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Supplementary Material

This supplement contains the proofs of Theorems 1 and Theorem 2.

S1 Proof of Theorem 1

The following lemma is presented in order to prove Theorems 1 and 2, and

the specific proof of the lemma can be obtained in Luo and Chen| (2013).

Lemma 1. Let C; = 2j{log p* +1log(jlogp*)}, as p* — oo, for any J < p*,
J *

D (p, )P(;@ > Cj) =0,

=1 \J

where X? 18 a chi-square random variable with degrees of freedom j.

Without loss of generality, we assume o? = 1. In the remainder of
the paper, we assume X, contains a p*-dimensional vector of ones. Write
A C Bif AC Band A # B. For notational clarity, let My = {M €

M : My € M} and My = {M € M : My ¢ M}. Further, we split
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My into Mgy = {M € My : |[M| < k|Mo|} and Moy = {M € M, :
k|My| < |[M| < (p*)* A (Cn/logp*)}. Similarly, M; can be split into
Miy E{M € My : M| < k|Mo|} and Mo = {M € M, : k|My| <
M| < (p*)* A (Cn/logp*)}. Let m = |M| and my = |My|. According
to the definition of the wy, in (2.2), we have wy/wy, = exp (=11 — Tz),
where T} = (n/2)log (RSSy/RSSy,) and Ty = 27 (m —my) log n+(m —
mo)(1+ log p* — logm) — ymglog (m/mg) 4+ 2 log ((m + 2)/(mg + 2)). We
only need to show that 17 +75 converges to infinity uniformly for all M € M
s.t. M # My in order to prove the equality in (2.3), and two scenarios,
M e My and M € M, are considered for certification.

We first prove that 77 + 75 converges to infinity under the scenario
M € M,. It is notable that RSS), follows the chi-square distribution
with degrees of freedom n — mgy and we can obtain RSSy, = n(1l + o0,(1))
by the assumption mglogp* = o(n) which implies that my = o(n). Let
Hy = Xp(X5EX0) ' XY, 1= X By, and Ay = p"(I — Hyp)p, the

term RSSy — RSSy, can be rewritten as
RSSy — RSSy, = Apyp+2u™ (I — Hyp)e — € Hype + €  Hype. (S.1)

Below, we will prove 174715 converges to infinity separately under M € M, ;

and M € M 5. We first show that RSSy —RSSn, = Ay (14 0,(1)) holds

uniformly for all M € M, ;.
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Consider the term 2u™(I — Hy)e in and write Zy = pt(l —
Hyp)e/v/Ayr. By the properties of the multivariate normal distribution, we
have Zy, ~ N(0,1). Let M} = {M : M € My,|M| = j} be the set of size
j from My. Put L = [(p*)® A (Cn/logp*)], where [z] denotes the largest

integer not exceeding x. By Lemma [I| and the Bonferroni inequality,

P( max |2u/VCnl > 1) <30 Y P23 > Cy)

7=l MeM’
L o L »*
<> (j)P(Xf >0 <> (j)P(Xg > () — 0.
=1 =1

Therefore, |u™ (I — Hy) €| = VA | Za| < (ApCr)'? (1 + 0,(1)) uniform-

ly over M;. From Conditions 2—3, we deduce that

AM n 1
it () b (¥ )
0B Unologp | = mologpe U™ ot Xarons ) 1ol

n 1 .
N (- X s, Xasonsy ) min 1Bz, 3 Z; € M)

~ mg log p*

n € 1
> &1 () Awin (- Xiruas, Xaronn ) = o0,
_Cl<mologp*) " MUMo T MUMo >

where My \ M refers to all indices that are in set My but not in set M and
Bumo\m denotes the vector consisting of the components of 3 with indices
in My \ M. This gives mglogp* = o(Ay) uniformly over M ;. Since
Cp = O (mglog p*) uniformly over My 1, it follows that |u* (I — Hyy) €| =

0p(Apr) uniformly over My ;.
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For the term € Hye in (S.1)), invoking Lemma , we have

P( U {"Hye> Cm}) < XL: > P Hye > Cp) < Y (p*> P(2 > Cj) = 0.

