
Statistica Sinica: Supplement

ON SUPERVISED REDUCTION AND ITS DUAL

Peirong Xu and Tao Wang

Shanghai Normal University and Shanghai Jiao Tong University

Supplementary Materials

THE SUPPLEMENTARY FILE CONTAINS THE PROOFS.

Proof of Proposition 1. By Proposition 11.1 of Cook (1998),

SE(X |Y ) = span[Var{E(X | Y )}], (S0.1)

the subspace spanned by the columns of Var{E(X | Y )}. This, together

with condition (C1), implies that for any v ∈ SY |X ,

v − {Var(X )}−1Var{E(X | Y )}v ∈ SY |X .

By condition (C2) and the law of total covariance,

Var(X | Y )v = [Var(X )− Var{E(X | Y )}]v

= Var(X )[v − {Var(X )}−1Var{E(X | Y )}v ].

Consequently,

Var(X | Y )SY |X ⊆ Var(X )SY |X . (S0.2)
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Since Var(X | Y ) is positive definite,

Var(X )v = Var(X | Y )v ∗,

where v ∗ = {Var(X | Y )}−1Var(X )v . Let Var{E(X | Y )} = HΛH⊤

be the eigen-decomposition of Var{E(X | Y )}. By the matrix inversion

lemma,

{Var(X | Y )}−1

= [Var(X )− Var{E(X | Y )}]−1

= {Var(X )}−1 + {Var(X )}−1H[Λ−1 −H⊤{Var(X )}−1H]−1H⊤{Var(X )}−1.

Together with (S0.1) and condition (C1), this implies that v ∗ ∈ SY |X , and

hence

Var(X )SY |X ⊆ Var(X | Y )SY |X . (S0.3)

Combining (S0.2) and (S0.3), the proof is complete.

Lemma 1. Assume the conditions of Theorem 1. Then, ∆̂
−1

is a
√
n

consistent estimator of ∆−1, and β̂ is a
√
n consistent estimator of β up

to a rotation.
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Proof of Lemma 1. Under the stated assumptions,

1

n
X⊤X = Var(X ) +OP

(
1√
n

)
,

1

n
F⊤F = Var(f Y ) +OP

(
1√
n

)
,

1

n
F⊤X = Cov(f Y ,X ) +OP

(
1√
n

)
.

Hence,

∆̂ =
X⊤X

n
− X⊤F

n

(
F⊤F

n

)−1
F⊤X

n

= Var(X )− Cov(X , f Y ){Var(f Y )}−1Cov(f Y ,X ) +OP

(
1√
n

)
.

Note that

Var(X ) = ΓβVar(f Y )β
⊤Γ⊤ +∆, (S0.4)

and

Cov(f Y ,X ) = Var(f Y )β
⊤Γ⊤. (S0.5)

We have

∆̂ = ΓβVar(f Y )β
⊤Γ⊤ +∆− ΓβVar(f Y )β

⊤Γ⊤ +OP

(
1√
n

)
= ∆+OP

(
1√
n

)
,

and hence

∆̂
−1

= ∆−1 +OP

(
1√
n

)
.
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Similarly,

(F⊤F)−1/2F⊤X∆̂
−1
X⊤F(F⊤F)−1/2

= {Var(f Y )}−1/2Cov(f Y ,X )∆−1Cov(X , f Y ){Var(f Y )}−1/2 +OP

(
1√
n

)
= {Var(f Y )}1/2β⊤Γ⊤∆−1Γβ{Var(f Y )}1/2 +OP

(
1√
n

)
= {Var(f Y )}1/2β⊤β{Var(f Y )}1/2 +OP

(
1√
n

)
,

where the last equality follows because Γ⊤∆−1Γ = Id. This implies that

β̂
⊤
β̂ = β⊤β +OP

(
1√
n

)
.

The proof is complete.

Proof of Theorem 1. Note that

1

n
V̂⊤ŝ =

1

n

n∑
i=1

v̂ yi ŝi = β̂

(
1

n

n∑
i=1

f yi
ŝi

)

and

1

n

n∑
i=1

f yi
ŝi =

1

n

n∑
i=1

f yi
(∥v̂ yi∥22 − ∥∆̂

−1/2
(x y∗ − x yi)∥22)

=
1

n

n∑
i=1

f yi
∥v̂ yi∥22 −

1

n

n∑
i=1

f yi
∥∆̂

−1/2
(x y∗ − x yi)∥22

= T1 − T2.

