the PWOD array with m components as Pm. Note that Pm is an

m!× (m(m− 1)/2) matrix and the pairs are ordered lexicographically. We want

to select n runs from among all possible m! orders (runs), and keep the balance

of the levels of each column in the PWOD array. The optimal value of n is a

trade-off between the computational cost and information loss.

The directed distance δij ∈ {±1,±2, . . . ,±(m − 1)} indicates whether com-

ponent i is added before component j, as well as the distance between the two

components. For any design D, we can obtain the corresponding PWOD array,

and vice versa. Table 1 shows the case of m = 4.

Lemma 1. The PWOD array Pm is one to one, and determined by the full design

matrix Fm.
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Next, we show the properties of the PWOD array of the full design Fm,

which can be used to construct optimal fractional designs with flexible run sizes.

The PWOD array in Table 1 shows that, in every column each of the terms “3”

and “−3” appears twice, each of the terms “2” and “−2” appears four times,

and each of the terms “1” and “−1” appears six times. Denote Ek(a) as the

frequency of the term a in the kth column of the PWOD array Pm. Then, we

have the following result.

Proposition 1. In each column of the PWOD array Pm, the term a occurs

E(a) = (m− |a|)× (m− 2)! times, for all a ∈ {±1, . . . ,±(m− 1)}.

The result in Proposition 1 is used in the criterion χ2
P defined in Section 3.

Moreover, for the PWOD array Pm, we have the following result.

Proposition 2. The rank of Pm is m− 1.

Proposition 2 shows that the position of each element is determined by se-

lecting the m−1 linearly independent columns of Pm that contain all m elements,

and the designs are invariant for the choice of the m − 1 columns. Without loss

of generality, we select the first m− 1 columns that contain the component zero,

denoted by P ∗m. For example, the PWOD array P ∗4 is formed by the first three

columns δ01, δ02, and δ03 in Table 1. Here, we need only to consider the PWOD

array P ∗4 , instead of the full array Pm. Moreover, for an n-run fractional design

from Fm, denote the first m − 1 columns of the corresponding PWOD array by

P ∗m,n. A covering array CA(N, k, v, t) is an N ×k array with entries from a set X

of v symbols, such that every N× t sub-array contains all t-tuples over X at least

once, where t is the strength of the array, and v is the number of symbols for

each column (Yin (2003)). From the definition of a covering array, the PWOD

array P ∗m can be considered as a covering array CA(m!,m− 1, 2(m− 1), 1).

Next, we explore the frequencies of pairs of values appearing in any two

columns of the PWOD array P ∗m. The following result gives the frequencies of

two columns in the PWOD P ∗m.

Proposition 3. In any two-column sub-array of the PWOD array P ∗m, we have

(i) for any a ∈ {1, . . . ,m − 2}, the pair (m − a, b) occurs a(m − 3)! times when

b = 1, . . . ,m − a − 1, and the pair (−(m − a), b) occurs a(m − 3)! times when

b = −(m − a − 1), . . . ,−1; (ii) for any g ∈ {2, . . . ,m − 1}, for j = 1, . . . , g − 1,

the pair (m− g, b) occurs (g− j)(m− 3)! times when b = −j or (m− g+ j), and

the pair (−(m− g), b) occurs (g − j)(m− 3)! times when b = j or −(m− g + j).

Proposition 3 shows the combinational property for any two columns in the

PWOD array P ∗m. For any t columns of the PWOD array P ∗m, each t-tuple is
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determined by the (t+ 1) components, and each combination appears a multiple

of (m− (t+ 1))! times, t ∈ {1, . . . ,m− 1}.

Corollary 1. For any t-tuple of the sub-array in the PWOD array P ∗m, the

greatest common divisor of the number of all terms in P ∗m is (m − (t + 1))!,

t ∈ {1, . . . ,m− 1}.

Corollary 1 shows that the run size of a subset that includes all terms in P ∗m
is (m− (t+ 1))!. Note that it is infeasible to perform all m! permutations when

m is large. Thus, a subset of the m! possible orders should be selected to find

the optimal order. To select n rows from the full OofA experiment Fm, we have

the following requirements:

(i) The n×m fractional design must be a balanced design;

(ii) Each column of the n×(m−1) PWOD array P ∗m,n contains all possible terms

that appear in P ∗m, and the number of each term should be proportional to

that in P ∗m.

To satisfy the two requirements, the run size n of the fractional design can be

chosen as the ratio between m! and the greatest common divisor of the number

of all terms in P ∗m. Moreover, for any t ∈ {1, . . . ,m− 1}, if each n× t sub-array

of P ∗m,n contains all possible t-tuple combinations in P ∗m, the smallest run size n

is

n =
m!

gcd(terms)
=

m!

