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This supplement contains the proofs of Theorems 1 and Theorem 2.

S1 Proof of Theorem 1

The following lemma is presented in order to prove Theorems 1 and 2, and

the specific proof of the lemma can be obtained in Luo and Chen (2013).

Lemma 1. Let Cj = 2j{log p∗+log(j log p∗)}, as p∗ →∞, for any J ≤ p∗,

J∑
j=1

(
p∗

j

)
P (χ2

j > Cj)→ 0,

where χ2
j is a chi-square random variable with degrees of freedom j.

Without loss of generality, we assume σ2 = 1. In the remainder of

the paper, we assume XM contains a p∗-dimensional vector of ones. Write

A ( B if A ⊂ B and A 6= B. For notational clarity, let M0
def

= {M ∈

M : M0 ( M} and M1
def

= {M ∈ M : M0 6⊂ M}. Further, we split
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M0 into M0,1
def

= {M ∈ M0 : |M | ≤ k|M0|} and M0,2
def

= {M ∈ M0 :

k|M0| < |M | ≤ (p∗)α ∧ (Cn/ log p∗)}. Similarly, M1 can be split into

M1,1
def

= {M ∈ M1 : |M | ≤ k|M0|} and M1,2
def

= {M ∈ M1 : k|M0| <

|M | ≤ (p∗)α ∧ (Cn/ log p∗)}. Let m
def

= |M | and m0
def

= |M0|. According

to the definition of the wM in (2.2), we have wM/wM0 = exp (−T1 − T2),

where T1
def

= (n/2) log (RSSM/RSSM0) and T2
def

= 2−1(m−m0) log n+ψ(m−

m0)(1 + log p∗− logm)−ψm0 log (m/m0) + 2ψ log ((m+ 2)/(m0 + 2)). We

only need to show that T1+T2 converges to infinity uniformly for all M ∈M

s.t. M 6= M0 in order to prove the equality in (2.3), and two scenarios,

M ∈M1 and M ∈M0, are considered for certification.

We first prove that T1 + T2 converges to infinity under the scenario

M ∈ M1. It is notable that RSSM0 follows the chi-square distribution

with degrees of freedom n −m0 and we can obtain RSSM0 = n(1 + op(1))

by the assumption m0 log p∗ = o(n) which implies that m0 = o(n). Let

HM
def

= XM(XT
MXM)−1XT

M , µ
def

= XM0βM0 and ∆M
def

= µT(I − HM)µ, the

term RSSM −RSSM0 can be rewritten as

RSSM −RSSM0 = ∆M + 2µT(I −HM)ε− εTHMε+ εTHM0ε. (S.1)

Below, we will prove T1+T2 converges to infinity separately underM ∈M1,1

and M ∈M1,2. We first show that RSSM−RSSM0 = ∆M (1 + op(1)) holds

uniformly for all M ∈M1,1.
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Consider the term 2µT(I − HM)ε in (S.1) and write ZM = µT(I −

HM)ε/
√

∆M . By the properties of the multivariate normal distribution, we

have ZM ∼ N(0, 1). Let Mj
1

def

= {M : M ∈ M1, |M | = j} be the set of size

j from M1. Put L = [(p∗)α ∧ (Cn/ log p∗)], where [x] denotes the largest

integer not exceeding x. By Lemma 1 and the Bonferroni inequality,

P
(

max
M∈M1

|ZM/
√
Cm| > 1

)
≤

L∑
j=1

∑
M∈Mj

1

P (Z2
M > Cj)

<
L∑
j=1

(
p∗

j

)
P (χ2

1 > Cj) <
L∑
j=1

(
p∗

j

)
P (χ2

j > Cj)→ 0.

Therefore, |µT (I −HM) ε| =
√

∆M |ZM | ≤ (∆MCm)1/2 (1 + op(1)) uniform-

ly over M1. From Conditions 2−3, we deduce that

lim
n→∞

min
M∈M1,1

{ ∆M

m0 log p∗

}
≥ n

m0 log p∗
λmin

( 1

n
XT
M∪M0

XM∪M0

)
‖βM0\M‖22

≥ n

m0 log p∗
λmin

( 1

n
XT
M∪M0

XM∪M0

)
min{‖βIj‖22 : Ij ⊂M0}

≥ c1

( n

m0 log p∗

)ε
λmin

( 1

n
XT
M∪M0

XM∪M0

)
→∞,

where M0 \M refers to all indices that are in set M0 but not in set M and

βM0\M denotes the vector consisting of the components of β with indices

in M0 \ M . This gives m0 log p∗ = o (∆M) uniformly over M1,1. Since

Cm = O (m0 log p∗) uniformly over M1,1, it follows that |µT (I −HM) ε| =

op(∆M) uniformly over M1,1.
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For the term εTHMε in (S.1), invoking Lemma 1, we have