MeM, =1 Memd j=1 J
Consequently, € Hye < Cy, (14 0,(1)) = O(mglog p*) = 0, (Ay) uniform-
ly over M, ;. In addition, € Hye = mo(1+0,(1)) = 0, (Apr) since €X Hyy€
is a random variable that follows chi-square distribution with degrees of
freedom my.

According to the aforementioned conclusions that |[uT(I — Hy)e| =
0p(Ayr) and €' Hye= o0, (Ay) uniformly over Mj,, we have RSSy —

RSS v, = A (14 0,(1)) uniformly over M, ; and correspondingly,

log (gggﬂi) = log (1 + RssggsifsM()) = log (1 + %(1 + op(l))>

uniformly over M; ;. For any K > 0, under the assumption mglogp* =

o(n),

T = S log (1+ ATM(l +0,(1))) = 5 log (1+ Kmologr” y | 0,(1)))
— g(KmOnlogp*>(1 + Op<1)) = w(l + 0p(1)) (82)

uniformly over M ;.

For 75, under the assumptions in Theorem 1 and M € M, ;, we obtain

(m —myg)logn n

> _1
2mologp* T 2’ 4

log (m/my) > _ log k o),
log p* log p*
— 1+1 *—1

(m mO)( + ogp OgTTL) > —w(l—l-O(l)),

P ”
mg log p
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and 2¢log ((m + 2)/(mg + 2))/(mglogp*) — 0 as n — oo.
As a result, minpen, , To > (—1/2 — ¢)(1 + 0,(1))mglog p*. Putting

this together with (S.2]), we have

i (14T = (K/2=0/2 = 0)(L+ o (D)mologp”. (83

Choosing K > 2i+n, we conclude that minyen, , (71 + T3) — oo. Further,
P
maxarem, , W/ Wy, = MaxXarem,, exp (=11 —Tz) = 0.
Now, we consider the proof under the case M € M; 3. As n — oo, we

can obtain from ([S.1)) and a elementary calculation that
RSSy — RSSuy > (A — 2(A0Cn)? = C) (1 + 0,(1)) + €T Hagye
> —4m(1+ (a Am)(L+ 0,(1)) log "

uniformly over M. Note that xlog(l + 1/x) is strictly increasing for

x < —1, and so we can derive

i = g (114 150 - TSI
. glog (1 _4m(1 +n(o‘ A1) (1+0,(1)) logp*>
J log(1 - 40§é+ (o An)))mlogp*(l +0,(1))
 Klog(1 ;éﬁfi)(a A))) (m — mo) log p*(1 + 0,(1)) (S.4)

uniformly over M5 as n — oo when 0 < C' < 1/(4(1 + (o A 7n))). Next,

we turn to dealing with 75. Under the assumptions in Theorem 1, it is
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straightforward to show that

1 2) —1 2
o log (=) 0, =% (m+2)—logmo+2)
(m — mg) log p* mo (m — mg) log p*
logn 1+ logp* —logm logm 1+ logp* —logm
and >
2log p* log p* 2log p* log p*

> ((nn)/2+ 91 = (aAn)))(1+o(1))

as n — o0o. Hence,

Ty = ((ann)/2+ ¢ = (aAn)))(1+0p(1))(m —mo)logp®  (S.5)

uniformly over M; 5. Combining (S.4) and (S.5)), we can derive that

aAn

min (T +Tp) > (

= (@A) + klog (1 —4C(1 + (oz/\n))))
MeMi 2

20(k — 1)

x (m —mg)log p*(1 + 0p(1)). (S.6)

Thus, if we have

klog(1—4C(1+ (aAn)) aAn
U e DA —1) A —(aspy &7

we can obtain minaseaq, , (11 + 72) — 00 as n — oo.
Below we prove that 77 475 tends to infinity uniformly for all M € M.
Note that RSSy, — RSSar ~ X2 g Let M= {M : M € Mo, |M| = j}.

