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The Supplementary Material consists of two sections. While Section contains detailed derivation and proofs of
the theoretical results presented in Section [3| (main paper); Section presents Scenarios 2 and 3, the tables and figures

summarizing all the simulation results in Section {4| (main paper).

SM1. Derivations and Proofs

Proof of Theorem [1; Consistency

Techniques from empirical processes (Shorack and Wellner| |2009) will be applied to derive the consistency of the B-spline and
Bernstein polynomial sieve MLEs. Define Pf = [, f(z)dP(z) and P, f =n~' 3" | f(X;), the empirical process indexed by
the function f evaluated at X; = (Vi, Uy, 6i1, ..., 0ik, 001, ..., 04, i, Z;), the sample point of individual i, with X denoting
the sample space. Also, let K and C denote general constants which may differ according to the settings. The following

regularity conditions are assumed:
Cl. E(ZZ") is non-singular and Z is bounded, i.e., there exists a 2o > 0 such that P(||Z|| < z0) = 1.
C2. B; € Bj, where B; is a compact subset of R? for every j =1,...,k, where d is a fixed integer and 1 < d < n.

C3. There exists an 7 > 0 such that P(U — V > n) = 1 and the union of the supports of V and U are contained in [a, b],

where 0 < a < b < oo and 0 < minjeqs,.. 5} Fj(a) < Z?zl F;(b) < 1.

C4. Functions ¢o,; € ®, j = 1,...,k, where ® is a class of functions with bounded p-th derivative in [a,b] for p > 1 and
the first derivative of ¢o,; is strictly positive and continuous on [a, b]. Functions g je € ¥, e =1,...,q, where U is a
class of functions with bounded r-th derivative in [af,, b5,] for 7 > 1 and the first derivative of 1o j. is continuous, ¢ is

a fixed integer and 1 < ¢ < n.

C5. The conditional density of (V,U) given (Z, W) has bounded partial derivatives with respect to (v,u) and the bounds

of these derivatives do not depend on (v, u, z, w).

C6. For some k € (0,1), a' Var(Z|V,W)a > ka' E(ZZ"|V,W)a a.s. and o' Var(Z|U,W)a > ka' E(ZZ"|U,W)a a.s. for

all @ € RY.

C7. The number of internal knots N; = O(n”) of the B-splines and the degree of the Bernstein polynomials m.,, = O(n")
for all j =1,...,k, where v satisfies 1/[2(1 4+ 0)]< v < 1/(20), 0 = min(p,r/2).
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C8. For the o defined in (C7), 0 > 1 and v > 1/(40).

C9. The semiparametric information matrix (/o) is positive definite.

Let F1 = {l(6;X): 0 € ©,} denote the class of log-likelihood functions indexed by the parameter space ©, =
H;?:l(l’ﬁ’j ® Mp,j ® Wy;). The Euclidean parameters are 8; € B; and the functional parameters are ¢; € M, ; and
1 € Wh,j, respectively, for j = 1,..., k. The functional parameter space My, ; = My (y;, Mg n,;) is the space of monotone

B-spline functions defined on the observation time interval [a,b], and Wy ; = Wha(ay, My n,;) is the space of Bernstein

polynomial functions without constraints defined on the interval [a., bw]. Convergence will be proved in the La-metric

(01,02 (Zuﬁ“ SO+ 37 60 — 6D + 3 [l = w%) |

Jj=1 Jj=1

for 6; = (BT, 6T, M) and o = (87,67 )T, where

6 P = B [o) (V) ~ 62 (V)] + B [6@) — 6P @], G=1,..k

and
a
o o7 = 312 2T = 3B [ o~ =
e=1
and || - || denotes the Euclidean norm. Let M(0) = PIi(6; X) and M, (0) = P,l(0; X), which leads to M, (8) — M(0) =

(P,, — P)I(#; X) for each 6 € ©,,. In order to prove that d(f,,00) > 0, we need to verify the following conditions:
(1) supyeo,, Mn(0) —M(0)] =5 0.
(2) supg . 4(6,00)> M(8) < M(6o).

(3) The sequence of estimators 0., satisfy Mn(én) > Mn(0o) — 0a.5.(1), where 0q.5.(1) represents a random term tending

to zero almost surely.

Proof of (1): We first define the covering number of the class F1. For any € > 0, define the covering number N (e, F1, L1(P,))

as the smallest value of x for which there exists {6(1),...,0()} such that
_min_ [Mn(0) — M(6;))| <e

for all § € ©, and ;) = (ﬂ(j),¢(j>7¢(j)) coO
Assume that Conditions C1-C5 hold. Then, the covering number N (¢, Fp, L1 (P,)) of the set of functions F,, =

{£(0,X) : 0 € ©,} satisfies
]\](6 Fn, Ly (Pn)) < KM:(W-"-CI(mw+1))E—[d+k(m+Q(mw+1))]7

where K denotes an arbitrary constant, that varies according to the inequality, M, = O (n®) with 0 < a < 1/2, which
controls the size of the space ©,,, m is the number of the B-spline basis functions, m,, is the degree of Bernstein polynomials,
kp is the dimension of a regression parameter 8, and k(1 + q) is the number of nonparametric functions. We now proceed to
calculate the covering number N (¢, Fy, L1 (Py)). For any ' = (ﬂl, qbl,wl) , 6% = (62, @2, 1/12) € ©,, and using the Mean

Value Theorem, we have

007 X) = £(0% X)) < K([181 = Bell + 16" = ¢ loo + 19" = ¢lo0),
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SM1. DERIVATIONS AND PROOFS

where [[¢' — ¢%[lo = 35
Denote v = (Viy,..

)

',’-Y_/]L:m)T7 i

= ¢flloo; and |9 — 9?0 =

k
Zj:l 23:1 Hd}]le - 111326“00

,k, the B-spline coefficients corresponding to d);, and a§~€

1,2, 7 = 1,...