(m− (t+ 1))!
= m(m− 1) · · · (m− t),

where “gcd” means the greatest common divisor. Thus, we have the following

result for choosing the smallest n that achieves the requirements (i) and (ii).

Theorem 1. For any t ∈ {1, . . . ,m − 1}, the smallest run size n is equal to

m(m− 1) · · · (m− t), such that each n× t sub-array of P ∗m,n contains all possible

t-tuple combinations in P ∗m. In particular, we have n = m(m − 1) when t = 1,

and n = m! when t = m− 1.

Theorem 1 shows that the run size n increases exponentially with t. Thus,

the choice of t = 1 is preferable. Moreover, if every column of P ∗m,n contains all

possible terms in P ∗m, the run size of the selected design must be a multiple of

m(m−1). It is evident that the component orthogonal arrays proposed by Yang,

Sun and Xu (2021) have a multiple of m(m − 1) runs. In particular, m(m − 1)

is the smallest run size n satisfying requirements (i) and (ii) with strength t = 1.

To select a more flexible run size, one may consider n that is a multiple of m− 1,

although this may sacrifice requirement (ii).
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3. Optimality Criteria

For a given linear model y = Xβ + ε, the D-efficiency is a proper criterion

that reflects the capacity of the estimation. Define the D-value of a design D

by De(D) = (1/n)|XTX|1/q, where X is a model matrix with respect to the

prespecified model, q is the number of columns of X, and n is the run size of X.

Define the D-efficiency of a fractional design D as the ratio of its D-value over

the D-value of the full design, that is, RD(D) = De(D)/De(Fm).

Despite the popularity of model-based criteria (e.g., D-efficiency, A-efficiency,

etc.), their performance is likely to depend on the difference between the true

model and the assumed model. For the ordering problem, it is challenging to find

a good approximate model that reflects the true relationship between the order

effects and the responses. To increase the probability of identifying an optimal

order that will be robust to a large variety of models, we should use an alternate

criterion to collect design points that can be used to build as many models as

possible, unless one has prior information about the model.

Some criteria exist for evaluating the optimality of fractional designs, such

as the χ2(D) criterion defined by Yamada and Lin (1999), E(fNOD) criterion

proposed by Fang, Lin and Liu (2003), and E(χ2) criterion introduced by Ai, Fang

and He (2007). Let D = (dij) be an n ×m matrix of a mixed-level design. The

χ2(D) criterion minimizes χ2
ave(D) =

∑
1≤i<j≤m

(
m
2

)−1
χ2
i,j(D), where χ2

i,j(D) =∑si
a=1

∑sj
b=1 [ni,j(a, b)− n/(sisj)]2/(n/(sisj)), si is the number of levels in the ith

column of the design D, and ni,j(a, b) is the number of (a, b) pairs in the pair of

columns (xi, xj). It is known that χ2
i,j(D) measures the balance relative to the

pair of columns (xi, xj), and χ2
ave(D) is an overall measure of nonorthogonality.

Motivated by the idea of the χ2(D) criterion, we generalize χ2
i,j(D) to measure

the balance relative to any t columns out of m on the original OofA design. For

an n-run OofA design D, define

χ2
F (D) =

∑
1≤i<j≤m

(
m

2

)−1
χ2
i,j(D), and

χ2
i,j(D) =

∑
a6=b

a,b∈Zm

[ni,j(a, b)− n/(m(m− 1))]2

n/(m(m− 1))
. (3.1)

For an OofA design D, ni,j(a, b) − n/(m(m − 1)) represents the difference be-

tween the actual value and the average value of ni,j(a, b). For any i, j, a, and

b, ni,j(a, b) = (m − 2)! and n = m! for the full design Fm, which implies that

χ2
F (Fm) = 0. A smaller χ2

F (D) value implies a more balanced design. In partic-
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ular, the design D is a balanced design if χ2
F (D) = 0.

Furthermore, we extend χ2
i,j(D) to measure the balance relative to any t

columns in the model matrix with any model. For simplicity, we show only the

χ2
P (D) based on the PWOD array. The criteria on other arrays (in the literature)

can be obtained similarly. Define

χ2
P (D) =

1

m− 1

m−1∑
k=1

∑
a∈{±1,...,±(m−1)}

[nk(a)− nEk(a)/m!]2

nEk(a)/m!
, (3.2)

where nk(a) and Ek(a) are the frequencies of the term a in the kth column of the

PWOD arrays of Pm,n and Pm, respectively. The χ2
P(D) criterion is invariant to

the choice of the m− 1 columns of the PWOD array. Without loss of generality,

the χ2
P (D) criterion considers only the first m−1 columns in (3.2). Then, χ2

F (D)

and χ2
P (D) reflect the balance between any two columns and the m− 1 columns

of the fractional design D, respectively. Moreover, the two criteria do not depend

on a prespecified model; that is, they are model free. Obviously, the smaller

the value of χ2
F (D) or χ2

P (D), the better the fractional design D keeps the same

balance as that of the full design Fm. The proposed criteria χ2
F (D) and χ2

P (D)

distinguish between the distances from one component to another, and reward

designs in which these distances are balanced.

