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ASYMPTOTIC OPTIMALITY OF CP -TYPE CRITERIA

IN HIGH-DIMENSIONAL MULTIVARIATE LINEAR

REGRESSION MODELS

Shinpei Imori
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Abstract: We study the asymptotic optimality of Cp-type criteria from the perspec-

tive of prediction in high-dimensional multivariate linear regression models, where

the dimension of a response matrix is large, but does not exceed the sample size. We

derive conditions in order that the generalized Cp (GCp) exhibits asymptotic loss

efficiency (ALE) and asymptotic mean efficiency (AME) in such high-dimensional

data. Moreover, we clarify that one of the conditions is necessary for GCp to exhibit

both ALE and AME. As a result, we show that the modified Cp can claim both ALE

and AME, but the original Cp cannot in high-dimensional data. The finite-sample

performance of the GCp with several tuning parameters is compared by means of a

simulation study.

Key words and phrases: Asymptotic theory, high-dimensional statistical inference,

model selection/variable selection.

1. Introduction

Variable selection problems are crucial in statistical fields for improving the

prediction accuracy and/or interpretability of a resultant model. There is a bur-

geoning body of literature that has attempted to solve the variable selection

problem, and many selection procedures and their theoretical properties have

been studied.

For example, Mallows’ Cp criterion (Mallows (1973)) and the Akaike in-

formation criterion (AIC) (Akaike (1974)) are useful selection methods from a

predictive point of view, because these procedures are optimal in some predictive

sense (see Shibata (1981, 1983); Li (1987); Shao (1997)). On the other hand, the

Bayesian information criterion (BIC) proposed by Schwarz (1978) is consistent

(Nishii (1984)) under appropriate conditions; that is, the probability that a model

selected by the BIC coincides with the true model converges to one as the sample

size n tends to infinity. In this sense, the BIC is a feasible method from the
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perspective of interpretability. However, the Cp and AIC are inconsistent (Nishii

(1984)) under the same condition. The properties of the selection procedures are

well studied in Shao (1997) in the context of univariate linear regression models.

In this study, we focus on multivariate linear regression models.

High-dimensional data are often encountered, where the dimension of a re-

sponse matrix in multivariate linear regression models pn is large, but does not

exceed the sample size n. In such high-dimensional multivariate linear regres-

sion models, one may presume that the properties of selection methods, such as

optimality and consistency, are inherited from univariate models. However, inter-

estingly, the properties derived when pn is fixed can be altered in high-dimensional

situations. For example, Yanagihara, Wakaki and Fujikoshi (2015) showed that

the AIC acquires the consistency property and the BIC loses its consistency in

high-dimensional data. Similar results for Cp-type criteria were reported by Fu-

jikoshi, Sakurai and Yanagihara (2014). The reason why this inversion arises may

be that the difference in the risks between two over-specified models (i.e., models

including the true model) diverges with n and pn tending to infinity, and thus

the penalty terms of the Cp and AIC are moderate, but that of the BIC is too

strong. In addition to these studies, model selection criteria in high-dimensional

data contexts and their consistency properties have been vigorously studied in

various models and situations (e.g., Katayama and Imori (2014); Imori and von

Rosen (2015); Yanagihara (2015); Fujikoshi and Sakurai (2016); Bai, Choi and

Fujikoshi (2018)).

Compared with the consistency property, few studies have examined the

asymptotic optimality for prediction in high-dimensional data contexts. Con-

ventional results derived from univariate models are no longer reliable in high-

dimensional data contexts, and an extension to such cases is not mathematically

trivial. In this study, we focus on the asymptotic loss efficiency (ALE) (Li (1987);

Shao (1997)) and asymptotic mean efficiency (AME) (Shibata (1983)) as criteria

for the asymptotic optimality of variable selection. We derive sufficient conditions

in order that a generalized Cp (GCp) exhibits ALE and AME in high-dimensional

data. We also show that one of the sufficient conditions is necessary for the GCp
to exhibit both of these efficiencies. As a result, we show that the modified Cp
(MCp) introduced by Fujikoshi and Satoh (1997) exhibits ALE and AME, as-

suming moderate conditions, although the original Cp does not under the same

conditions.