(aﬁje)l, ce aéje)mw)T, j=1,...,k,e=1,...,q, the Bernstein coefficients corresponding to 1/)§e~ Then, we have
k
e ngpncb;—gﬁ?n

= ZsupHZ%s (t,m,a,b) — Z%s (t,m,a,b)]|

k m
2

S Zlgla'x ‘,—YJS 7js|zBs(t7m7a7 b)
Jj=1 s=1
k

= Y max |y, =7

1<s<m Js 78

j=1

since Z;n:l Bs(t,m,a,b) =1, Bs(t,m,a,b) > 0, where ||'y]1 — 'ny = maXi<s<m |'y}S —

[ |

since

IN

IN

IN

' Bs (We, Muw, a5y, by,) = 1, BS (We, Muw, ag,, b5,) > 0, where Ha%je)

k
Sl =l
j=1

77s|. Similarly, we have

kg
ZZ ijle - ’w]?e'loo

j=1le=1
ZzsuplzaOe)s{B (Wes M, @y, biy) — B (), Mo, Gy b)) }
j=1le=1 We

Moy
- Za?je)s{B:(weﬂmw7aZJ7bfv) - Bg(ai}amw7afmbi))}‘

s=0

k q My Moy
Zzsup|za(]e)s weamwaawvbe Za(ges wevmwvawabe”
j=1e=1 =

Za(ﬁ)s
Za(Je)s

aw7mw7aw7be awamwaawvbe)u

+Sup|za]e)s
QZZsup|ZaJe)s

be
w67mw7aw7 w wﬁam’waa‘w7 w)'

j=le=1 We
May
1 2 e e e
2 E E max |a(je)s - a(je)s| E Bs (we,mw, Aoy bw)
- 0<s<mqy
j=1e=1 s=0
k a
1 2
2> > ot — atioll,
j=1e=1

- a?js) ” = MAaX0<s<my, ‘a% a?je)SL

je)s

Thus, from the above results, we obtain

0" X) — (0% X)] < KB — ﬁz|+KZH%w|+KZZ||%E> ajoll.

j=1le=1

Let Crq = 1 + k + kq. Then, from Lemma 2.5 of [van de Geer] (2000), we show that {8 € R%,||8|| < M} is covered by

{5M/(e/(Chq
with radius e/(Crq K

K))} balls with radius /(CroK), {75 € R™, maxi<s<m |7js| < Mn} is covered by {5M,/(e/(CrgK))}™ balls

)7j:17"'7

k, and {a(je) € R™ ! maxo<s<im,, |aeys| < Mn} is covered by {5M,/(e/(CrgK))} ™ot
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balls with radius €/(CrqK), j=1,...,k and e = 1,...,q. Therefore, the L1 (P,) covering number of F, is bounded by

5Ckg KM dﬁ 5Cke KM, \™] 1 11[ 5Ckg KM, \ ™!
€ € j=1le=1 €

j=1

N (e, Fn, L1 (Py))

IN

< KMt ) ik (noa(ma +1)]

Now, we are ready to show the condition (1) holds. Given |£(0, X)| is bounded under Conditions C1-C5, we as-
sume suppeg [£(0, X)| < Ma, where M, > 0 is a constant. Then, P{{(0,X)} < P{supce [€(0,X)|}*> < MZ. Let
an = n~ 29 (logn)'/? and €, = ea, with v/2 < ¢ < 1/2 and € > 0. Then, {e,} is a non-increasing sequence of

positive numbers, with ¢, — 0 when n — co. Then, for a sufficiently large n and any 6 € ©,,, we have

1/n)P£%(0, X) 1 1 1
Var{ P00, X)}/ (den)? < ¢ < = .
ar{ Pl(6, X)}/ (4en)” < 16€202 ~ 16€2na2M,  16e2n2¢lognM, < 2
Let P? denote the signed measure that places mass +n "' at each of the observations {X1, ..., X, }, with the random +

signs being decided independently of the X;’s. Then by [Pollard| (1984) (refer to page 31), and Var{ P,£(6, X)}/ (4€,)* < 1/2,
we obtain the following symmetrization inequality:
P{ sup |P.l(0,X) — PL(6, X)| > Sen} < 4P{ sup |Pi¢(6,X)| > Qen} .
0co, 0con,
Let X = {X1,...,Xn} and J, = N(en/2,Ln,L1(Py)). Given X, choose 6; € ©,, j = 1,...,J,, such that for all
0 € ©,, we have

i P, |06, X) — (69 X /2.
jenin, 1(8, X) — £( N <en/

Then, for each 0 € ©,, there exists a j' € {1,...,J,} such that P,[{(, X) — é(@<j/>,X)| < €n/2, hence, |P7{0(0,X) —
0090, X)} = [n 7t {000, X3) — €0V, X0)} < n Tt 000, X0) — €097, X)| = Pal€(0, X) = £(097), X)| < €n/2
and |P2{£(09"), X)| = |P2e(6, X) — P2{e(0, X) — €09, X)}| > P2|6(6, X)| — €n/2. Then, we obtain

max [P0V, X)| > sup P20, X)| — €n/2.
je{l,....,dn} 0€O,,

Therefore, we have

Pr(sup P2J0(0, X)| > 2¢|X) < Pr( max |P2{L(0Y,X)| > 3en/2|X)
0€O0, Je{l,....In}
< P P09, X)| > en|X
< Pr(_max [P )| > €n]X)

S Nlen/2 Lo, Ii(P) | _max,  Pr(PU0D, X)] > enX).
JE

----- n

From Hoeffding’s inequality (Pollard, (1984, Appendix B), for each 6%, we have

Pr(|P2e(0Y, X)| > en|X) = Pr(|zn::|:£(0(j)7Xi)\ > ne|X)
< 2exp[—2(nen)?/ Z(%(@‘”,Xi)ﬁ
< 2exp{—ne/(2Ma)}.