4. Construction Method of Fractional OofA Design

In this section, we propose a construction method for choosing a subset from

the full design such that its run size is a multiple of m− 1, where m is a prime or

prime power. All operations in the construction method are built on the Galois

field. The construction method is based on the difference matrix, which has

many desired properties (see van Greevenbroek and Jedwab (2018)). Let GF (v)

be a Galois field of order v. The difference matrix DM(n, k, v) is an n× k array

A = (aij) with entries from GF (v), such that for the lth and hth columns of A,

(1 ≤ l < h ≤ k), the difference list {aih − ail} contains every element of GF (v)

the same number of times. Additional information on the difference matrix can

be found in Yin (2003). The designs obtained by the proposed method do not

depend on a prespecified model. The proposed method can be employed when

m is a prime number (m > 2) or a prime power.

For a prime power m = sp, s is a prime number and p is a positive integer,

let GF (s) = {0, 1, . . . , s − 1}, and GF (m) = {µ0 = 0, µ1 = 1, µ2, . . . , µm−1}
denote Galois fields. Denote xi = (0, 1, xi,3, . . . , xi,m) and (xi,3, xi,4, . . . , xi,m) as

permutations of {µ2, . . . , µm−1}. For an n ×m matrix A = (aij) and a column
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vector b = (b1, . . . , bn)T , define A⊕cb = (aij+bi) on GF (m). Let 1m−1 and 0m−1
be the (m−1)×1 vectors with all elements one and zero, respectively. Denote bcc
as the greatest integer not exceeding c. The main idea of the construction method

is as follows. First, a difference matrix DMi,1 = (xT
i , µ2x

T
i , . . . , µm−1x

T
i )T can be

generated from a given xi, and several difference matrices can also be obtained

based on DMi,1. Next, we obtain other 1 × m row vectors by permuting the

last m − 2 elements of xi, as well as other difference matrices. Combining the

difference matrices, we obtain various n×m designs. The best design is obtained

under some optimality criteria. The detailed procedure is shown in Algorithm 1.

Algorithm 1 Construction method of fractional designs when m is a prime power.

Step 1: Given: the optimal criterion φ(·) and n,m = sp, where s is a prime number and
p is a positive integer. Let k1 = bn/(m(m− 1))c and k2 = (n/(m− 1))− k1m.

Step 2: For i = 1, 2, . . . , k1 + 1, let {π3, . . . , πm} be one of the (m− 2)! permutations of
{µ2, . . . , µm−1}, xi = (0, 1, π3, . . . , πm), and DMi,1 = (xT

i , µ2x
T
i , . . . , µm−1x

T
i )T .

Then, DMi,k = [DMi,1⊕c (s−1)DMk
i,1], where DMk

i,1 is the kth column of DMi,1,

for k = 2, . . . ,m. Let DMi = (DMi,1
T , . . . , DMi,m

T )T .

Step 3: If k2 = 0, obtain the n×m design matrix D = (DM1
T , DM2

T , . . . , DMk1

T )T .
If k2 6= 0, denote DMk1+1 = (DMk1+1,j1

T , . . . , DMk1+1,jk2

T )T , where j1, . . . , jk2

∈ {1, . . . ,m}. Then, obtain the n × m design matrix D = (DM1
T , . . . , DMk1

T ,
DMk1+1

T )T .

Step 4: Search for the optimal design D∗ among all possible D under the criterion φ(·).

In Step 1, the optimal criterion can be chosen as the χ2
P (D) or theD-efficiency

with a given model. In Step 2, the total number of possible xi is (m − 2)!.

Each DMi has m(m − 1) rows. If k2 = 0, we choose k1 different xi to form

D, and have N =
((m−2)!

k1

)
possible designs in Step 3. If k2 6= 0, we select

x1, . . . ,xk1+1 from the (m − 2)! possible xi to obtain DM1, . . . , DMk1
, DMk1+1,

and then choose k2 blocks from the m blocks in DMk1+1. Therefore, there are

N = (k1 + 1)
((m−2)!

k1+1

)(
m
k2

)
possible choices. Step 4 compares the N designs under

the optimal criterion φ(D) to select the best one. On the other hand, if we

directly choose n runs from the m! runs of the full design, we need to compare(
m!
n

)
designs to determine the best one. Obviously, N is much smaller than

(
m!
n

)
,

even for small m. For example, when m = 4 and n = 9,
(
m!
n

)
= 1307504, whereas

N = (0 + 1)
(
(4−2)!
0+1

)(
4
3

)
= 8. It is clear that Algorithm 1 significantly decreases

the computational complexity.