Recently, Yanagihara (2020) studied the ALE and AME of the GCp in high-

dimensional multivariate linear regression models, although the conditions and

results are based on the consistency property. For example, Yanagihara (2020)
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supposes that the true model is included in a set of candidate models, which we

do not assume here. Note that previous studies on variable selection in multivari-

ate linear regression models usually use a common regression model among the

response variables. We mitigate this limitation, and allow each response variable

to have a different model in order to consider more practical situations, such as

response variables having a group structure.

The remainder of this paper proceeds as follows. In Section 2, we clarify

the variable selection framework used in this study. In Section 3, we give the

sufficient conditions for the ALE and AME of the GCp. In Section 4, we study

the asymptotic inefficiency of the GCp. Section 5 illustrates the finite-sample

performances of some Cp-type criteria. Finally, Section 6 concludes the paper.

2. Model Selection Framework

2.1. True and candidate models

Let Y be an n×pn response variable matrix and X be an n×kn explanatory

variable matrix, where n is the sample size, pn is the dimension of the response,

and kn is the number of the explanatory variables. We assume X to be of full

rank and non-stochastic. We allow kn and pn to diverge to infinity, with n tending

to infinity, although neither kn nor pn exceeds n. Specific conditions for n, kn,

and pn are given later.

The true distribution of Y = (y1, . . . ,ypn) is given by

Y = Γ∗ + EΣ
1/2
∗ ,

where Γ∗ = (γ∗1 , . . . ,γ
∗
pn) = E(Y ), E is an n × pn error matrix, of which all

entries are independent and identically distributed (i.i.d.) as the standard normal

distribution N(0, 1), and Σ∗ is the true covariance matrix of each row of Y . The

relationship between Y and X is represented by a multivariate linear regression

model, as follows:

Y = XB + EΣ1/2,

where B is a kn × pn matrix of unknown regression coefficients and Σ is a pn ×
pn unknown covariance matrix. Here, we distinguish the covariance parameter

Σ from the true one Σ∗. Let M = (M1, . . . ,Mpn), where ∅ 6= Mj ⊂ MF =

{1, . . . , kn} is a candidate model for the jth response variable yj ; that is, we

assume yj is relevant to XMj
, which is an n×kMj

sub-matrix of X corresponding

to Mj , and kMj
is the cardinality of Mj . This setting can take into account

a group structure of response variables. For example, if we have two groups
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{1, . . . ,m} and {m+1, . . . , pn}, with some integerm, a restrictionM1 = · · · = Mm

and Mm+1 = · · · = Mpn is imposed. Using only one regression model for the

response variables, that is, M1 = · · · = Mpn , we have a simple variable selection

problem often considered in previous studies. Then, a candidate model M implies

a multivariate linear regression model, defined as follows:

yj = XMj
βMj

+ εj , j = 1, . . . , pn,

where βMj
is a kMj

-dimensional vector of unknown regression coefficients and

εj is the jth column of EΣ
1/2
∗ , that is, EΣ

1/2
∗ = (ε1, . . . , εpn). Thus, a set

of candidate models denoted by Mn is a subset of a comprehensive set {M =

(M1, . . . ,Mpn)|Mj ⊂MF , j = 1, . . . , pn}. Note thatMn does not have to include

the full model, that is, M = (MF , . . . ,MF ).

2.2. Loss and risk functions

Herein, the goodness of fit of a candidate model M is measured by a quadratic

loss function Ln given by

Ln(M) = tr{(Γ∗ − Γ̂(M))Σ−1∗ (Γ∗ − Γ̂(M))>}, (2.1)

where each column of Γ̂(M) is obtained based on a least squares estimator, that

is,

Γ̂(M) = (PM1
y1, . . . ,PMpn

ypn), (2.2)

and PMj
= XMj

(X>Mj
XMj

)−1X>Mj
. By substituting (2.2) into (2.1), we have

Ln(M) = tr{∆(M)} − 2tr{Σ−1∗ (Γ∗ − Γ∗(M))>E(M)}
+ tr{Σ−1∗ E(M)>E(M)}, (2.3)