By the three inequalities above, we obtain

Pr(sup P06, X)| > 2en|X) < 2N(en/2,Ln, L1(P,)) exp{—ne./(2M,)}
60cO,

IN

2 K MF(mta(mew+1)) = [d+k(m+q(mw+1))] exp{—nez /(2M,)}.
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Using this result and the symmetrization inequality derived above, we obtain

Pr{ sup |P.4(0,X) — P09, X)dP| > 8En}
0€0,

IN

4P{ sup |Pl(0,Z,W)| > 2en}
0co,

IN

K MF(mta(muw+1)) —ld+k(m+q(mw+1))] exp{—ne2 /(QMQ)}

IN

8K exp {ak{m + q(mw + 1)} = {d + k(m + q(mw + 1))} log e — nes /(2M.,,)

8K exp { —{€®/(2Ma) + o(1)}n* log n]

IN

8K exp (—K1712C logn) ,

where 0 < K1 < €/(2M,). Thus Y>°7, P {supyce, |Pnl(0, X) — PL(6, X)| > 8en} < co. By the Borel-Cantelli lemma, we
have supycg,, |Pnf(60,X) — P£(0, X)| — 0 almost surely, which completes the proof of (1). O

Next, we are going to show that condition (2), i.e., supy . 4(9,9y)>c M(0) < M(o), holds. By definition we have:

F)(V,Z,W)

k
M(8o) — M(0) = E{ZFJ‘)(V’Z’W”‘%@(VZ,W)

FXU,Z,W) - F)(V,Z,W)

J

Fj(U7ZaW) —F](MZ,W)

- Z?:l FJQ(Uv Z, W)
1= KU 2,W)

k
+> [FU,2,W) = F)(V, 2,W)] log

e

log

1-> F)(U,2,W)
j=1

k FJO ‘/727W
- E{Z:FJ-(MZWW {W}

k . ;
+ > [E(U,2,W) = F5 (V. Z, W) m {Fj U,2,wW) - F}(V,Z, W)}

Fj(UaZaW) _FJ(MZ,W)

b

k
1-> F(U,Z,W)

=1

1= (U, 2,W)

_|_
1 _Z?:1 FJ(U7ZaW)

m

where, as in Zhang et al.| (2010), m(z) = zlogz —x +1 > (1/4)(x — 1)? for = € [0, 5]. Hence, for any 0 in a sufficiently small

neighbourhood of 0y, we have
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— ok 1F°<UZW> I
1= (U, Z,W)

j=1

- 1E{ > F;) [FY(V, 2,W) — F;(V, 2, W)]*

AT\ H FE(V.ZW

1 0 0 ) ) 2
+Z¥%MZW%JwMZWﬂEWZMWJMMZW%JHMZW%HHMZWH

1 - ’
+ FQU,z,w) =S FjU 2z W
el ) SLIETIE SEIES }
1 k
0

> 4E{;[F](V,Z,W) (V,2,W)]

k
+Y [P0, 2,W) — F)(V,2,W) — F;(U, Z,W) + F;(V, Z,W)]
k 2
[F)(V,2,W) — F;(V, Z,W)] {Z (U, Z,W) j(U,Z,W)]} )

j=1

k k
STFU,Z,W) =S F(U Z,W)
j=1

\V;
-
=
—
Mx-

Y

ﬁE {Z[FJQ(X/,Z,W)Fj(V,Z,W } +{Z [F(U, Z,W) — j(U,Z,W)]} )

Jj=1

= 0E<{§j%%J &fz+@w—¢ﬁw7+§]%w—¢ﬁm@]}

e=1

k q 2
+ {Z {(ﬂo,j —B5) " Z + (do; — 6;)(U) + D _(Yo,5e — %)(We)} } )»

where the last equality follows from a Taylor expansion around the value of the linear predictor n;(X). Using the same

arguments as in Wellner et al.| (2007)), pp. 2126-2127, along with regularity conditions C1-C6, it follows that

k k k
MM@M@zC(XMmmmF+ZH%@Mé+§}%wm@)—cf%ﬂ»
Jj=1

j=1 j=1
Consequently

sup  M(9) < sup [M(6o) — Cd2(00,0)]
0 : d(0,00)>¢ 6 : d(6,00)>¢

— _ 1 2
= M(bo) gid%wze()d (60, 6)
= M(b) — C€

< M(6o).
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Thus, we prove condition (2).
Finally, we prove condition (3), i.e., that the sequence of estimators 6,, satisfy M, (6,) > M, (6o) — 0a.s.(1). Letting
00,n = (Bo, ¢po,n) it follows that

M, (6,) — M., (6o)

= Mn(0n) — Mn(60,n) + Mn(60,n) — Man(60)

Y

Mn(eo,n) - Mn(eo)
- Mn (00,71) - Mn(eo) + M(eﬂ,n) - M(Gﬂ,n) + M(GO) - M(QO)
= {Man(fo,n) — M(0o,n)} + {M(60) — Mn(60)} + {M(b0,n) — M(60)}. (SM11)
Now, from condition (1) proved earlier, we obtain {M,,(0o,n) — M(60,)} = 0a.5.(1). By the SLLN, we obtain {M(fy) —
M., (00)} = 04.5.(1). Next, for the remaining term in (SM11)), we can again use the boundedness of the loglikelihood function

for any sample point X € X. Furthermore, with [¢o,n,j — ¢0.;|le = O(n™"") and |[tho,n,je — Yo.jellw = O(n~"/?) along with

the dominated convergence theorem, it follows that
M(Go,n) — M(eo) > —0(1)

as n — o0o. Thus

Mn(én) - Mn(ao) > Oa.s.(l) - 0(1) = _OaAsA(l)

and this proves the final consistency condition. Consequently

N[=

k k k
<Z 1Bin = Bioll” + D N bsin — d50l3 + D din — ¢j,0||?p> 0. u
j=1 j=1 j=1

Proof of Theorem [2; Rate of Convergence

Derivation of the rate of convergence will be based on Theorem 3.2.5 of jvan der Vaart and Wellner| (1996)). We showed in
the proof of consistency that
M(6o) —M(0) > Cd* (60, 0)
and that
Mn(én) - Mn(e()) 2 Il,n + IQ,ny

where 11, = (P, — P)[1(Bo, $0,n, %0,n; X) — U1(Bo, po,%0; X)] and Iz = Pl(Bo, po,n, Yo,n; X) — 1(Bo, po,%o; X)]. Applying a

