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CONSISTENCY OF BIC MODEL AVERAGING
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Abstract: BIC weighting is frequently applied to high-dimensional linear regressions

when model averaging is used to address model selection uncertainty. It also plays

a central role in model selection diagnostics. However, little research has been

done on its consistency or weak consistency, which are crucial properties of model

averaging methods. In addition, previous works on model averaging consistency

do not consider categorical covariates. As such, with both continuous covariates

and categorical predictors (with possibly diverging numbers of levels) allowed, we

establish both the consistency and the weak consistency of BIC weighting.

Key words and phrases: BIC-p weighting, categorical predictors, consistency, weak

consistency.

1. Introduction

Model averaging is an alternative approach to mitigating model selection

uncertainty by weighting estimators across some models. Various model averaging

approaches have been proposed; see Buckland, Burnham and Augustin (1997),

Yang (2001), Hjort and Claeskens (2003), Leung and Barron (2006), Hansen

(2007), and Zhang et al. (2020), and the references therein.

However, to the best of our knowledge, these previous results focus on esti-

mation accuracy. Little has been done formally on the consistency of model av-

eraging weighting for general high-dimensional linear modeling. Note that model

averaging based on consistent model selection criteria does not necessarily lead

to consistent weighting. Lai, Hanning and Lee (2015), as an exception, derived

the consistency of the generalized fiducial probabilities for candidate models in

the absence of categorical predictors.

Note that the consistency of the weighting plays a central role in some impor-

tant applications. For instance, it provides a theoretical guarantee for assessing

variable selection performance in model selection diagnostics (see Nan and Yang

(2014) and Yu, Yang, and Yang (2022)) and measuring variable importance (see

Ye, Yang and Yang (2018)). Thus, it is essential to establish this consistency
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for successful model selection diagnostics. Given this background, and focusing

on a high-dimensional BIC (BIC-p) with a sparsity-oriented prior on the models,

we derive the consistency of BIC-p weighting and provide theoretical support for

previous work in the literature. Detailed proofs of the theorems are provided in

the Supplementary Material.

2. Main Results

For a linear regression model with both categorical and continuous predictors,

we assume, without loss of generality, that among the p predictors {X1, . . . , Xp},
the first q, {X1, . . . , Xq}, are categorical, while the others are continuous. The

categorical levels of {X1, . . . , Xq} are denoted by {J1, . . . , Jq}, respectively. For

each categorical variable Xi, we define dummy variables Xi,j pertaining to the

jth categorical level, for j = 1, . . . , Ji − 1, and put XIi = (Xi,1, . . . , Xi,Ji−1)
T

with Ii
def
= {(i, 1), . . . , (i, Ji − 1)} in the regression. In a similar fashion, put

XIi = Xi with Ii
def
= {i} for each continuous predictor Xi. Given observations

{yi, xi}ni=1 with xi = (xTi,I1 , . . . , x
T
i,Ip)T, where xi,Ij is the ith sample of XIj , the

linear regression model is written in matrix form as

Y = β0 +Xβ + ε, (2.1)

where Y = (y1, . . . , yn)T is an n-dimensional response vector, X = (x1, . . . , xn)T

is a covariate matrix, β = (βTI1 , . . . , β
T
Ip)T is a parameter vector of size p∗ =∑q

i=1 Ji + p − 2q, βIi = (βi,1, . . . , βi,Ji−1)
T for i = 1, . . . , q and βIi = βi for

i = q+1, . . . , p, and ε = (ε1, . . . , εn)T ∼ N(0, σ2In), where In is the n×n identity

matrix.

For N > 1, let M def
= {Mi, i = 1, . . . , N} be a candidate model set, where

Mi =
⋃
j∈Ai
Ij , Ai ⊂ {1, . . . , p}. Let ‖ · ‖2 be the l2-norm and denote by | · |

the number of elements of a set. For the linear regression model (2.1), the index

set of true variables is defined as M0
def
=
⋃p
i=1 I0i with I0i = Ii for βIi 6= 0, and

I0i = ∅ otherwise. Note that under the sparsity assumption, that is, |M0| � n,

the number of continuous variables in the true model can increase to infinity with

n. This also applies to the numbers of categorical variables and the number of

levels of each categorical variable.

Throughout, we assume that |M0| log p∗ = o(n) and p∗ → ∞. Define

M def
= {Mi : |Mi| ≤ (p∗)α ∧ (Cn/ log p∗) and i ∈ {1, . . . , N}}, for some con-

stants C > 0 and 0 < α < 1, such that |M0| = o((p∗)α), where a ∧ b def
=

min{a, b}. Note that the condition |M | ≤ (p∗)α∧(Cn/ log p∗) for M ∈M is much

weaker than the condition |M | ≤ k|M0|, for some k > 1, which was assumed by
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Chen and Chen (2008), Luo and Chen (2013), and Lai, Hanning and Lee (2015),

among others. To ensure that any finitely many categorical variables can be

included in our candidate model set, we assume max{Ji : 1 ≤ i ≤ q and Ii 6⊂
M0} = o((p∗)α ∧ (n/ log p∗)).