where ∆(M) = Σ
−1/2
∗ (Γ∗−Γ∗(M))>(Γ∗−Γ∗(M))Σ

−1/2
∗ , Γ∗(M) = (PM1

γ∗1 , . . . ,

PMpn
γ∗pn) and E(M) = (PM1

ε1, . . . ,PMpn
εpn). Then, a risk function Rn is ob-

tained as

Rn(M) = E(Ln(M)) = tr{∆(M)}+ tr{A(M)>A(M)}, (2.4)

where A(M) = (Σ
−1/2
∗ ⊗In)P (M)(Σ

1/2
∗ ⊗In), the symbol ⊗ denotes a Kronecker

product, and P (M) = diag{PM1
, . . . ,PMpn

}. Note that A(M) is an idempotent

matrix. Thus, from Householder and Carpenter (1963), σj(A(M)) ≤ σj(A(M))2,

for all j = 1, . . . , pn, where σj(·) denotes the jth largest singular value. This and

Theorem 3.3.13 in Horn and Jornson (1994) indicate that
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tr{A(M)>A(M)} =

pn∑
j=1

σj(A(M))2 ≥
pn∑
j=1

σj(A(M)) ≥ tr{A(M)}.

This implies that Rn(M) ≥ pn, because tr{A(M)} =
∑pn

j=1 kMj
.

The best models with respect to the loss and risk functions are denoted by

M∗L and M∗R, respectively, which minimize (2.1) and (2.4), respectively among

Mn, that is,

M∗L = argmin
M∈Mn

Ln(M), M∗R = argmin
M∈Mn

Rn(M).

Note that M∗L is a random variable, M∗R is non-stochastic, and both of them

depend on n, although they are suppressed for brevity.

2.3. Selection method and asymptotic efficiency

To select the best model among Mn, we use the GCp defined by

GCp(M ;αn) = nαntr{Σ̂(M)S−1}+ 2

pn∑
j=1

kMj
, (2.5)

where αn is a positive sequence, Σ̂(M) = (Y − Γ̂(M))>(Y − Γ̂(M))/n, S =

Y >P⊥MF
Y /(n− kn), and P⊥MF

= In −PMF
. For theoretical purposes, we use αn

satisfying

lim
n→∞

αn = a ∈ [0,∞).

When αn = 1 and pn = 1, the GCp indicates the Cp proposed by Mallows (1973).

When αn = 1−(pn+1)/(n−kn) and M1 = · · · = Mpn , the selection results by the

GCp coincide with the modified Cp (MCp) of Fujikoshi and Satoh (1997). If the

full model includes the true model and we set M1 = · · · = Mpn , then the MCp is

an unbiased estimator (Fujikoshi and Satoh (1997)). Note that Atkinson (1980)

introduced a criterion equivalent to the GCp for univariate data, and Nagai,

Yanagihara and Satoh (2012) proposed a criterion for multivariate generalized

ridge regression models, although they assumed M1 = · · · = Mpn .

The best model selected by minimizing the GCp among Mn is denoted by

M̂n, that is,

M̂n = argmin
M∈Mn

GCp(M ;αn).

Then, we state that the GCp exhibits ALE (Li (1987); Shao (1997)) if

Ln(M̂n)

Ln(M∗L)

p→ 1, n→∞, (2.6)
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and exhibits AME (Shibata (1983)) if

lim
n→∞

E(Ln(M̂n))

Rn(M∗R)
= 1. (2.7)

Note that Ln(M̂n) and E(Ln(M̂n)) are respectively referred to as loss and risk

functions of the best model selected by the GCp.

3. Asymptotic Efficiency of the GCp

In this section, we present the ALE and AME of the GCp(M ;αn). Hereafter,

we may omit the symbol “n→∞” to simplify the expressions.

First, we assume the following conditions for the ALE:

(C1) limn→∞ kn/n = ck ∈ [0, 1), limn→∞ pn/n = cp ∈ [0, 1), 1− ck − cp > 0, and

n− kn − pn > 0.

(C2) σ1(Σ
−1/2
∗ Γ>∗ P

⊥
MF

Γ∗Σ
−1/2
∗ ) = o(n).

(C3) There exists a constant CA≥1 such that, for all M ∈Mn, σ1(A(M))≤CA.

(C4) For all δ ∈ (0, 1), limn→∞
∑

M∈Mn
δRn(M) = 0.