Recall that C; = 2j{logp* + log(jlogp*)}. Now, invoking Lemma [1] and
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the Bonferroni inequality, we have

PO U { U {(RSSu, — RSSu) 2 Cjomy}})

(mo+1)<y<L  pMeM),

< > P( | {(RSSy, — BSSu) = Cjomy})

J=mo+1 MeM;,

L . L o,
p—m p
<Y (TP z G < X (M) P02 )
- J— Mo — \J
Jj=mo+1 j=1
This implies that RSSy, —RSSy < Crimg (1 4 0,(1)) uniformly over M.
Recall that Mg, = {M € M, : |M]| < k|My|} and Mgs = {M € M, :
k|My| < |[M| < (p*)* A (Cn/logp*)}. Similarly to before, we divide the
proof into two cases: M € My, and M € Ms.

For M € My, note that Cy,—,, = o(n) and RSSy = RSSy, —

(RSSy, — RSSw) = n(l 4+ 0,(1)) uniformly over Mg, we have

T, = _g log (1 n RSSy, — RSSM> > n <RSSMO — RSSM>

RSS > RSSy
> I8 (14 0,(1) 2 — (1 — o) (1+ 0,(1) log '

log((k — 1)mg log p*) .

x 1+ e | = = (m = mo) (14 6) (1 + 0,(1)) 10gp

(S.8)

uniformly over My ;. Moreover, under the assumptions in Theorem 1, it is

straightforward to check for T5 that

— 0,

mo o (ﬁ>—>0 log (m + 2) — log(mgo + 2)
(m — my) log p* mo 7 (m — my) log p*

logn 1+ logp* — logm )
> (= 1-9))(1 1
Tos BT (S vl = )1+ o(1)

and
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as n — oo. This leads to T > (§/2 + (1 — 6))(1 + 0,(1))(m — myp) log p*

uniformly over Mg ;. Combining this with (S.§]), we obtain

MIgAi}OJ(THrTz) > (6/249(1=0) = (1+40))(1+0,(1))(m—mg) log p". (5.9)

Clearly, m > mg for all M € Mgy. As n — oo, p* — 0o, whenever
> (1446/2)/(1—9), (S.10)

then minpzeq,, (11 + 1) — oo.

For M € M, we can see from (S.8)) that

n RSSMO — RSSM
72 5 RSSw )

—(m —mo)(1 + (aAn))(1+ 0,(1))log p*
—1=2(m—mo)(1+ (aAn))(1+0,(1))logp*/n

(S.11)

as n — oo. In addition, the conclusion for 75 can be drawn by the same
argument as in the proof of (S.5)). Combining this with (S.11)), we can also

derive that

1+ (aAn) >

min (T} + Ty) > (QTMJrWl_(O‘/\"))_ 1-2C(1+ (aAn))

MeMo,2

X (m —my) log p*(1 + 0,(1)). (S.12)

Further, if we have the following condition

(1 + (ann)/(A =200+ (aAn)) —(aAn)/2

v> 10— (ann) ’

(S.13)
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then minpze py, (11 4+ T2) — 00 as n — oo. It should be noted that
and are automatically satisfied when holds due to § < (a A 7).
Therefore, when v satisfies (S.7), the conclusion (2.3) follows.

Next, on the basis of the above conclusions, we can prove that BIC-p
weighting is consistent. For each given candidate model M; € M, we have
|M;V My| = |M; \ Mo| = |M;| — | My|. Besides, for a given candidate model
M; € My, we have |M;V M| = |M; \ Mo| + | Mo \ M;| < |M;| + |My|.

Since

N
S wil MiVMyl = > wy[MVM[+ > wy| MV M|
=1 MeMq MeMgy

w w
< > EMVM|+ Y MM, (S.14)
MeM;y WMo MeMy WMo

we only need to show that the two terms in ([S.14)) converge to 0 in proba-

bility as n tends to infinity. The first term in (S.14}) can be written as

w w w def
> SHMIMy = Y EMVM+ Y L MVM| = Ty + Tha.
MeM;, Wty MeMiq Mo MeM; 2 Mo

Applying (S.3)) and the fact that |[MV M| < (k+1)mg for M € M, ; yields

kmo %
Ty < (k+ l)moz (2; ) ( max wM)
j=1

MeM Wiy,
kmg
< (k+ 1)my Zexp{j logp* — (K/2 —n/2 —¢)(1 + 0,(1))mg logp*}
j=1

< k(k + 1)m exp{—mo logp"(K/2 — n/2 — ¥ = k)(1 + 0,(1))} = 0,
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by choosing sufficiently large K. Now combining (S.6) and the assumption

