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Abstract: In this study we recast the semiparametric mean dimension reduction
approaches under a least squares framework. This changes the problem of recovering
the central mean subspace into a series of problems of estimating slopes in linear
regressions, and enables us to incorporate penalties to produce sparse solutions.
We further adapt the semiparametric mean dimension reduction approaches to
distributed settings in which massive data are scattered at various locations,
and cannot be aggregated or processed by a single machine. We propose three
communication efficient distributed algorithms. The first yields a dense solution,
the second produces a sparse estimation, and the third provides an orthonormal
basis. The distributed algorithms are less complex computationally than a pooled
algorithm, and attain oracle rates after a finite number of iterations. Using extensive
numerical studies, we demonstrate the finite sample performance of the distributed
estimates, and compare it with that of a pooled algorithm.

Key words and phrases: Central subspace, distributed estimation, sufficient dimen-
sion reduction.

1. Introduction

Recent advances in science and technology allow us to collect and process
massive data in a cost-efficient manner. However, while such data present
significant opportunities, they also present challenges to statisticians and data
scientists.

Massive data usually have a high dimension and a large volume. To cope
with the high dimensionality, sufficient dimension reduction (Li, {1991; |Cookl
2009) is an effective paradigm that combines the idea of a linear reduction with
the notion of sufficiency. (Cook and Li (2002)) introduced the concept of mean
dimension reduction, which concerns E(Y | x), where Y is a univariate response
and x = (X1,...,X,)" is a p-vector of covariates. The central mean subspace
model assumes that there exists a p x d matrix 3 € RP*? such that

E(Y | x) = E(Y | x"8). (1.1)

The column space of 8, denoted by S(8), is referred to as the mean dimension
reduction subspace. If the intersection of all such subspaces satisfies (1.1]), we
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call it the central mean subspace, which is unique and denoted as Sg(y|x). The
column dimension of 3, denoted by d, is an integer between zero and p. In the
trivial case of d = 0, Y is mean independent of x; that is, E(Y | x) = E(Y). In
the special case of d = p, we can simply set 3 to be the p x p identity matrix I,
and model is always true. In general, d must be decided using a data-driven
mechanism.

Many approaches have been proposed to identify and recover Sg(y|x). These
approaches can be roughly classified into three categories. The first consists
mainly of inverse regression methods, and requires stringent distributional as-
sumptions on the covariates, such as the linearity mean (Li, [1991) and constant
variance conditions (Cook and Weisberg), [1991). Examples include the ordinary
least squares (Li and Duan, [1989), principal Hessian directions (Li, 1992), and
their variations (Cook and Li, 2004). The second category consists mainly of
forward regression methods, which extract the information of Sgy|x) from the
derivatives of E(Y | x). Examples include the average derivative estimation
(Hardle and Stoker, 1989) and minimum average variance estimation (Xia et al.,
2002). The third category comprises the semiparametric estimating equations
approaches, which require minimal distributional assumptions on the covariates.
Here, examples include the works of Ma and Zhu/ (2014), [Luo, Li and Yin| (2014),
and [Zhu and Zhong (2015)). In particular, |Luo, Li and Yin (2014) thoroughly
examine the asymptotic properties of the semiparametric approaches of Ma and
Zhu| (2014) when the variance function var(Y | x) is estimated consistently
using kernel smoothers. |Zhu and Zhong| (2015) extend the work of Ma and
Zhu (2014) by allowing for multiple responses, and assume implicitly that the
variance functions are all constants.

We advocate using the semiparametric approaches of |Ma and Zhul (2014)),
for at least two reasons. First, they avoid having to use the linearity mean
and constant variance conditions, thus generalizing the usefulness of sufficient
dimension reduction. Indeed, even when these distributional assumptions are
satisfied, sufficient dimension reduction methods with the linearity mean and
constant variance estimated using nonparametric treatments are more efficient
than those that use these conditions directly (Ma and Zhu, 2013]). Second,
the semiparametric approaches are locally efficient. Specifically, the resultant
solutions attain the semiparametric efficiency bound as long as the variance
function var(Y | x) is specified correctly (Ma and Zhul, 2014) or estimated
consistently (Luo, Li and Yin, |2014)), and remain consistent even when var(Y | x)
is misspecified or estimated inconsistently.

The problem with the semiparametric approaches is that they have com-
putational complexity of O(N?), where N is the total sample size, and thus
are usually computationally prohibitive for massive data. Massive data are
often scattered across various locations, possibly because of memory or storage
limitations, or privacy concerns. Therefore, to cope with large volumes of massive



DISTRIBUTED MEAN DIMENSION REDUCTION 113

data, distributed methodologies are highly desirable.

