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PROOF OF PROPOSITION 1. By Proposition 11.1 of Cook (T99R),
Sk(x|v) = span[Var{E(X | Y)}], (S0.1)

the subspace spanned by the columns of Var{E(X | Y)}. This, together

with condition (C1), implies that for any v € Sy|x,
v — {Var(X)} 'Var{E(X | Y)}v € Syx.
By condition (C2) and the law of total covariance,

Var(X | Y)v = [Var(X)— Var{E(X | Y)}]v

= Var(X)[v — {Var(X)} 'Var{E(X | Y)}v].
Consequently,

Var(X | Y)Syx C Var(X)Sy|x. (50.2)
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Since Var(X | Y) is positive definite,

Var(X)v = Var(X | Y)v",

where v* = {Var(X | Y)}'Var(X)v. Let Var{E(X | Y)} = HAH'
be the eigen-decomposition of Var{E(X | Y)}. By the matrix inversion

lemma,

{Var(X | V)}!
= [Var(X) — Var{E(X | Y)}]!

= {Var(X)} '+ {Var(X)} TH[A ™ — H" {Var(X)} 'H] 'H" {Var(X)} ..

Together with (8IT) and condition (C1), this implies that v* € Sy|x, and

hence

Var(X )Syx € Var(X | Y)Sy|x. (50.3)

Combining (802) and (SO33), the proof is complete.

< -1
Lemma 1. Assume the conditions of Theorem 1. Then, A  is a \/n
consistent estimator of A7, and B is a \/n consistent estimator of 3 up

to a rotation.
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Proor or LEMMA M. Under the stated assumptions,

%XTX = Var(X)+Op (%)

1

;FTF = Var(fy)+Op <%) ,
%FTX = Cov(fy,X)+Op (%)

Hence,

A . XX XTF (FTF)1 FTX

n n n n

= Var(X) — Cov(X, fy){Var(fy)} 'Cov(fy, X) + Op (%) :

Note that
Var(X) = T'BVar(f,)3' T + A, (S0.4)
and
Cov(fy, X) = Var(f,)3'T". (S0.5)
We have

A = TBVar(fy)3' T+ A -TBVar(fy)B8'T" +Op (%)

s ()

and hence

-

A 1:A1+OP<L>.
n
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Similarly,
(FTF)"2FTXA™ ' XTF(FTF) /2
= {Var(fy)} Y*Cov(fy, X)A ' 'Cov(X, fy ){Var(fy)} % + Op (%)
— (V£ 7T AT DAV} + Op )
— {Va(r )TV} +0n (2 ),

where the last equality follows because I'' A™'T' = I,. This implies that
8'B=p"+00 (-
= P 7 )
The proof is complete.

PRrRoOOF OoF THEOREM 1. Note that

lor. 1K . (1, .
EV 525;21:1)1/1'51‘:/3(55 :fyisi>
and

< —1/2
g —|A () — xy,) g)

Uy,

1 n
=1

1 & X 1 &
E;fyisi = E;fy(
1 n
- 5nyl
=1

- T1 —TQ.

L —1/2
A Tz -yl

Consider the first term. By Lemma [,

Ti= 3 F, 008 BE, = B S8 BFy) + Or (%) (S06)
i=1
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Consider the second term. We have

A~ —1/2 ~—=1/2
A (xy — myz)H% = A (Tvy + € —Tvy, — eyz)”g
= ('Uy* - in)TFTA_lr(vy* - 'in>

A -1
+2(vy —vy,) ' TTA (€ —€y,)

~ =1
+(€y* - eyz)TA ( €y — 6%)?

and hence
T, = —nyl vy —v,) TTA T(v, — v,)
+= Zf W)TTA (e, —¢,)

+-— Zf — €y,) )TA (y*_eyi)

= Ty +To + Tas.