in Theorem 1 that

klog(1—4C(1+ (aAn))) k/(k—1)—(aAn)/2

Nl
Y e = Dlla Ay = 1) s N G
we obtain
L *
T2 <120n* Z (p) ( max wM)
ogp* =t \J ) \memj wary
2Cn L
“loapr > exp{—jlogp(((a An)/2+ (1 — (a An))
j=kmo+1

+(2C(k — 1)) 'klog (1 — 4C(1 + (a An))))(1 = 1/k) = 1)(1 + 0,(1))} 2 0.
The second term in ([S.14]) can be handled in much the same way, which

can be rewritten as

w w w def
> S MVM| = ) LIMVM|+ D MMV M| & Tyy + Tos.
MeM W MeM Mo MeM Mo
0 0,1 0,2

We first consider the term Tp . Write Q(¢0) = (1 —6) —0/2—2, a constant

independent of n. Noting the condition ¢ > (2 + 46/2)/(1 — 0), we have

Q(v) > 0. Using (S.9) gives

( ’ > ( max wM) < exp{—(j — mo)2(Y)logp"(1 + 0,(1))}

j — Mo MEM(J) wMO
uniformly for all M € My. When j > mg + r + 1 with r = [3/Q(¢)], we

have

exp{—(j —mo)2¢)log p™(1 + 0,(1))} < exp{—3logp*(1+0,(1))}. (5.16)
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As a consequence, we obtain

km %
Z ZM|MVMO|< i < b )(max_w

7 )(j—mo) < Toaa+7101,2

MeMo Mo j=mo+1 j — My MEM% W,
where
mo+T1
Toan = Z exp{—(j — mo)log(p")Q2()(1 + 0,(1) }(j — mo),
Jj=mo+1
kmg
and To1o %= > exp{—(j —mo)log(p")2¥) (1 + 0p(1)}(j — mo).

J=mo+r+1

Combining this with the inequality in (S.16[), we have
Tosa < 1% exp{~log(p")2L) (L + 0,(1)} = 0,
and Ty19 < (k — 1)*m§ exp{—3log (p*)(1 + 0,(1)) 50

as n — o0o. For the term Tj,, combining (S.12)) and the assumption in

Theorem 1, we obtain

2Cn L * w

Too < " Z <'p )(max. M)

log p P m——— J — Mo/ \ Men) Wi,
L

> exp{=(j —mo)logp ((aAn)/2+ (1 = (aAm))

Jj=kmo+1

2Cn

<
log p*

— (14 (@ An)/(1=2C(1+ (a An))) = (1 +0,(1))} 0.

Overall, when ) satisfies ([S.15)), the conclusion (2.4) follows. 0O
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S2 Proof of Theorem 2

First note that

= I+ 1.

N
1 w w
m—§ wi| MV M| = ) WM]MVMOH > WM\MVMO
0 =1 MeM, MeM,

In the following proofs, we will prove that Iy and I; converge to 0 in prob-
ability.

When we consider the term Iy, it is worth noting that Condition 2 is
not applied while we prove ), v (wn/wn, )| MV M| converges to 0 in
probability in the proof of Theorem 1. Hence, without Condition 2 in this
theorem, Iy < 3 yse e, (War/was )| MV Mo| £+ 0 still holds.

In order to show that I; converges to 0 in probability, we need to further
split the set M, ; into multiple subsets. For ¢ = 1,...,p and ¢; > 0, we
define

b { i I8z l3/1Z2) = e (| Mol Tog (v7) /n)"

0 otherwise.