Although distributed statistical inference has received considerable attention,
most existing approaches require only one round of communication: the node
machines conduct the inference in parallel and send the results to the central
machine, which aggregates all information to produce a final solution; see, for
example, [Zhang, Duchi and Wainwright| (2013)), Battey et al. (2018), and |[Fan
et al| (2019). While these one-shot methods are communication efficient, they
only work with a small number of node machines, and require large sample size
on each of them. Violating these requirements results in suboptimal performance.
Balcan et al.| (2016) designed a distributed algorithm for a kernel principal
component analysis. They obtain approximate solutions with a relatively low
communication cost. |Jordan, Lee and Yang (2019) and |[Fan, Guo and Wang
(2023) developed iterative methods with multiple rounds of aggregations, which
substantially relaxes the requirement on the number of machines. |Cai, Li and Zhu
(2020) proposed implementing a sliced inverse regression in an online manner, if
the observations arrive in data streams. |Chen, Xu and Zhu (2022) and Zhu and
Zhu| (2022)) adapt sufficient dimension reduction with convex loss functions to
distributed settings. The resultant estimates possess nearly oracle rates after
a finite number of iterations. However, both require stringent distributional
assumptions, such as the linearity mean condition. In addition, few works
have examined how to conduct distributed statistical inference in the context
of semiparametric estimating equations.

In this study, we reformulate the Newton—Raphson iterations of the semi-
parametric estimating equations under a least squares framework. This changes
the problem of estimating the central mean subspace into a series of problems
of estimating slopes in linear regressions, enabling us to incorporate penalties to
yield sparse solutions. We propose three distributed algorithms, under various
identifiability conditions. The first algorithm yields a dense solution, the second
produces a sparse estimation, and the third provides an orthonormal basis.

Our proposed distributed algorithms possess at least three desirable prop-
erties.  First, these algorithms are communication efficient. The estimat-
ing equations themselves and their gradients correspond to the gradients and
Hessians, respectively, of the least squares losses. We estimate the gradients
separately using the observations recorded in each node machine. The gradients
are then transmitted to the central node to form an aggregated estimation
of the overall gradient. The communication cost is O(mp), where m is the
number of node machines. This is the minimal price we have to pay in
distributed settings. Instead of using all N observations scattered across m
node machines, we estimate the Hessians simply using the observations from
the central node machine only, which incurs no transmission cost. In this
sense, our proposed distributed algorithms are communication efficient. Second,
the resultant distributed estimates possess desirable theoretical properties. For
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example, they achieve the oracle rate after a finite number of iterations. We
derive the contraction rate for the distributed estimates. After a small number
of iterations, the optimization errors are asymptotically negligible compared
with the statistical errors. Therefore, in an asymptotic sense, the distributed
estimates behave as well as the classic pooled estimate, which requires pooling
all observations on in a single machine. Lastly, the distributed algorithms are
computationally much more efficient than the corresponding pooled algorithm.
The remainder of the paper is organized as follows. In Section 2, we review
the semiparametric approaches of [Ma and Zhu| (2014), and recast them into a
least squares framework. Note that, although Sg(y|x) is unique, its basis matrix
B is not. Two sets of conditions ensure that 3 is identifiable. One requires
that the upper d x d block of 3 is the identity matrix I;.4, and thus the lower
(p — d) x d block comprises free parameters. The second requires 3 to be
orthonormal, that is, 3"3 = I;.4. This condition is widely used, although it is
not sufficient to ensure the identifiability of 3 unless some additional assumptions
are imposed. In Sections 3 and 4, we adapt the semiparametric approaches to
distributed settings under the first set of identifiability conditions. In Section
5, we suggest a distributed algorithm under the orthogonality constraint. We
discuss our simulation studies in Section 6, and conclude our paper in Section 7.

2. A Brief Review of Semiparametric Approaches and Equivalent
Reformulations

2.1. Notations

Let C,Cy,C1,...,c,co,c1,... be generic constants that may vary at each
def
appearance. For a vector a = (ayq,...,q,)", we define |a; = >0 | |a;| and