(C5) Let #(Mn) be the cardinality of Mn, that is, the number of candidate

models. Then, log #(Mn) = o(n).

The first part of condition (C1) is weaker than the condition assumed in Shibata

(1981, 1983) if the full model (MF , . . . ,MF ) is included in the set of candidate

modelsMn. The second part of (C1) constructs our high-dimensional framework,

which is also considered in previous studies (see e.g., Fujikoshi, Sakurai and

Yanagihara (2014); Yanagihara, Wakaki and Fujikoshi (2015)). The third part

is used to evaluate the lowest singular values of a high-dimensional Gaussian

random matrix. The final part of (C1) is required to guarantee the regularity

of S, which can be satisfied asymptotically from the previous three conditions.

Condition (C2) is used to ignore the effect of σ1(Σ
−1/2
∗ Γ>∗ P

⊥
MF

Γ∗Σ
−1/2
∗ ), which

is satisfied when Γ∗ is well approximated by a linear regression model XB,

although a set of candidate models does not need to include the true model.

When pn = 1, (C2) corresponds to an assumption in Shao (1997). Condition

(C3) is only considered when we do not use a common model for the response

variables. Actually, M = (M1, . . . ,M1), with some M1 ⊂ MF , indicates that

A(M) = Ipn ⊗ PM1
, and thus (C3) holds. If there exists λ ≥ 1 such that

λ−1 ≤ λmin(Σ∗) ≤ λmax(Σ∗) ≤ λ, where λmin(·) and λmax(·) denote the minimum
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and maximum eigenvalues, respectively, then (C3) holds for anyMn, because for

all x ∈ Rnpn ,

x>A(M)>A(M)x ≤ λmax(Σ∗)

λmin(Σ∗)
x>x.

On the other hand, conditions (C4) and (C5) control the number of candidate

models. When pn = 1, (C4) corresponds to a condition in Shibata (1981, 1983).

Let G be a positive constant integer. Suppose that the response variables have G

groups, and each group consists of at least gn response variables, where gn satisfies

pn = O(gn). Then, when pn → ∞, log kn = o(pn) is a sufficient condition for

(C4), because this indicates that log kn = o(gn) and

∑
M∈Mn

δRn(M) ≤


kn∑
j=1

(
kn
j

)
δjgn


G

≤


kn∑
j=1

(knδ
gn)j


G

≤
(

knδ
gn

1− knδgn

)G
.

Hence, this may suggest that as pn grows, the upper bound of the number of can-

didate models (or the number of explanatory variables) satisfying (C4) becomes

large. Note that when cp > 0, (C4) always holds, owing to (C5). Condition (C5)

would be satisfied in practice because a violation of (C5) induces a significant

computational burden.

Then, we can derive sufficient conditions for the ALE of the GCp, as shown

in the following theorem, the proof of which is given in Supplementary Material.

Theorem 1. Suppose that conditions (C1)–(C5) hold. If αn → a = 1−cp/(1−ck)
as n→∞, then GCp(M ;αn) exhibits ALE, that is,

Ln(M̂n)

Ln(M∗L)

p→ 1, n→∞.

Next, we show the AME of the GCp. In addition to conditions (C1)–(C5),

we assume the following condition:

(C6) There exists γ0 ∈ (0, 1) such that

max
M∈Mn

Rn(M)

Rn(M∗R)
= O(exp(nγ0)).

Condition (C6) sets an upper bound of the risk ratio Rn(M)/Rn(M∗R), which

prevents the maximum risk from being too large. We show that if there exist

constants C ≥ 1 and γ ∈ [0, 1) such that λmin(Σ∗) ≥ C exp(−nγ) > 0 and

(Γ∗)
2
ij ≤ C, for all 1 ≤ i ≤ n and 1 ≤ j ≤ pn, then (C6) holds under (C1) and
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(C3). Conditions (C1) and (C3) indicate that

Rn(M) = tr{∆(M)}+ tr{A(M)>A(M)}
≤ vec(Γ∗)

>(Inpn − P (M))(Σ−1∗ ⊗ In)(Inpn − P (M))vec(Γ∗) + C2
Anpn

≤ npn{λmin(Σ∗)
−1 max{(Γ∗)2ij |1 ≤ i ≤ n, 1 ≤ j ≤ pn}+ C2

A}
= O(n2 exp(nγ)).