By Lemma 0,
= - nyl ~£,) B TTATTB(S,. — £,)
T T T 1
= —2Var(fy)B Bf, +E(fyvfyB Bfy)+Op (%> -(50.7)
Similarly,
T = - nyl TﬁTFTA ( — €y,)

= —2Var(fy)B'TTA e, + Op (%) (S0.8)
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and

Ty = Op (%) | (50.9)

From (SOA)-(809), we have

%\7% = 2RBVar(fy)B' Bf,- + 2RBVar(fy)B3' T A e, + Op (%(}0-10)

for some d x d rotation matrix R. Note that VT = B8FT. By Lemma I,

%VTV .y <%FTF) 3" = RBVar(fy )8 RT + Op <%> . (S0.11)

Combining (8010) and (SO01T),

1
v, =RBS, +RLTA e, +Op (%) |
The proof is complete.

Proor or COROLLARY 1. By Theorem 1, there exists a rotation

matrix R, such that

1
v, = Rv, + RTTA e, + Op <%) :

Let 9y+ = Roy: + RTT A ey, Then, by the independence of Y* and
€y,

Var(9y-) = R{Var(vy-) + I;}R"

and

Cov(Dy+, vy«) = RVar(vy+).
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It follows that
1
P (Vy-, vy.) = atrace[RVar('vy*){Var('vy*)}—lvar(vY*)RTR{Var(vY*) YL R
1
= 3 trace[Var(vy-){Var(vy-) +I;}'].

The proof is complete.

~ -1
Lemma 2. Assume the conditions of Theorem 2. Then, A  is a \/n

consistent estimator of Q7. and B is a \/n consistent estimator of ® up

to a rotation.

Proor or LEMMA 2. We mimic the proof of Lemma 0. Under the

stated conditions,

~

A = Var(X) —TCov(vy, fy){Var(fy)} 'Cov(fy,vy)T'" + Op (L)

NG
_ mop(%).

It is easy to verify that € is positive definite. Hence

.1 1
A =Q°! — .
O (ﬁ)

Together with the constraint T'"Q™'T" = I, (which reduces to TTA™'T =

Iy, if v, is correctly specified as v, = Bf,), this implies that
(FTF)2F XA XTF(FTF)/2

— (Var(fy)} Y2 Cov(Fy vy )T TCov vy, fy ) (Var(Fy)} 2 + O (%)
= ar ~12Cov vy )Cov(vy ar —1/2 J2 L .
= [Var(fy)}2Cov(fy. vy )Cov(vy . fy){Var(Fy)} 2 + O ( ﬁ)
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Consequently,

AT

B = [Var(fy)} " Cov(Fy vy)Cov(wy. fy){Var(fy)} * + O (—

The proof is complete.

PROOF OF THEOREM 2. Recall that

and
1, . 1 ¢ T
ﬁ;fyisi - ﬁzfylfyﬁ nyz
"nyz =0, TTA (v, v,
“nyz ~0,) TTA (e )
__nyz —€y) TA ( « — €y)
= T — (T21+T22+T23).
By Lemma B,
1 & AT n
I = ;;fyif;ﬂ Bf, =E(fyfi® @fy)+ Op (\/ﬁ
1
Ty = —2Cov(fy,vor)v, +E(fyoior) + Op (=), (5013
N
1
Tw = ~2Cov(fy. 70 e+ Op (12 ).

- o)

i)(so.m)
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From (S012)-(801H), we have

V's = R®E(f,fy® &f,)— RPE(fyv)vy)

S|

+2R®Cov(fy, vy)v, + 2R®Cov(fy, vy)L ' Q '€, + Op Q%:ﬁ)
n

for some d x d rotation matrix R. By Lemma D,
vy = 3 letp 3 =R&Var(f,)® R + 0 L (S0.17)
n N n N Y P vn)’ '
Combining (8016) and (S0T172),

1
v, = Re+RAv, + RAT Qe + Op <7> :
n
The proof is complete.

PROOF OF THEOREM 3. For the moment we assume the conditions of

Theorem 1. By Lemma [,

AT'T = A7'Cov(X, £,)B{BVar(f,)87} ! + Op (%) -

This, together with (SO-3), implies that

A —1a 1

A T = A'TBVar(fy)B8 {BVar(fy)3' } '+ Op (\/ﬁ)

1
= Al — .
tOor (ﬁ)
P N

Therefore, span(A T') is a \/n consistent estimate of Sy x.