For each element M in M, we calculate the corresponding weight wM using

the BIC-p weighting method. Let RSSM
def
= ‖Y − β̂0 −XM β̂M‖22 be the residual

sum of squares of the model M , where XM denotes an n× |M | submatrix of the

design matrix X, and β̂0 and β̂M are the corresponding least squares estimators.

Let IM
def
= n log (RSSM ) + |M | log n − n log n. Following Nan and Yang (2014),

the BIC-p weight wM is defined as

wM
def
= exp

(
− IM

2
− ψCM

)/ ∑
M ′∈M

exp

(
− IM ′

2
− ψCM ′

)
, (2.2)

where CM = |M | log (e · p∗/|M |) + 2 log (|M |+ 2) and ψ > 0 is a constant.

For ease of notation, let wi , wMi
, for Mi ∈M. Given the candidate models

M and a weighting w = {wi, i = 1, . . . , N}, we define weight concentration index

(WCI) as WCI(w) =
∑N

i=1wi|Mi∇M0|, where ∇ denotes the symmetric differ-

ence of two sets. Clearly, when WCI is close to zero, the weights of the candidate

models are concentrated well around the true model. Based on WCI(w), we

define consistency and weak consistency as follows.

Definition 1. The weighting w is consistent if

WCI(w)
P−→ 0, as n→∞,

and the weighting is weakly consistent if

WCI(w)

|M0|
P−→ 0, as n→∞.

For the theorems below, M is assumed to contain the true model, and can

be up to the collection of all subset models. Conditions 1−3 are required for

consistency.

Condition 1. All levels of each categorical variable are observed and the ratio of

the most frequent levels to the least frequent levels is bounded by some constant.

Condition 2. mini∈{1,...,p}{‖βI0i ‖
2
2 : I0i 6= ∅} ≥ c1 (|M0| log (p∗)/n)κ, where c1 >

0, κ = 1− ε and ε is an arbitrarily small positive constant.

Condition 3. Let λmin(·) and λmax(·) denote the smallest and the largest eigen-

values, respectively. Then, for all M such that |M | ≤ k|M0|,
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0 < cmin ≤ λmin

(
1

n
XT
MXM

)
≤ λmax

(
1

n
XT
MXM

)
≤ cmax <∞,

for some fixed k > 1.

Condition 1 excludes the case of an extremely unbalanced design matrix.

Condition 2 requires that the minimum of the l2-norms of the coefficients of both

the grouped dummy variables and the continuous variables in the true model are

not too small. Note that we impose a restriction on the ith group effect of βI0i
rather than the individual contribution of βi,j , for j = 1, . . . , Ji − 1. Therefore,

for the true grouped dummy variables, some or even most individual effects can

be very small. Condition 3 is the sparse Riesz condition, which is a commonly

used regularity condition for p� n (see Zhang and Huang (2008); Lai, Hanning

and Lee (2015)).

Theorem 1. Under Conditions 1−3, log (|M0|)/ log p∗ ≤ δ < α and log n / log p∗

≤ η, for some positive constants δ, α, and η, if ψ > (2C(k − 1)((α ∧ η) −
1))−1k log(1− 4C(1+(α ∧ η))) + (k/(k − 1)− (α ∧ η)/2)/(1− (α ∧ η)), for some

C ∈ (0, 1/(4(1 + (α ∧ η)))), then we have

max
M∈M,M 6=M0

wM
wM0

P−→ 0, as n→∞. (2.3)

Furthermore, the weighting is consistent; that is,

WCI(w)
P−→ 0, as n→∞. (2.4)

Note that the lower bound on ψ in Theorem 1 is always a positive constant,

because α ∈ (0, 1) and C ∈ (0, 1/(4(1 + (α ∧ η)))). Theorem 1 states that the

weight wM0
of the true model tends to one as n→∞.

Typically, there may be some relatively small coefficients in the true (or best)

model that violate Condition 2. For i = 1, . . . , p and a given arbitrary constant

c2 > 0, we define

ISi
def
=

{
I0i if I0i 6= ∅ and

‖βI0i ‖
2
2

|I0i |
<
c2|M0| log (p∗)

n
,

∅ otherwise.

Let MS
0

def
=
⋃p
i=1 ISi denote the set with indices of smaller coefficients. Note that

we allow the l2-norms of the coefficients of the variables in the set MS
0 to be

arbitrarily small, but the number of these variables should be limited. Thus,

a condition required for the weak consistency of BIC-p weighting is stated as

follows.
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Condition 4. |MS
0 |/|M0| ≤ ξn, where {ξn} is a nonnegative sequence converging

to zero as n→∞.

Theorem 2. Under Conditions 1 and 3−4, log (|M0|)/ log p∗ ≤ δ < α, and

log n/ log p∗ ≤ η, for some positive constants δ, α, and η, if ψ > (2C(k− 1)((α∧
η) − 1))−1k log(1 − 4C(1+(α ∧ η))) + (k/(k − 1) − (α ∧ η)/2)/(1 − (α ∧ η)), for

some C ∈ (0, 1/(4(1 + (α ∧ η)))), then w is weakly consistent; that is,

WCI(w)

|M0|
P−→ 0, as n→∞. (2.5)

Not surprisingly, the weak consistency requires milder conditions that are much

more realistic practice.

Supplementary Material

The proofs of Theorem 1 and Theorem 2 are provided in the online Supple-

mentary Material.
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