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Abstract: We consider a class of partially linear transformation models with interval-

censored competing risks data. Under a semiparametric generalized odds rate spec-

ification for the cause-specific cumulative incidence function, we obtain optimal

estimators of the large number of parametric and nonparametric model compo-

nents by maximizing the likelihood function over a joint B-spline and Bernstein

polynomial spanned sieve space. Our specification considers a relatively simpler

finite-dimensional parameter space, approximating the infinite-dimensional param-

eter space as n → ∞. This allows us to study the almost sure consistency and rate

of convergence for all parameters, and the asymptotic distributions and efficiency

of the finite-dimensional components. We study the finite-sample performance of

our method using simulation studies under a variety of scenarios. Furthermore, we

illustrate our methodology by applying it to a data set on HIV-infected individuals

from sub-Saharan Africa.
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1. Introduction

In biomedical studies with time-to-event outcomes, there could be several

distinct causes of failure, referred to as competing risks (Crowder (2001)). For

example, when studying 137 bone marrow transplant (BMT) patients (Klein and

Moeschberger (2003)), patients may relapse or die while in remission during the

follow-up period. If we consider relapse to be the event of interest, then death is

a competing risk/event, because it impedes the occurrence of leukemia relapse.

Competing risks data are often subject to interval censoring, implying that the
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event time is not observed precisely, but the interval in which it lies is known.

Another example is our motivating HIV data set, generated from a large study of

HIV care and treatment programs in sub-Saharan Africa (Egger et al. (2012)) and

analyzed in this study. HIV-infected individuals receiving care in these programs

may die while in care, or become lost to care. These are the two competing risks

under consideration, with the corresponding time to events available as interval

endpoints. Patients who are lost to care typically do not receive treatment and,

thus, are more likely to die and further contribute to the expansion of the HIV

epidemic.

Statistical models under the umbrella of interval-censored competing risks

data (Hudgens, Li and Fine (2014)) can be broadly classified into (a) the cause-

specific hazards (CSH) modeling framework, or (b) the cumulative incidence func-

tion (CIF) modeling framework. For CIF modeling, a number of approaches

have been proposed. For example, Li (2016) considered a sieve maximum like-

lihood approach (sieve-ML) for the Fine–Gray model (Fine and Gray (1999))

under interval censoring and possible left-truncation. In addition, Mao, Lin and

Zeng (2017) proposed a broad class of semiparametric regression models accom-

modating both proportional and non-proportional sub-distribution hazards, and

devised a fast and stable EM-type estimation framework. Bakoyannis, Yu and

Yiannoutsos (2017) considered a class of semiparametric generalized odds rate

(GOR) transformation models (Scharfstein, Tsiatis and Gilbert (1998)) using

the sieve-ML approach based on B-splines, showing that the estimator for the

(finite-dimensional) regression parameter is semiparametrically efficient. All of

these works assume that the covariates are related linearly to the time-to-event

responses, which precludes an assessment of potential nonlinear and nonparamet-

ric patterns. This linearity assumption is too ideal to apply in many situations,

thereby making the aforementioned methods inconsistent. For example, in HIV

studies (such as our motivating data set), age is usually considered an important

predictor of the HIV-1 disease progression. The progress to acquired immunode-

ficiency syndrome (AIDS), a chronic and potentially life-threatening condition, is

more rapid in older adults than it is in younger patients, with a higher mortality

among older patients developing an AIDS-defining illness (Nguyen and Holod-

niy (2008); Pirrone et al. (2013)). Hence, a partially linear model (Lu and Song

(2015)) for the patients’ ages seems more plausible for fitting the data.

From the context of HIV data modeling, we propose a semiparametric par-

tially linear transformation model, with a GOR specification for the CIF function.

Our model includes some commonly used models as special cases, such as the lin-

ear transformation model and nonparametric additive models. We obtain optimal
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estimators of the large number of parametric and nonparametric model compo-

nents by maximizing the likelihood function over a joint B-spline and Bernstein

polynomial (BP; Lorentz (1986)) spanned sieve space. The BP approach, which

we employ to estimate the unknown nonparametric risk functions, enjoys sev-

eral merits from the perspective of implementation; it often requires only a few

parameters for a decent approximation, and one does not need to specify the

interior knots, as in B-splines (Eilers and Marx (1996)). Our specification trans-

fers the setup consisting of both finite- and infinite-dimensional parameters into

a relatively simpler finite-dimensional framework that approximates the infinite-

dimensional parameter space as n → ∞. This allows us to study the almost

sure consistency and rate of convergence for all parameters, and the asymptotic

distributions and efficiency of the finite-dimensional components.