laly = (327, a2)V2. For a matrix A = (a;;) € RP*4, |A], = max;cicp1<j<a|ai]
and ||Alle & max;<c, > 1<j<alaij|. Furthermore, vec(A) is an operator that
stacks all columns of A vertically in order, and vecl(A) is an operator that
vectorizes the lower (p — d) x d block of A, that is, vecl(A) = vec(A,), for
A = (AT, AD)", A € R and A, € RP=D*4 In addition, vec™!(+) is an inverse
operator of vec(+), that rearranges a (pd)-vector as a p x d matrix in column order.
In particular, vec™!'{vec(A)} = A. The largest and smallest singular values of A
are denoted by A\yax(A) and Ay, (A), respectively. Let P(A) £ A(ATA)'AT be
the projection matrix of A. Define A®? = AA™, and let A ® B be the Kronecker
product of A and B, where B € RP**%, For two sequences of real numbers,
{a,}22, and {b,}>° ,, we write a,, = O(b,,) if there exists a positive constant C
such that |a,/b,| < C, for sufficiently large n. For two sequences of random
variables, {X,,}>°, and {Y,,}°°,, we write X,, = O,(Y,), if, for any ¢ > 0, there
exists C' > 0 such that pr(|X,,/Y,| < C) > 1 — ¢, for sufficiently large n.
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2.2. Recasting semiparametric approaches under a least squares frame-
work

Here, we briefly review the semiparametric approaches of Ma and Zhu! (2014)).
With a slight abuse of notation, we denote as 3 the basis matrix of Sg(y|x), with
its upper d x d block being 1.4, and all other elements of 3, vecl(3), being free
parameters. Let m(x"8) = E(Y | x"8), m;(x"B) = vec{om(x"3)/0(x"B)},
e =Y —m(x"B), and w(x) = {E(e? | x)}~!. Let a € R?*? be an intermediate
estimate, with its upper d x d block being I ;.4 Let vecl(a) € RP=DIx! he o
vector of free parameters. Define

%(a) & Vecl{ {x - EE{{XV:V(S)“XXT;"‘}}] mf(xTa)} e RV (g7)

We further write S{x, Y, o, w(x)} = {Y —m(x"a) }w(x)X(c). Ma and Zhu| (2014)
showed that F[S{x,Y,3,w(x)}] = 0. In other words, solving the estimating
equations yields a consistent estimate for the basis B of Sg(yx)-

We seek 3 by using Newton—Raphson iterations. This requires calculating the
gradient of F[S{x,Y, a,w(x)}] with respect to vecl(e), which yields {—H(«)},
where H(a) & E[w(x){X(a)}{X(a)}"]. Start from an initial value 8. The
Newton—-Raphson iteration proceeds as

vecl(B4TD) 2 vecl(BW) + {H(ﬁ“) )}_1 E [S{x, Y, ﬁ“),w(x)}} . (2.2)

Throughout, we fix the upper d x d block of ,B(t) to be I;q. We update ,B(t) with
,6(t+1), and iterate until convergence.

Next, we present our first contribution to the literature, where we recast the
above Newton—Raphson iteration under a least squares framework. Define

Y(a) & {X(a)}" vecl(a) + {Y — m(x"a)}. (2.3)
Here, can be written equivalently as
vecl(84) = {H(8")} B {w(x(8")¥ (8"}
which exactly minimizes the following weighted least squares loss function:

vecl(B1) = arg&ninE[{?(ﬂ“) - i(;a“))Tvecl(a)}?w(x)], (2.4)

for t > 0. We update ,B(t) with ﬁ(t+1), iterate to obtain ﬁ(t+2), and so on.
This iteration proceeds until convergence.

In the following, we show that this reformulation enables us to incorporate
penalties on the right-hand side of , which are introduced to produce
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sparse solutions. This equivalent reformulation is thus very appealing in high
dimensions. In what follows, we introduce three distributed algorithms. The
first yields a dense solution, the second produces a sparse solution, and the
third provides an orthonormal estimate. These distributed algorithms are
communication efficient, and the resultant solutions possess desirable theoretical
properties. To save space, we relegate the description of the pooled algorithm to
the online Supplementary Material.

3. The First Distributed Algorithm with Dense Solutions
3.1. The first communication efficient distributed algorithm

First, we explore how to adapt the above Newton-Raphson iterations to
distributed settings when the observations are scattered across various locations.
With a slight abuse of notation, we denote the observations {(x;,Y;),i =
1,...,N}as {(x;;,Y:,),i=1,...,n,5 =1,...,m}, assuming they are scattered
across m machines. We further assume that the total sample size N = nm is so
large that a single machine cannot process all observations simultaneously, owing
to memory or storage limitations. In this case, we require a communication
efficient distributed algorithm.