P
( ⋃
M∈M1

{εTHMε > Cm}
)
≤

L∑
j=1

∑
M∈Mj

1

P (εTHMε > Cj) <
L∑
j=1

(
p∗

j

)
P (χ2

j > Cj)→ 0.

Consequently, εTHMε ≤ Cm (1 + op(1)) = O(m0 log p∗) = op (∆M) uniform-

ly overM1,1. In addition, εTHM0ε = m0(1+op(1)) = op (∆M) since εTHM0ε

is a random variable that follows chi-square distribution with degrees of

freedom m0.

According to the aforementioned conclusions that |µT(I − HM)ε| =

op(∆M) and εTHMε= op (∆M) uniformly over M1,1, we have RSSM −

RSSM0 = ∆M (1 + op(1)) uniformly over M1,1 and correspondingly,

log
( RSSM
RSSM0

)
= log

(
1 +

RSSM −RSSM0

RSSM0

)
= log

(
1 +

∆M

n
(1 + op(1))

)
uniformly over M1,1. For any K > 0, under the assumption m0 log p∗ =

o(n),

T1 =
n

2
log
(

1 +
∆M

n
(1 + op(1))

)
≥ n

2
log
(

1 +
Km0 log p∗

n
(1 + op(1))

)
=
n

2

(Km0 log p∗

n

)
(1 + op(1)) =

Km0 log p∗

2
(1 + op(1)) (S.2)

uniformly over M1,1.

For T2, under the assumptions in Theorem 1 and M ∈M1,1, we obtain

(m−m0) log n

2m0 log p∗
≥ −η

2
, −ψ log (m/m0)

log p∗
≥ −ψ log k

log p∗
= o(1),

ψ
(m−m0) (1 + log p∗ − logm)

m0 log p∗
> −ψ(1 + o(1)),
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and 2ψlog ((m+ 2)/(m0 + 2))/(m0 log p∗)→ 0 as n→∞.

As a result, minM∈M1,1 T2 ≥ (−η/2 − ψ)(1 + op(1))m0 log p∗. Putting

this together with (S.2), we have

min
M∈M1,1

(T1 + T2) ≥ (K/2− η/2− ψ)(1 + op(1))m0 log p∗. (S.3)

Choosing K > 2ψ+η, we conclude that minM∈M1,1 (T1 + T2)→∞. Further,

maxM∈M1,1 wM/wM0 = maxM∈M1,1 exp (−T1 − T2)
P−→ 0.

Now, we consider the proof under the case M ∈ M1,2. As n→∞, we

can obtain from (S.1) and a elementary calculation that

RSSM −RSSM0 ≥ (∆M − 2(∆MCm)1/2 − Cm)(1 + op(1)) + εTHM0ε

≥ −4m(1 + (α ∧ η))(1 + op(1)) log p∗

uniformly over M1,2. Note that x log(1 + 1/x) is strictly increasing for

x < −1, and so we can derive

T1 =
n

2
log
(

1 +
RSSM −RSSM0

RSSM0

)
≥ n

2
log
(

1− 4m(1 + (α ∧ η))

n
(1 + op(1)) log p∗

)
≥ log (1− 4C(1 + (α ∧ η)))

2C
m log p∗(1 + op(1))

≥ k log (1− 4C(1 + (α ∧ η)))

2C(k − 1)
(m−m0) log p∗(1 + op(1)) (S.4)

uniformly over M1,2 as n → ∞ when 0 < C < 1/(4(1 + (α ∧ η))). Next,

we turn to dealing with T2. Under the assumptions in Theorem 1, it is
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straightforward to show that

m0

(m−m0) log p∗
log
( m
m0

)
→ 0,

log (m+ 2)− log(m0 + 2)