The rest of the paper proceeds as follows. In Section 2, we describe the

statistical framework of our partially linear transformation GOR model. The

associated sieve-ML estimation method, related large-sample results, and the im-

plementation are presented in Section 3. In Section 4, we study the finite-sample

performance of our proposed method using simulation studies under a variety

of scenarios with synthetic data. Furthermore, we illustrate our methodology

by applying it to the motivating HIV data set in Section 5. Finally, Section 6

concludes the paper. Detailed derivations and proofs of the theoretical results

presented in Section 3 and tables and figures showing all the simulation results

in Section 4 are relegated to the Supplementary Material.

2. Statistical Model

We assume that there are a finite number k of competing risks, with the

cause of failure and the (true) failure time denoted by C and T , respectively.

The two covariate vectors Z = (Z1, . . . , Zd)
> ∈ Rd and W = (W1, . . . ,Wq)

> ∈ Rq

have potential effects on the survival probability of T , where the effects of Z are

modeled parametrically, the effects of W are modeled nonparametrically, and

both the parametric and nonparametric components are of interest. For the

competing risks data, the cause-specific CIF is defined as

Fj(t; z, w) = Pr(T ≤ t, C = j|Z = z,W = w), j = 1, . . . , k.

Then, for modeling Fj , we propose the following partially linear transformation

model:

gj [Fj(t; z, w)] = φj(t) + β>j z +

q∑
e=1

ψje(we), j = 1, . . . , k, (2.1)



688 LU ET AL.

where gj is a known increasing cause-specific link function, φj is an unspecified,

strictly increasing, and invertible function of time t, βj is a vector of parameters

for the parametric components, z is a d-dimensional covariate vector, and ψje are

unknown smooth regression functions of we, with e = 1, . . . , q.

We consider a special subset of the class of partially linear transformation

models, specifically, the class of partially linear GOR (PLGOR) transformation

models, with link functions given by:

gj (Fj ;αj) =

log
[

(1−Fj)−αj−1
αj

]
if 0 < αj <∞,

log [− log(1− Fj)] if αj = 0,

for j = 1, . . . , k. This class of models includes the linear GOR transformation

models (Dabrowska and Doksum (1988); Scharfstein, Tsiatis and Gilbert (1998);

Fine (2001); Jeong and Fine (2006)) as special cases, including the proportional

odds (PO) model and proportional subdistribution hazards model (Fine (1999))

with αj = 1 and αj = 0, respectively (Jeong and Fine (2006)). Note that the link

functions are allowed to vary with the causes of failure. Following prior studies,

we assume that the true link functions are known (Scharfstein, Tsiatis and Gilbert

(1998); Fine and Gray (1999); Fine (2001); Mao and Wang (2010); Bakoyannis, Yu

and Yiannoutsos (2017)). This assumption facilitates our estimation, given that

the estimation of α = (α1, . . . , αk)
> may be hindered by identifiability concerns,

as in the non-competing-risk setting (Zeng, Yin and Ibrahim (2006)).

In practice, the observation times (e.g., the time to clinic visits, laboratory

tests, etc.) could be interval censored. Let (U1, . . . , Um) denote m ∈ (0,∞)

distinct observation times, which may vary from subject to subject. Let V ∈
{0, U1, . . . , Um} correspond to the last observation time prior to the failure, and

U ∈ {U1, . . . , Um,∞} be the first observation time after the failure; then, the

observed interval is (V,U). Using this notation, a left-censored observation cor-

responds to (V,U) = (0, U1), and a right-censored observation corresponds to

(V,U) = (Um,∞). For j = 1, . . . , k, if a subject fails from the jth cause of failure

before the first observation time U1 (i.e., it is left censored), we observe δ1
j = 1. If

the subject fails between V > U1 and U ≤ Um, we observe δj = 1. However, if the

subject is right censored (i.e., T > Um), then we observe δ =
∑k

j=1(δj + δ1
j ) = 0.

We assume the observation interval to be [a, b], that is, a = U1 < Um = b.

Including the two covariate vectors Z and W , the observed data are U , V , Z,

W , {δj}kj=1, and {δ1
j }kj=1. We further assume the following two fundamental

conditions:

A1. The observation times (U1, . . . , Um) are independent of (T,C), conditional
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on (Z,W ).

A2. The distribution of (U1, . . . , Um) does not contain the parameters that gov-

ern the distribution of (T,C) (non-informative interval censoring).

Given the two assumptions above and the observed data

D =

{
vi, ui, zi, wi, {δij}kj=1, {δ1

ij}kj=1, δi =

k∑
j=1

(δij + δ1
ij), i = 1, . . . , n

}
,

the likelihood function in terms of the cause-specific CIFs is

L(θ;D) ∝
n∏
i=1


k∏
j=1

[Fj(ui; zi, wi, θj)− Fj(vi; zi, wi, θj)]δij


k∏
j=1

[Fj(ui; zi, wi, θj)]
δ1ij

×
1−

k∑
j=1

Fj(vi; zi, wi, θj)

1−δi

, (2.2)

where θ = (θ>1 , . . . , θ
>
k )> is a parameter vector that includes, in our case, re-

gression coefficients for the effect of the covariate vector Z on each cause-specific

CIF, and unspecified functions of time, after adjusting the nonlinear effect of the

covariate W .