Taylor expansion leads to

I (Pn —P) [i2,¢(507 6,05 X)(bo.n — o) + l2,(Bo, &, 03 X) (Yo.n — TﬁO)]
¢O n ¢0 )7/}0 n w0:|

7o'u+e 701/7‘»6

— WP, — P) |:lz 0(Bo, 8,13 X) 2 by (Bo, 6,15 X

for any 0 < € < 1/2 — ov. The uniform boundedness of l‘2,¢(,60, 43,1/;;)() due to the Conditions C1-C4 and the fact that
lpo,n — dollee = O(PY) = O(n=") (Luk 2007) and [0, — Yollec = O(n~"/?) = O(n~7") (Lorentz, 1986) lead to

) ¢0 n ¢0 1/)0 n wO

n— ov+te n— ov+te

P i2,¢(507¢~5:7;§ :| _>O, P |:l.2,1/)(607$7¢; ) :| — 0.

Next, we consider the class of functions Fo = {I(Bo, ¢,%; X) — 1(Bo, o, Y0; X) : ¢; € Mjn,|l¢; — do,ille < Cn™P, e €

Wiemn, |[¥je — thojellw < Cn~"™/2 for any j = 1,...,k, e = 1,...,q}, and construct a set of e-brackets with Lo(P)-norm

7
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bounded by

(1/6)2?:1 Cym+Eio1 Témy Cie(mutl) (1/e)mErtmutDE2 - Congequently, the corresponding bracketing integral

J[](l, F2, La(P))

1
/ V/log Ny (e, Pz, La(P))de
0

1

< VmKi + (me + 1)K2/ Vlog(1/€)de
0

— \/mKl + (mw + 1)K2/ u' e du
0

< 0o,

because the integral above is bounded by 1 (Kosorok} |2008). Hence, using Theorem 19.5 of van der Vaart| (2000), F» is
P-Donsker. Since F» is P-Donsker and by Corollary 2.3.12 of [van der Vaart and Wellner| (1996)), we have that

(B — P) |ia(B0, 6, 65 ) 22290 1, (80, 6, x) Lom — 0| _ (172,

n—ovte n—ov+te

Consequently,

Il,n _ Op(n—au+en—1/2) _ Op(n—Zau).

Since the function m(z) = zlogx — 2 + 1 is bounded by < (z — 1)? in a neighbourhood of = 1, it follows that
M(60) = M(00.n) < C{lldo = donlls + [0 = Yo.nlls} = O(n™*7)

and thus
Lo = M(60,n) — M(6o) > —O(n27").

Consequently,
My (0n) — Min (60) > —Op(n~27") = —Op(n_Qmi“(G”’(l_")/Q)).

Defining the class of functions F3(n) = {£(0; X) — £(00; X) : ¢; € M, pje € WI® forany j =1,....k, e =1,...,q,

and d(0,60) < n}, and using similar arguments as in the proofs of consistency, we have that
log N (€, F3(n), L2(P)) < C{kd + kq(mw + 1) 4+ km} log(n/€)

and thus

T Fsn) Lo(P) = [ 1 lom Ny, Falo) La(P)e

Q. / " Viog(n/e)de = CQu{T(3/2)}n,

IN

where Q,, = (kd 4 kq(mw + 1) + km)'/2. Now, using the uniform boundedness of [(#; X) as a result of Conditions C1-C4,

and Theorem 3.4.1 of [van der Vaart and Wellner| (1996)), the function ¢, (n) of Theorem 3.2.5 (van der Vaart and Wellner]
1996) is

2
Ouln) = Qun + 21

Also, noticing that @, = O(n"), we have that

20v, v

20v ovy _ ov, v/2 n _ . 1/2 ov—(1—v)/2 20v—(1—v)
n“ 7 ¢dn(1/n°") =n7"n"" + eyl [n +n ]

Consequently, if ov < (1 —v)/2, then n??" ¢, (1/n7") < n'/2. Based on this and in accordance with |Zhang et al,l (]2010'), we

conclude that if we choose 7, = n™*@»1=/2) then r26,,(1/rn) < n'/? and M, (6,,) — M, (60) > —O,(r;, ). Therefore

d(0,,00) = Op(rpt). ]
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Proof of Theorem 3 Asymptotic Normality

The presence of more than one nonparametric component in the marginal model for each competing risk event precludes us
from using Theorem 3 of |Zhang et al.| (2010) to prove the asymptotic normality of the estimator for Eucidean parameter Bn
Instead, we use the method in |Chen et al.| (2006), or |Zhou et al.| (2017).

Let Q be the linear span of © — 6, and 8, = n~ ™M {1=¥)/2.0v} Jenote the rate of convergence obtained in Theorem 2,
where o = min(p,r/2). For any 6 € {6 € © : d(0,60) = O(n)}, define the first order directional derivative of £(0, X') at the

direction w € 2, given as

e + sw, X)

{0, x)w) = S

and the second order directional derivative at the directions w,® € Q as

_ A0+ 50, X)[@]
o ds

d*0(6 4 sw + 59, X)

E(G,X)[w,&)] = Tids

Define the Fisher inner product on the space Q as (w,&) = P {Z(OO,X) (W] (6o, X) [(.:1]}, and the Fisher norm for

w € Qas ||[w|® = (w,w). For a vector b = (by,...,b.)" of dimension k x d with ||p]] < 1, we define a smooth

functional of @ as 7(f) = b f1 + --- + b Br. Then, for any w' = (w;,<;~51,...,ék,d;u,...,1;1q,...,1;k1,,..,¢kq), where

wBT = (Wity« vy Whly -« s Wkls - - - ,Wkd), We have
. dn (6o + sw
B0 ) = BTNy,
& s=0
Let Q be the closure of the linear span €2 under the Fisher norm. Then, under the Fisher norm (@, || - ||) is a Hilbert

space. By the Riesz representation theorem (Hartig, [1983), there exists w* € Q, such that 7 (6o) [w] = (w,w™) for all w € Q
and ||w*||® = ||7 (60)|?, where w*" = (wg, S U Y SR ,';Z;fq, i 1&,’;,;) is derived in the sequel. We observe that
b" (Bn — Bo) = 1(0n) — 1 (60) = 7(00)[fn — o] = (0, — 00, w*). Therefore, it follows from the Cramér-Wold device that to

prove Theorem 3, it suffices to show that

V0, — 00,w") —a N(0,b" T (B0)b). (SM12)

In fact, this holds, since we can show that /{6, — 6o, w*) —a N (0, [|w*||?) and [lw*[|> = b7 I (80)b. In the following, we
prove these two results.