Consider the first term. By Lemma 1,

T1 =
1

n

n∑
i=1

f yi
f ⊤
yi
β̂

⊤
β̂f yi

= E(f Y f
⊤
Y β

⊤βf Y ) +OP

(
1√
n

)
. (S0.6)
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Consider the second term. We have

∥∆̂
−1/2

(x y∗ − x yi)∥22 = ∥∆̂
−1/2

(Γv y∗ + ϵy∗ − Γv yi − ϵyi)∥22

= (v y∗ − v yi)
⊤Γ⊤∆̂

−1
Γ(v y∗ − v yi)

+2(v y∗ − v yi)
⊤Γ⊤∆̂

−1
(ϵy∗ − ϵyi)

+(ϵy∗ − ϵyi)
⊤∆̂

−1
(ϵy∗ − ϵyi),

and hence

T2 =
1

n

n∑
i=1

f yi
(v y∗ − v yi)

⊤Γ⊤∆̂
−1
Γ(v y∗ − v yi)

+
2

n

n∑
i=1

f yi
(v y∗ − v yi)

⊤Γ⊤∆̂
−1
(ϵy∗ − ϵyi)

+
1

n

n∑
i=1

f yi
(ϵy∗ − ϵyi)

⊤∆̂
−1
(ϵy∗ − ϵyi)

= T21 + T22 + T23.

By Lemma 1,

T21 =
1

n

n∑
i=1

f yi
(f y∗ − f yi

)⊤β⊤Γ⊤∆̂
−1
Γβ(f y∗ − f yi

)

= −2Var(f Y )β
⊤βf y∗ + E(f Y f

⊤
Y β

⊤βf Y ) +OP

(
1√
n

)
. (S0.7)

Similarly,

T22 =
2

n

n∑
i=1

f yi
(f y∗ − f yi

)⊤β⊤Γ⊤∆̂
−1
(ϵy∗ − ϵyi)

= −2Var(f Y )β
⊤Γ⊤∆−1ϵy∗ +OP

(
1√
n

)
(S0.8)
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and

T23 = OP

(
1√
n

)
. (S0.9)

From (S0.6)-(S0.9), we have

1

n
V̂⊤ŝ = 2RβVar(f Y )β

⊤βf y∗ + 2RβVar(f Y )β
⊤Γ⊤∆−1ϵy∗ +OP

(
1√
n

)
,(S0.10)

for some d× d rotation matrix R. Note that V̂⊤ = β̂F⊤. By Lemma 1,

1

n
V̂⊤V̂ = β̂

(
1

n
F⊤F

)
β̂

⊤
= RβVar(f Y )β

⊤R⊤ +OP

(
1√
n

)
. (S0.11)

Combining (S0.10) and (S0.11),

v̂ y∗ = Rβf y∗ +RΓ⊤∆−1ϵy∗ +OP

(
1√
n

)
.

The proof is complete.

Proof of Corollary 1. By Theorem 1, there exists a rotation

matrix R, such that

v̂ y∗ = Rv y∗ +RΓ⊤∆−1ϵy∗ +OP

(
1√
n

)
.

Let ṽY ∗ = RvY ∗ + RΓ⊤∆−1ϵY ∗ . Then, by the independence of Y ∗ and

ϵY ∗ ,

Var(ṽY ∗) = R{Var(vY ∗) + Id}R⊤

and

Cov(ṽY ∗ , vY ∗) = RVar(vY ∗).
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It follows that

ρ2(ṽY ∗ , vY ∗) =
1

d
trace[RVar(vY ∗){Var(vY ∗)}−1Var(vY ∗)R⊤R{Var(vY ∗) + Id}−1R⊤]

=
1

d
trace[Var(vY ∗){Var(vY ∗) + Id}−1].

The proof is complete.

Lemma 2. Assume the conditions of Theorem 2. Then, ∆̂
−1

is a
√
n

consistent estimator of Ω−1, and β̂ is a
√
n consistent estimator of Φ up

to a rotation.

Proof of Lemma 2. We mimic the proof of Lemma 1. Under the

stated conditions,

∆̂ = Var(X )− ΓCov(vY , f Y ){Var(f Y )}−1Cov(f Y , vY )Γ
⊤ +OP

(
1√
n

)
= Ω+OP

(
1√
n

)
.

It is easy to verify that Ω is positive definite. Hence

∆̂
−1

= Ω−1 +OP

(
1√
n

)
.