In our model, there are two sets of nonparametric components. The first set

consists of {φj , 1 ≤ j ≤ k}, and the second set consists of {ψje, 1 ≤ j ≤ k, 1 ≤ e ≤
q}. We choose to use B-splines to model the nonparametric φj functions in the

first set, and BPs to model the nonparametric components ψje in the second set.

One may also use B-splines to model the nonparametric functions in the second

set. The motivation for using two different series is that one can easily rely on

the R package intccr (Park, Bakoyannis and Yiannoutsos (2019)) to implement

the B-spline modeling of the φj functions, naturally preserving the nonnegativity

and monotonicity. On the other hand, BPs possess the optimal shape-preserving

property among all approximation polynomials (Carnicer and Peña (1993)). This

provides a flexible estimation strategy free of knot specifications for the ψje func-

tions, which represent the nonparametric effect. BPs have been proved to be

effective in modeling the nonparametric components in various semiparametric

models; see, for example, Zhou, Hu and Sun (2017).

The main contributions of this study are as follows. First, we present a

class of PLGOR transformation models for interval-censored competing risks data

that extends the linear GOR transformation models (Mao, Lin and Zeng (2017);
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Bakoyannis, Yu and Yiannoutsos (2017)) and the nonparametric additive trans-

formation models. Second, our sieve-ML proposal is a pragmatic compromise

between a purely B-spline approach, with a faster convergence rate under the

same smoothness conditions for different nonparametric functions, and a purely

BP approach, with better computability and a better shape-preserving property.

Finally, with regard to theoretical contributions, our proofs of the almost sure

consistency, rate of convergence, and asymptotic normality use the theory of

empirical processes and functional analysis. Furthermore, they are established

using new techniques, such as the symmetrization inequality (Panchenko (2003)),

Hoeffding’s inequality, and the Riesz representation theorem (Goodrich (1970)).

These are more challenging than the techniques used for the linear transforma-

tion models in Mao, Lin and Zeng (2017) and Bakoyannis, Yu and Yiannoutsos

(2017).

3. Estimation and Implementation

3.1. Sieve maximum likelihood estimation

As in Hu and Xiang (2016), Zhang, Hua and Huang (2010), Lu and Song

(2015), and Li (2016), we avoid imposing parametric assumptions on φj and

ψje in (2.1) and, thus, the likelihood involves (q + 1)k infinite-dimensional or

functional parameters. In general, maximizing the likelihood function with an

infinite-dimensional parameter θ ∈ Θ over Θ may lead to inconsistent maximum

likelihood estimates (Shen and Wong (1994)). One approach to overcome this

problem is to use a sieve-ML estimation. A sieve (Shen and Wong (1994)) is

a sequence {Θn}n≥1 of parameter spaces that approximate (in a certain sense)

the original parameter space Θ, with the approximation error tending to zero

as n → ∞. A sieve-ML estimate is the estimate obtained by maximizing the

likelihood function over Θn. Another practical advantage of using the sieve-ML

approach is that it reduces the dimensionality of the optimization problem, and

thus the computational burden, compared with a fully semiparametric likelihood

approach (Zhang, Hua and Huang (2010)). This is because the dimension of Θn is

significantly smaller (i.e., it involves fewer parameters to be estimated) than that

of the full parameter space Θ in finite samples. The computational advantage of

the sieve-ML approach over a fully semiparametric maximum likelihood approach

for interval-censored survival data is shown in a simulation study by Zhang, Hua

and Huang (2010). Denote β = (β>1 , . . . , β
>
k )>. We define the sieve space as

Θn =
{
θ = (β, φ1n, . . . , φkn, ψ(11)n, . . . , ψ(1q)n, . . . , ψ(k1)n . . . , ψ(kq)n)
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∈ B ⊗M1
n⊗ · · · ⊗Mk

n⊗W(11)
n ⊗ · · · ⊗W(1q)

n ⊗ · · · ⊗W(k1)
n ⊗ · · · ⊗W(kq)

n

}
.

In our case, the sequence of approximating functional parameter spaces for

{φj , 1 ≤ j ≤ k} is chosen to be spaces of monotone (owing to the monotonicity

of the CIF) B-spline functions, which are, for j = 1, . . . , k, defined by

Mj
n =

{
φjn(t) =

m∑
s=1

γjsBs(t,m, a, b) :

max
1≤s≤m

|γjs| ≤Mn, 0 ≤ γj1 ≤ · · · ≤ γjm

}
.