Instead of using all N observations to estimate m(x"a), m; (x" ), E{w(x) |
x"a}, and E{xw(x) | x"a}, we suggest estimating them using the observations
in the jth machine only, which yields m distinct estimates. In particular, we
define (/b\k,j’gk“j) S

n
. 2
argmin Z {Yij—biy— (xi 0 = Xz,ja)bku‘} K, (7 500 = x,;00).
br.jbr.g 1 42

Let m;(x} ;o) = Bk,j and m, ;(x) ;&) = Bk,j- In addition, we define

e Z?:l,i;ﬁk Ky, (Xz'T,ja - Xi,ja)w(xi,j)

Z?:l,i;ék K, (X;F,ja o X}cﬂ’ja)

Ej{w(xw;) | x; jo)

9

and

E{xw(xy,;) | xF at 2 2z By (X700 — X3 Q) {Xi w0 (X))
j J J k.j Z:‘L:I,i?ﬁk Ky, (X{ja — xzyja)

Accordingly, we define

E {x w(x:) | x* o
)/Ekd(a) d:ef VeCl { lxk’j o Jé k,JW( k,J) ‘ k,j }] r/ﬁT(XE’JQ)} . (31)
j

{wxig) [ x5
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Define S;{xy, Vi, o, w(xp )} = {Y; — mj(x;, o) bw(Xp ;) Xp (), and

Ej [S{Xj7 ijv «, UJ(X])}} =n! Z gj{xk,ja Yk,j? o, w(xk,j)}a

k=1

for j = 1,...,m. All are consistent estimates of E[S{x,Y,a,w(x)}|. Each
has computational complexity of O(n?). More importantly, computing these
quantities can be parallelized to further improve the computational efficiency.
Therefore, as long as n is small relative to N, the computational complexity
is reduced to O(n?) from O(N?), which is substantial. The above estimate,
E;[S{x;,Y;, o, w(x;)}], uses only the observations from the jth machine, and
thus can be computed in parallel. We transmit these estimates to the first central
machine to form

B[S0, ¥, ()] 2 m S B, [0, ¥ 0,003
j=1

which serves as an estimate of E[S{x,Y, a,w(x)}]. The communication cost of
transmitting these quantities is O(mp), which is the minimal price we have to
pay in a distributed setting.

To implement (2.2), it remains to estimate H(a). We use {(x;1,Yi1),i =
1,...,n}, that is the observations from the first machine only. Specifically,

n

H(o) Z > w(xe )R ()5 (a), for j=1,...,m.
k=1

We implement the Newton—Raphson algorithm on the first machine. As such,
there is no communication cost when estimating H(c).

We propose the first communication efficient algorithm, which yields a dense
solution. This is our second contribution to the literature. We start from an initial

value ngm, and then iterate the Newton-Raphson algorithm in a distributed

fashion, as follows: vecl( fﬁ:tll)) oot

~ -1
veel(BY) + {Hi (B ) ) Bawr [S{xY, 88, w0} (32)

Once we have Bg’i:tli from the first machine, we update ﬁl(,ﬁéﬁltyl) with

H, ( Eﬁ;lf) Next, we broadcast ,85;1;1{ from the first machine to the remaining
(m - 1) machines to update Ej [S{Xja Y}? lBglti)st,lv w(XJ)}] with ,\Ej [S{Xja Y}v Bfii:t:}ia
w(x;)}]. The latter is transmitted to the first machine to form Eq;s 1[S{x, Y, ,Béti:ﬂ,

w(x)}]. We iterate (3.2) until convergence, and denote the final solution as B ;-
In the above distributed algorithm, we assume w(x;) is known, which is
unrealistic in practice. However, this is not problematic, because we can specify
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w(x;) as w*(x;), or assume it has a parametric form w;(x;,0;). We can also
estimate w(x;) using a kernel smoother at each local machine. Specifically, at
the jth local node, we estimate w(x;) as

aer >y K, (%5 — X )
Yoy Ky (%05 — xi ) ){ Vi — my(x7 ) }2

W;(Xx ;)

The consistency of Bdist)l does not depend on how we specify or estimate
w(x). In the following, we show that as long as w(x) is specified correctly
or estimated consistently, the distributed estimate Bdist,l is semiparametrically
efficient, despite the convergence rate of w;(x) being slow in high dimensions.
Even if w(x) is incorrectly specified or inconsistently estimated, Bdist’l still
possesses an oracle rate. To distinguish these distributed estimates, we write
aﬁst)l as Bdist’l(w*) if w*(x) is used, and as Bdism(@) if w;(x) is used on each
local machine. When w*(x) is equal to w(x), we denote the resulting distributed
estimate Bdism as Bdist,1(w)- When this does not cause any ambiguity, we simply

