
Statistica Sinica 35 (2025), 111-129
doi:https://doi.org/10.5705/ss.202022.0157

DISTRIBUTED MEAN DIMENSION REDUCTION

THROUGH SEMI-PARAMETRIC APPROACHES

Zhengtian Zhu, Wangli Xu and Liping Zhu∗

Renmin University of China

Abstract: In this study we recast the semiparametric mean dimension reduction

approaches under a least squares framework. This changes the problem of recovering

the central mean subspace into a series of problems of estimating slopes in linear

regressions, and enables us to incorporate penalties to produce sparse solutions.

We further adapt the semiparametric mean dimension reduction approaches to

distributed settings in which massive data are scattered at various locations,

and cannot be aggregated or processed by a single machine. We propose three

communication efficient distributed algorithms. The first yields a dense solution,

the second produces a sparse estimation, and the third provides an orthonormal

basis. The distributed algorithms are less complex computationally than a pooled

algorithm, and attain oracle rates after a finite number of iterations. Using extensive

numerical studies, we demonstrate the finite sample performance of the distributed

estimates, and compare it with that of a pooled algorithm.

Key words and phrases: Central subspace, distributed estimation, sufficient dimen-

sion reduction.

1. Introduction

Recent advances in science and technology allow us to collect and process

massive data in a cost-efficient manner. However, while such data present

significant opportunities, they also present challenges to statisticians and data

scientists.

Massive data usually have a high dimension and a large volume. To cope

with the high dimensionality, sufficient dimension reduction (Li, 1991; Cook,

2009) is an effective paradigm that combines the idea of a linear reduction with

the notion of sufficiency. Cook and Li (2002) introduced the concept of mean

dimension reduction, which concerns E(Y | x), where Y is a univariate response

and x = (X1, . . . , Xp)
T is a p-vector of covariates. The central mean subspace

model assumes that there exists a p× d matrix β ∈ Rp×d such that

E(Y | x) = E(Y | xTβ). (1.1)

The column space of β, denoted by S(β), is referred to as the mean dimension

reduction subspace. If the intersection of all such subspaces satisfies (1.1), we

*Corresponding author. E-mail: zhu.liping@ruc.edu.cn

https://doi.org/10.5705/ss.202022.0157

112 ZHU, XU AND ZHU

call it the central mean subspace, which is unique and denoted as SE(Y |x). The

column dimension of β, denoted by d, is an integer between zero and p. In the

trivial case of d = 0, Y is mean independent of x; that is, E(Y | x) = E(Y). In

the special case of d = p, we can simply set β to be the p×p identity matrix Ip×p,

and model (1.1) is always true. In general, d must be decided using a data-driven

mechanism.

Many approaches have been proposed to identify and recover SE(Y |x). These

approaches can be roughly classified into three categories. The first consists

mainly of inverse regression methods, and requires stringent distributional as-

sumptions on the covariates, such as the linearity mean (Li, 1991) and constant

variance conditions (Cook and Weisberg, 1991). Examples include the ordinary

least squares (Li and Duan, 1989), principal Hessian directions (Li, 1992), and

their variations (Cook and Li, 2004). The second category consists mainly of

forward regression methods, which extract the information of SE(Y |x) from the

derivatives of E(Y | x). Examples include the average derivative estimation

(Härdle and Stoker, 1989) and minimum average variance estimation (Xia et al.,

2002). The third category comprises the semiparametric estimating equations

approaches, which require minimal distributional assumptions on the covariates.

Here, examples include the works of Ma and Zhu (2014), Luo, Li and Yin (2014),

and Zhu and Zhong (2015). In particular, Luo, Li and Yin (2014) thoroughly

examine the asymptotic properties of the semiparametric approaches of Ma and

Zhu (2014) when the variance function var(Y | x) is estimated consistently

using kernel smoothers. Zhu and Zhong (2015) extend the work of Ma and

Zhu (2014) by allowing for multiple responses, and assume implicitly that the

variance functions are all constants.

We advocate using the semiparametric approaches of Ma and Zhu (2014),

for at least two reasons. First, they avoid having to use the linearity mean

and constant variance conditions, thus generalizing the usefulness of sufficient

dimension reduction. Indeed, even when these distributional assumptions are

satisfied, sufficient dimension reduction methods with the linearity mean and

constant variance estimated using nonparametric treatments are more efficient

than those that use these conditions directly (Ma and Zhu, 2013). Second,

the semiparametric approaches are locally efficient. Specifically, the resultant

solutions attain the semiparametric efficiency bound as long as the variance

function var(Y | x) is specified correctly (Ma and Zhu, 2014) or estimated

consistently (Luo, Li and Yin, 2014), and remain consistent even when var(Y | x)
is misspecified or estimated inconsistently.

The problem with the semiparametric approaches is that they have com-

putational complexity of O(N2), where N is the total sample size, and thus

are usually computationally prohibitive for massive data. Massive data are

often scattered across various locations, possibly because of memory or storage

limitations, or privacy concerns. Therefore, to cope with large volumes of massive

DISTRIBUTED MEAN DIMENSION REDUCTION 113

data, distributed methodologies are highly desirable.

Although distributed statistical inference has received considerable attention,

most existing approaches require only one round of communication: the node

machines conduct the inference in parallel and send the results to the central

machine, which aggregates all information to produce a final solution; see, for

example, Zhang, Duchi and Wainwright (2013), Battey et al. (2018), and Fan

et al. (2019). While these one-shot methods are communication efficient, they

only work with a small number of node machines, and require large sample size

on each of them. Violating these requirements results in suboptimal performance.

Balcan et al. (2016) designed a distributed algorithm for a kernel principal

component analysis. They obtain approximate solutions with a relatively low

communication cost. Jordan, Lee and Yang (2019) and Fan, Guo and Wang

(2023) developed iterative methods with multiple rounds of aggregations, which

substantially relaxes the requirement on the number of machines. Cai, Li and Zhu

(2020) proposed implementing a sliced inverse regression in an online manner, if

the observations arrive in data streams. Chen, Xu and Zhu (2022) and Zhu and

Zhu (2022) adapt sufficient dimension reduction with convex loss functions to

distributed settings. The resultant estimates possess nearly oracle rates after

a finite number of iterations. However, both require stringent distributional

assumptions, such as the linearity mean condition. In addition, few works

have examined how to conduct distributed statistical inference in the context

of semiparametric estimating equations.

In this study, we reformulate the Newton–Raphson iterations of the semi-

parametric estimating equations under a least squares framework. This changes

the problem of estimating the central mean subspace into a series of problems

of estimating slopes in linear regressions, enabling us to incorporate penalties to

yield sparse solutions. We propose three distributed algorithms, under various

identifiability conditions. The first algorithm yields a dense solution, the second

produces a sparse estimation, and the third provides an orthonormal basis.