On the other hand, the sequence of approximating functional parameter spaces

for {ψje, 1 ≤ j ≤ k, 1 ≤ e ≤ q} is chosen to be spaces of BPs without constraints of

monotonicity, which are, for each combination (j, e), for 1 ≤ j ≤ k and 0 ≤ e ≤ q,
defined by

W(je)
n =

{
ψ(je)n(we) =

mw∑
s=0

α(je)s{Be
s(we,mw, a

e
w, b

e
w)−Be

s(a
e
w,mw, a

e
w, b

e
w)} :

max
0≤s≤mw

|α(je)s| ≤Mn

}
,

where for each e = 1, . . . , q, {Be
s(we,mw, a

e
w, b

e
w)}mw

s=0 are Bernstein basis polyno-

mials defined as

Be
s(we,mw, a

e
w, b

e
w) =

(
mw

s

)(
we − aew
bew − aew

)s
×
(

1− we − aew
bew − aew

)mw−s
, s = 0, . . . ,mw,

with degree mw = o(nν), for some ν ∈ (0, 1). Here, we use the same degree mw

for each ψje. For identifiability, we assume ψ(je)n(we) = 0 when we = aew, i.e.,

ψ(je)n(aew) = 0. This is why we subtract the term Be
s(a

e
w,mw, a

e
w, b

e
w) from each

summand.

A major computational advantage of using a BP for ψje is that the sieve space

defined by W(je)
n takes the simplest form satisfying the identifiability condition

ψje(a
e
w) = 0, because for all s = 1, . . . ,mw, the Bernstein basis polynomials

automatically satisfy Be
s(we,mw, a

e
w, b

e
w)|we=aew = 0. One can show that the size

of the sieve spaces defined above can be controlled by Mn = O(nµ), with µ

being a positive constant (Lorentz (1986); Shen (1997)). During the likelihood

maximization, we impose the monotonicity constraints γjs ≤ γj(s+1), for every
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s = 1, . . . , (m− 1) and j = 1, . . . , k. Additionally, the constraint

max
z,w


k∑
j=1

Fj(t; z, w, θj)

 < 1 (3.1)

is needed to ensure that the sum of the estimated CIFs at the maximum follow-

up time t is bounded above by one, where the maximum is over all the observed

covariate patterns.

Let the true parameter values be denoted by θ0 = (β>0 , φ
>
0 , ψ

>
0 )>, where

β0 = (β>1,0, . . . , β
>
k,0)>, φ0 = (φ1,0, . . . , φk,0)>, and ψ0 = (ψ11,0, . . . , ψ1q,0, . . . ,

ψk1,0, , . . . , ψkq,0)>, and let the corresponding sieve-ML estimator be denoted by

θ̂n = (β̂>n , φ̂
>
n , ψ̂

>
n )>, where β̂n = (β̂>1,n, . . . , β̂

>
k,n)>, φ̂n = (φ̂1,n, . . . , φ̂k,n)>, and

ψ̂n = (ψ̂11,n, . . . , ψ̂1q,n, . . . , ψ̂k1,n, . . . , ψ̂kq,n)>. In addition, define the L2-metric

for the distance between two parameters θ1 = (β(1)>, φ(1)>, ψ(1)>)> and θ2 =

(β(2)>, φ(2)>, ψ(2)>)> as

d(θ1, θ2) =

 k∑
j=1

∥∥β(1)
j − β

(2)
j

∥∥2
+

k∑
j=1

∥∥φ(1)
j − φ

(2)
j

∥∥2

Φ
+

k∑
j=1

∥∥ψ(1)
j − ψ

(2)
j

∥∥2

Ψ

1/2

,

where∥∥φ(1)
j − φ

(2)
j

∥∥2

Φ
= E

[
φ

(1)
j (V )− φ(2)

j (V )
]2

+E
[
φ

(1)
j (U)− φ(2)

j (U)
]2
, j = 1, . . . , k

and

∥∥ψ(1)
j − ψ

(2)
j

∥∥2

Ψ
=

q∑
e=1

∥∥ψ(1)
je − ψ

(2)
je

∥∥2

Ψ

=

q∑
e=1

E
[
ψ

(1)
je (We)− ψ(2)

je (We)
]2
, j = 1, . . . , k,

and ‖ · ‖ denotes the Euclidean norm. Under the conditions given in the Sup-

plementary Material, we obtain the following theorems about the asymptotic

properties of the proposed estimators.

Theorem 1. Assume Conditions (C1)–(C6) given in the Supplementary Material

hold. Then,

d(θ̂n, θ0)
a.s.−→ 0.

Therefore, the combined B-spline and BP-based sieve-ML estimator is strongly

consistent.
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Theorem 2. Assume Conditions (C1)–(C7) given in the Supplementary Material

hold. Then

d(θ̂n, θ0) = Op

{
n−min[νσ,(1−ν)/2]

}
,

where ν ∈ (0, 1) such that m = O(nν) and mw = O(nν), and σ = min(p, r/2),

with p and r defined in Condition (C4).