(m−m0) log p∗
→ 0,

and
log n

2 log p∗
+ ψ

1 + log p∗ − logm

log p∗
≥ logm

2 log p∗
+ ψ

1 + log p∗ − logm

log p∗

≥ ((α ∧ η)/2 + ψ(1− (α ∧ η)))(1 + o(1))

as n→∞. Hence,

T2 ≥ ((α ∧ η)/2 + ψ(1− (α ∧ η)))(1 + op(1))(m−m0) log p∗ (S.5)

uniformly over M1,2. Combining (S.4) and (S.5), we can derive that

min
M∈M1,2

(T1 + T2) ≥
(α ∧ η

2
+ ψ(1− (α ∧ η)) +

k log (1− 4C(1 + (α ∧ η)))

2C(k − 1)

)
× (m−m0) log p∗(1 + op(1)). (S.6)

Thus, if we have

ψ >
k log (1− 4C(1 + (α ∧ η)))

2C(k − 1)((α ∧ η)− 1)
− α ∧ η

2(1− (α ∧ η))
, (S.7)

we can obtain minM∈M1,2 (T1 + T2)→∞ as n→∞.

Below we prove that T1+T2 tends to infinity uniformly for all M ∈M0.

Note that RSSM0 −RSSM ∼ χ2
m−m0

. LetMj
0

def

= {M : M ∈M0, |M | = j}.

Recall that Cj = 2j{log p∗ + log(j log p∗)}. Now, invoking Lemma 1 and
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the Bonferroni inequality, we have

P
( ⋃
(m0+1)≤j≤L

{ ⋃
M∈Mj

0

{(RSSM0 −RSSM) ≥ Cj−m0}
})

≤
L∑

j=m0+1

P
( ⋃
M∈Mj

0

{(RSSM0 −RSSM) ≥ Cj−m0}
)

≤
L∑

j=m0+1

(
p∗ −m0

j −m0

)
P (χ2

j−m0
≥ Cj−m0) <

L∑
j=1

(
p∗

j

)
P (χ2

j ≥ Cj)→ 0.

This implies that RSSM0−RSSM ≤ Cm−m0 (1 + op(1)) uniformly overM0.

Recall that M0,1 = {M ∈ M0 : |M | ≤ k|M0|} and M0,2 = {M ∈ M0 :

k|M0| < |M | ≤ (p∗)α ∧ (Cn/ log p∗)}. Similarly to before, we divide the

proof into two cases: M ∈M0,1 and M ∈M0,2.

For M ∈ M0,1, note that Cm−m0 = o(n) and RSSM = RSSM0 −

(RSSM0 −RSSM) = n(1 + op(1)) uniformly over M0,1, we have

T1 = −n
2

log
(

1 +
RSSM0 −RSSM

RSSM

)
≥ −n

2

(RSSM0 −RSSM
RSSM

)
≥ −Cm−m0

2
(1 + op(1)) ≥ − (m−m0) (1 + op(1)) log p∗

×
[
1 +

log((k − 1)m0 log p∗)

log p∗

]
≥ − (m−m0) (1 + δ) (1 + op(1)) log p∗

(S.8)

uniformly overM0,1. Moreover, under the assumptions in Theorem 1, it is

straightforward to check for T2 that

m0

(m−m0) log p∗
log
( m
m0

)
→ 0,

log (m+ 2)− log(m0 + 2)

(m−m0) log p∗
→ 0,

and
log n

2 log p∗
+ ψ

1 + log p∗ − logm

log p∗
≥ (

δ

2
+ ψ(1− δ))(1 + o(1))
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as n → ∞. This leads to T2 ≥ (δ/2 + ψ(1 − δ))(1 + op(1))(m −m0) log p∗

uniformly over M0,1. Combining this with (S.8), we obtain

min
M∈M0,1

(T1+T2) ≥ (δ/2+ψ(1−δ)−(1+δ))(1+op(1))(m−m0) log p∗. (S.9)

Clearly, m > m0 for all M ∈M0. As n→∞, p∗ →∞, whenever

ψ > (1 + δ/2)/(1− δ), (S.10)

then minM∈M0,1(T1 + T2)→∞.