Our proposed distributed algorithms possess at least three desirable prop-

erties. First, these algorithms are communication efficient. The estimat-

ing equations themselves and their gradients correspond to the gradients and

Hessians, respectively, of the least squares losses. We estimate the gradients

separately using the observations recorded in each node machine. The gradients

are then transmitted to the central node to form an aggregated estimation

of the overall gradient. The communication cost is O(mp), where m is the

number of node machines. This is the minimal price we have to pay in

distributed settings. Instead of using all N observations scattered across m

node machines, we estimate the Hessians simply using the observations from

the central node machine only, which incurs no transmission cost. In this

sense, our proposed distributed algorithms are communication efficient. Second,

the resultant distributed estimates possess desirable theoretical properties. For

114 ZHU, XU AND ZHU

example, they achieve the oracle rate after a finite number of iterations. We

derive the contraction rate for the distributed estimates. After a small number

of iterations, the optimization errors are asymptotically negligible compared

with the statistical errors. Therefore, in an asymptotic sense, the distributed

estimates behave as well as the classic pooled estimate, which requires pooling

all observations on in a single machine. Lastly, the distributed algorithms are

computationally much more efficient than the corresponding pooled algorithm.

The remainder of the paper is organized as follows. In Section 2, we review

the semiparametric approaches of Ma and Zhu (2014), and recast them into a

least squares framework. Note that, although SE(Y |x) is unique, its basis matrix

β is not. Two sets of conditions ensure that β is identifiable. One requires

that the upper d × d block of β is the identity matrix Id×d, and thus the lower

(p − d) × d block comprises free parameters. The second requires β to be

orthonormal, that is, βTβ = Id×d. This condition is widely used, although it is

not sufficient to ensure the identifiability of β unless some additional assumptions

are imposed. In Sections 3 and 4, we adapt the semiparametric approaches to

distributed settings under the first set of identifiability conditions. In Section

5, we suggest a distributed algorithm under the orthogonality constraint. We

discuss our simulation studies in Section 6, and conclude our paper in Section 7.

2. A Brief Review of Semiparametric Approaches and Equivalent

Reformulations

2.1. Notations

Let C,C0, C1, . . . , c, c0, c1, . . . be generic constants that may vary at each

appearance. For a vector α = (α1, . . . , αp)
T, we define |α|1

def
=
∑p

i=1 |αi| and
|α|2

def
= (
∑p

i=1 α
2
i)

1/2. For a matrix A = (aij) ∈ Rp×d, |A|∞
def
= max1≤i≤p,1≤j≤d |aij|

and ∥A∥∞
def
= max1≤i≤p

∑
1≤j≤d |aij|. Furthermore, vec(A) is an operator that

stacks all columns of A vertically in order, and vecl(A) is an operator that

vectorizes the lower (p − d) × d block of A, that is, vecl(A) = vec(A2), for

A = (AT

1 ,A
T

2)
T, A1 ∈ Rd×d, andA2 ∈ R(p−d)×d. In addition, vec−1(·) is an inverse

operator of vec(·), that rearranges a (pd)-vector as a p×d matrix in column order.

In particular, vec−1{vec(A)} = A. The largest and smallest singular values of A

are denoted by λmax(A) and λmin(A), respectively. Let P(A)
def
= A(ATA)−1AT be

the projection matrix of A. Define A⊗2 = AAT, and let A⊗B be the Kronecker

product of A and B, where B ∈ Rp1×d1 . For two sequences of real numbers,

{an}∞n=1 and {bn}∞n=1, we write an = O(bn) if there exists a positive constant C

such that |an/bn| ≤ C, for sufficiently large n. For two sequences of random

variables, {Xn}∞n=1 and {Yn}∞n=1, we write Xn = Op(Yn), if, for any ε > 0, there

exists C > 0 such that pr(|Xn/Yn| ≤ C) ≥ 1− ε, for sufficiently large n.

DISTRIBUTED MEAN DIMENSION REDUCTION 115

2.2. Recasting semiparametric approaches under a least squares frame-

work

Here, we briefly review the semiparametric approaches of Ma and Zhu (2014).

With a slight abuse of notation, we denote as β the basis matrix of SE(Y |x), with

its upper d× d block being Id×d, and all other elements of β, vecl(β), being free

parameters. Let m(xTβ)
def
= E(Y | xTβ), m1(x

Tβ)
def
= vec{∂m(xTβ)/∂(xTβ)},

ε
def
= Y −m(xTβ), and w(x)

def
= {E(ε2 | x)}−1. Let α ∈ Rp×d be an intermediate

estimate, with its upper d × d block being Id×d. Let vecl(α) ∈ R(p−d)d×1 be a

vector of free parameters. Define

x̃(α)
def
= vecl

{[
x− E{xw(x) | xTα}

E{w(x) | xTα}

]
mT

1 (x
Tα)

}
∈ R(p−d)d×1. (2.1)

We further write S{x, Y,α, w(x)} def
= {Y −m(xTα)}w(x)x̃(α).Ma and Zhu (2014)

showed that E[S{x, Y,β, w(x)}] = 0. In other words, solving the estimating

equations yields a consistent estimate for the basis β of SE(Y |x).

We seek β by using Newton–Raphson iterations. This requires calculating the

gradient of E[S{x, Y,α, w(x)}] with respect to vecl(α), which yields {−H(α)},
where H(α)

def
= E[w(x){x̃(α)}{x̃(α)}T]. Start from an initial value β(0). The

Newton–Raphson iteration proceeds as

vecl(β(t+1))
def
= vecl(β(t)) +

{
H(β(t))

}−1

E
[
S{x,Y,β(t),w(x)}

]
. (2.2)

Throughout, we fix the upper d× d block of β(t) to be Id×d. We update β(t) with

β(t+1), and iterate (2.2) until convergence.

Next, we present our first contribution to the literature, where we recast the

above Newton–Raphson iteration under a least squares framework. Define

Ỹ (α)
def
= {x̃(α)}T

vecl(α) + {Y −m(xTα)}. (2.3)

Here, (2.2) can be written equivalently as

vecl(β(t+1)) =
{
H(β(t))

}−1

E
{
w(x)x̃(β(t))Ỹ(β(t))

}
,

which exactly minimizes the following weighted least squares loss function:

vecl(β(t+1)) = argmin
α

E
[
{Ỹ(β(t))− x̃(β(t))Tvecl(α)}2w(x)

]
, (2.4)

for t ≥ 0. We update β(t) with β(t+1), iterate (2.4) to obtain β(t+2), and so on.

This iteration proceeds until convergence.

In the following, we show that this reformulation enables us to incorporate

penalties on the right-hand side of (2.4), which are introduced to produce

116 ZHU, XU AND ZHU

sparse solutions. This equivalent reformulation is thus very appealing in high

dimensions. In what follows, we introduce three distributed algorithms. The

first yields a dense solution, the second produces a sparse solution, and the

third provides an orthonormal estimate. These distributed algorithms are

communication efficient, and the resultant solutions possess desirable theoretical

properties. To save space, we relegate the description of the pooled algorithm to

the online Supplementary Material.