Hence, M{" = [ JV_, ZF is the set with indices of larger coefficients. The set
MM = My \ (MF U Mg) includes indices of medium size coefficients. For
T0 € MY, we have el Mo| log (5°)/n < [|Bagl13/|Z0] < er (|Mo]log (v*) /)"
where ¢; and ¢y > 0. Clearly, My = ME U MM U M§ and |ME| + |MM| +

|Mg| = |My|. By Condition 4, we have |M|/|Mo| < &,, where {&,} is a
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nonnegative sequence converging to zero as n — oo. Let {¢,} and {(,}
be strictly positive sequences converging to zero such that 9,|M,| — oo
asn — oo and ¢, > 7(1 —7)7Y(&, + ¥,) for each n, where 7 € (0,1).
For example, we can take ¥, = |My|™"/? and ¢, = 27(1 — 7) 72 (&, + V)
for the given {&,}. Let My = {M € My; : MF ¢ M}, My = {M €
My |M MM < IMM) — 9, M|} and Myz = My, \ (Mg UMy,) =
{M € Myy : M € M and |M N M| > |MJ| — 9,|Mp|}. Each model
in M, misses at least one larger coefficient and each model in M5 leaves
out 9,|Mp| indices in MJ" at least. And for each model in M3, it contains
all larger coefficients and many indices in Mé”. Let Mg = {M € M3 :
(IM]=[Mo|)/|Mo| < ¢u} and Mugs = {M € Mg : (|M|—=|Mo|)/|Mo| > G}
Since My = M3 UM U Mg UMige UM, g, we have Ity < Iy + L2 +
I3y + L1z + 11 2, where

def w def w def w
111: Z _M|MVMO|7]12: Z WM|MVMO|71131: Z WM|MVMO|’

MeMiy 0 MeMi2 0 MeMizy

L™ S M MVM and I, 2 Y B MV,

MeMisa 0 MeMi 2

Furthermore, we only need to prove that each of the above five terms con-
verges to 0 in probability.
When considering the term /;;, we need to know that there exists Z; C

M{ such that Z; ¢ M for M € My, that is, M does not contain all indices
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of the larger coefficients. By Condition 3, recall that

1

AM n
- i (3 X oy Xnson,) 3 S.17
my 1ng* — my logp* n MUMy<*MUMy HﬂMO\MHQ ( )

we obtain

AM 1 n 1=r
= () ()
mglogp* — “ p MOMoEMUMo S, Nog p* >

since 1—k is strictly positive. Under this situation, by a similar manner as in
the proof of Theorem 1, we can obtain that » -, v, (war/wag, )| MV My i
0. Furthermore, we have It; <)o q, (War/wag, )| MV My 0.

If M € Mjs, we have the following inequality

A 1o
o log o > CoAmin <EXMUMOXMUMO> | Mo \ M|

> CoAmin (%XJ\T/IuMOXMuM()) (9,mg) — o0.

by combining Condition 3 and . Hence, it follows immediately that
L2 < X wrents, (war/wag, )| MV M| 55 0.

For the term 31, it should be noted that ZM€M131 Wy <D ppem W =
1. Moreover, by the definition of M;3; and Condition 4, we obtain —(§,, +
U,) < (M| — |Mo|)/|Mo| < ¢, for all M € Mz Therefore, we have
Dzt < (&n + 00+ o) Do prerty, W — 0.

Now, we turn to the term Iy35. For M € My, let S = M N MM be the
set that contains the indices of the medium size coefficients in M and denote

by M, the set that contains all the models in My, that are of size j.
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Under this scenario, (M¥US) C M and the number of candidate models in
Mgy s less than 1] 2 p*1/ GV (p =) ) (M) (o) (M —0umo)),
where j* = j — |ML| — |[MM| + 9,mq. Next, we first prove that wy, 5o
for M € Mss.