This theorem implies that the convergence rate of the estimator for the func-

tional parameters is slower than the usual
√
n rate. This estimator achieves

the optimal convergence rate for nonparametric regression estimators, which is

n−σ/(1+2σ) when one chooses ν = 1/(1+2σ). Furthermore, when p ≥ r/2, we ob-

tain σ = r/2, and the convergence rate becomes n−r/{2(1+r)}. A similar result was

obtained by Zhou, Hu and Sun (2017) when estimating the unknown functions

using BPs, but only in a regression analysis of bivariate interval-censored failure

time data. In our case, because we use both B-splines and BPs, the convergence

rate is dominated by the smoothness level of the regression risk functions ψje,

which are modeled by BPs. In fact, if we used B-splines to model φj and ψje
simultaneously, then, under the same smoothness level p = r for φj and ψje, we

would obtain a faster convergence rate n−r/{1+2r}, the same as that obtained by

Lu and Song (2015) for the partially linear additive hazards model with current

status data. Although a purely B-spline based estimator has some better theo-

retical large-sample properties under the same smooth conditions, we choose BPs

to model the nonparametric risk functions, because the resultant estimator has

some superior finite properties, as discussed in Section 2. On the other hand, if

p ≤ r/2 or r ≥ 2p, the convergence rate becomes n−p/{1+2p}, and we still obtain

the same optimal convergence rate as that of a purely B-spline based estimator.

Theorem 3. Assume Conditions (C1)–(C8) given in the Supplementary Material

hold. Then, √
n(β̂n − β0)

d→ N [0, I−1(β0)],

which implies that the convergence rate of the estimator for the Euclidean pa-

rameter β0 is
√
n. This also points to the efficiency of this estimator because the

corresponding variance matrix attains the semiparametric efficiency bound I(β0).

Detailed proofs of the theorems, using necessary regularity conditions (Zhang,

Hua and Huang (2010); Zhou, Hu and Sun (2017)), are relegated to Section SM1

of the accompanying Supplementary Material. The information matrix I(β0) is

also defined there. Because finding I(β0) involves solving an integral equation

with no explicit solution, estimating I(β0) using I(β̂n) is not straightforward

(Zhang, Hua and Huang (2010); Li (2016)). Consequently, one can either use
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the least squares method of Zhang, Hua and Huang (2010) and Li (2016) for a

standard error estimation, or rely on the computationally simpler nonparametric

bootstrap method. The validity of the bootstrap for the Euclidean parameter

estimates in general semiparametric M-estimation problems has been verified by

Cheng and Huang (2010).

3.2. Implementation

The proposed methodology can be implemented easily using the function

ciregic, available in the R package intccr (Park, Bakoyannis and Yiannoutsos

(2019)). The BP uses fixed knots once the degree mw and the interval [aew, b
e
w],

that is, the support of We, are determined. This nice property of a BP allows us

bypass the knot selection procedure during the estimation. In practice, we can

set mw = [n1/3], or use the BIC (shown in the data analysis) to select mw.

In practice, the true link functions are usually unknown. Hence, selecting the

link function parameters is necessary. We use a grid search over a plausible com-

bination of α1, . . . , αk, and select the combination of α and the degrees m and mw

of the B-splines and BPs, respectively, using the BIC. The final step is to obtain

the parameter estimates of the model by maximizing the likelihood function (2.2)

using a constrained optimization algorithm. The R package alabama provides a

useful set of functions for optimization under both linear and nonlinear inequality

constraints. The ciregic function uses this package to impose the monotonicity

and boundedness constraints automatically. We implement this routine in our

subsequent data analysis. The associated R code is available from the following

GitHub link: https://github.com/bandyopd/PLTM-ICCR.

4. Simulation Study

In order to evaluate the finite-sample performance of our method, we perform

simulation studies in which we generate synthetic data under three scenarios. In

scenario 1, under a correct model specification, we compare the performance of the

estimation procedure when the nonlinear regression functions are approximated

by BPs and B-splines. In scenario 2, we evaluate the effect of covariate con-

founding and model misspecification. Finally, in scenario 3, we assess the model

performance under a more complex nonparametric regression function than those

of scenarios 1 and 2. Scenarios 2 and 3 and tables and figures summarizing the re-

sults from the three scenarios are presented in Section SM2 of the Supplementary

Material.

Scenario 1: We considered two causes of failure and three covariates in the

https://github.com/bandyopd/PLTM-ICCR
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model. The first two covariates Z = (Z1, Z2)> have linear effects, and the third

covariate W has a nonlinear effect, where Z1 ∼ Bernoulli(p = 0.4), Z2 ∼ N(0, 1),

and W ∼ Unif(0, 2π). The CIFs for causes 1 and 2 have a proportional odds

(PO) form, given by

Fj(t) =
exp

[
φj(t) + β>j Z + ψj(W )

]
1 + exp

[
φj(t) + β>j Z + ψj(W )

] , j = 1, 2,

where exp [φ1(t)] = 0.4 [1− exp(−0.6t)] /0.6 and exp [φ2(t)] = 0.75[1−exp(−0.5t)]