The following example illustrates the construction procedure for the case of
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m = 4.

Example 1. Let m = 4, GF (2) = {0, 1}, and GF (4) = {0, 1, x, x+ 1}. Consider

the following four cases: (i) n = 6, and thus k1 = 0 and k2 = 2; (ii) n = 9, and

thus k1 = 0 and k2 = 3; (iii) n = 12, and thus k1 = 1 and k2 = 0; (iv) n = 15, and

thus k1 = 1 and k2 = 1. Compared with all possible di, when x1 = (0, 1, x, x+1),

the difference matrix

DM1,1 =

0 1 x x+ 1

0 x x+ 1 1

0 x+ 1 1 x


is the best when comparing all possible (m− 2)! difference matrices. From Step

2 of Algorithm 1, we have

DM1,2 =[DM1,1⊕c(2−1)DM2
1,1] = DM1,1⊕c

 1

x

x+ 1

=

 1 0 x+ 1 x

x 0 1 x+ 1

x+ 1 0 x 1

,
in the sense of modulo 2. Similarly, DM1,3 and DM1,4 can be obtained as follows:

DM1,3 =

 x x+ 1 0 1

x+ 1 1 0 x

1 x 0 x+ 1

 , and DM1,4 =

x+ 1 x 1 0

1 x+ 1 x 0

x 1 x+ 1 0

 .

When replacing {0, 1, x, x + 1} with {0, 1, 2, 3} for each case, the desired de-

signs result. For instance, when n = 6 and k2 = 2, we should select two

difference matrices and find that D = (DM1,1
T , DM1,3

T )T is a six-run opti-

mal design with a minimum χ2
P (D) of 1.333. It can be verified that D =

(DM1,1
T , DM1,2

T , DM1,4
T )T is a nine-run optimal design with a minimum χ2

P (D)

of 0.556. Let D = (DM1,1
T , DM1,2

T , DM1,3
T , DM1,4

T )T be a 12 × 4 matrix.

By calculating the χ2
P (D) of all possible designs with 12 runs, we find that

D is the optimal design with a minimum χ2
P (D) of zero. From Lemma 1, for

t = 1, the PWOD array is a covering array CA(12, 3, 6, 1), shown in Table 1 in

bold. When n = 15, we should select a design with m(m − 1) = 12 runs and

pick another (k2 = 1) difference matrix. By Step 2 in Algorithm 1, we have

D1 = (DM1,1
T , DM1,2

T , DM1,3
T , DM1,4

T )T . Evaluating the remaining possible

xi, we choose x2 = (0, 1, x + 1, x), yielding DM2,1 = (dT2 , µ2d
T
2 , . . . , µm−1d

T
2 )T ,

and DM2,2 = [DM2,1 ⊕c (2 − 1)DM2
2,1] = [DM2,1 ⊕c (1, x, x + 1)T ] = [(1, x, x +

1)T, (0, 0, 0)T, (x, x + 1, 1)T, (x + 1, 1, x)T ]. Note that all elements in the second

column of DM2,2 are zero. It can be verified that the design D = (DT
1 , DM

T
2,2)

T
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Table 2.

DM1,1 DM1,2 DM1,3 DM1,4 DM1,5 DM2,1 DM2,3

0 1 4 2 3 4 0 3 1 2 1 2 0 3 4 3 4 2 0 1 2 3 1 4 0 0 1 2 3 4 3 4 0 1 2

0 2 3 4 1 3 0 1 2 4 2 4 0 1 3 1 3 4 0 2 4 1 2 3 0 0 2 4 1 3 1 3 0 2 4

0 3 2 1 4 2 0 4 3 1 3 1 0 4 2 4 2 1 0 3 1 4 3 2 0 0 3 1 4 2 4 2 0 3 1

0 4 1 3 2 1 0 2 4 3 4 3 0 2 1 2 1 3 0 4 3 2 4 1 0 0 4 3 2 1 2 1 0 4 3

is an optimal one with a minimum χ2
P (D) of 0.333. Different criteria may yield

different corresponding optimal designs.

Algorithm 1 can also be used to construct the OofA design with primem. The

following example illustrates the construction procedure for the case of m = 5.

Example 2. For m = 5, let φ(D) be χ2
P (D). Consider the following four cases:

(i) n = 12, and thus k1 = 0 and k2 = 3; (ii) n = 16, and thus k1 = 0 and k2 = 4;

(iii) n = 20, and thus k1 = 1 and k2 = 0; (iv) n = 24, and thus k1 = 1 and k2 = 1.