3. The First Distributed Algorithm with Dense Solutions

3.1. The first communication efficient distributed algorithm

First, we explore how to adapt the above Newton–Raphson iterations to

distributed settings when the observations are scattered across various locations.

With a slight abuse of notation, we denote the observations {(xi, Yi), i =

1, . . . , N} as {(xi,j, Yi,j), i = 1, . . . , n, j = 1, . . . ,m}, assuming they are scattered

across m machines. We further assume that the total sample size N = nm is so

large that a single machine cannot process all observations simultaneously, owing

to memory or storage limitations. In this case, we require a communication

efficient distributed algorithm.

Instead of using all N observations to estimate m(xTα), m1(x
Tα), E{w(x) |

xTα}, and E{xw(x) | xTα}, we suggest estimating them using the observations

in the jth machine only, which yields m distinct estimates. In particular, we

define (b̂k,j, b̂k,j)
def
=

argmin
bk,j ,bk,j

n∑
i=1,i̸=k

{
Yi,j − bk,j − (xT

i,jα− xT

k,jα)bk,j

}2
Kh1

(xT

i,jα− xT

k,jα).

Let m̂j(x
T

k,jα) = b̂k,j and m̂1,j(x
T

k,jα) = b̂k,j. In addition, we define

Êj{w(xk,j) | xT

k,jα} def
=

∑n
i=1,i̸=k Kh2

(xT

i,jα− xT

k,jα)w(xi,j)∑n
i=1,i̸=k Kh2

(xT

i,jα− xT

k,jα)
,

and

Êj{xk,jw(xk,j) | xT

k,jα} def
=

∑n
i=1,i̸=k Kh3

(xT

i,jα− xT

k,jα){xi,jw(xi,j)}∑n
i=1,i̸=k Kh3

(xT

i,jα− xT

k,jα)
.

Accordingly, we define

x̂k,j(α)
def
= vecl

{[
xk,j −

Êj{xk,jw(xk,j) | xT

k,jα}
Êj{w(xk,j) | xT

k,jα}

]
m̂T

1 (x
T

k,jα)

}
. (3.1)

DISTRIBUTED MEAN DIMENSION REDUCTION 117

Define Ŝj{xk,j, Yk,j,α, w(xk,j)}
def
= {Yk,j − m̂j(x

T

k,jα)}w(xk,j)x̂k,j(α), and

Êj

[
S{xj, Yj,α, w(xj)}

]
def
= n−1

n∑
k=1

Ŝj{xk,j, Yk,j,α, w(xk,j)},

for j = 1, . . . ,m. All are consistent estimates of E[S{x, Y,α, w(x)}]. Each

has computational complexity of O(n2). More importantly, computing these

quantities can be parallelized to further improve the computational efficiency.

Therefore, as long as n is small relative to N , the computational complexity

is reduced to O(n2) from O(N2), which is substantial. The above estimate,

Êj[S{xj, Yj,α, w(xj)}], uses only the observations from the jth machine, and

thus can be computed in parallel. We transmit these estimates to the first central

machine to form

Êdist,1

[
S{x, Y,α, w(x)}

]
def
= m−1

m∑
j=1

Êj

[
S{xj, Yj,α, w(xj)}

]
,

which serves as an estimate of E[S{x, Y,α, w(x)}]. The communication cost of

transmitting these quantities is O(mp), which is the minimal price we have to

pay in a distributed setting.

To implement (2.2), it remains to estimate H(α). We use {(xi,1, Yi,1), i =

1, . . . , n}, that is the observations from the first machine only. Specifically,

Ĥj(α)
def
= n−1

n∑
k=1

w(xk,j)x̂k,j(α)x̂T

k,j(α), for j = 1, . . . ,m.

We implement the Newton–Raphson algorithm on the first machine. As such,

there is no communication cost when estimating H(α).

We propose the first communication efficient algorithm, which yields a dense

solution. This is our second contribution to the literature. We start from an initial

value β
(0)
dist,1, and then iterate the Newton–Raphson algorithm in a distributed

fashion, as follows: vecl(β
(t+1)
dist,1)

def
=

vecl(β
(t)
dist,1) +

{
Ĥ1(β

(t)
dist,1)

}−1

Êdist,1

[
S{x,Y,β

(t)
dist,1,w(x)}

]
. (3.2)

Once we have β
(t+1)
dist,1 from the first machine, we update Ĥ1(β

(t)
dist,1) with

Ĥ1(β
(t+1)
dist,1). Next, we broadcast β

(t+1)
dist,1 from the first machine to the remaining

(m− 1) machines to update Êj[S{xj, Yj,β
(t)
dist,1, w(xj)}] with Êj[S{xj, Yj,β

(t+1)
dist,1,

w(xj)}]. The latter is transmitted to the first machine to form Êdist,1[S{x, Y,β(t+1)
dist,1,

w(x)}]. We iterate (3.2) until convergence, and denote the final solution as β̂dist,1.

In the above distributed algorithm, we assume w(xj) is known, which is

unrealistic in practice. However, this is not problematic, because we can specify

118 ZHU, XU AND ZHU

w(xj) as w∗(xj), or assume it has a parametric form wj(xj, θj). We can also

estimate w(xj) using a kernel smoother at each local machine. Specifically, at

the jth local node, we estimate w(xj) as

ŵj(xk,j)
def
=

∑n
i=1 Kh4

(xi,j − xk,j)∑n
i=1 Kh4

(xi,j − xk,j){Yi,j − m̂j(xT

i,jα)}2
.

The consistency of β̂dist,1 does not depend on how we specify or estimate

w(x). In the following, we show that as long as w(x) is specified correctly

or estimated consistently, the distributed estimate β̂dist,1 is semiparametrically

efficient, despite the convergence rate of ŵj(x) being slow in high dimensions.

Even if w(x) is incorrectly specified or inconsistently estimated, β̂dist,1 still

possesses an oracle rate. To distinguish these distributed estimates, we write

β̂dist,1 as β̂dist,1(w
∗) if w∗(x) is used, and as β̂dist,1(ŵ) if ŵj(x) is used on each

local machine. When w∗(x) is equal to w(x), we denote the resulting distributed

estimate β̂dist,1 as β̂dist,1(w). When this does not cause any ambiguity, we simply

use β̂dist,1.