We have shown that for all M ∈Mn, Rn(M) ≥ pn and, in particular, Rn(M∗R) ≥
pn. Thus, by setting γ0 = (1 + γ)/2, (C6) is satisfied.

Assuming (C1)–(C6), we have the following theorem.

Theorem 2. Suppose that conditions (C1)–(C6) hold. If αn → a = 1−cp/(1−ck)
as n→∞, then GCp(M ;αn) exhibits AME, that is,

lim
n→∞

E(Ln(M̂n))

Rn(M∗R)
= 1.

A proof of this theorem is provided in Supplementary Material. For both

the ALE and the AME of the GCp, we assume αn → a = 1− cp/(1− ck). Unless

cp = 0, this condition does not hold when αn = 1 (i.e., the original Cp). On the

other hand, this condition is satisfied for all ck ∈ [0, 1) and cp ∈ [0, 1) as long

as 1 − ck − cp > 0, when αn = 1 − (pn + 1)/(n − kn) (i.e., MCp). Hence, MCp
is more reasonable for variable selection in high-dimensional data contexts from

the perspective of prediction.

4. Asymptotic Inefficiency of GCp

As noted in the previous section, αn → a = 1− cp/(1− ck) is a key condition

for the GCp to acquire ALE and AME. In this section, we show that this is a

necessary condition. That is, when αn → a 6= 1− cp/(1− ck), there is a situation

such that

lim
n→∞

Pr

(
Ln(M̂n)

Ln(M∗L)
> 1

)
= 1,

lim
n→∞

E(Ln(M̂n))

Rn(M∗R)
> 1,

even under conditions (C1)–(C6).

For expository purposes, letX = (x1,x2), that is, kn = 2, such thatX>X =

I2, Γ∗ =
√
nx2β

>, where β ∈ Rpn , Σ∗ = Ipn , and Mn = {{1}pn , {1, 2}pn}. Note

that M = {1}pn means M1 = · · ·Mpn = {1}, and M = {1, 2}pn is similarly
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defined. For brevity, we write {1} and {1, 2} instead of {1}pn and {1, 2}pn , re-

spectively. Suppose that cp ∈ (0, 1) and β satisfies ‖β‖2 → b ∈ (0,∞), where

‖ · ‖ is the Euclidean norm. Then, because σ1(Σ
−1/2
∗ Γ>∗ P

⊥
MF

Γ∗Σ
−1/2
∗ ) = 0,

Rn({1}) = n‖β‖2 + pn, and Rn({1, 2}) = 2pn, conditions (C1)–(C6) are sat-

isfied for sufficiently large n. Note that ck = 0 in this situation, because kn is

fixed.

From the definition of the GCp,

GCp({1, 2};αn)−GCp({1};αn)

= nαntr{(Σ̂({1, 2})− Σ̂({1}))S−1}+ 2pn

= −(n− 2)αnx
>
2 Y Y

>x2
x>2 Y {Y >(In − x1x

>
1 − x2x

>
2 )Y }−1Y >x2

x>2 Y Y
>x2

+ 2pn.

It follows from Theorem 3.2.12 in Muirhead (1982) that(
x>2 Y {Y >(In − x1x

>
1 − x2x

>
2 )Y }−1Y >x2

x>2 Y Y
>x2

)−1
∼ χ2

n−pn−1.

On the other hand, because Y >x2 =
√
nβ+E>x2 ∼ Npn(

√
nβ, Ipn), x>2 Y Y

>x2 ∼
χ2
pn(n‖β‖2), which denotes a non-central chi-square distribution, with non-centrality

parameter n‖β‖2. Note that χ2
n−pn−1/n = 1 − cp + op(1) and χ2

pn(n‖β‖2)/n =

cp + b+ op(1). Hence, it holds that

GCp({1, 2};αn)−GCp({1};αn)

n
= −a(cp + b)

1− cp
+ 2cp + op(1). (4.1)

The loss functions of models {1} and {1, 2} are given as

Ln({1}) = n‖β‖2 + x>1 EE>x1,

Ln({1, 2}) = x>1 EE>x1 + x>2 EE>x2,

respectively, Because x>i EE>xi ∼ χ2
pn (i = 1, 2), it follows that

Ln({1})
Ln({1, 2})

p→ cp + b

2cp
∈ (0,∞), (4.2)

lim
n→∞

Rn({1})
Rn({1, 2})