To prove the first result, we first note that by Condition C4, the result of [Lu| (2007) and Theorem 1.6.2 of [Lorentz
(1986)), there exists II,w* € ©, — 6o, such that |[[[,w* — w*|| = O(n™"?). Moreover, under the assumptions o > 1 and
v > 1/(40) in Condition C8, we obtain &, ||IT,w* —w*|| = o(n~'/2). Define r[f — o, X] = £(0, X) — £(60, X ) — £(60, X) [0 — 6o]

and let €, = o(n~'/?) be any positive sequence. Then, by the definition of 6, and noticing that P¢(6, X)[IL,w*] = 0, we

9
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have

0< P, {e (én,X) .y (én + annw*,X)}
— (P, — P) {z (én, X) —¢ (én + annw*,X)} ‘P {z (én,X) "y (én R | X)}
= FenPol (00, X) [[Low*] + (P, — P) {r (én - 00,X) —r (én + e W — 90,X)}
+P {r (én - 90,X) —r (én + e llw” — ao,X)}
= FenPul (00, X) [w*] F €0 Pl (60, X) [Tpw™ — w*]
(P, — P) {r (én - eo,X) —r (én + e Tlnw” — eo,X)}
+P {7‘ (én - 00,X) —r (én + e llw” — 00,X)}

= TFen Pl (00, X) (W) F I 4 I + I.
We can show that

I = e0 Pob (B0, X) [Ilyw” — w*] = €0 ¥ 0p (n‘1/2) , (SM13)

Ig:(Pn—P){r(én—Go,X)—r(én:tan e — 6o, )}—anxo( 1/2), (SM14)

I;=P {r (én — 907)() _r (én 4 e Tlw” — 907)()}
=+4e, <én — Ho,w*> +é&n X 0p (n71/2) .

Using (SMT13)), (SM14) and (SM15) together with the fact that Pl (8, X) [w*] = 0, we obtain

and

(SM15)

0< P, {e (én,X) .y (én + annw*7X)}
= Fe, (Pn — P) {é (60, X) [w*]} + e, <én — Ho,w*> +en X 0p (nil/z) .
Hence, we have
\/ﬁ<én - 90,w*> — Vn(P. - P) {é(ao,x) [w*]} +o,(1)

. 2
Note that [jw*||* = H((GO,X) [w*]H . Now, by virtue of the Central Limit Theorem, we have

\/ﬁ<én - 90,w*> — Vn (P, — P) {é(ao,x) [w*]} Yop(1) a N (o, ||w*||2) .

Now, we will prove that equations (SM13), (SM14) and (SM15) hold. First, one can easily show using Conditions Al

and A3, Chebyshev’s inequality, and ||II,w* — w*|| = o(1) that I = op (n71/2>. To establish I, we have (using the Mean

Value Theorem)
Iy = (P, — P) {z (én, X) y (én +enllw”, X) + 2,0 (00, X) [Hnw*]}

= Fen (P — ){(13(02)4 (60, X ) nw]}

where 6 € ©,, lies between én and 0, + e, I1,w*. Define
Fin = {é(e,z) [[Lw*] — £ (60, X) [[aw'] : 6 € @n} .

For any ¢’ = (Bj,qﬁjmpj) € 0,,j = 1,2, we define their distance d~(01,92) = ||ﬁ1 - 52” + ||<;51 — <Z>2||oo+ ||1/11 — w2||oo. Then,
by Conditions Al and A3 with r = 2, it follows that for any a1,a2 € Fin, |a1 — az| = |1 (6", X) [H,w*] — 1 (6%, X) [II

Kd (01, 02) . By Theorem 2.7.11 of [van der Vaart and Wellner| (]1996')7 we have

Ny (2K€, Fin, L2(P)) < N (e,@n,J) .

10
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Also, using Lemma 2.5 of jvan de Geer| (2000), and Lemma 2 of |(Chen and Shen| (1998), we have

: d kxm kxgx(mqy+1)
N(e,@n,d) §K(20M) (QOK) (QOK) .
€ € €

The definitions of N (e, @n,ci) and Npj (2K¢€, Fin, L2(P)) can be found in Section 2.1 of|van der Vaart and Wellner| (|1996|>.

If ¢ € [max(20M, 20K), 00), then N (e, On, J) = 1. Then, via simple calculations, we obtain

fooo \/IOgN]D) 2Ke ]:1,L2(P))d€
20M dlog 2°M de + f20K k x m)log 22K de + IQOK{k X g % (mw + 1)} log 225 de < oco.

Now, from Theorem 2.8.4 of [van der Vaart and Wellner| (1996), we know that Fi, is Donsker class. Hence, following

Corollary 2.3.12 of van der Vaart and Wellner| (1996)), we have Io = €, % 0p (nil/z).

To establish 5, note that
P{r(0—0,,X)} =P {e(a, Z) — (00, X) — £ (60, X) [0 — 90]}
—27'p {Z(é, Z)[0 — 00,0 — 00] — ¥ (B0, X) [0 — 60,0 — 90]}
+27'p {é'(oo, X)[0— 60,0 — 00]}
—27lp {é (60, X) [0 — 60,6 — 00]} ten ¥ o0p (n_l/z) ,

where 0 € ©,, lies between 6y and 6, with the last equality following from a Taylor expansion and Conditions C1-C4 and C8.
Also, with ||w|? = —P (@'(QO,X) [w,w]) and o > 1, we have

. 2
13:—2_1{‘ n }—|—5n><op (n_1/2)

=4, <én — 6o, Hnw*> + 27 lennw™||> + €0 X 0p (n_l/z)

Hnw* — 00

=4, <én - 90,w*> + 27! lennw™||? 4 €0 X 0p (n_1/2)
=+e, <én — 90,w*> +éen X 0p (n_l/Q) ,
where, the last equality holds because of §y, |[II,w™ —w*|| = op (nfl/ 2), the use of the Cauchy-Schwartz inequality,

[Tw*||> = |lw*||> and &, = o(n71/2). Thus, we have established (SM13), (SM14) and (SM15). Hence, the former
claim that \/ﬁ<én - Go,w*> —a N (0, ||w*[|*) holds.