3.2. Theoretical properties of the first distributed algorithm

In the above distributed algorithm, we estimate E[S{x, Y,α, w(x)}] using a

divide-and-conquer strategy, and estimate H(α) using the observations from the

first machine only. This distributed is computationally much more efficient than

the pooled algorithm. It is thus natural to ask whether the distributed estimate,

β̂dist,1, is as “good” as the pooled estimate, β̂pool,1, which amounts to studying

the theoretical properties of β̂dist,1. Ma and Zhu (2014), Luo, Li and Yin (2014),

and Luo and Cai (2016) study the theoretical properties of β̂pool,1 thoroughly. We

first present regularity conditions to establish the theoretical properties of β̂dist,1.

Throughout, we suppose that the covariates x and the response Y are centered,

that is E(x) = 0 and E(Y) = 0. Suppose d is a fixed number. We introduce the

following regularity conditions to establish the theoretical result for β̂dist,1:

(C1) The Kernels: The multivariate kernel is a multiplication of univariate and

symmetric kernels. The qth-order univariate kernel K(·) satisfies∫
K(u)du = 1,

∫
uiK(u)du = 0, 1 ≤ i ≤ q − 1, 0 ̸=

∫
uqK(u)du < ∞.

It has a compact support over which it is Lipschitz continuous.

(C2) The Density: The density function of (xTβ), denoted by f(xTβ), and

w(x)
def
= {E(ε2 | x)}−1 are bounded away from zero and infinity.

(C3) The Smoothness: Let r(xTα)
def
= E{a(x, Y)f(xTα) | xTα}, for a(x, Y) being

Y , w(x), or xw(x). The (q−1)th derivatives of r(xTα), f(xTα), andm(xTα)

are Lipschitz continuous in the neighborhood of (xTβ).

DISTRIBUTED MEAN DIMENSION REDUCTION 119

(C4) The Covariate: The covariate x is sub-Gaussian. Let Σ
def
= cov(x,xT). There

exists c > 1 such that c−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c. H(α) is invertible at

β. There exists λ > 0 such that H(β) ≥ λI(p−d)d×(p−d)d.

(C5) The Moments: E(∥x∥42) < ∞, E(Y 4) < ∞, and E{∥m1(x
Tβ)∥42} < ∞.

There exist G and H such that E{|Êj[S{x, Y,α, w(x)}]|42} ≤ G4 and

E{∥Ĥ(α) − H(α)∥42} ≤ H4. There exists L(x, Y) such that ∥Ĥ(α1;x) −
Ĥ(α2;x)∥2 ≤ L(x, Y)∥α1 −α2∥2, for E{L(x, Y)} ≤ L4.

(C6) The Bandwidths: The bandwidths satisfy Nh2q
k h2q

l → 0, Nh
2(q−1)
1 h2q

l → 0,

and Nhd
kh

d
l → ∞, for 1 ≤ k ≤ l ≤ 4.

(C7) The Sample Size: There exist c1 > 0 and 0 < c2 < 1 such that n ≥
max(c1p,N

c2).

(C8) The Initial Value: The initial value satisfies |vecl(β(0) − β)|2 = Op(n
−1/2).

We assume these conditions for technical reasons, though they are widely assumed

in literature. In particular, condition (C1) allows for the second-order kernels,

and condition (C6) allows for optimal bandwidths. The distributed algorithm

requires the sample size n to be large enough to satisfy condition (C7), which is

required to ensure condition (C8) holds when we calculate the initial value β(0)

using the observations from the first machine only. Condition (C7) is also used by

Zhang, Duchi and Wainwright (2013), Battey et al. (2015), and Jordan, Lee and

Yang (2019), and is typically regarded as mild in distributed settings. Condition

(C8) requires that the initial value be consistent.

We provide a high probability error bound for β
(t)
dist,1 in the following theorem.

Theorem 1. Under conditions (C1)–(C8) , we have for t ≥ 1,

|vecl(β(t)
dist,1 − β)|2 = Op

{
n−(t+1)/2 +N−1/2

}
.

An important implication of Theorem 1 is that β̂dist,1 can behave as well as

β̂pool,1 only after a finite number of iterations. In order to ensure |vecl(β(t+1)
dist,1 −

β̂pool,1)|2 = op(N
−1/2), we are merely required to conduct at most ⌈logN/ log n⌉

iterations, where ⌈x⌉ denotes the smallest integer larger than or equal to x. In

other words, for a sufficiently large t, the optimization error of the distributed

estimate, |vecl(β̂dist,1 − β̂pool,1)|2, is almost negligible in comparison with the

statistical error of the pooled estimate, |vecl(β̂pool,1−β)|2. That is, β̂dist,1 behaves

as well as β̂pool,1. If N is a polynomial order of n, ⌈logN/ log n⌉ is a finite number.

In other words, we are required to conduct at most a finite number of iterations

to ensure that β̂dist,1 is almost as good as β̂pool,1. As a consequence, β̂dist,1 shares

almost the same theoretical properties as β̂pool,1.

120 ZHU, XU AND ZHU

4. The Second Distributed Algorithm with Sparse Solutions

4.1. The second communication efficient algorithm

Next, we introduce a distributed algorithm that yields a sparse solution.

Under the least squares framework (2.4), we can incorporate penalties into the

loss function to produce sparse solutions. In particular, we define

Ŷ (α)
def
= {x̂(α)}T

vecl(α) + {Y − m̂(xTα)}. (4.1)

We incorporate the least absolute shrinkage and selection operator (Tibshi-

rani, 1996) into the least squares framework. With the observations denoted

as {(xi,k, Yi,k), i = 1, . . . , n, k = 1, . . . ,m}, we ignore the penalty for now, and

rewrite the least squares loss function as follows:

LN(α)
def
= (2N)−1

n∑
i=1

m∑
k=1

{Ŷi,k(β
(t)
dist,2)− x̂i,k(β

(t)
dist,2)

Tvecl(α)}2w(xi,k),

where β
(t)
dist,2 is an intermediate distributed estimate. We define

zk
(
β

(t)
dist,2

)
def
=

1

n

n∑
i=1

w(xi,k)x̂i,k

(
β

(t)
dist,2

)
Ŷi,k

(
β

(t)
dist,2

)
and

zN
(
β

(t)
dist,2

)
def
=

1

m

m∑
k=1

zk
(
β

(t)
dist,2

)
.

Using straightforward algebraic calculations, we can show that, given α,

LN(α) = LN(β
(t)
dist,2) +

1

2
vecl(α− β

(t)
dist,2)

TĤ
(
β

(t)
dist,2

)
vecl(α− β

(t)
dist,2)

+vecl(α− β
(t)
dist,2)

T

{
Ĥ
(
β

(t)
dist,2

)
vecl(β

(t)
dist,2)− zN

(
β

(t)
dist,2

)}
.