Recall that wys/wy, = exp (=11 — Ty) and RSSy — RSSy, = An +
2u™ (I — Hyp)e + €V Hyoe — € Hype, where p*(I — Hyp)e = /Ay Zyr and

Zy ~ N(0,1). Then we write

Iz d:efP< U {max{|Zy|: M € ML} > (2 = 1)C; 1/2})

mo(1+¢n)<j<kmo

:P< U { max{Z}, : M€ Mzt > (2—1)C; })

mo(14+¢n)<j<kmo

Using similar argument in the proof of Theorem 1 in Luo and Chen| (2013))

and ¢, > 7(1 — 7)1 (& + ¥s), we can derive

kmg

Iy < Z Z > (2-1)Cj)

J=mo(14+Cn) M€M132

kmg
P (1Mg] 2
<Y )(j*> (ﬁnmo PG > (2-7)C;)

]:m0(1+<n
kmg p* p*
2
- 2 (y) (ﬁnm())P (X« = 2=7)C5-) = 0. (S.18)
g=mo(14Cn)

Thus, we have max{|Zy| : M € Mz} < (2 — 7)C;)Y2(1 + 0,(1)) uni-
formly for all M € M{32. Moreover, we know that ¢"Hy; e — " Hye >
ETHMOLUsE — €Y Hye, where Hypyg s the projection matrix about Xyrus

and Xz, denotes an n x (|ME| + |S]) submatrix of X that is obtained
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by extracting the columns corresponding to the indices in M U S, and

el Hyre — eTHMOLUSe ~ XJQ'—IMOL\—ISI for M € /\/l{32. Similar to ([S.18)), we

have
e"Hype — €' Hye > —max{e” Hye — eTHMOLuse M€ Mig,, (MEUS) c MY
> —2j°(2 = 7)(1+ 8)(1 + 0p(1)) log " (5.19)

uniformly for all M € ./\/l{32. Furthermore, we also know that A, +2u™ (1 —

Hy)e = Ay + 27/ Ay, and since
Anr + 220/ Ayr > App — 2(Ax (2 — 7)C5-) 12
> ~2j"(2— 7)(1+)(1 + 0,(1)) log '

uniformly for all M € MJ,,, we can conclude that

. n RSSM—RSSMO
Ti=3los (1 RSS )
42 —1)5*

> Dlog (1~ (1+6)(1+0,(1)) log ')

RS S,
= =272 =7)(1+0)(1 + 0p(1)) log p",

uniformly for all M € M,, by combining (S-19). At the same time, we

can calculate T > (j — mg)(9/2 + (1 —§))(1 + 0,(1)) log p* uniformly for

all M € M.

According to ¢, > 7=(& +Yy),0 < 7 < 1, we can derive

, T T
J—mo > Cpmo > :(fn + Jn)mo > :(mo — | Mg | — |Mg"] + 9nmq),
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further, j —mg > 77" can be obtained. Therefore, under the assumption in
Theorem 2, which implies that ¢ > (2(2 —7)(1+6) — 76/2)/(7(1 = §)) for

some T close to 1, we have

min (T} + T3) >j* logp*(%é +Y7(1—0) —2(2—7)(1+))(1 + 0,(1)) = 0.
MeM,,

(S.20)
It follows that wy < way/wa, = exp{—(11 + 13)} Ly 0 uniformly for all

M € Mis,.

Now, we prove that the term /335 converges to 0 in probability. Clearly,

kmg
T30 < Z Wiy | MY M| < Z m;< max Wy )(j+m0)
MeMizo MoWaty j=mo(1+<¢n) MeMis, TM0WMo
kmg
< (k+1) Z m;( max il ) (S.21)
J=mo(14+¢n) MeMig, Who

Under the assumption that ¢ > (2—7+2(2—7)(14+9) —76/2)/(7(1 —9))

for some 7 close to 1, combining ([S.20)) and (S.21]) yields
kmg
. w, TO
Ly < Y exp{—j*logp (G + 971 =0) =22 = 7)1 +0) = (2= 7)) (1 +0,(1))}
j:m0(1+<n)

<kmgexp{—2(1+ 0,(1))logp*} 5o.

In order to make the condition for v easier to be satisfied, we can take
T — 1, that is, ¢ > (34 36/2)/(1 —9).
For I 5, we can derive that I1o <y (War/wag,) [MV M| L 0 by

a similar manner to the proof of Theorem 1. It is worth noting that the
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assumption

klog (1 —4C(1+4 (aAm)))  k/(k—1)—(aAn)/2

U 0t D@ - 1) (@A)

implies that ¢ > (3 +36/2)/(1 — ) due to § < (a A n), which completes

the proof of Theorem 2. 0O
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