Next, we prove ||w*||?> = b'Sbh. To do so, we start from calculating the efficient score Sz and the information matrix

I(Bo) in Theorem 3. Generically, the likelihood for an individual observation is

k k
> 61 log [F5(Vi Z, o)) + > 85 10g [F(Us Z, ;) — Fy(V; Z, a5)]

1B, X) =
j=1 j=1
k
+ (1-9)log |1 Z i(U; Z,05) |,
where .
1—{l+ajexp[op;(t)+ 5] Z]} =9 f0<a; <oo
Fi(t;Z,05) =

1 —exp{—exp[¢;(t)+ B} Z]} ifa;=0.
We will carry out the calculations for the proportional subdistribution hazards model (i.e., a; = 0). The proof for any other

combination of link functions with 0 < a; < oo, follows from similar arguments and calculations. Let v;(Z, W;8;,1;) =

11
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eﬁfT Z+5e wie(We)7 where 8; = (641, .., B4 T and ;= (i1, ..., P; T, Then, the likelihood for an individual observation
j j j j j jq

under a;j =0 forall j=1,... kis:

k
0B, ¢, v; X) 355 log [e—Aj(V)mz,w;ﬂj,w,-) _ e—AJ-(U)wj(z,w;ﬂ,-,wp]
j=1

k
+ > 48 log [1 _ e—AﬂV)vj(Z,W;Bj,wj)]
j=1

k

+ (1-6)log {1 - [1 - e—AﬂUmwwwwwﬂ] } 7

j=1

where A; = exp(¢;) is the cumulative sub-distribution hazard for the j-th cause of failure (Fine and Gray},|1999). The score
function for 8; (j =1,...,k) is

. . efAj(V)"/j(Z,W;Bj,w_ﬁ[, A; (V)] — e*Aj(U)Wj(ZvW§Bja'¢j)[ —A;(U)]
lg, = 0;27(Z,W; B, ;) o N OV (ZWiB;.05) _ oA (U)7; (2 W B 07)

A (V)i (Z,W5B5,95) A
1 . . NG J Jj PR AJ(V)
+5j Z'YJ (Zv W,ﬂm%) 1— e*Aj(V)Wj(Z,W;Bijj)
=N (U)v;(Z,W5B5,%5) .
] e j Vi [7AJ(U)}
+(1 5)Z%(Z,W,Bj,wj)l_zk 1= e A, W, )]

Jj=1

A (Ve MV (ZWiBj95) A (1) e~ N (U5 (Z2,W;3B5,95)
e~ N (V)i (2, W3B5.05) _ o—N; (U)v;(Z2,W;3B;5,45)
A.(V)efAj(V)’Yj(ZaWthywj)
1 . - 3. P G’}
+6J'Z7J(Z7 w; 6J7¢J) 1 — e A7 (ZWiB5,95)
A].(U)G*Aj(U)’Yj(Z,W;Bj,wj)
_(1 — 5)Z7J(Z7W7ﬁjawj) 1_ Zk [1 _ eiAj(U)’Yj<ZvW?ﬁj/¢’j):| .

j=1
Let h; = 8275-,5 . Then, the score operator for A; (j =1,...,k) is
s=0
. i (Ve 2 (Vi (ZWiB5.95) _ (1) e N3 (U5 (ZW3B5,45)
Glhsl = =07 (Z, W5 B5,9;5) s(V)e 3 : s(U)e :
e~ N (V)i (Z,W3B5.05) _ =N (U)v;(Z2,W;3B5.45)
h.(V)e*Aj(V)’Yj<ZvW?ij’¢’j)
1. - 3. )
+5j’YJ (Za w; ﬁ]v"/’]) 1 — oA (V)7 (ZW3B5,%5)
hA(U)efAj(U)'Yj(ZvW5Bj;wj>
( )i ( 7 7)1 _ Z?:l [1 _ e—Aj(U)’Yj(Z,W;Bj,wj)]
Similarly, let hje = 61&5:,5 . The corresponding score operator for ;e (j =1,...,k,e=1,...,q) is

s=0
. A.(V)efAj(V)w(Z,W:Bj,z/)j) _ A.(U)e*Aj(U)’Y_i(ZvW§Bj7¢_7’>
€M, = —5:h. ) < B b )= J
Es [h]e] - 6] hJE(WE)fYJ(Zv W7 6]7 %) e*Aj<V)Wj (Z2,W;B5,%5) _ e*Aj(U)’Yj<va?5jﬂ/)j)

A.(V)e*Aj“/)'Yj(ZvW;ﬁj71/)_7')
1 s B b )22
+6j hje (We)’YJ (Z7 W7 ﬁ]a wj) 1— e’Ai(V)”*J' (Z2,W;B5,%5)
. Aj(U)e*Aj(U)'Yj(Z1W§3_7’,"/‘j)
7(1 - 5)hje(We)fYJ(Zv Wa BJ?’I:Z)]) 1— Zk [1 _ e*Aj<U>"/j(Zywéﬁjv'¢’j>] .