There are three quantities on the right-hand side of the above. The first is

irrelevant to α, and thus can be ignored in the optimization. The second involves

Ĥ
(
β

(t)
dist,2

)
, which is a {(p − d)d × (p − d)d} matrix. Transmitting Ĥk

(
β

(t)
dist,2

)
from the local machines to the central one to form Ĥ

(
β

(t)
dist,2

)
is communication

inefficient, particularly when the covariates are high dimensional. In parallel to

the first distributed algorithm, we suggest replacing Ĥ
(
β

(t)
dist,2

)
with Ĥ1

(
β

(t)
dist,2

)
,

to obtain

L̃N(α)
def
= LN(β

(t)
dist,2) +

1

2
vecl(α− β

(t)
dist,2)

TĤ1

(
β

(t)
dist,2

)
vecl(α− β

(t)
dist,2)

+vecl(α− β
(t)
dist,2)

T

{
Ĥ
(
β

(t)
dist,2

)
vecl(β

(t)
dist,2)− zN

(
β

(t)
dist,2

)}
.

We perform optimization on the first machine. Using Ĥ1

(
β

(t)
dist,2

)
in place of

DISTRIBUTED MEAN DIMENSION REDUCTION 121

Ĥ
(
β

(t)
dist,2

)
does not incur a communication cost. If α is sufficiently close to

β
(t)
dist,2, it is reasonable to expect the approximation error

vecl(α− β
(t)
dist,2)

T

{
Ĥ
(
β

(t)
dist,2

)
− Ĥ1

(
β

(t)
dist,2

)}
vecl(α− β

(t)
dist,2)

to be negligible. Next, we study the third quantity. Here,
{
Ĥ
(
β

(t)
dist,2

)
vecl(β

(t)
dist,2)

}
can be formed on each local machine using the relation

Ĥ
(
β

(t)
dist,2

)
vecl(β

(t)
dist,2) = m−1

m∑
k=1

{
Ĥk

(
β

(t)
dist,2

)
vecl(β

(t)
dist,2)

}
.

In particular, we form
{
Ĥk

(
β

(t)
dist,2

)
vecl(β

(t)
dist,2)

}
and zk

(
β

(t)
dist,2

)
on each local

machine, and transmit these random vectors to the central machine, incurring a

communication cost of O{(p− d)d}, which is the minimal price that we have to

pay for distributed algorithms. We ignore all quantities that are irrelevant to α

in L̃N(α). An equivalent form of L̃N(α) can be defined as

L⋆
N(α)

def
=

1

2
vecl(α)TĤ1

(
β

(t)
dist,2

)
vecl(α) (4.2)

+vecl(α)T
[{

Ĥ
(
β

(t)
dist,2

)
− Ĥ1

(
β

(t)
dist,2

)}
vecl(β

(t)
dist,2)− zN(β

(t)
dist,2)

]
.

We seek β by minimizing L⋆
N(α) in distributed settings.

The second distributed algorithm proceeds as follows. We start from β
(0)
dist,2.

Once we have β
(t+1)
dist,2 on the first machine, we update Ĥ1(β

(t)
dist,2) with Ĥ1(β

(t+1)
dist,2).

We broadcast β
(t+1)
dist,2 from the first machine to the remaining machines to update

Ĥk

(
β

(t+1)
dist,2

)
vecl(β

(t+1)
dist,2) − zk

(
β

(t+1)
dist,2

)
, which are then transmitted to the first

machine to update the quantity in the square brackets in (4.2). Define

β
(t+2)
dist,2

def
= argmin

α

(
1

2
vecl(α)TĤ1

(
β

(t+1)
dist,2

)
vecl(α)

+
[{

Ĥ
(
β

(t+1)
dist,2

)
− Ĥ1

(
β

(t+1)
dist,2

)}
vecl(β

(t+1)
dist,2)− zN(β

(t+1)
dist,2)

]
+ λ∥α∥1

)
.

We iterate until convergence, and denote the final solution by β̂dist,2.

4.2. Theoretical properties of the second distributed algorithm

Let S be the support of vecl(β), and the cardinality of S be s
def
= |S|. We

introduce conditions (C5′)–(C8′) to replace (C5)–(C8) to study the theoretical

properties of β̂dist,2.

(C5′) The response Y is bounded, or the error ε has sub-Gaussian tails. The

mean function satisfies sup |m(xTβ)| < ∞ and E{∥m1(x
Tβ)∥42} < ∞. The

122 ZHU, XU AND ZHU

loss L(α) is restricted strongly convex over S : for all δ ∈ C(S) def
= {ν :

|νS |1 ≤ 3|νSc |}1, L1(β + δ) − L1(β) − δ∇L1(β) ≥ µ|δ|22. The Hessian is

restricted Lipschitz: for all δ ∈ C(S), |{Ĥ1(β + δ) − Ĥ1(β)}δ|∞ ≤ M |δ|22
and |{Ĥ(β + δ)− Ĥ(β)}δ|∞ ≤ M |δ|22.

(C6′) The bandwidths satisfy Nh2q
k h2q

l → 0, Nh
2(q−1)
1 h2q

l → 0, Nhd
kh

d
l / log

2 N→
∞ andNhd+2

1 / logN→∞. In addition, s log p = o{N1/4+h
(−q+1)/2
k h

(−q+1)/2
l

+ (Nhd+2
1 / logN)1/2} for 1 ≤ k ≤ l ≤ 4.

(C7′) The covariate dimension p satisfies p = O(N c3) log p = O(N c4), for c3 > 0,

0 < c4 < 1. The sample size n satisfies n = O(N c5), for 0 < c5 < 1, and

the sparsity level s satisfies s = O(nc6), for 0 ≤ c6 < 1/2.

(C8′) The initial value β
(0)
dist,2 satisfies |vecl(β

(0)
dist,2−β)|1 = Op{s(log p/n)1/2} and

|vecl(β(0)
dist,2 − β)|2 = Op(s log p/n)

1/2.

Theorem 2 provides an error bound for our distributed estimate β
(t)
dist,2.

Theorem 2. Take

λ
(t)
N = C

{(
log p

N

)1/2

+

(
logp

n

)1/2

|vecl(β(t−1)
dist,2 − β)|1 + |vecl(β(t−1)

dist,2 − β)|22

}
,

for a sufficiently large constant C. Under conditions (C1)–(C4) and (C5′)–(C8′),

we have, for t ≥ 1,

|vecl(β(t)
dist,2 − β)|2 = Op

{(
s
log p

N

)1/2

+ s(2t+1)/2

(
log p

n

)(t+1)/2
}
.

Theorem 2 indicates that, as the iteration proceeds, β
(t)
dist,2 improves

accordingly. Indeed, |vecl(β(t)
dist,2 − β)|2 is upper bounded by two orders:

O
{
(s log p/N)1/2

}
and O

{
s(2t+1)/2(log p/n)(t+1)/2

}
. As long as the iteration step

t is sufficiently large that t ≥ log(p/n)/ log{cn/(s2 log p)}, for some c > 0,

the second order is dominated by the first, and the convergence rate of β
(t)
dist,2

becomes O
{
(s log p/N)1/2

}
, which is the oracle rate of β̂pool,2. By condition (C7′),

log(p/n)/ log{cn/(s2 log p)} is upper bounded, indicating that the difference

between β
(t)
dist,2 and β̂pool,2 is asymptotically negligible after a finite number

of iterations. In other words, the distributed algorithm behaves asymptotically

as well as the pooled algorithm.