/0.5 follow a baseline cumulative subdistribution hazard function from a Gom-

pertz distribution (Jeong and Fine (2007)). Under this setting, the true nonlin-

ear regression functions corresponding to the first and second causes of failure

are ψ1(W ) = sin(W ) and ψ2(W ) = − sin(W ), respectively. The true values

for the regression parameters are β1 = (β11, β12)> = (0.5,−0.3)> and β2 =

(β21, β22)> = (−0.5, 0.3)>. The parameters and functions were chosen such that

limt→∞{CIF1(t) + CIF2(t)} = 1. Based on this model, we simulated the failure

times and causes of failure. The first observation time U1i (e.g., clinic visit) was

simulated from an Exponential(3). The following observation times were placed

at times V apart from the previous observation, where V ∼ Exponential(3),

with an upper bound of three years. This choice led to an average time of four

months between two consecutive observations. The baseline cumulative incidence

functionals φj(t) were approximated by B-spline functions, and the nonlinear re-

gression functions ψj(w) were approximated by BP functions, denoted as “B-

spline+Bernstein polynomials.” As suggested by an anonymous referee, we also

included the “B-spline+B-spline” approach in our comparison, that is, where the

nonlinear regression functions ψj(w) are approximated by B-splines as well.

For the implementation, we set k = 1 in the R function ciregic. This implies

that cubic B-splines with [N1/3] internal knots are used to approximate φj(t),

where [N1/3] is the largest integer up to and including N1/3, and N is the total

number of distinct time points Vi and Ui for the non-right-censored subjects, plus

the number of right-censored subjects. For the “B-spline+Bernstein polynomials”

approach, we use BPs with m = 5 degrees for the approximation of ψj(w) (i.e., six

basis functions). For the “B-spline+B-spline” approach, we use six cubic B-spline

basis functions. We consider two sample sizes, 100 and 500, with the number of

simulated data sets for each scenario being 200. For estimating the standard

error of β̂, ciregic has two options: nboot=0, or nboot=a positive integer,

where nboot indicates the number of bootstrap samples for estimating the vari-

ances and covariances of the estimated regression coefficients. When nboot = 0,
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the least-squares (LS) method is used. Pilot simulation studies revealed that, al-

though the LS method is significantly faster, it leads to biased variance estimates.

Hence, we used the bootstrap method with nboot = 500 bootstrap samples in

our simulation studies.

The simulation results, which report the AEST (average estimate of β),

MCSD (Monte Carlo standard deviation of estimates), ASE (average estimated

standard errors of estimates), and ECP (empirical coverage probability), are pre-

sented in Table S1. For the “B-spline+Bernstein polynomials” approach, we

observe that the MCSDs mostly agree with the ASEs, and the ECPs remain very

close to the nominal 95% level, implying that the bootstrap method works well.

Figures S1 and S2 display histograms of the estimates of β for n = 100 and

500, respectively, and Figures S3 and S4 present plots of the true and estimated

baseline CIFs and nonlinear regression functions, respectively, also for sample

sizes 100 and 500. The histograms reveal the satisfactory asymptotic normality

of the estimator of β, even for relatively smaller sample sizes. The differences

between the true and estimated functions are quite small, and decrease with an

increasing sample size. Furthermore, the biases of the estimates of β are also

small, revealing satisfactory performance of the approximations to the unknown

nonlinear regression functions by the BPs.

Table S1 also presents the corresponding statistics for the “B-spline+B-

spline” approach, and Figures S5–S8 present histograms of the corresponding

β estimates, and plots of the true and estimated baseline CIFs and nonlinear

regression functions, respectively, also for sample sizes 100 and 500. We observe

that the “B-spline+B-spline” approach yields overestimated coverage probabili-

ties and a larger bias for the nonlinear regression function estimates, as compared

with the “B-spline+Bernstein polynomials” approach. This indicates that the

BPs possess a better shape-preserving property than that of the B-splines, and

provides an improved estimation of the coverage probability.

5. Application: HIV Data

Based on the HIV data set (Bakoyannis, Yu and Yiannoutsos (2017)), our

goal is to employ the PLGOR transformation model to evaluate the factors po-

tentially associated with the cumulative incidence of being lost to care and of

death while in care (i.e., under continuous HIV care coverage and prior to be-

coming lost to care). These are the two competing risk endpoints that are interval

censored. The former outcome (lost to care) is associated with non-retention in

care, which can lead to increased mortality for the patient by virtue of not receiv-
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Table 1. HIV data analysis: Results from fitting the FGPO model, when α = (0, 1) with
a new term Age2.