j=1
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Let
) e~ N (V)i (Z,W3Bj,45) ) e~ N (V)i (Z,W3B5.45) .
o = AT 2 T TR A Z WA s = s+ 1,
1 — oA, (V)% (ZWiB; 0 o= (V)v; (ZWiB; ;) _ g=03(0); (Z,WiB; 4;)
; e~ N (U)7 (Z,W3B5.45) p e~ N (U (Z,W385.,%;5)
W T AN BWiB) _ oA (O (Z Wi e 4T T S 1= e MO EWiE; )]
J
831 i e_Aj(V)’Yj(ZaWhgjij).
1+a)
Then,
bs, = 2Zv(Z,W;B,1;) [—5ja§Aj(U) + 80005 (V) + 65 Ay (V) — (1 — 5)/\3‘(U)afi]
= 22 W38;,0:) {80,(V)ad = 8 [A;(V)ad = A, (U)ad] = (1= 9)A;(0)ad ],
el = he(We)n (2,5 8,05) [=8,040,(U) + 8,030, (V) + 6} A, (V) = (1 = 8)A, (U)o
= hie(Wo)n; (2, W3 85, 00) {30, (V)ad = 65 [A; (V)ad = A, (U)ad] — (1 = 9)A,(U)ad },
and
Qb)) = (2 WiB5,0) {81h,(V)ad = 5 [hy(V)ad = by (©)ad] = (1= 8)h; (U)ad }.
For each component of Bju, 5 = 1,...,k, v = 1,...,d, we denote by qg;*;r = (M jus---> Pk ju), the value of qg;ru =
(higus s hiegu)s and P = (W31 jus -« s higjus -« s Rt jus - - - » Bguu)s the value of )y, = (hit ju, -« higjus -« - Rt jus - - - s Pgju)
minimizing
E{ls, - ew — Oi[ha ju] — - — Cilhnju) — 0 [harju] — -+ — 03 hag jul — -+ — 05 [hkaju) — - — €5 (g jul },

where, e, is a d-dimensional vector with 1 in the element u and zeros elsewhere. The (ju)-th element of S has the form
bg, - ew — G gu] — - = L5 (R gu] — E5 [han gu] — -+ = £39hug ju] — -+ — 88 [Pt ju] — -+ — 059, ju]. We define I(30) as
E(SsS;). Then, by Condition C9, the semiparametric information matrix I(8o) is positive definite, with £ = [I(8o)]™".
Let w* = (wET,gz;I,...,952,1/;{1,...7&%,...,zﬁzl,.,.,izq)i where wj = Xb, qgf =—(hijud=1,....ku= 1,...,d)T W
fori=1,...,k, ¥ = —(Riejurdi=1,...,ku= 1,...,d)7" cwg fori=1,...,k,e=1,...,q, and z - y representing the inner
product of two column vectors x and y. Let wg = (d~>1, e, qu)T and wy = (1[111, e, 1211(1, ST 1/~;kq)T. Then, following
similar calculations in |Chen et al.| (2006) (Section 3.2), we obtain

. 2
* . _ 77 9 w
12 = i 00) P = sup LD
we:||w||>0 HWH

|1 (90) [ws]|”
[lwl?

=sup -

wp Mooy
bngwBTb
=SUp ——f
ws wg E(SpS5 ws
bngwBTb
=Sup ———+—
wg wgl(ﬁo)wﬁ

=b'3b < co.

This completes the proof of Theorem 3. |
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SM2. Simulation Studies: Scenarios 2 and 3, tables & figures for Scenarios 1-3

Scenario 2: Here, the design is similar to that in Scenario 1, except that Zo = W + ¢, and € ~ N(0,1), and the true
non-linear regression functions are ¢ (W) = 3sin(W) and ¢2(W) = —3sin(W) for the two causes of failure. Under this
simulation setup, W is a common cause for both Z3, and the survival times 71 and T>. Thus, it behaves as a confounder,
requiring adjustment for consistent estimation of 81 and B2. We fit two competing risks transformation models, with the
nonlinear predictor n1 = 121 + B2Z2 + 11 (W) (true model), and the linear predictor 2 = 121 + S2Z2 + S3W (misspecified
linear model), respectively, and examine the relative biases of the estimates of 81 and B2 under the two models. When the
true value of a parameter J3 is (o, the relative bias is defined as Rel.bias(%) = [(3—B0)/B0]100%. The results are summarized
in Table [S2] The biases under the misspecified linear model are larger than those under the true nonlinear model, with the
differences increasing under larger sample sizes.
Scenario 3: As suggested by an anonymous referee, the setting of this scenario is similar to Scenario 1, except that the
true non-linear regression functions corresponding to the first and second causes of failure are now 1 (W) = Wsin(1.5W),
and Y2 (W) = —W sin(1.5W), respectively, which are more complex functions compared to Scenario 1.

Due to the complexity of these non-linear regression functions, more basis functions are needed for implementing both
BP, or B-splines approaches. Here, we choose 7 basis functions in both approaches. To mitigate the enhanced computing time
resulting from the use of more basis functions, we set the number of simulation runs at 100 (instead of 200 as in Scenario
1). For the sample size n = 100 and n = 500, we report the simulation results in Table |[S3] and Figures - (see
Supplementary Materials). Under smaller sample sizes (such as n = 100), the “B-spline+B-spline” approach tends to yield
larger bias and larger coverage probability in parameter estimation than the“B-spline+Bernstein polynomials” approach,
while the former shows less bias in curve estimation. When sample size is large, e.g., n = 500, both approaches give similar
and satisfactory results in parameter estimation, although the coverage probability is somewhat under or over the nominal
level due to biased estimation of the standard errors. However, “B-spline+Bernstein polynomials” approach shows better
performance in curve estimation.

In summary, the overall performance of Bernstein polynomials is superior to that of B-splines. On the other hand, for
more complex non-linear regression functions in the partially linear transformation models, more basis functions and large

sample sizes are required in either approaches to obtain satisfactory results.
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Table S1: Simulation Results from Scenario 1. The values presented are the summary statistics for the parameter
vector B = (P11, P12, fo1, Bae) | = (0.5,—0.3,-0.5,0.3)". The summary values correspond to AEST: Average
estimates of 3, MCSD: Monte Carlo standard deviation of estimates, ASE: Average standard error of estimates,
and ECP: Empirical coverage probability. B-spline+Bernstein polynomial: The baseline cumulative incidence
functionals ¢;(t) were approximated by B-spline functions and the non-linear regression functions v,(w) were

approximated by BP functions. B-spline+B-spline: Both ¢;(¢) and v, (w) were approximated by B-spline functions.