Theorem 3. In addition to conditions (C1)–(C4) and (C5′)–(C8′), we further

assume that
∥∥ΣSc×SΣ

−1
S×S

∥∥
∞ ≤ 1− α, for some 0 < α < 1.

1. The distributed estimate satisfies S(β(t)
dist,2) ⊆ S, with probability approach-

ing one.

DISTRIBUTED MEAN DIMENSION REDUCTION 123

2. Suppose for a sufficiently large constant C that

min
j∈S

|βj| ≥ C
∥∥Σ−1

S×S
∥∥
∞

{(
log p

N

)1/2

+ st
(
log p

n

)(t+1)/2
}
.

Then, we have S(β(t)
dist,2) = S, with probability approaching one.

The irrepresentable condition and the “beta-min” condition are widely used

in prior studies to establish the support recovery property; see, for example,

Wainwright (2009). For t ≥ log(p/n)/ log{cn/(s2 log p)}, the “beta-min” con-

dition reduces to minj∈S |βj| ≥ C
∥∥Σ−1

S×S
∥∥
∞ (log p/N)1/2, which is a classic and

widely used condition.

5. The Third Distributed Algorithm under Orthogonality Constraints

Let β be a basis of SE(Y |x). In Sections 2–4, we required the upper d×d block

of β to be Id×d, which ensures that β is identifiable and that vecl(β) are all free

parameters. However, this implicitly requires that the first d covariates of x be

truly predictive, which is not always realistic. In this section, we merely assume

β is orthonormal, such that βTβ = Id×d. This orthogonality constraint does not

ensure β is identifiable. In addition, optimization over the manifold {β : βTβ =

Id×d} is, in general, difficult. However, this orthogonality constraint appears more

realistic, and suffices to recover SE(Y |x). We propose a third distributed algorithm

under this orthogonality constraint, following Wen and Yin (2013).

This section requires a few changes in notation. In particular, we redefine

x̂i,k(β
(t)
dist,3)

def
= vec

{[
xi,k −

Ê{xi,kw(xi,k) | xT

i,kβ
(t)
dist,3}

Ê{w(xi,k) | xT

i,kβ
(t)
dist,3}

]
m̂T

1 (x
T

i,kβ
(t)
dist,3)

}
,

where we use “vec” in place of “vecl” in (3.1). Accordingly,

Ŷi,k(β
(t)
dist,3)

def
=
{
x̂T

i,k(β
(t)
dist,3)

}
vec(β

(t)
dist,3) + {Yi,k − m̂(xT

i,kβ
(t)
dist,3)},

where β
(t)
dist,3 is an intermediate estimate of β at the tth step. Redefine

zk
(
β

(t)
dist,3

)
def
=

1

n

n∑
i=1

w(xi,k)x̂i,k

(
β

(t)
dist,3

)
Ŷi,k

(
β

(t)
dist,3

)
and

zN
(
β

(t)
dist,3

)
def
=

1

m

m∑
k=1

zk
(
β

(t)
dist,3

)
.

In addition,

Ĥk(β
(t)
dist,3)

def
=

1

n

n∑
i=1

w(xi,k)x̂i,k(β
(t)
dist,3)x̂

T

i,k(β
(t)
dist,3) and

124 ZHU, XU AND ZHU

Ĥ(β
(t)
dist,3)

def
=

1

m

m∑
k=1

Ĥk(β
(t)
dist,3).

In parallel to (4.2), we redefine the loss function using this notation as

L⋆
N(α)

def
=

1

2
vec(α)TĤ1

(
β

(t)
dist,3

)
vec(α) (5.1)

+vec(α)T
[{

Ĥ
(
β

(t)
dist,3

)
− Ĥ1

(
β

(t)
dist,3

)}
vec(β

(t)
dist,3)− zN(β

(t)
dist,3)

]
.

In this section, we propose an orthogonality-constrained optimization approach

within the Stiefel manifold (Edelman, Arias and Smith, 1998). In other words,

we minimize L⋆
N(α) subject to the orthogonality constraint αTα = Id×d.

Wen and Yin (2013) propose a first order descent algorithm, that yields a

feasible solution, in that it preserves the updates within the manifold. Specifically,

we define the gradient of L⋆
N(α) with respect to α as

G(α)
def
= vec−1

[
Ĥ1

(
β

(t)
dist,3

)
vec(α)

+
{
Ĥ
(
β

(t)
dist,3

)
− Ĥ1

(
β

(t)
dist,3

)}
vec(β

(t)
dist,3)− zN(β

(t)
dist,3)

]
.

Define W
(
β

(t)
dist,3

)
def
= G

(
β

(t)
dist,3

)(
β

(t)
dist,3

)T − (β(t)
dist,3

){
G
(
β

(t)
dist,3

)}T

, which is a skew-

symmetric matrix. Let τ (t) be the step size. In practice, τ (t) can be chosen using

a non-monotone line search with the Barzilai–Borwein step size (Barzilai and

Borwein, 1988). By the Cayley transformation, we have β
(t+1)
dist,3

def
=

{
Ip×p + τ (t)

W(β
(t)
dist,3)

2

}−1{
Ip×p − τ (t)

W(β
(t)
dist,3)

2

}{
β

(t)
dist,3

}
. (5.2)

It can be verified that {β(t+1)
dist,3}T{β(t+1)

dist,3} = Id×d, if {β(t)
dist,3}T{β(t)

dist,3} = Id×d.

Thus, this algorithm preserves the constraint exactly. Starting from β(0), we

iterate (5.2) until convergence. Denote the final solution by β̂dist,3.

The inversion
{
Ip×p + τ (t)W(β

(t)
dist,3

)
/2}−1 dominates the computation for

β
(t+1)
dist,3 in (5.2). However, we do not have to invert a p × p matrix. In parti-

cular, calculating this inversion is very cheap, because W(β
(t)
dist,3) is formed

as the outer product of two low-rank matrices. Rewrite W(β
(t)
dist,3) = {U(β

(t)
dist,3)}

{V(β
(t)
dist,3)}T, for U(β

(t)
dist,3)

def
= [G(β

(t)
dist,3),β

(t)
dist,3] ∈ Rp×2d and V(β

(t)
dist,3)

def
=

[β
(t)
dist,3,−G(β

(t)
dist,3)] ∈ Rp×2d. As long as {I2d×2d + τ (t)V(β

(t)
dist,3)

TU(β
(t)
dist,3)/2}

is invertible, which is often the case, by Lemma 4 of Wen and Yin (2013),

an equivalent form of (5.2) is β
(t+1)
dist,3 = β

(t)
dist,3 − τ (t)U(β

(t)
dist,3){I(2d)×(2d) +

τ (t)V(β
(t)
dist,3)

TU(β
(t)
dist,3)/2}−1{V(β

(t)
dist,3

)
}T
{
β

(t)
dist,3}. By the very purpose of mean

dimension reduction, d is far less than p. It is thus natural to expect that inverting

{I(2d)×(2d) + τ (t)V(β
(t)
dist,3)

TU(β
(t)
dist,3)/2} ∈ R2d×2d is much easier than inverting

DISTRIBUTED MEAN DIMENSION REDUCTION 125

{Ip×p + τ (t)W(β
(t)
dist,3)/2} ∈ Rp×p. In this sense, our distributed algorithm with

an orthogonality constraint is computationally efficient.