By using the exhaustive method in Step 2, the best difference matrix is DM1,1 =

(xT
1 , 2x

T
1 , . . . , (m− 1)xT

1 )T, the first run is x1 = (0, 1, 4, 2, 3). Furthermore, from

the remaining possible xi, x2 = (0, 1, 2, 3, 4) is chosen, resulting in DM2,1 =

(xT
2 , 2x

T
2 , . . . , (m− 1)xT

2 )T and the corresponding DM2. The difference matrices

DM1,1, DM1,2, DM1,3, DM1,4, DM1,5, DM2,1, and DM2,3 are shown below.

Next, we obtain the desired designs for each case, as follows. (i) When

n = 12, D1 = (DM1,1
T, DM1,3

T, DM1,5
T )T is found to be the optimal design,

with a χ2
P (D) of 0.778, which is the minimum value among all of the 12-run

designs based on the exhaustive method. (ii) When n = 16, from Steps 4 − 5,

D2 = (DM1,1
T, DM1,2

T, DM1,4
T, DM1,5

T )T is found to be the optimal design

with 4(m − 1) runs, which achieves the minimum χ2
P (D) of 0.458. (iii) When

n = 20, let D3 = DM1 = (DM1,1
T, . . . , DM1,5

T )T . Calculating the χ2
P (D) values

of all possible n1 =
(
3!
1

)
designs, we find that D3 is the optimal design, with a

minimum χ2
P (D) of zero. From Lemma 1, the corresponding PWOD array is the

covering array CA(20, 4, 8, 1). (iv) When n = 24, the design D4 = (DT
3, DM2,3

T )T

is optimal, achieving a minimum χ2
P (D) of 0.306, where DM2,3 makes the third

column of DM2,1 become 0m−1.

Note that the construction method for the difference matrix in Algorithm

1 is not suitable for the case m = 6. By comparing all possible (6 − 2)! = 24

matrices, we provide the following three possible 5× 6 initial design matrices:
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0 1 2 5 3 4

0 2 1 4 5 3

0 3 5 1 2 4

0 4 3 1 5 2

0 5 1 4 3 2

 ,


0 1 4 5 3 2

0 1 5 2 4 3

0 3 2 5 1 4

0 4 1 3 5 2

0 5 3 4 2 1

 , and


0 1 2 5 3 4

0 2 3 5 4 1

0 3 4 2 1 5

0 4 2 5 1 3

0 5 1 4 3 2

 . (4.1)

Using the above initial matrices as DMi,1 in Step 2 of Algorithm 1, we obtain

the corresponding fractional OofA designs.

5. Properties of the Constructed Designs

In this section, we discuss the properties of the designs constructed using

Algorithm 1. Because the full design Fm is optimal (Peng, Mukerjee and Lin

(2019)), we are particularly interested in the “similarity” between the constructed

design and the full design, which can be measured using the criteria χ2
P (D) and

χ2
F (D). From Algorithm 1, we have the following result.

Theorem 2. When n =
∏t

i=0(m − i), for t ∈ {1, 2, . . . ,m − 1}, the fractional

design constructed using Algorithm 1 is a balanced design. In particular, when

t = 1, the corresponding PWOD array of the m(m − 1)-run fractional design D

constructed using Algorithm 1 is a covering array CA(m(m−1),m−1, 2(m−1), 1);

that is, every column of the PWOD array P ∗m contains all terms {±1, . . . ,±(m−
1)} at least once.

We next discuss the “similarity” between the full design Fm and the designs

constructed using Algorithm 1 in the sense of distance. For a design D, denote

the Hamming distance dH(a, b) of any two rows a and b as the number of places

by which they differ. Define dH(D) = min{dH(a,b),a ∈ D,b ∈ D,a 6= b} as

the minimum Hamming distance between all design points. Then, we have the

following result.

Theorem 3. Any n-run design D constructed using Algorithm 1, for 2 ≤ dH(D) ≤
m − 1, achieves the upper bound of the Hamming distance when n = k(m − 1),

for k = 1, . . . ,m.

Theorem 3 shows that the proposed method constructs the maximum Ham-

ming distance design with a run size of n = k(m − 1), for k = 1, . . . ,m. Fang,

Ge and Liu (2002) showed that the Hamming distance is closely related to the

discrete discrepancy, which is an important uniformity criterion in the theory

of uniform design. Thus our designs have a good space-filling property. Wiens

(1991) showed that uniform designs are robust when the model is unknown.
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Therefore, uniformity is a good criterion for choosing a model-free fractional de-

sign (uniform design), which can be used in a preliminary exploratory analysis

when the exact model is unknown.

Next, we consider the constructed designs under the criteria χ2
P (D) and

χ2
F (D). For the χ2

P (D) criterion, we have the following result.