B-spline+Bernstein polynomial B-spline+B-spline
n Statistics B Biz Ba1 Bz Bi1 B2 B Bz
100 AEST 0.525 -0.335 -0.536 0.333 0.527 -0.335 -0.537 0.333
MCSD 0.468 0.215 0.466 0.209 0468 0.214 0.473 0.211
ASE 0.446 0.214 0.441 0.213 0.484 0.233 0481 0.232
ECP 0.950 0940 0.945 0955 0970 0.970 0.950 0.975
500 AEST 0.521 -0.305 -0.509 0.307 0.521 -0.305 -0.510 0.306
MCSD 0.174 0.081 0.174 0.082 0.174 0.080 0.174 0.082
ASE 0.177 0.085 0.175 0.084 0.181 0.087 0.179 0.086
ECP 0.960 0945 0.955 0.950 0.960 0.970 0.965 0.955

Table S2: Simulation results for Scenario 2. The values presented are the relative biases (%) of the estimates of
B = (Bi1,Bi2, B21, B22) T = (0.5,—0.3,—0.5,0.3) T, under the correct and misspecified models.
n Model 311 BlQ 321 522
100  True model 919 994 119 881
Misspecified model -16.2 -18.8 -18.8 -18.2

500 True model 399 0.8 311 1.17
Misspecified model -19.6 -22.6 -21.0 -20.9
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Figure S1: Scenario 1 (B-spline+Bernstein polynomial):

replications, and sample size n = 100.
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Figure S2: Scenario 1 (B-spline+Bernstein polynomial):

replications, and sample size n = 500.
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Figure S3:

functions 9;(w), based on 200 simulation replications, and sample size n = 100. The true and average estimated
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Figure S4:

functions 1;(w), based on 200 simulation replications, and sample size n = 500. The true and average estimated
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Scenario 1 (B-spline+B-spline): Plots of the baseline CIFs ¢;(t) and the nonlinear risk functions

1j(w), based on 200 simulation replications, and sample size n = 500. The true and average estimated functions

are represented by solid, and dashed lines, respectively.
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Table S3: Simulation Results from Scenario 3. The values presented are the summary statistics for the parameter

vector B = (P11, B12, Bo1, B22) T = (0.5,—0.3,—-0.5,0.3) .

estimates of 8, MCSD: Monte Carlo standard deviation

The summary values correspond to AEST: Average

of estimates, ASE: Average standard error of estimates,

and ECP: Empirical coverage probability. B-spline+Bernstein polynomial: The baseline cumulative incidence

functionals ¢;(t) were approximated by B-spline functions and the non-linear regression functions ,(w) were

approximated by BP functions. B-spline+B-spline: Both ¢;(¢) and v, (w) were approximated by B-spline functions.

B-spline+Bernstein polynomial

B-spline+B-spline

n Statistics (11 Bra Ba1 Baz B Bra B Baz

100 AEST 0.556 -0.299 -0.597 0.301 0.567 -0.323 -0.632 0.323
MCSD 0.539 0.251 0.545 0.251 0.562 0.257 0.565 0.256
ASE 0.434 0.214 0449 0.215 0.570 0.272 0.586 0.273
ECP 0.900 0900 0.900 0910 0.960 0.970 0.960 0.970

500 AEST 0.494 -0.289 -0.505 0.292 0.499 -0.294 -0.516 0.298
MCSD 0.181 0.098 0.180 0.097 0.178 0.101 0.184 0.101
ASE 0.171 0.084 0.176 0.084 0.202 0.095 0.209 0.095
ECP 0.930 0930 0950 0910 0.980 0.920 0.970 0.910
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Figure S9: Scenario 3 (B-spline+Bernstein polynomial):

replications, and sample size n = 100.
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Figure S10: Scenario 3 (B-spline+Bernstein polynomial):

replications, and sample size n = 500.
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Scenario 3 (B-spline+Bernstein polynomial): Plots of the baseline CIFs ¢;(t) and the nonlinear risk

functions 9;(w), based on 100 simulation replications, and sample size n = 100. The true and average estimated

functions are represented by solid, and dashed lines, respectively.
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Figure S12: Scenario 3 (B-spline+Bernstein polynomial): Plots of the baseline CIFs ¢;(t) and the nonlinear risk
functions 1;(w), based on 100 simulation replications, and sample size n = 500. The true and average estimated

functions are represented by solid, and dashed lines, respectively.

A A
Histogram of { B,,} Histogram of { B,,}
o
E
wn
oo} —
3 3
5 ¢ g 9
3 3
E E
L < o
w w
wn
~
o o 1
rrrrrrrrrrrrrorrrT
-1.2 -0.6 0 04 09 14 19 -1.2 -09 -06 -03 0.1 03
A A
[ Bro
. A . A
Histogram of { B,,} Histogram of { B,,}
o
E
wn
—
oo}
3 3
g ¢ § S
3 3
E E
L < o
w w
wn
~
o o ]
rrrrrrrrrrrrrroriT
-2 -15 -1 -05 0 04 09 14 -0.3 0.1 03 05 07 09 11
A A
Bz Bz

Figure S13: Scenario 3 (B-spline+B-spline): Histograms of the estimates of 3, based on 100 simulation replications,

and sample size n = 100.
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Figure S14: Scenario 3 (B-spline+B-spline): Histograms of the estimates of 3, based on 100 simulation replications,

and sample size n = 500.
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Figure S15: Scenario 3 (B-spline+B-spline): Plots of the baseline CIFs ¢;(t) and the nonlinear risk functions
1 (w), based on 100 simulation replications, and sample size n = 100. The true and average estimated functions

are represented by solid, and dashed lines, respectively.
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Figure S16: Scenario 3 (B-spline+B-spline): Plots of the baseline CIFs ¢;(t) and the nonlinear risk functions
j(w), based on 100 simulation replications, and sample size n = 500. The true and average estimated functions

are represented by solid, and dashed lines, respectively.
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