For M ∈M0,2, we can see from (S.8) that

T1 ≥ −
n

2

(RSSM0 −RSSM
RSSM

)
≥ −(m−m0)(1 + (α ∧ η))(1 + op(1)) log p∗

1− 2(m−m0)(1 + (α ∧ η))(1 + op(1)) log p∗/n
(S.11)

as n → ∞. In addition, the conclusion for T2 can be drawn by the same

argument as in the proof of (S.5). Combining this with (S.11), we can also

derive that

min
M∈M0,2

(T1 + T2) ≥
(α ∧ η

2
+ ψ(1− (α ∧ η))− 1 + (α ∧ η)

1− 2C(1 + (α ∧ η))

)
× (m−m0) log p∗(1 + op(1)). (S.12)

Further, if we have the following condition

ψ >
(1 + (α ∧ η))/(1− 2C(1 + (α ∧ η)))− (α ∧ η)/2

(1− (α ∧ η))
, (S.13)
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then minM∈M0,2 (T1 + T2)→∞ as n→∞. It should be noted that (S.10)

and (S.13) are automatically satisfied when (S.7) holds due to δ < (α ∧ η).

Therefore, when ψ satisfies (S.7), the conclusion (2.3) follows.

Next, on the basis of the above conclusions, we can prove that BIC-p

weighting is consistent. For each given candidate model Mi ∈M0, we have

|Mi∇M0| = |Mi \M0| = |Mi| − |M0|. Besides, for a given candidate model

Mi ∈M1, we have |Mi∇M0| = |Mi \M0|+ |M0 \Mi| ≤ |Mi|+ |M0|.

Since

N∑
i=1

wi|Mi∇M0| =
∑

M∈M1

wM |M∇M0|+
∑

M∈M0

wM |M∇M0|

≤
∑

M∈M1

wM
wM0

|M∇M0|+
∑

M∈M0

wM
wM0

|M∇M0|, (S.14)

we only need to show that the two terms in (S.14) converge to 0 in proba-

bility as n tends to infinity. The first term in (S.14) can be written as

∑
M∈M1

wM
wM0

|M∇M0| =
∑

M∈M1,1

wM
wM0

|M∇M0|+
∑

M∈M1,2

wM
wM0

|M∇M0|
def

= T1,1 + T1,2.

Applying (S.3) and the fact that |M∇M0| ≤ (k+1)m0 for M ∈M1,1 yields

T1,1 < (k + 1)m0

km0∑
j=1

(
p∗

j

)(
max
M∈Mj

1

wM
wM0

)
< (k + 1)m0

km0∑
j=1

exp{j log p∗ − (K/2− η/2− ψ)(1 + op(1))m0 log p∗}

< k(k + 1)m2
0 exp{−m0 log p∗(K/2− η/2− ψ − k)(1 + op(1))} P−→ 0,
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by choosing sufficiently large K. Now combining (S.6) and the assumption

in Theorem 1 that

ψ >
k log (1− 4C(1 + (α ∧ η)))

2C(k − 1)((α ∧ η)− 1)
+
k/(k − 1)− (α ∧ η)/2

1− (α ∧ η)
, (S.15)

we obtain

T1,2 <
2Cn

log p∗

L∑
j=km0+1

(
p∗

j

)(
max
M∈Mj

1

wM
wM0

)
<

2Cn

log p∗

L∑
j=km0+1

exp{−j log p∗(((α ∧ η)/2 + ψ(1− (α ∧ η))

+ (2C(k − 1))−1k log (1− 4C(1 + (α ∧ η))))(1− 1/k)− 1)(1 + op(1))} P−→ 0.

The second term in (S.14) can be handled in much the same way, which

can be rewritten as

∑
M∈M0

wM
wM0

|M∇M0| =
∑

M∈M0,1

wM
wM0

|M∇M0|+
∑

M∈M0,2

wM
wM0

|M∇M0|
def

= T0,1 + T0,2.

We first consider the term T0,1. Write Ω(ψ) = ψ(1−δ)−δ/2−2, a constant

independent of n. Noting the condition ψ > (2 + δ/2)/(1 − δ), we have

Ω(ψ) > 0. Using (S.9) gives(
p∗

j −m0

)(
max
M∈Mj

0

wM
wM0

)
< exp{−(j −m0)Ω(ψ) log p∗(1 + op(1))}

uniformly for all M ∈ M0. When j ≥ m0 + r + 1 with r = [3/Ω(ψ)], we

have

exp{−(j −m0)Ω(ψ) log p∗(1 + op(1))} < exp{−3 log p∗(1 + op(1))}. (S.16)
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As a consequence, we obtain

∑
M∈M0,1

wM
wM0

|M∇M0| <
km0∑

j=m0+1

(
p∗

j −m0

)(
max
M∈Mj

0

wM
wM0

)
(j−m0) ≤ T0,1,1+T0,1,2

where

T0,1,1
def

=

m0+r∑
j=m0+1

exp{−(j −m0) log(p∗)Ω(ψ)(1 + op(1)}(j −m0),

and T0,1,2
def

=

km0∑
j=m0+r+1

exp{−(j −m0) log(p∗)Ω(ψ)(1 + op(1)}(j −m0).