use IBdist,l'
3.2. Theoretical properties of the first distributed algorithm

In the above distributed algorithm, we estimate E[S{x,Y, a;, w(x)}] using a
divide-and-conquer strategy, and estimate H(a) using the observations from the
first machine only. This distributed is computationally much more efficient than
the pooled algorithm. It is thus natural to ask whether the distributed estimate,
Bdist’l, is as “good” as the pooled estimate, Bpooua which amounts to studying
the theoretical properties of Bdist’l. Ma and Zhu (2014), Luo, Li and Yin (2014),
and |Luo and Cail (2016) study the theoretical properties of B , thoroughly. We
first present regularity conditions to establish the theoretical properties of Bdism.
Throughout, we suppose that the covariates x and the response Y are centered,
that is E(x) = 0 and E(Y) = 0. Suppose d is a fixed number. We introduce the
following regularity conditions to establish the theoretical result for Bdist,l:

pool,

(C1) The Kernels: The multivariate kernel is a multiplication of univariate and
symmetric kernels. The gth-order univariate kernel K (-) satisfies

/K(u)du _ 1,/uiK(u)du 0, 1<i<qg—1,0 /qu(u)du < 0.

It has a compact support over which it is Lipschitz continuous.

(C2) The Density: The density function of (x"3), denoted by f(x*3), and
w(x) = {E(? | x)}~! are bounded away from zero and infinity.

(C3) The Smoothness: Let 7(x"a) = E{a(x,Y) f(x"a) | x"a}, for a(x,Y) being
Y, w(x), or xw(x). The (¢—1)th derivatives of r(x"a), f(x" ), and m(x" )
are Lipschitz continuous in the neighborhood of (x3).
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(C4) The Covariate: The covariate x is sub-Gaussian. Let X = cov(x,x"). There
exists ¢ > 1 such that ¢ < A\,in(E) < A\ax(E) < ¢. H(e) is invertible at
B. There exists A > 0 such that H(3) > A(,_ayax (p—a)a-

(C5) The Moments: E(||x]]3) < oo, E(Y*) < oo, and E{|m,;(x*8)|3} < oo.
There exist G and H such that E{|E,[S{x,Y,a, w(x)}]|} < G* and
E{|[H(c) — H(a)||3} < H*. There exists L(x,Y) such that |[H(cu;x) —
ﬁ(az;x)||2 < L(x,Y)|a; — aslls, for E{L(x,Y)} < L*.

(C6) The Bandwidths: The bandwidths satisfy Nh27h>? — 0, N1 Vh2 — 0,
anthdhd—>oo, forl1 <k<l<A4.

(C7) The Sample Size: There exist ¢; > 0 and 0 < ¢ < 1 such that n >
max(cip, N).

(C8) The Initial Value: The initial value satisfies [vecl(8”) — 8)|, = O, (n~1/2).

We assume these conditions for technical reasons, though they are widely assumed
in literature. In particular, condition (C1) allows for the second-order kernels,
and condition (C6) allows for optimal bandwidths. The distributed algorithm
requires the sample size n to be large enough to satisfy condition (C7), which is
required to ensure condition (C8) holds when we calculate the initial value B
using the observations from the first machine only. Condition (C7) is also used by
Zhang, Duchi and Wainwright| (2013)), Battey et al. (2015), and |Jordan, Lee and
Yang (2019), and is typically regarded as mild in distributed settings. Condition
(C8) requires that the initial value be consistent.

We provide a high probability error bound for Bdm , in the following theorem.

Theorem 1. Under conditions (C1)—(C8) , we have fort > 1,
\vecl( dzst = B)2=0, {n—(t+1)/2 + N—1/2} ‘

An important implication of Theorem 1 is that Edlst , can behave as well as

(t+1)

Bpoor1 only after a finite number of iterations. In order to ensure \Vecl( dist 1

Bpoou)\g = 0,(N~¥2), we are merely required to conduct at most [log N/ logn]
iterations, where [x| denotes the smallest integer larger than or equal to z. In
other words, for a sufﬁmently large t, the optimization error of the distributed
estimate, \vecl(,é’dlst 1= ,(‘3p00171)|2, is almost negligible in comparison with the
B)|2. That is, Bdism behaves
If N is a polynomial order of n, [log N/logn] is a finite number.

statistical error of the pooled estimate, \vecl(,@'pooL1 —
as well as 3
In other words, we are required to conduct at most a finite number of iterations

to ensure that ﬂdlst , is almost as good as B

pool,1*

Fpool,1- As a consequence, ﬂdlst | shares

almost the same theoretical properties as /6})001,1
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4. The Second Distributed Algorithm with Sparse Solutions
4.1. The second communication efficient algorithm