=
cp + b

2cp
∈ (0,∞). (4.3)

First, we consider a situation where a > 0. Let b = cp(1 − cp)/a. It follows

from (4.1) and (4.2) that
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GCp({1, 2};αn)−GCp({1};αn)

n

p→ cp(1− cp − a)

1− cp
,

Ln({1})
Ln({1, 2})

p→ a+ 1− cp
2a

= 1 +
1− cp − a

2a
.

Hence, we have

Ln(M̂n)

Ln(M∗L)

p→


a+ 1− cp

2a
> 1, a < 1− cp,

2a

a+ 1− cp
> 1, a > 1− cp.

This implies that the GCp does not exhibit ALE when 0 < a < 1−cp or a > 1−cp.
On the other hand, (4.3) yields M∗R = {1, 2} (resp. {1}) for sufficiently large

n when a < 1− cp (resp. a > 1− cp). Thus, by using M∗∗R =Mn \M∗R, we have

that

E(Ln(M̂n))

Rn(M∗R)
=
E(Ln(M∗R)I(M̂n = M∗R))

Rn(M∗R)
+
E(Ln(M∗∗R )I(M̂n = M∗∗R ))

Rn(M∗R)

=
Rn(M∗∗R )

Rn(M∗R)
−
E({Ln(M∗∗R )− Ln(M∗R)}I(M̂n = M∗R))

Rn(M∗R)

≥
Rn(M∗∗R )

Rn(M∗R)
−
√
E({Ln({1})− Ln({1, 2})}2)

Rn(M∗R)

√
Pr(M̂n = M∗R),

where I(·) is an indicator function, and the last inequality follows from the

Cauchy−Schwarz inequality. Note that√
E({Ln({1, 2})− Ln({1})}2)

Rn(M∗R)
=
√
E((χ2

pn − n‖β‖2)2) max

{
1

2pn
,

1

pn + n‖β‖2

}
=
√

2pn + (pn − n‖β‖2)2 max

{
1

2pn
,

1

pn + n‖β‖2

}
→ |a− (1− cp)|max

{
1

2a
,

1

a+ 1− cp

}
<∞.

Because limn→∞ Pr(M̂n = M∗R) = 0 and Rn(M∗∗R )/Rn(M∗R) > 1, the GCp does

not exhibit AME when 0 < a < 1− cp or 1− cp < a.

Next, we consider a situation where a = 0. Then, (4.1) implies that Pr(M̂n =

{1})→ 1. However, when b > cp, (4.2) and (4.3) yield Pr(M∗L = {1, 2})→ 1 and

M∗R = {1, 2}, respectively, for sufficiently large n. Hence, in the same manner as

the argument when a > 0, the GCp does not exhibit ALE or AME when a = 0.

Therefore, αn → a = 1 − cp/(1 − ck) is a necessary and sufficient condition
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for the ALE and AME of the GCp under conditions (C1)–(C6).

5. Simulation Study

This section presents a simulation study to compare the GCp among several

αn, where the goodness of the criteria is measured by the loss function of the

best model selected by each criterion. We prepare three parameters for αn, that

is, αn = 1 (i.e., Cp), αn = 1 − (pn + 1)/(n − kn) (i.e., MCp), and αn = 2/ log n

(i.e., BIC-type Cp, say BCp). Because 2/ log n ≤ 1 − (pn + 1)/(n − kn) ≤ 1 in

our setting, the number of dimensions of the model selected by Cp (resp. BCp)

is larger (resp. smaller) than or equal to that selected by the MCp. In general,

this inequality always holds for sufficiently large n.

Hereafter, we explain the simulation settings. Let the first column of X

be a vector of ones in Rn, and the other entries be independently generated

from a uniform distribution U(0, 1). For all 1 ≤ i ≤ kn and 1 ≤ j ≤ pn,

let (B∗)ij = uijdi, where uij are independently generated from U(0, 1/2) and

di = 5
√
kn − i+ 1/kn. For comparative purposes, we examine a situation where

Γ∗ = XB∗, which implies that the full model is the true model. Suppose that

Σ∗ = (0.7|i−j|)ij , for 1 ≤ i, j ≤ pn. We also suppose that there are two subsets

M (1),M (2) ⊂ {1, . . . , pn}, such that M1 = · · · = Mpn/2 = M (1) and Mpn/2+1 =

· · · = Mpn = M (2), which implies that there are two groups of response variables.