6. Simulation Studies

We conduct simulation studies to demonstrate the finite sample performance

of our proposed distributed algorithms. We generate the observations from the

following examples.

Example 1. We generate x from a multivariate normal distribution with mean

zero and covariance Σ =
(
0.5|i−j|)

p×p
. We generate Y from a normal distribution

with mean m(xTβ) = sin(2xTβ) + 2 exp(2 + xTβ) and variance σ2(x) = log{2 +
(xTβ)}. The first four components of β are (1, 1,−1, 1)T, and all other entries

are identically zero. In this example, p = 16 and d = 1.

Example 2. We generate x independently from a uniform distribution defined

on [−2, 2]. We generate Y from a normal distribution with mean m(xTβ) =

(xTβ1)/{0.5+(1.5+xTβ2)
2} and variance σ2(x) = exp(X1), where X1 is the first

coordinate of x. The first four components of β1 and β2 are β1 = (1, 0, 1, 1)T and

β2 = (0, 1,−1, 1)T, respectively. All other entries of β1 and β2 are identically

zero. In this example, p = 16 and d = 2.

We run 500 replicates to compare the performance of the following estimates:

1. β̂pool,1(w): The pooled estimate that pools all observations together and

uses the true weight w(x) = {σ2(x)}−1. This serves as a benchmark for

algorithm 1.

2. β̂dist,1(w): The distributed estimate that uses w(x) = {σ2(x)}−1.

3. β̂dist,1(w
∗): The distributed estimate that uses w∗(x) = 1.

4. β̂pool,2(w): The regularized pooled estimate that aggregates all observations

together and uses the true weight w(x) = {σ2(x)}−1. This serves as a

benchmark for algorithm 2.

5. β̂dist,2(w): The regularized distributed estimate that uses w(x) = {σ2(x)}−1.

6. β̂dist,2(w
∗): The regularized distributed estimate that misspecifies w(x) as

w∗(x) = 1.

7. β̂pool,3(w): The pooled estimate that aggregates all observations together

and uses the true weight w(x) = {σ2(x)}−1. This serves as a benchmark for

algorithm 3.

8. β̂dist,3(w): The distributed estimate that uses w(x) = {σ2(x)}−1.

9. β̂dist,3(w
∗): The distributed estimate that misspecifies w(x) as w∗(x) = 1.

126 ZHU, XU AND ZHU

Let β be a basis matrix of the central mean subspace, and β̂ be its estimate.

To assess the estimation accuracy of β̂, we use the Euclidean distance between β

and β̂, defined as the Frobenius norm of the matrix β̂(β̂
T

β̂)−1β̂
T

−β(βTβ)−1βT.

A smaller distance indicates a better estimate.

Throughout, we fix the total sample size N = 2,500. We consider three

combinations, (n,m) = (500, 5), (250, 10), and (100, 25), where m is the number

of machines. We choose the initial value β(0) for algorithms 1 and 3 by using a

minimum average variance estimation (Xia et al., 2002). For the initial value of

algorithm 2, we implement the sparse sliced inverse regression (Lin, Zhao and Liu,

2019). We choose the bandwidths using a “rule-of-thumb” approach because the

semiparametric estimating equations approach is not sensitive to the bandwidth

selections (Ma and Zhu, 2014). In particular, we set h1 = h2 = h3 = cn−1/(4+d).

Tables 1 summarizes the average distances and CPU running times (in

seconds) of various estimates. For j ∈ {1, 2, 3}, the pooled estimate β̂pool,j(w)

performs best, in that it has the smallest biases across all scenarios. Furthermore,

the biases of the distributed estimates, β̂dist,j(w) and β̂dist,j(w
∗), increase with

the number of machines. Not surprisingly, β̂dist,j(w
∗) is relatively less accurate

among the distributed estimates because the weight function is misspecified.

The distributed algorithms reduce the computational complexity substantially.

Algorithm 1 is slightly faster, but less accurate than algorithm 3. Algorithm 2

has the smallest distance of the distributed algorithms, because it benefits from

a sparse structure. However, it requires the most computational resources.

7. Conclusion

In this paper, we have introduced distributed algorithms for estimating the

central mean subspace under two sets of identifiability conditions. The first set

requires that the upper block of the basis of the central mean subspace is an

identity matrix. Under this condition, we design two distributed algorithms.

The first produces a dense solution, which suffices if the covariate dimension is

moderate. The second generates a sparse solution, which allows the covariates

to be high or even ultrahigh dimensional. For the second distributed algorithm,

an important contribution is that we recast the problems of estimating equations

under a least squares framework. This enables us to incorporate an appropriate

penalty to produce a solution, and more importantly, allows us to solve the

penalized algorithms under a linear regression framework. This idea is interesting

and can be adapted to solve other problems that use estimating equations.

The second set of identifiability conditions assumes that the basis of the

central mean subspace is orthonormal. Here, determining a feasible solution is

challenging. We address this problem using the first order descent algorithm.

However, finding a sparse feasible solution remains challenging owing to the

discontinuity of the sparse solution path, and thus warrants further research.

DISTRIBUTED MEAN DIMENSION REDUCTION 127

Table 1. The average distance and CPU running time (in seconds) of various estimates.