A. Loss to care B. Death while in care

Covariate mRR1/β̂ (p-value) mRR1/β̂ (p-value)
Age at ART initiation

per 10 years 0.6892/-0.373 (<0.001) 2.0403/0.713 (<0.001)
Age2 at ART initiation

per 100 years2 1.0222/0.022 (<0.001) 0.9473/-0.055 (<0.001)
Gender

Male vs Female 1.1752/0.161 (0.087) 1.4933/0.401 (0.003)
CD4 at ART initiation

per 100 cells/µl 1.0322/0.031 (0.264) 0.6163/-0.484 (0.003)
1 Measure of relative risk 2 Subdistribution hazard ratio 3 Odds ratio

ing antiretroviral treatment (ART). The data on 3,053 patients came from the

East Africa IeDEA (International Epidemiologic Databases to Evaluate AIDS)

Regional Consortium (Zaniewski et al. (2018)), which involves HIV care and

treatment programs in Kenya, Uganda, and Tanzania. Loss to care is defined by

the clinicians as having no clinic visits for a three-month period. This cutoff was

chosen because patients without care for three months are expected to have run

out of ART supplies for at least one month. Such a treatment interruption is

clinically significant because it is associated with increased viremia.

To motivate our PLGOR transformation model, we add a new covariate term

Age2 to the model that assumes the popular Fine–Gray proportional subdistri-

bution hazards model for the loss to care outcome, and the PO model for the

death while in care outcome. This model is obtained by setting α = (0, 1), and is

henceforth referred to as the FGPO model. The results are shown in Table 1. We

observe that both Age and Age2 are statistically significant in the model, which

indicates a possible nonlinear effect of Age on the cause-specific CIF. Hence, a

partially linear model, accommodating the nonlinear effect of Age, is preferred.

Now, to fit the PLGOR model, we employ BPs to model a nonparametric

function of Age. The CIFs are fitted using cubic B-splines, with the number

of knots controlled by the argument k = 1 in the R function ciregic. This

results in 19 B-spline basis functions for each CIF. The knots are placed at the

corresponding percentiles of the distribution of the observed times (Vi, Ui). We

estimate the variance of the regression parameters using the bootstrap method

with 500 replications. For practical implementation, we need to select the pa-

rameters α = (α1, α2), indexing the link functions for the competing events, and

the degree mw of the BP. To do so, we use the following grid-search BIC:
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Table 2. Comparison between the proposed model with α = (2, 0), the Fine–Gray
proportional odds model (FGPO) with α = (0, 1), and the linear transformation model
with α = (2, 1.2).

FGPO: α = (0, 1) α = (2, 1.2) α = (2, 0)

Outcome Covariate mRR1/β̂ (p-value) β̂ (p-value) β̂ (p-value)

A. Loss Age

to care per 10 years 0.7832/-0.244 (<0.001) -0.348 (<0.001) ψ1(Age)


B1(Age) 1.353(< 0.001)

B2(Age) −0.992(0.117)

B3(Age) 0.185(0.683)

Gender

Male vs Female 1.1702/0.157 (0.031) 0.273 (0.005) 0.282 (0.022)

CD4

per 100 cells/µl 1.0022/0.002 (0.947) 0.001 (0.976) < 0.001 (0.940)

B. Death Age

per 10 years 1.3603/0.308 (<0.001) 0.329 (<0.001) ψ2(Age)


B1(Age) −1.038(0.005)

B2(Age) 1.417(0.100)

B3(Age) 0.168(0.808)

Gender

Male vs Female 1.7583/0.564 (0.008) 0.567 (0.008) 1.6772/0.517 (0.004)

CD4

per 100 cells/µl 0.6993/-0.358 (0.003) -0.346 (0.006) 0.9972/-0.0034 (0.026)
1 Measure of relative risk 2 Subdistribution hazard ratio 3 Odds ratio

BIC(α,mw) = −2`n(θ̂;α) + log(n){4 + 2(mw + 1)}.

We perform a grid search over all possible combinations of α1 ∈ {0, 0.5, . . . , 4}
and α2 ∈ {0, 0.5, . . . , 4}. The minimum BIC value (6,666.91) is achieved at

mw = 2, with α = (2, 0), and the corresponding maximum log-likelihood value

for the fitted PLGOR model is −3,140.88. Despite the two additional parameters,

this provides a better fit than the optimal linear transformation model (LTM)

of Bakoyannis, Yu and Yiannoutsos (2017), where the maximum log-likelihood

(-3,144.47) was achieved at α = (2, 1.2). For this comparison, we chose the argu-

ment k = 1 within the ciregic function, keeping the control on the number of

knots in the B-spline structure unchanged. Our model also outperforms the pop-

ular Fine–Gray proportional subdistribution hazards model for both competing

risks (FGFG, henceforth), which corresponds to α = (0, 0), with the maximized

log-likelihood value = −3,147.05, and the FGPO model with the maximized log-

likelihood value = −3,146.91.