Together with the constraint Γ⊤Ω−1Γ = Id (which reduces to Γ⊤∆−1Γ =

Id, if v y is correctly specified as v y = βf y), this implies that

(F⊤F)−1/2F⊤X∆̂
−1
X⊤F(F⊤F)−1/2

= {Var(f Y )}−1/2Cov(f Y , vY )Γ
⊤Ω−1ΓCov(vY , f Y ){Var(f Y )}−1/2 +OP

(
1√
n

)
= {Var(f Y )}−1/2Cov(f Y , vY )Cov(vY , f Y ){Var(f Y )}−1/2 +OP

(
1√
n

)
.
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Consequently,

β̂
⊤
β̂ = {Var(f Y )}−1Cov(f Y , vY )Cov(vY , f Y ){Var(f Y )}−1 +OP

(
1√
n

)
.

The proof is complete.

Proof of Theorem 2. Recall that

1

n
V̂⊤ŝ = β̂

(
1

n

n∑
i=1

f yi
ŝi

)

and

1

n

n∑
i=1

f yi
ŝi =

1

n

n∑
i=1

f yi
f ⊤
yi
β̂

⊤
β̂f yi

− 1

n

n∑
i=1

f yi
(v y∗ − v yi)

⊤Γ⊤∆̂
−1
Γ(v y∗ − v yi)

− 2

n

n∑
i=1

f yi
(v y∗ − v yi)

⊤Γ⊤∆̂
−1
(ϵy∗ − ϵyi)

− 1

n

n∑
i=1

f yi
(ϵy∗ − ϵyi)

⊤∆̂
−1
(ϵy∗ − ϵyi)

= T1 − (T21 + T22 + T23).

By Lemma 2,

T1 =
1

n

n∑
i=1

f yi
f ⊤
yi
β̂

⊤
β̂f yi

= E(f Y f
⊤
YΦ

⊤Φf Y ) +OP

(
1√
n

)
,(S0.12)

T21 = −2Cov(f Y , vY )v y∗ + E(f Y v
⊤
Y vY ) +OP

(
1√
n

)
, (S0.13)

T22 = −2Cov(f Y , vY )Γ
⊤Ω−1ϵy∗ +OP

(
1√
n

)
, (S0.14)

T23 = OP

(
1√
n

)
. (S0.15)
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From (S0.12)-(S0.15), we have

1

n
V̂⊤ŝ = RΦE(f Y f

⊤
YΦ

⊤Φf Y )−RΦE(f Y v
⊤
Y vY )

+2RΦCov(f Y , vY )v y∗ + 2RΦCov(f Y , vY )Γ
⊤Ω−1ϵy∗ +OP

(
1√
n

)
,(S0.16)

for some d× d rotation matrix R. By Lemma 2,

1

n
V̂⊤V̂ = β̂

(
1

n
F⊤F

)
β̂

⊤
= RΦVar(f Y )Φ

⊤R⊤ +OP

(
1√
n

)
. (S0.17)

Combining (S0.16) and (S0.17),

v̂ y∗ = Rc +RAv y∗ +RAΓ⊤Ω−1ϵy∗ +OP

(
1√
n

)
.

The proof is complete.

Proof of Theorem 3. For the moment we assume the conditions of

Theorem 1. By Lemma 1,

∆̂
−1
Γ̂ = ∆−1Cov(X , f Y )β

⊤{βVar(f Y )β
⊤}−1 +OP

(
1√
n

)
.

This, together with (S0.5), implies that

∆̂
−1
Γ̂ = ∆−1ΓβVar(f Y )β

⊤{βVar(f Y )β
⊤}−1 +OP

(
1√
n

)
= ∆−1Γ+OP

(
1√
n

)
.

Therefore, span(∆̂
−1
Γ̂) is a

√
n consistent estimate of SY |X .

We now give the proof under the conditions of Theorem 2. By Lemma

2,

∆̂
−1
Γ̂ = Ω−1ΓCov(vY , f Y )Φ

⊤{ΦVar(f Y )Φ
⊤}−1 +OP

(
1√
n

)
.
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Consequently, span(∆̂
−1
Γ̂) is a

√
n consistent estimate of span(Ω−1Γ).

We first show that

span(Ω−1Γ) = span[{Var(X )}−1Γ].

Let C = Cov(vY , f Y ),Σv = Var(vY ),Σf = Var(f Y ), and ΣX = Var(X ).

By the Woodbury matrix identity,

Ω−1 = Σ−1
X +Σ−1

X ΓC(Σf −C⊤Γ⊤Σ−1
X ΓC)−1C⊤Γ⊤Σ−1

X .

We can then write

Ω−1Γ = Σ−1
X Γ+Σ−1

X ΓC(Σf −C⊤Γ⊤Σ−1
X ΓC)−1C⊤Γ⊤Σ−1

X Γ

= Σ−1
X ΓH,

where H = Id +C[Σf −C⊤Γ⊤Σ−1
X ΓC]−1C⊤Γ⊤Σ−1

X Γ. This implies that H

is non-singular, and that Ω−1Γ and Σ−1
X Γ have the same column subspace.