Combining this with the inequality in (S.16), we have

T0,1,1 ≤ r2 exp{− log(p∗)Ω(ψ)(1 + op(1))} P−→ 0,

and T0,1,2 < (k − 1)2m2
0 exp{−3 log (p∗)(1 + op(1))

P−→ 0

as n → ∞. For the term T0,2, combining (S.12) and the assumption in

Theorem 1, we obtain

T0,2 <
2Cn

log p∗

L∑
j=km0+1

(
p∗

j −m0

)(
max
M∈Mj

0

wM
wM0

)
<

2Cn

log p∗

L∑
j=km0+1

exp{−(j −m0) log p∗((α ∧ η)/2 + ψ(1− (α ∧ η))

− (1 + (α ∧ η))/(1− 2C(1 + (α ∧ η)))− 1)(1 + op(1))} P−→ 0.

Overall, when ψ satisfies (S.15), the conclusion (2.4) follows.
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S2 Proof of Theorem 2

First note that

1

m0

N∑
i=1

wi|Mi∇M0| =
∑

M∈M0

wM
m0

|M∇M0|+
∑

M∈M1

wM
m0

|M∇M0|
def

= I0 + I1.

In the following proofs, we will prove that I0 and I1 converge to 0 in prob-

ability.

When we consider the term I0, it is worth noting that Condition 2 is

not applied while we prove
∑

M∈M0
(wM/wM0)|M∇M0| converges to 0 in

probability in the proof of Theorem 1. Hence, without Condition 2 in this

theorem, I0 <
∑

M∈M0
(wM/wM0)|M∇M0|

P−→ 0 still holds.

In order to show that I1 converges to 0 in probability, we need to further

split the set M1,1 into multiple subsets. For i = 1, . . . , p and c1 > 0, we

define

ILi
def

=

{
I0i if ‖βI0i ‖

2
2/|I0i | ≥ c1

(
|M0| log (p∗)

/
n
)κ
,

∅ otherwise.

Hence, ML
0

def

=
⋃p
i=1 ILi is the set with indices of larger coefficients. The set

MM
0

def

= M0 \ (ML
0 ∪MS

0 ) includes indices of medium size coefficients. For

I0i ⊂ MM
0 , we have c2|M0| log (p∗)/n ≤ ‖βI0i ‖

2
2/|I0i | < c1 (|M0| log (p∗)/n)κ,

where c1 and c2 > 0. Clearly, M0 = ML
0 ∪MM

0 ∪MS
0 and |ML

0 | + |MM
0 | +

|MS
0 | = |M0|. By Condition 4, we have |MS

0 |/|M0| ≤ ξn, where {ξn} is a
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nonnegative sequence converging to zero as n → ∞. Let {ϑn} and {ζn}

be strictly positive sequences converging to zero such that ϑn|M0| → ∞

as n → ∞ and ζn > τ(1− τ)−1(ξn + ϑn) for each n, where τ ∈ (0, 1).

For example, we can take ϑn = |M0|−1/2 and ζn = 2τ(1− τ)−1(ξn + ϑn)

for the given {ξn}. Let M11
def

= {M ∈ M1,1 : ML
0 6⊂ M}, M12

def

= {M ∈

M1,1 : |M ∩MM
0 | ≤ |MM

0 | − ϑn|M0|} and M13
def

= M1,1 \ (M11 ∪M12) =

{M ∈ M1,1 : ML
0 ⊂ M and |M ∩MM

0 | > |MM
0 | − ϑn|M0|}. Each model

in M11 misses at least one larger coefficient and each model in M12 leaves

out ϑn|M0| indices in MM
0 at least. And for each model inM13, it contains

all larger coefficients and many indices in MM
0 . Let M131

def

= {M ∈ M13 :

(|M |−|M0|)/|M0| ≤ ζn} andM132
def

= {M ∈M13 : (|M |−|M0|)/|M0| > ζn}.