Next, we introduce a distributed algorithm that yields a sparse solution.
Under the least squares framework ([2.4]), we can incorporate penalties into the
loss function to produce sparse solutions. In particular, we define

Y(a) Z {%(a)}" vecl(a) + {Y — i(x"a)}. (4.1)

We incorporate the least absolute shrinkage and selection operator (Tibshi-
rani, 1996) into the least squares framework. With the observations denoted
as {(xik,Yir),i = 1,...,n,k = 1,...,m}, we ignore the penalty for now, and
rewrite the least squares loss function as follows:

(@) 2N 33 (T (BL) — Zea(B ) vecl(@)2w(xi),

=1 k=1

where ﬁ(dti)sm is an intermediate distributed estimate. We define

e 1 - A >
2, fitl)btz) = " Zw(xi,k)xi,k(ﬂ((i?st,g)}/i,k( ((fl)sm) and

1=1
m
= 1 )
Zn dlst 2 - E e dist, 2

Using straightforward algebraic calculations, we can show that, given «,

1
Ly(a) = Ln( d1st2)+2V6C1(a /3d1st2) H( Eiti)st,Q)VeCI(a_lagiti)stQ)

+vecl(a — ﬁdlst 2)" {ﬁ( E:lti)st,2)ved( Eitiit,Q) —ZN (ﬁflti)st,Z)} .

There are three quantities on the right-hand side of the above. The first is
irrelevant to a, and thus can be ignored in the optimization. The second involves
ﬁ( ((fi)sm) which is a {(p — d)d x (p — d)d} matrix. Transmitting Hk( dlstz)
from the local machines to the central one to form H(:Bdist,z) is communication
inefficient, particularly when the covariates are high dirnensional. In parallel to
the first distributed algorithm, we suggest replacing H( dlst ,) with H, (B((fi)sm),
to obtain

~ . 1 .
Ly(a) = Ly( glti)st 2) T §Ved(a - /Bgl)bw) Hl( dm 2)Ved(a - B((itilt,z)

+vecl(a — Bdlst 2)" {ﬁ( Siti)st,Q)VeCI( dl)stZ)_ZN( Eitl)StQ)}

We perform optimization on the first machine. Using H, (,Bétllw) in place of
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ﬁ( ffi)st’z) does not incur a communication cost. If a is sufficiently close to

t ey . . .
((h)styz, it is reasonable to expect the approximation error

Ved(a - :@gilt,Q)T {ﬁ(ﬁétl)st72) - I/_\Il( gitilt,Q) } Ved(a Bdlst 2)

to be negligible. Next, we study the third quantity. Here, { H( dlst 2)vecl( dlst 2)}
can be formed on each local machine using the relation

ﬁ( Siti)st,Q)Vecl(IBdlst 2 _1 Z {Hk dlst 2 VeC1( dlst 2)}

In partieular, we form {B (8%, )vecl(80 o)} and (8% ,) on cach local
machine, and transmit these random vectors to the central machine, incurring a
communication cost of O{(p — d)d}, which is the minimal price that we have to
pay for distributed algorithms. We ignore all quantities that are irrelevant to o
in Ly(c). An equivalent form of £y () can be defined as

* ‘3 1 T
Li(e) = Svecl() Hy (B, ) veel(a) (42)
+veel(@)” [{H(BL o) — Hi (B o) pecl (B 2) — 2 (B5h.)]

We seek B by minimizing £} () in distributed settings.

The second distributed algorithm proceeds as follows. We start from Bg?im.
Once we have ,Bdtl:tl; on the first machine, we update Hy ( Efilw) with H, ( étl:rtl%)
We broadcast Bdtl:tlg) from the first machine to the remaining machines to update
ﬁk( gti:tg)vecl( ét:tl%) — 7 ( gtl:t12))’ which are then transmitted to the first
machine to update the quantity in the square brackets in (4.2). Define

e 1
42 2 g ) 1 (85 e

~

+ [{H(BA1S) — Ha(BU) brecl(B512) — 2n (8512 +A||a||1>

We iterate until convergence, and denote the final solution by Bdisw.

4.2. Theoretical properties of the second distributed algorithm

d(,f

Let S be the support of vecl(3), and the cardinality of S be s = |S|. We
introduce conditions (C5')—(C8') to replace (C5)—(C8) to study the theoretical
properties of By o-

(C5') The response Y is bounded, or the error € has sub-Gaussian tails. The
mean function satisfies sup [m(x"3)| < co and E{||m;(x"3)||5} < co. The
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loss £(a) is restricted strongly convex over S : for all § € C(S) & {v
lus|i < 3lvse|t, L1(B+ ) — L1(B) — 6VLL(B) > pld]3. The Hessian is
restricted Lipschitz: for all § € C(S), [{Hy(8 + 6) — Hy(8)}0] < M|63
and |{H(8 + 6) — H(B)}d|.. < M]53.