We now give the proof under the conditions of Theorem 2. By Lemma

AT'T = Q 'T'Cov(vy, f)® {®Var(fy) @}~ + Op (%) .
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"1~
Consequently, span(A T) is a y/n consistent estimate of span(Q~'T).

We first show that
span(Q~'T) = span[{Var(X)}~'T.
Let C = Cov(vy, fy), X, = Var(vy),%; = Var(fy), and ¥y = Var(X).
By the Woodbury matrix identity,
Q=S+ IC(E; - Cc'r'E're)'ec’'r's
We can then write
QT = 2T+ TCE, -C'T'e'ro)"'c'I'sl'r
= X,'TH,
where H =1, + C[X; — C'T"E,'TC]'C'T'"Z;'T". This implies that H

is non-singular, and that £ 'T and ¥;'T have the same column subspace.

It remains to show that
span[{Var(X)} 'I'] = span(A~'T).
Notice that Var(X) =T3S, I'" + A. Let A = (I'" A™'T")~!. By the Wood-
bury matrix identity,
{Var(X)}7'T' = AT'T—-A'T(Z ' +TTA' D) 'TTA™'T
= ATT-A'T{A-A(Z, +A)TAITTAT'T

= AT'TA(Z, + AL
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Because A (X, + A)~! is non-singular, the proof is complete.

PROOF OF THEOREM 4. Let A_l/zXTF(FTF)‘l/2 = UAVT denote
the singular value decomposition of Ail/zXTF(FTF)*l/z; that is, U =
(Uy,...,U,) is p x r with orthonormal columns, V = (Vy,...,V,)isrxr
orthogonal, and A is an r x r diagonal matrix with diagonal entries \; >
Ay > >N\ >0. Let ¥ = (Uy,...,Uy). Then, span(¥) is the subspace

spanned by the first d eigenvectors of Ail/z

SA
Let ® = (\Vy,...,\Va)". By definition, B(FTF)I/z = ®. Hence

span(A_l/Qf‘) = span(A_l/

2XTFBT)
— span{A *XTF(FTF) 207}

= span(¥).

This proves the first part. The second part follows from Corollary 3.4 of
Cook and Forzani (2008). The proof is complete.

PROOF OF THEOREM 5. Let A = {Var(fy )} '/?Cov(fy, vy). Under
the stated conditions, A has full column rank, dy. Furthermore, by Lemma

0 and Lemma B,

. 1
(FTF)"2F XA 'X'F(F'F)"2= AAT + Op [ — .
vn
The rest of the proof can be found in Zhu ef~all (2002). The proof is

complete.



PEIRONG XU AND TAO WANG

THE PREDICTIVE EQUIVALENCE OF SRIR AND PFC. In the follow-
ing we show that if the sample multiple correlation coefficient is used for
measuring predictive performance, then SRIR and PFC are equivalent.

Let Vipp and Vi, be predicted coordinates of m new observations
{2y:,..., 2, } by SRIR and PFC. Let Ssprr, Epre, and Ssrrr pre be the
sample covariance matrix of Vg, the sample covariance matrix of Vi,
and the sample covariance matrix between Vi, and Vi, respectively.

By definition, the squared sample multiple correlation coefficient

- - 1 A -1 AT A —1
2 * *
MCC*(Vsrip: Vire) = P trace(Xsrir PFOX pro X SRIR.PFOSSRIR)-

Without loss of generality, assume that Vig,; and Vi are centered.

Then it is easy to check that
2 (X T* 7k 1
MCC (VSRIR7 VPFC) = a tI‘aCG(PSR[RPppc),

where Pgsrrr and Pppe are projection matrices onto the column spaces of
Vfg rrp and V}FC, respectively. It remains to prove that Psrir = Ppre.

Write Vigp = (ul,...,us)" and Vg, = (wh, ..., w?)". By (4.6),
up to a common constant vector, uj = (VTV)_lvTXA_lwy;. On the
other hand, w} = \IITA_1/2:By;. By the definition of T, A_lXTV(VT\A/)*l =
A™'T. From the proof of Theorem 4, it follows that span{AilXTV(VTV)’l} =

span{A_l/z\Il}. The proof is complete.
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