Since M1 =M11 ∪M12 ∪M131 ∪M132 ∪M1,2, we have I1 ≤ I11 + I12 +

I131 + I132 + I1,2, where

I11
def

=
∑

M∈M11

wM
m0

|M∇M0|, I12
def

=
∑

M∈M12

wM
m0

|M∇M0|, I131
def

=
∑

M∈M131

wM
m0

|M∇M0|,

I132
def

=
∑

M∈M132

wM
m0

|M∇M0| and I1,2
def

=
∑

M∈M1,2

wM
m0

|M∇M0|.

Furthermore, we only need to prove that each of the above five terms con-

verges to 0 in probability.

When considering the term I11, we need to know that there exists Ij ⊂

ML
0 such that Ij 6⊂M for M ∈M11, that is, M does not contain all indices
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of the larger coefficients. By Condition 3, recall that

∆M

m0 log p∗
≥ n

m0 log p∗
λmin

( 1

n
XT
M∪M0

XM∪M0

)
‖βM0\M‖22, (S.17)

we obtain

∆M

m0 log p∗
≥ c1λmin

( 1

n
XT
M∪M0

XM∪M0

)( n

m0 log p∗

)1−κ
→∞,

since 1−κ is strictly positive. Under this situation, by a similar manner as in

the proof of Theorem 1, we can obtain that
∑

M∈M11
(wM/wM0)|M∇M0|

P−→

0. Furthermore, we have I11 <
∑

M∈M11
(wM/wM0)|M∇M0|

P−→ 0.

If M ∈M12, we have the following inequality

∆M

m0 log p∗
≥ c2λmin

( 1

n
XT
M∪M0

XM∪M0

)
|M0 \M |

≥ c2λmin

( 1

n
XT
M∪M0

XM∪M0

)
(ϑnm0)→∞.

by combining Condition 3 and (S.17). Hence, it follows immediately that

I12 <
∑

M∈M12
(wM/wM0)|M∇M0|

P−→ 0.

For the term I131, it should be noted that
∑

M∈M131
wM ≤

∑
M∈MwM =

1. Moreover, by the definition of M131 and Condition 4, we obtain −(ξn +

ϑn) ≤ (|M | − |M0|)/|M0| ≤ ζn for all M ∈ M131. Therefore, we have

I131 ≤ (ξn + ϑn + ζn)
∑

M∈M131
wM → 0.

Now, we turn to the term I132. For M ∈M132, let S
def

= M ∩MM
0 be the

set that contains the indices of the medium size coefficients in M and denote

by Mj
132 the set that contains all the models in M132 that are of size j.
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Under this scenario, (ML
0 ∪S) ⊂M and the number of candidate models in

Mj
132 is less than m

′
j

def

= p∗!/(j∗!(p∗−j∗)!)(|MM
0 |)!/((ϑnm0)!(|MM

0 |−ϑnm0)!),

where j∗
def

= j − |ML
0 | − |MM

0 | + ϑnm0. Next, we first prove that wM
P−→ 0

for M ∈M132.

Recall that wM/wM0 = exp (−T1 − T2) and RSSM − RSSM0 = ∆M +

2µT(I − HM)ε + εTHM0ε − εTHMε, where µT(I − HM)ε =
√

∆MZM and

ZM ∼ N(0, 1). Then we write

I1132
def

= P
( ⋃
m0(1+ζn)≤j≤km0

{
max{|ZM | : M ∈Mj

132} ≥ ((2− τ)Cj∗)
1/2
})

= P
( ⋃
m0(1+ζn)≤j≤km0

{
max{Z2

M : M ∈Mj
132} ≥ (2− τ)Cj∗

})
.

Using similar argument in the proof of Theorem 1 in Luo and Chen (2013)

and ζn > τ(1− τ)−1(ξn + ϑn), we can derive

I1132 <

km0∑
j=m0(1+ζn)

∑
M∈Mj

132

P (χ2
j∗ ≥ (2− τ)Cj∗)

<

km0∑
j=m0(1+ζn)

(
p∗

j∗

)(
|MM

0 |
ϑnm0

)
P (χ2

j∗ ≥ (2− τ)Cj∗)

<

km0∑
j=m0(1+ζn)

(
p∗

j∗

)(
p∗

ϑnm0

)
P (χ2

j∗ ≥ (2− τ)Cj∗)→ 0. (S.18)

Thus, we have max{|ZM | : M ∈ Mj
132} ≤ ((2 − τ)Cj∗)