(C6') The bandwidths satisfy Nh27h?? — 0, Nhi“"Vh? — 0, Nhihd/log? N —
oo and Nh4+2/log N — co. In addition, slogp = o{ NV/44p{ 1H)/2p(-at1)/2
+ (Nh{T?/log N)¥/?} for 1 < k <1< 4.

(C7') The covariate dimension p satisfies p = O(N°) logp = O(N“), for ¢3 > 0,
0 < ¢4 < 1. The sample size n satisfies n = O(N), for 0 < ¢5 < 1, and
the sparsity level s satisfies s = O(n®), for 0 < ¢ < 1/2.

(C8') The initial value Bdm , satisfies |vecl( fﬁim —B)|1 = O,{s(logp/n)'/?} and
[vecl(Bgik.o — B)l2 = Oy(slog p/n)'/2.

Theorem 2 provides an error bound for our distributed estimate ,Bdlst .

Theorem 2. Take
log p 1/2 logp
A%>=c{(N) + (2 ) vecl (81 - B )|1+|Vecl([3$s§.)@—ﬁ)!§},

for a sufficiently large constant C. Under conditions (C1)—(C4) and (C5)—(C8),
we have, fort >1,

logp\ /? 12 ( logp e
vecl(B = )l = 0y § (52 ) +sr(ER)

Theorem 2 indicates that as the iteration proceeds, /B(dti)st,2 improves

accordingly.  Indeed, |vecl( d15t2 — B)|2 is upper bounded by two orders:
O{(slogp/N)*/?} and O{s(2t+1)/2(logp/n)(t“)/2}. As long as the iteration step
t is sufficiently large that ¢ > log(p/n)/log{cn/(s*logp)}, for some ¢ > 0,
the second order is dominated by the first, and the convergence rate of ,Bdlsw
becomes O{(slogp/N)*/?}, which is the oracle rate of Bpool ,. By condition (C7’),
log(p/n)/log{en/(s 2log p)} is upper bounded, indicating that the difference
between ,Bél)stg and ,8p0012 is asymptotically negligible after a finite number
of iterations. In other words, the distributed algorithm behaves asymptotically
as well as the pooled algorithm.

Theorem 3. In addition to conditions (C1)—(C4) and (C5)—(C8'), we further
assume that HZSCX32 XSH <1-—a, for some 0 < a < 1.

1. The distributed estimate satisfies S(3' dm 5) € S, with probability approach-
ing one.
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2. Suppose for a sufficiently large constant C that

) logp"? logp) T
. — t
minls, > =5kl S (5] +(F2E) |-

Then, we have S(Bgilt,g) = S, with probability approaching one.

The irrepresentable condition and the “beta-min” condition are widely used
in prior studies to establish the support recovery property; see, for example,
Wainwright| (2009). For ¢ > log(p/n)/log{cn/(s*logp)}, the “beta-min” con-
dition reduces to minjes|B;| > C'||Z5xs||.. (logp/N)"/2, which is a classic and
widely used condition.

5. The Third Distributed Algorithm under Orthogonality Constraints

Let 3 be a basis of Sg(y|x). In Sections 2-4, we required the upper d x d block
of B to be 1.4, which ensures that 3 is identifiable and that vecl(3) are all free
parameters. However, this implicitly requires that the first d covariates of x be
truly predictive, which is not always realistic. In this section, we merely assume
(3 is orthonormal, such that 3"3 = I;.4. This orthogonality constraint does not
ensure (3 is identifiable. In addition, optimization over the manifold {3 : 83 =
Lixa} is, in general, difficult. However, this orthogonality constraint appears more
realistic, and suffices to recover Sg(y|x). We propose a third distributed algorithm
under this orthogonality constraint, following |Wen and Yin (2013]).