To reduce the computational burden, we adopt a nested model set, that is, we

select M (1) and M (2) from among {{1}, . . . , {1, . . . , kn}}. Note that the true (full)

model is not always the best model from the perspective of prediction in our

simulation study, because some coefficients are very small, so variable selection

makes sense in this situation. This supposition is confirmed below.

We prepared two cases for pn as high- and fixed-dimensional cases, where

pn = n/5 for the high-dimensional case, and pn = 10 for the fixed case. The

sample size n varies from 100 to 800, and we set kn = n/10. Then, we generate

Y and select the best subset of explanatory variables by each Cp-type criterion.

After the variable selection, we calculate the loss functions for each best model.

Table 1 provides the average values of Ln(M̂n)/Ln(M∗L) and Ln(M̂n)/Rn(M∗R)

of Cp, MCp, and BCp based on 1,000 repetitions for each (n, pn, kn). Note that

Ln(M̂n)/Ln(M∗L) and Ln(M̂n)/Rn(M∗R) are criteria for ALE and AME, respec-

tively, where smaller values are better. From this table, we can confirm that MCp
exhibits good performance, regardless of pn, and Cp works well when pn = 10,

but does not work well when pn is large. On the other hand, BCp has higher

values of Ln(M̂n)/Ln(M∗L) and Ln(M̂n)/Rn(M∗R), except when the sample size is
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Table 1. Average values of Ln(M̂n)/Ln(M∗
L) and Ln(M̂n)/Rn(M∗

R) of Cp, MCp, and
BCp among 1,000 repetitions for each (n, pn, kn). Standard deviations are shown in

parentheses. The best values for Ln(M̂n)/Ln(M∗
L) and Ln(M̂n)/Rn(M∗

R) are shown in
bold for each (n, pn, kn). All values are rounded to three decimal places.

Ln(M̂n)/Ln(M∗
L) Ln(M̂n)/Rn(M∗

R)

n pn kn Cp MCp BCp Cp MCp BCp

100 20 10 1.262 1.143 1.115 1.198 1.085 1.056
(0.185) (0.108) (0.069) (0.193) (0.116) (0.056)

200 40 20 1.139 1.065 1.169 1.125 1.052 1.153
(0.079) (0.048) (0.046) (0.089) (0.059) (0.016)

400 80 40 1.129 1.027 1.191 1.125 1.023 1.187
(0.057) (0.020) (0.025) (0.060) (0.028) (0.006)

800 160 80 1.117 1.010 1.182 1.114 1.007 1.178
(0.033) (0.007) (0.012) (0.035) (0.012) (0.002)

100 10 10 1.290 1.229 1.153 1.219 1.160 1.085
(0.259) (0.220) (0.094) (0.272) (0.225) (0.091)

200 10 20 1.167 1.163 1.191 1.110 1.106 1.127
(0.116) (0.110) (0.088) (0.131) (0.119) (0.033)

400 10 40 1.107 1.107 1.174 1.060 1.060 1.121
(0.063) (0.061) (0.069) (0.074) (0.070) (0.017)

800 10 80 1.065 1.064 1.233 1.049 1.048 1.213
(0.045) (0.043) (0.050) (0.057) (0.054) (0.009)

small. These results concur with our theoretical exposition regarding efficiency

and inefficiency.

Table 2 shows the average dimensions of the models, that is, #(M (1))/2 +

#(M (2))/2 selected by each GCp and the loss minimizing models. This indicates

that the number of dimensions of the loss minimizing models varies depending on

the sample size, and the full model is not (always) the best model, in spite of the

fact that the full model is true. Based on our simulation settings, BCp tends to

select much smaller models in comparison with models that have the smallest loss

function, whereas Cp often selects larger models when pn is large. The average

number of dimensions of the models selected by MCp is close to that of the loss

minimizing models in both the high- and the fixed-dimensional situations. This

implies that αn substantially affects the dimensions and the efficiency of selected

models.