(n,m) (500,5) (250, 10) (100, 25)

distance time distance time distance time

Example 1

β̂pool,1(w) 0.224 (26.564)

β̂dist,1(w) 0.236 (10.391) 0.245 (7.613) 0.261 (3.158)

β̂dist,1(w
∗) 0.249 (8.484) 0.252 (5.322) 0.273 (2.613)

β̂pool,2(w) 0.144 (33.216)

β̂dist,2(w) 0.157 (15.729) 0.169 (10.048) 0.178 (6.165)

β̂dist,2(w
∗) 0.163 (13.963) 0.184 (8.371) 0.197 (4.687)

β̂pool,3(w) 0.219 (31.854)

β̂dist,3(w) 0.226 (13.432) 0.238 (9.583) 0.255 (5.227)

β̂dist,3(w
∗) 0.234 (10.038) 0.243 (7.255) 0.264 (3.641)

Example 2

β̂pool,1(w) 0.304 (31.859)

β̂dist,1(w) 0.315 (14.337) 0.322 (10.741) 0.341 (4.845)

β̂dist,1(w
∗) 0.323 (12.148) 0.334 (8.066) 0.358 (3.275)

β̂pool,2(w) 0.169 (34.738)

β̂dist,2(w) 0.177 (18.344) 0.182 (13.765) 0.189 (7.148)

β̂dist,2(w
∗) 0.188 (16.731) 0.194 (11.142) 0.205 (5.671)

β̂pool,3(w) 0.291 (32.530)

β̂dist,3(w) 0.299 (15.138) 0.316 (11.435) 0.322 (5.836)

β̂dist,3(w
∗) 0.314 (13.256) 0.327 (8.997) 0.349 (4.158)

Numerous works have proposed solutions to the problem of high dimension-

ality. Here, we focus on massive data of high dimensions and large volumes.

We propose several distributed algorithms, which have nearly minimal commu-

nication cost and almost the lowest computational complexity. In addition, our

solutions possess many desirable theoretical properties. However, adapting these

distributed algorithms to identify and recover the central subspaces, particularly

when the response variables are multivariate or even high dimensional, remains

an open problem, and thus is left to future research.

Supplementary Material

The online Supplementary Material contains descriptions of the pooled

algorithms, additional simulations, and technical proofs of all theorems.

128 ZHU, XU AND ZHU

Acknowledgments

This work was supported by the National Natural Science Foundation of

China (12171477, 12225113) and Beijing Natural Science Foundation (Z190002).

All correspondence can be directed to Liping Zhu.

References

Balcan, M. F., Liang, Y., Song, L., Woodruff, D. and Xie, B. (2016). Communication efficient

distributed kernel principal component analysis. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 725–734.

Barzilai, J. and Borwein, J. M. (1988). Two-point step size gradient methods. Journal of

Numerical Analysis 8, 141–148.

Battey, H., Fan, J., Liu, H., Lu, J. and Zhu, Z. (2015). Distributed estimation and inference

with statistical guarantees. arXiv:1509.05457.

Battey, H., Fan, J., Liu, H., Lu, J. and Zhu, Z. (2018). Distributed testing and estimation under

sparse high dimensional models. The Annals of Statistics 46, 1352–1382.

Cai, Z., Li, R. and Zhu, L. (2020). Online sufficient dimension reduction through sliced inverse

regression. Journal of Machine Learning Research 21, 1–25.

Chen, C., Xu, W. and Zhu, L. (2022). Distributed estimation in heterogeneous reduced rank

regression: With application to order determination in sufficient dimension reduction.

Journal of Multivariate Analysis 190, 104991.

Cook, R. D. (2009). Regression Graphics: Ideas for Studying Regressions through Graphics. John

Wiley & Sons.

Cook, R. D. and Li, B. (2002). Dimension reduction for conditional mean in regression. The

Annals of Statistics 30, 455–474.

Cook, R. D. and Li, B. (2004). Determining the dimension of iterative Hessian transformation.

The Annals of Statistics 32, 2501–2531.

Cook, R. D. and Weisberg, S. (1991). Discussion of sliced inverse regression for dimension

reduction. Journal of the American Statistical Association 86, 328–332.

Edelman, A., Arias, T. A. and Smith, S. T. (1998). The geometry of algorithms with ortho-

gonality constraints. SIAM Journal on Matrix Analysis and Applications 20, 303–353.

Fan, J., Guo, Y. and Wang, K. (2023). Communication-efficient accurate statistical estimation.

Journal of the American Statistical Association 542, 1000–1010.

Fan, J., Wang, D., Wang, K. and Zhu, Z. (2019). Distributed estimation of principal eigenspaces.

The Annals of Statistics 47, 3009–3031.

Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by the method

of average derivatives. Journal of the American Statistical Association 84, 986–995.

Jordan, M. I., Lee, J. D. and Yang, Y. (2019). Communication-efficient distributed statistical

inference. Journal of the American Statistical Association 114, 668–681.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American

Statistical Association 86, 316–327.

Li, K.-C. (1992). On principal Hessian directions for data visualization and dimension reduction:

Another application of Stein’s lemma. Journal of the American Statistical Association 87,

1025–1039.

Li, K.-C. and Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics

17, 1009–1052.

DISTRIBUTED MEAN DIMENSION REDUCTION 129

Lin, Q., Zhao, Z. and Liu, J. S. (2019). Sparse sliced inverse regression via Lasso. Journal of the

American Statistical Association 114, 1726–1739.

Luo, W. and Cai, X. (2016). A new estimator for efficient dimension reduction in regression.

Journal of Multivariate Analysis 145, 236–249.

Luo, W., Li, B. and Yin, X. (2014). On efficient dimension reduction with respect to a statistical

functional of interest. The Annals of Statistics 42, 382–412.

Ma, Y. and Zhu, L. (2013). Efficiency loss and the linearity condition in dimension reduction.

Biometrika 100, 371–383.

Ma, Y. and Zhu, L. (2014). On estimation efficiency of the central mean subspace. Journal of

the Royal Statistical Society. Series B (Statistical Methodology) 76, 885–901.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society. Series B (Methodological) 58, 267–288.

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery

using ℓ1-constrained quadratic programming (Lasso). IEEE Transactions on Information

Theory 55, 2183–2202.

Wen, Z. and Yin, W. (2013). A feasible method for optimization with orthogonality constraints.

Mathematical Programming 142, 397–434.

Xia, Y., Tong, H., Li, W. K. and Zhu, L.-X. (2002). An adaptive estimation of dimension

reduction space. Journal of the Royal Statistical Society. Series B (Statistical Methodology)

64, 363–410.

Zhang, Y., Duchi, J. C. and Wainwright, M. J. (2013). Communication-efficient algorithms for

statistical optimization. Journal of Machine Learning Research 14, 3321–3363.

Zhu, L. and Zhong, W. (2015). Estimation and inference on central mean subspace for

multivariate response data. Computational Statistics & Data Analysis 92, 68–83.

Zhu, Z. and Zhu, L. (2022). Distributed dimension reduction with nearly oracle rate. Statistical

Analysis and Data Mining 15, 692–706.

(Received May 2022; accepted April 2023)

	Introduction
	A Brief Review of Semiparametric Approaches and Equivalent Reformulations
	Notations
	Recasting semiparametric approaches under a least squares framework

	The First Distributed Algorithm with Dense Solutions
	The first communication efficient distributed algorithm
	Theoretical properties of the first distributed algorithm

	The Second Distributed Algorithm with Sparse Solutions
	The second communication efficient algorithm
	Theoretical properties of the second distributed algorithm

	The Third Distributed Algorithm under Orthogonality Constraints
	Simulation Studies
	Conclusion