Theorem 4. When the run size n = km(m− 1), for k = 1, 2, . . . , (m− 2)!, the

constructed designs have χ2
P = 0.

Theorem 4 shows that the obtained design is optimal under the χ2
P (D) cri-

terion when n is a multiple of m(m− 1). If n is not a multiple of m(m− 1), the

χ2
P value does not equal zero and can be used to identify the property of different

designs. For the χ2
F (D) criterion, we have the following result.

Theorem 5. Given n and m, the design constructed using Algorithm 1 achieves

the minimum χ2
F (D) value, m(m − 1)

[
c− n2/(m(m− 1))

]
/n, where c = (m −

1)[(k1+1)2k2+k21(m−k2)] and k1 and k2 are defined in Algorithm 1. Furthermore,

χ2
F (D) = 0 for any n = km(m− 1), for k = 1, 2, . . . , (m− 2)!.

Theorem 5 shows that the obtained designs are similar to the full design in

terms of the χ2
F (D) criterion. From the proof of Theorem 5 in the Supplementary

Material, we easily obtain the following result.

Corollary 2. Given n and m, all designs constructed using Algorithm 1 have

the same χ2
F (D) value, and all achieve the minimum value.

From Theorem 5 and Corollary 2, all the constructed designs are optimal

under the criterion χ2
F (D). In other words, the designs constructed using the

proposed method have a good property of balance. The case studies in Section

6 show that the properties based on the proposed criteria are deemed acceptable

for efficiently creating good OofA experiments.

6. Case Studies

In this section, we present case studies based on the OofA experiment and

the job scheduling problem to illustrate the usefulness of the proposed designs.

OofA experiments are popular when the response of interest is affected by

the sequence of materials or components are added. The objective of an OofA

experiment is to find the optimal addition order. Here, we present a case study

with m = 4 to show the procedure of finding the optimal order. We use data

from the drug combination experiment in Yang, Sun and Xu (2021) to illustrate
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the usefulness of the PWOD arrays. For OofA experiments, the following models

can be used as the approximate model.

For any pair of components i and j, van Nostrand (1995) proposed an order

effect, a “pseudo factor”, known as the PWO factor. Let Iij = 1 if i precedes j,

and −1 otherwise. The first approximate model is called the PWO model:

y = β0 +
∑
i<j

βijIij + ε, (6.1)

where y is the response of interest, Iij is the PWO factor, and ε is a random

error.

Another model is the CP model proposed by Yang, Sun and Xu (2021), used

to determine which component should be added in each specific position. The

CP model is

yi = µ0 +

m−1∑
c=0

m∑
j=1

x(j)c τ (j)c + εi, (6.2)

where yi is the response at the ith run, µ0 is the overall mean, x
(j)
c = 1 if the

component c is placed at position j, and zero otherwise, τ
(j)
c is the effect of

component c at the jth position, and εi ∼ N(0, σ2) is an independent error. To

make the model estimable, additional constraints are required, namely, τ
(j)
1 = 0

for j = 1, . . . ,m, and τ
(m)
c = 0 for c = 0, . . . ,m− 1.

Peng, Mukerjee and Lin (2019) considered a tapering PWO model that in-

corporates the order of each pair of components, and can also account for the

distance between the two components in every such pair. The tapering PWO

model is

y = β0 +
∑
i<j

βijzij + ε, (6.3)

where zij = ch(ij,a) if i precedes j, and −ch(ij,a) otherwise, and h(ij, a) is the

distance between i and j in a; that is, if ak = i and al = j, then h(ij, a) = |k− l|,
and thus h(ij, a) ∈ {1, . . . ,m − 1}. Common choices of ch are ch = 1/h or

ch = ch−1 with known c, for 0 < c < 1, and h ∈ {1, . . . ,m− 1}. Here, we choose

ch = 1/h. Mee (2020) considered higher-order models for OofA experiments.

However, a high-order model includes too many parameters to be estimated.

Apart from the above models, based on the PWOD array, we also consider

the first-order PWOD linear model

y = β0 +

m−1∑
j=1

βjδ0j + ε, (6.4)
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where y is the response of interest, δ0j is the jth column of the PWOD array

P ∗m,n, and the random error ε ∼ N(0, σ2). Similarly, we also consider the approx-

imate polynomial model including all linear, quadratic, and interaction terms.

However, the model including all of the interaction terms of the PWOD array is

not estimable. Similarly to Lin and Peng (2019), we delete the last interaction

when estimating this model. Thus, the resulting model

y = β0 +

m−1∑
j=1

βjδ0j +

m−1∑
j=1

βjjδ
2
0j +

∑
1≤j<k≤m−1,j 6=m−2

βjkδ0jδ0k + ε (6.5)

becomes estimable. The model 6.5 is called a second-order PWOD model.