Hence, these results indicate that MCp is a useful variable selection method,

regardless of pn, and thus we recommend its use for robust prediction.
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Table 2. Average dimensions of selected models by Cp, MCp, and BCp and loss minimiz-
ing models among 1,000 repetitions for each (n, pn, kn). Standard deviations are shown
in parentheses. All values are rounded to three decimal places.

n pn kn Cp MCp BCp Loss
100 20 10 5.754 3.154 1.127 3.277

(1.848) (1.507) (0.314) (1.145)
200 40 20 13.015 7.545 1.010 7.590

(2.066) (2.161) (0.083) (1.222)
400 80 40 24.146 13.617 1.000 13.505

(2.803) (2.185) (0.000) (1.171)
800 160 80 50.018 27.035 1.000 27.188

(3.448) (2.811) (0.000) (1.930)
100 10 10 3.756 2.857 1.107 2.804

(1.959) (1.562) (0.289) (0.900)
200 10 20 8.650 7.396 1.011 7.849

(3.499) (3.444) (0.097) (2.430)
400 10 40 17.203 15.505 1.005 16.927

(6.020) (6.064) (0.071) (5.135)
800 10 80 26.427 25.322 1.010 25.910

(8.229) (8.077) (0.093) (5.655)

6. Conclusion

We have derived sufficient conditions for the ALE and the AME of the GCp
in high-dimensional multivariate linear regression models. We have shown that

MCp exhibits ALE and AME in high-dimensional data, whereas the original Cp,

known as an asymptotically efficient criterion in univariate cases, does not exhibit

ALE or AME under the same conditions. This is because a nontrivial bias term

is omitted in the original Cp as an estimator of the risk function. This term plays

an important role in the adaptation to high-dimensional frameworks. Indeed, if

the tuning parameter of the GCp, αn, converges to a 6= 1− cp/(1− ck), as in the

case of the Cp and the BCp, we showed that the GCp is asymptotically inefficient.

We compared the finite-sample performance of Cp-type criteria using simulations,

and showed that the MCp is better than the Cp and BCp in high-dimensional

data.

Note that when pn is large, the MCp works well, even under the parametric

scenario, where the true model is included in a set of candidate models. Unlike a

univariate case, the risk of the true model always goes to infinity with pn →∞.

Thus, under the parametric scenario, it is possible that conditions (C1)–(C6) are

satisfied, in which case the asymptotic efficiencies of the MCp hold. Moreover,

assuming the response variables have a common model, that is, M1 = · · · =
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Mpn , the MCp has the consistency property as well under moderate conditions

(Fujikoshi, Sakurai and Yanagihara (2014)). Hence, the MCp can be regarded as

a feasible method for variable selection from the perspective of both prediction

and interpretability when pn is large. This attractive property is only seen in

high-dimensional situations, that is, pn →∞.

When pn is greater than n, we cannot directly calculate S−1, and thus GCp.

Therefore, we need different approaches to estimate a covariance matrix Σ, such

as a sparse or ridge estimation (e.g., Yamamura, Yanagihara and Srivastava

(2010); Katayama and Imori (2014); Fujikoshi and Sakurai (2016)). If we can

estimate Σ accurately using these procedures, the ALE and AME can be estab-

lished by using it in place of S. Note that our proof depends on the assumption

that the response matrix follows a Gaussian distribution. Because we use some

properties of the Gaussian distribution, this is not a trivial limitation from the

perspective of generalizing the results. Another extension of this study would

be to relax condition (C4) (see Yang (1999)). In Section 3, we gave a sufficient

condition for (C4), that is, log kn = o(pn), assuming some group structure of the

response variables. Under this condition, even when the number of candidate

models is exponentially large, that is, #(Mn) = 2kn , (C4) holds. Although this

condition is not restricted, when considering a situation in which each response

variable uses different models, it is still important to mitigate (C4). Yang (1999)

proposed a criterion by using an additional penalty term, which can be used for

model selection without the constraint on the number of candidate models. It

may be possible to apply this idea to our setting. These topics are left for future

research.

Supplementary Material

The online Supplementary Material provides the proofs of Theorems 1 and

2.
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