1/2(1 + op(1)) uni-

formly for all M ∈ Mj
132. Moreover, we know that εTHM0ε − εTHMε ≥

εTHML
0 ∪Sε − ε

THMε, where HML
0 ∪S is the projection matrix about XML

0 ∪S

and XML
0 ∪S denotes an n × (|ML

0 | + |S|) submatrix of X that is obtained
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by extracting the columns corresponding to the indices in ML
0 ∪ S, and

εTHMε − εTHML
0 ∪Sε ∼ χ2

j−|ML
0 |−|S|

for M ∈ Mj
132. Similar to (S.18), we

have

εTHM0ε− εTHMε ≥ −max{εTHMε− εTHML
0 ∪Sε : M ∈Mj

132, (M
L
0 ∪ S) ⊂M}

≥ −2j∗(2− τ)(1 + δ)(1 + op(1)) log p∗, (S.19)

uniformly for all M ∈Mj
132. Furthermore, we also know that ∆M+2µT(I−

HM)ε = ∆M + 2ZM
√

∆M , and since

∆M + 2ZM
√

∆M ≥ ∆M − 2(∆M(2− τ)Cj∗)
1/2

≥ −2j∗(2− τ)(1 + δ)(1 + op(1)) log p∗

uniformly for all M ∈Mj
132, we can conclude that

T1 =
n

2
log
(

1 +
RSSM −RSSM0

RSSM0

)
≥ n

2
log
(

1− 4(2− τ)j∗

RSSM0

(1 + δ)(1 + op(1)) log p∗
)

= −2j∗(2− τ)(1 + δ)(1 + op(1)) log p∗,

uniformly for all M ∈ Mj
132 by combining (S.19). At the same time, we

can calculate T2 ≥ (j −m0)(δ/2 + ψ(1− δ))(1 + op(1)) log p∗ uniformly for

all M ∈Mj
132.

According to ζn >
τ

1−τ (ξn + ϑn), 0 < τ < 1, we can derive

j −m0 > ζnm0 >
τ

1− τ
(ξn + ϑn)m0 >

τ

1− τ
(m0 − |ML

0 | − |MM
0 |+ ϑnm0),
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further, j−m0 > τj∗ can be obtained. Therefore, under the assumption in

Theorem 2, which implies that ψ > (2(2− τ)(1 + δ)− τδ/2)/(τ(1− δ)) for

some τ close to 1, we have

min
M∈Mj

132

(T1 + T2) ≥j∗ log p∗(
τδ

2
+ ψτ(1− δ)− 2(2− τ)(1 + δ))(1 + op(1))→∞.

(S.20)

It follows that wM ≤ wM/wM0 = exp{−(T1 + T2)}
P−→ 0 uniformly for all

M ∈M132.

Now, we prove that the term I132 converges to 0 in probability. Clearly,

I132 ≤
∑

M∈M132

wM
m0wM0

|M∇M0| ≤
km0∑

j=m0(1+ζn)

m
′

j

(
max

M∈Mj
132

wM
m0wM0

)
(j +m0)

≤ (k + 1)

km0∑
j=m0(1+ζn)

m
′

j

(
max

M∈Mj
132

wM
wM0

)
. (S.21)

Under the assumption that ψ > (2− τ + 2(2− τ)(1 + δ)− τδ/2)/(τ(1− δ))

for some τ close to 1, combining (S.20) and (S.21) yields

I132 <

km0∑
j=m0(1+ζn)

exp{−j∗ log p∗(
τδ

2
+ ψτ(1− δ)− 2(2− τ)(1 + δ)− (2− τ))(1 + op(1))}

<km0 exp{−2(1 + op(1)) log p∗} P−→ 0.

In order to make the condition for ψ easier to be satisfied, we can take

τ → 1, that is, ψ > (3 + 3δ/2)/(1− δ).

For I1,2, we can derive that I1,2 ≤
∑

M∈M1,2
(wM/wM0)|M∇M0|

P−→ 0 by

a similar manner to the proof of Theorem 1. It is worth noting that the
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assumption

ψ >
k log (1− 4C(1 + (α ∧ η)))

2C(k − 1)((α ∧ η)− 1)
+
k/(k − 1)− (α ∧ η)/2

1− (α ∧ η)

implies that ψ > (3 + 3δ/2)/(1 − δ) due to δ < (α ∧ η), which completes

the proof of Theorem 2.
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