In this example, m = 4 and all the responses Y of the 4! = 24 orders are

shown in Table S1 in the Supplementary Material. We construct the fractional

designs with n = 6, 9, 12, 15, 18, 21 using Algorithm 1, and estimate the parame-

ters in Model (6.4). For each model, we evaluate the fitted responses of the n runs

and the predicted responses Ŷn of the other 24 − n runs. Table S1 shows those

values of Ŷn for n = 6, 9, 12, 15, 18, 21, 24 under the first-order PWOD model.

From Table S1, the best order predicted by the models may not be identical

to the real data, owing to random errors. For example, the predicted optimal

order of the largest value in Ŷ6 is “2031”, whereas “0231” is the order of the

true largest response, which is predicted as the third largest order in Ŷ6. From

Table S1, the identified optimal orders are {0231, 2301, 2031}. For comparison,

the predicted values of Ŷn for the models in (6.1), (6.2), (6.3) and (6.5) are also

provided in the Supplementary Material. We find similar results for other models.

Hence, the orders {0231, 2301, 2031} can be used as the optimal sequences in this

example.

Next, we consider the job scheduling problem, which plays an important role

in manufacturing, production systems, and information processing environments

Pinedo (2016). Considerm jobs requiring processing in a certain machine environ-

ment. The schedule hopes to sequence these jobs under some given constraints.

The purpose of the job scheduling problem is to find the optimal sequence that

minimizes the total penalty. Let pi (i = 1, . . . ,m) represent the processing time

of job i on a machine, and Ck(π) =
∑k

i=1 pi be the completion time of the opera-

tion of job k in any permutation or order π. Suppose the total cost of any order

π is denoted by W (π) =
∑m

k=1 ωk(Ck(π))2, where ωk is a prespecified weight.

Here, we consider a case in which seven jobs are to be sequenced, with a

quadratic penalty function of its completion time. Without loss of generality, the

prespecified weights and processing times of these jobs are generated randomly
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Table 3. The optimal orders for the scheduling of seven jobs.

Order Cost
4→ 6→ 7→ 3→ 1→ 2→ 5 2,156.139
4→ 7→ 6→ 3→ 1→ 2→ 5 2,159.902
4→ 6→ 3→ 7→ 1→ 2→ 5 2,181.422
4→ 6→ 7→ 2→ 3→ 1→ 5 2,257.665
4→ 7→ 6→ 2→ 3→ 1→ 5 2,261.429
6→ 4→ 7→ 2→ 3→ 1→ 5 2,290.255
4→ 7→ 6→ 3→ 1→ 5→ 2 2,293.191
4→ 7→ 2→ 6→ 3→ 1→ 5 2,317.848

from a χ2
1 distribution, where p = (9.688, 2.504, 1.981, 2.912, 6.688, 2.774, 8.314)

and ω = (1.658, 0.340, 0.641, 2.515, 0.060, 1.112, 2.547). In this case, there are

7! = 5040 possible job orders, which yield different costs. Using the proposed

method, an optimal design with 24 runs is found and displayed in Table S3 in

the Supplementary Material. The corresponding total costs are shown in the last

column of Table S3.

For simplicity, the PWO model is used here as an approximate model for

analyzing the job scheduling problem. Comparing the predicted values of 7!, we

find some optimal orders, displayed in Table 3, with the sequence 4→ 6→ 7→
3→ 1→ 2→ 5 being the best.

For confirmation purposes, we evaluate all possible 7! = 5040 orders. After

computing the costs of all 5,040 orders, the minimum cost is found to be W =

2156.139, with the corresponding order 4 → 6 → 7 → 3 → 1 → 2 → 5. This is

the optimal order identified using our method in Table 3. Note that other models

such as the tapering PWO model, can also be used here. The results are similar,

and are thus omitted here.

7. Conclusion

The response of an ordering problem depends on the order of adding m

different components. The goal of an ordering problem is to find the optimal

order(s) for optimizing the response. For example, the classical job scheduling

problem (see the case study in Section 6) finds the optimal sequence to optimize

the total penalty. Here, we have considered an ordering problem in which all

m components are added sequentially, obtaining optimal orders by using the

proposed method. For simplicity, we display the optimal order or several optimal

orders if they are not unique. We have proposed a method to construct an optimal

design without a prespecifical model. Based on the corresponding subsample
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design points, one can consider all possible existing models to find the optimal

order(s). In addition, the obtained designs perform well in terms of D-efficiencies

under most existing models, such as the case of m = 4 displayed in Table 4.