It remains to show that

span[{Var(X )}−1Γ] = span(∆−1Γ).

Notice that Var(X ) = ΓΣvΓ
⊤ +∆. Let A = (Γ⊤∆−1Γ)−1. By the Wood-

bury matrix identity,

{Var(X )}−1Γ = ∆−1Γ−∆−1Γ(Σ−1
v + Γ⊤∆−1Γ)−1Γ⊤∆−1Γ

= ∆−1Γ−∆−1Γ{A−A(Σv +A)−1A}Γ⊤∆−1Γ

= ∆−1ΓA(Σv +A)−1.
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Because A(Σv +A)−1 is non-singular, the proof is complete.

Proof of Theorem 4. Let ∆̂
−1/2

X⊤F(F⊤F)−1/2 = UΛV⊤ denote

the singular value decomposition of ∆̂
−1/2

X⊤F(F⊤F)−1/2; that is, U =

(U1, . . . ,Ur) is p× r with orthonormal columns, V = (V1, . . . ,Vr) is r× r

orthogonal, and Λ is an r × r diagonal matrix with diagonal entries λ1 ≥

λ2 ≥ · · · ≥ λr ≥ 0. Let Ψ = (U1, . . . ,Ud). Then, span(Ψ) is the subspace

spanned by the first d eigenvectors of ∆̂
−1/2

Σ̂∆̂
−1/2

.

Let Φ = (λ1V1, . . . , λdVd)
⊤. By definition, β̂(F⊤F)1/2 = Φ. Hence

span(∆̂
−1/2

Γ̂) = span(∆̂
−1/2

X⊤Fβ̂
⊤
)

= span{∆̂
−1/2

X⊤F(F⊤F)−1/2Φ⊤}

= span(Ψ).

This proves the first part. The second part follows from Corollary 3.4 of

Cook and Forzani (2008). The proof is complete.

Proof of Theorem 5. Let A = {Var(f Y )}−1/2Cov(f Y , vY ). Under

the stated conditions, A has full column rank, d0. Furthermore, by Lemma

1 and Lemma 2,

(F⊤F)−1/2F⊤X∆̂
−1
X⊤F(F⊤F)−1/2 = AA⊤ +OP

(
1√
n

)
.

The rest of the proof can be found in Zhu et al. (2012). The proof is

complete.
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The predictive equivalence of SRIR and PFC. In the follow-

ing we show that if the sample multiple correlation coefficient is used for

measuring predictive performance, then SRIR and PFC are equivalent.

Let V̂∗
SRIR and V̂∗

PFC be predicted coordinates of m new observations

{x y∗1
, . . . ,x y∗m} by SRIR and PFC. Let Σ̂SRIR, Σ̂PFC , and Σ̂SRIR,PFC be the

sample covariance matrix of V̂∗
SRIR, the sample covariance matrix of V̂∗

PFC ,

and the sample covariance matrix between V̂∗
SRIR and V̂∗

PFC , respectively.

By definition, the squared sample multiple correlation coefficient

MCC2(V̂∗
SRIR, V̂

∗
PFC) =

1

d
trace(Σ̂SRIR,PFCΣ̂

−1

PFCΣ̂
⊤
SRIR,PFCΣ̂

−1

SRIR).

Without loss of generality, assume that V̂∗
SRIR and V̂∗

PFC are centered.

Then it is easy to check that

MCC2(V̂∗
SRIR, V̂

∗
PFC) =

1

d
trace(PSRIRPPFC),

where PSRIR and PPFC are projection matrices onto the column spaces of

V̂∗
SRIR and V̂∗

PFC , respectively. It remains to prove that PSRIR = PPFC .

Write V̂∗
SRIR = (u∗

1, . . . ,u
∗
m)

⊤ and V̂∗
PFC = (w ∗

1, . . . ,w
∗
m)

⊤. By (4.6),

up to a common constant vector, u∗
j = (V̂⊤V̂)−1V̂⊤X∆̂

−1
x y∗j

. On the

other hand, w ∗
j = Ψ⊤∆̂

−1/2
x y∗j

. By the definition of Γ̂, ∆̂
−1
X⊤V̂(V̂⊤V̂)−1 =

∆̂
−1
Γ̂. From the proof of Theorem 4, it follows that span{∆̂

−1
X⊤V̂(V̂⊤V̂)−1} =

span{∆̂
−1/2

Ψ}. The proof is complete.
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