The resultant parameter estimates (and p-values) obtained from fitting the

FGPO model, the LTM of Bakoyannis, Yu and Yiannoutsos (2017) with α =

(2, 1.2), and our proposed PLGOR model with α = (2, 0) (the best-fitting model)

are presented in Table 2. We observe that for both outcomes, males have a sig-

nificantly higher CIF than that of females for all models. Although there is no
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Estimation of risk functions ϕ1 and ϕ2
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Figure 1. Estimated nonparametric risk functions of age at ART initiation, derived from
fitting the PLGOR model to the HIV data. The solid and dashed lines represent the loss
to care and death in care, respectively.

evidence of an association between CD4 cell count at ART initiation and the

CIF of loss to care (from all models), lower CD4 counts are significantly associ-

ated with increased CIF of death while in care, as revealed by the appropriate

summary quantities (odds and relative risks) for the models. This agrees with

previous studies (Lawn et al. (2009)) exploring the effect of low CD4 cell counts

on mortality risks. Finally, exploring the association of Age with the two com-

peting risks revealed interesting findings. For proper interpretation, we plot the

two fitted nonparametric risk functions in Figure 1. We observe that a lower

age (<63 years) at ART initiation is associated with a decreased CIF of loss to

care and an increased CIF of death while in care. However, for Age ≥ 63, the

respective directions of the association are reversed, that is, an increased CIF

for loss to care and a decreased CIF of death while in care. These new findings

quantifying the time-varying effects of age were not revealed from the FGPO and

LTM fits.

6. Conclusion

The central contribution of this study is to introduce covariate nonlinearity

into GOR transformation models for interval-censored competing risks data. This

general class includes many other semiparametric models as special cases, such

as the PO (Jeong and Fine (2006); Shi, Cheng and Jeong (2013)) and the pro-

portional subdistribution hazards models (Fine and Gray (1999)). Our method
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comprises a purely B-spline approach, with a faster convergence rate under the

same smoothness conditions for different nonparametric functions, and a purely

BP approach to enhance the computational scalability, enforcing an optimal

shape-preserving property among all approximating polynomials (Carnicer and

Peña (1993)). Unlike other methods (Li (2016)), our proposal explicitly incor-

porates the boundedness of the cause-specific CIF constraint into the optimiza-

tion. With regard to theoretical contributions, the sieve MLE for the regression

(Euclidean) parameter based on the combined B-spline and BP sieves is shown

to be consistent, semiparametrically efficient, and asymptotically normal, using

newer techniques, such as the symmetrization inequality, Hoeffding’s inequality,

and the Riesz representation theorem. We further show that the estimators for

the functional parameters (baseline CIFs and nonparametric risk functions) are

consistent, almost surely in an L2-metric, and converge at the optimal rate for

nonparametric regressions. We also provide an easy implementation of our model

using the R function ciregic.

A practical issue during our model implementation is to decide between para-

metric and nonparametric choices for our covariates, or equivalently, how to de-

termine q, representing the number of unknown smooth regression functions. To

the best of our knowledge, there are no theoretical investigations in this regard

within the interval-censored competing risks framework. However, for ordinary

additive partially linear regressions models, Zhang, Cheng and Liu (2011) de-

veloped a method to distinguish linear and nonlinear terms for partially linear

models, automatically and consistently. Their ideas can be adapted to our model,

although a thorough investigation of this topic is beyond the scope of the current

work. Hence, we suggest two pragmatic strategies in applications. One is simply

to put discrete covariates in the linear part and continuous ones in the nonlinear

part. Another more reasonable approach is called the screening method, which

involves conducting an initial preliminary univariate analysis, and then separat-

ing the continuous covariates based on the shape of the estimated nonparametric

functions. Specifically, one can include all the categorical covariates in the linear

part, and then add each continuous covariate sequentially to construct a partially

linear model. If the univariate, continuous covariate, partially linear model indi-

cates nonlinearity, we can assign this covariate to a nonlinear function; otherwise,

we assign it to the linear part, and eventually determine q. This is what we did

in the HIV data analysis.

There are a number of future directions to pursue. For example, the proposed

methodology applies to the case of current-status data (Groeneboom, Maathuis

and Wellner (2008a,b)), which represents a more severe form of interval censor-
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ing (Zhang, Hua and Huang (2010)). It is also straightforward to show that our

results hold for other general classes of partially linear semiparametric transfor-

mation models, such as the Box–Cox transformation models (Ji et al. (2017))

for survival outcomes. Furthermore, we assumed that the true link functions

are known, as in Scharfstein, Tsiatis and Gilbert (1998), Fine (1999, 2001), and

Mao and Wang (2010). In practical applications, this assumption may not hold.

Another practical issue is the selection of the degree of the BP. To this end, and

following Mao and Wang (2010), we performed a grid search over a plausible

set of combinations of (α1, . . . , αk) and a range of mw values, and determined

the combination using the BIC. However, the issues related to investigating the

additional variability due to this type of model selection remain an open problem

in semiparametric modeling, and require further investigation.

Supplementary Material

The Supplementary Material consists of two sections. Section SM1 contains

detailed derivations and proofs of the theoretical results presented in Section 3.

Section SM2 contains scenarios 2 and 3, and tables and figures summarizing all

the simulation results in Section 4.
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