We use the directed distance between each pair of components to represent

the arrangement of OofA experiments. The position information of the compo-

nents can be identified more clearly than the PWO factors. Based on the directed

distance, the proposed PWOD arrays that account for the positions of each pair

of components are more precise than the PWO arrays. Moreover, by the proper-

ties of PWOD arrays, the obtained designs contain all position information of the

full design. Hence, the fractional OofA designs keep as much information about

the full design as possible.

We provide an algorithm for constructing the fractional designs, the run

sizes of which are multiples of m − 1. The proposed method can be extended

to generate efficient designs of any run size (n) when one selects the first n

rows of the design D constructed using Algorithm 1. This is more flexible than

other construction methods in the literature. For example, the optimal designs

constructed by Peng, Mukerjee and Lin (2019) often have larger run sizes, and

the component orthogonal arrays proposed by Yang, Sun and Xu (2021) have at

least m(m − 1) runs. As previously mentioned, the proposed algorithm can be

used for any prime number and prime power. For other cases, the corresponding

algorithm should be studied further. From Theorem 1, the balanced design must

have the smallest run size n =
∏t

i=0(m − i), for any t ∈ {1, . . . ,m − 1}. The

proposed method results in a balanced design if the run size n is a multiple of

m(m − 1); otherwise, the proposed method is not balanced. Note that the goal

of an ordering problem is to find the optimal order. In this study, we propose

a method for choosing the subset for searching for the optimal order without

assuming a prespecified model. Based on the corresponding design, we are able

to find the optimal order. As such, we provide a way to explore the ordering

problem.

To demonstrate the usefulness of the proposed method, we assess the D-

efficiencies of the constructed designs under existing models, such as the PWO

model (van Nostrand (1995); Voelkel (2019)), CP model (Yang, Sun and Xu

(2021)), tapering PWO model (Peng, Mukerjee and Lin (2019)), first-order PWOD

model (6.4), second-order PWOD model (6.5), second-order PWO model (Mee

(2020)), first-order flexible position (FP) model (Stokes and Xu (2022), quadratic

FP model (Stokes and Xu (2022)), and second-order FP model (Stokes and Xu

(2022)). For simplicity, the case of m = 4 for n = 6, 9, 12, 15, 18, 21 is displayed

in Table 4. It is shown that the proposed method leads to optimal and highly
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Table 4. The D-efficiencies (%) of our designs compared with those of Stokes and Xu
(2022), shown in parentheses, under existing models for different run sizes.

Model n=6 n=9 n=12 n=15 n=18 n=21
PWO model 81.54 90.88 93.71 96.74 98.58

(90.88) (91.93) (95.02) (97.05)
CP model 100.00 95.90 95.40 97.07

(100.00) (95.70) (95.04) (96.67)
tapering PWO model 74.11 82.59 90.45 95.76 98.52

(82.59) (88.07) (94.21) (96.98)
second-order PWO model 76.51 87.97 93.62

(0) (0) (90.46)
first-order PWOD model 94.57 98.33 100.00 99.25 99.44 99.67

(86.30) (92.67) (100.00) (98.09) (98.47) (98.86)
second-order PWOD model 80.04 100.00 96.29 96.15 97.51

(0) (100.00) (96.00) (95.56) (97.01)
first-order FP model 94.57 98.33 100.00 99.25 99.44 99.67

(86.30) (92.67) (100.00) (98.09) (98.47) (98.86)
quadratic FP model 91.56 100.00 97.41 95.75 98.58

(79.45) (100.00) (96.81) (96.86) (97.81)
second-order FP model 80.04 100.00 96.29 96.15 97.51

(100.00) (96.00) (95.56) (97.01)

efficient designs (most have at least 95% D-efficiencies) under the existing mod-

els. Moreover, we compare our designs with those of Stokes and Xu (2022) under

possible different models in Table 4. The D-efficiencies of the designs obtained

by Stokes and Xu (2022) are listed in parentheses in Table 4. The results show

that the D-efficiencies of the designs constructed using the proposed method are

higher than those of Stokes and Xu (2022) in almost all cases.

When the run size of the constructed design is smaller than
(
m
2

)
, the design

can be considered as a supersaturated design, even for the PWO model. The

construction methods and corresponding modeling technique for such supersatu-

rated designs (see Lin (1993)) for OofA experiments are left to future research.

Furthermore, we consider only the distance between each pair of components.

One can also measure the similarity between the fractional designs and the full

design based on the t-tuples (t > 2) sub-array of the PWOD arrays. This is

also left to future research. It is anticipated that our results will provide a fresh

viewpoint on investigating the ordering problem.
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Supplementary Material

The online Supplementary Material includes the proofs of the propositions

and theorems, a comparison with existing results, optimal designs under the D-

efficiency and χ2
P (D) criteria, and additional details on the case studies with the

OofA experiment and the job scheduling problem.
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