This section requires a few changes in notation. In particular, we redefine

_ . E{xipw(xir) | X585 |
E{w(x;) | Xi,klgdist,3

where we use “vec” in place of “vecl” in (3.1). Accordingly,
i}_ ( (t) )d_ef xT ( (t) )} (t) Y., — i(x"® (t)
i,k \Pdist,3) = X4,k Pdist,3 vec( dist,3)+{ ik m(xi,k dist,3)}7

where 5512@3 is an intermediate estimate of 3 at the tth step. Redefine

de 1 " AN g
Zk( ((iti)st,3) = n Zw(xi,k)xi,k( gl)bts)yzk( Elti)st,?)) and

1=1
1 m
t e t
zn ( Eiiltﬁ) = m Z z, ((ii)st,B)'
k=1
In addition,
1 n
t def o~ t ~ t
Hy ( fii)st,S) = n w(xi,k)xi,k(:@éi)st,s)xz‘T,k( <(ii)st,3) and
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H(Bis)

In parallel to (4.2)), we redefine the loss function using this notation as

Livla) ™ Jvec(a) H (8, 5) vec() (1)

vec(a)” [{F(BYLa) — Hi (B ) pvec(Bihs) = 2n (8L a)] -

In this section, we propose an orthogonality-constrained optimization approach
within the Stiefel manifold (Edelman, Arias and Smith| [1998)). In other words,
we minimize £} () subject to the orthogonality constraint a™a = Ly g.

Wen and Yin| (2013) propose a first order descent algorithm, that yields a
feasible solution, in that it preserves the updates within the manifold. Specifically,
we define the gradient of L}, () with respect to a as

G(r) = vec™! [11 () veo(a)

+{H( dlSt 3) Hl (/gdlst 3) }VGC dl)St 3) - ZN(IB((l?st,S)} .
Define W( fﬂtiltﬁ) = G( fﬂtilt,s) (ﬁgilmB)T - ( fitiltﬁ) {G( éti)st,?)) }Ta which is a skew-

symmetric matrix. Let 7Y be the step size. In practice, 7® can be chosen using
a non-monotone line search with the Barzilai-Borwein step size (Barzilai and

Borwein), [1988). By the Cayley transformation, we have ﬁdtl:tl; =
W (Bia) | W (Bii.s)
{Ipxp+¢<t>2“’3} {Ipo —T“’d”}{ﬁdm (5.2)

It can be verified that {Bdtl:t13} {ﬂfltl:tl?); Lixa, if {/Bdlst 3}T{ﬁdlbt st = Taxa-
Thus, this algorithm preserves the constraint exactly. Starting from 5(0), we

iterate (5.2)) until convergence. Denote the final solution by By 3-
The inversion {I,., + T(t)W(BfltiZt,S) /2}~! dominates the computation for
g:tl?)) in (5.2). However, we do not have to invert a p X p matrix. In parti-
cular, calculating this inversion is very cheap, because W( dlbt?’) is formed
as the outer product of two low-rank matrices. Rewrite W (g} dlst 5) = {U(8] dlst 3)}
{V( Ges) Y™ fOf U(Bies) = [G(Bies) Bliksl € B and V( ffl)bts) =
[ dlbt 39 G( dlst 3)] € R;DX?d. AS long as {I2d><2d + T(t)V( ((iti)st,3)TU( dist, 3)/2}
is invertible, which is often the case, by Lemma 4 of Wen and Yin| (2013),
an_equivalent form of (52) is By = Bika — TVU(Bues) Loaxea) +
OV (Biks)"UBlis) /2 {V (Bl s) ) {Baie - By the very purpose of mean
dimension reduction, d is far less than p. It is thus natural to expect that inverting
{Topxea + 7OV( ((iti)st,g)TU( ((fl)btg)/Q} € R?™2d jg much easier than inverting
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{Ly, + TOW( Efi)st’g)/Q} € RP*P. In this sense, our distributed algorithm with
an orthogonality constraint is computationally efficient.

6. Simulation Studies

We conduct simulation studies to demonstrate the finite sample performance
of our proposed distributed algorithms. We generate the observations from the
following examples.

Example 1. We generate x from a multivariate normal distribution with mean
zero and covariance 3 = (0.5/17 ‘) . We generate Y from a normal distribution
with mean m(x"3) = sin(2x"3) + 26Xp(2 + x"3) and variance o?(x) = log{2 +
(x*B)}. The first four components of 3 are (1,1,—1,1)", and all other entries
are identically zero. In this example, p = 16 and d = 1.

Example 2. We generate x independently from a uniform distribution defined

n [—2,2]. We generate Y from a normal distribution with mean m(x"8) =
(x"03,)/{0.5+ (1.5+x"3,)*} and variance o?(x) = exp(X), where X, is the first
coordinate of x. The first four components of 3, and 3, are 3; = (1,0,1,1)" and
By = (0,1,—1,1)", respectively. All other entries of 3, and (3, are identically
zero. In this example, p = 16 and d = 2.

We run 500 replicates to compare the performance of the following estimates:

1. §p00171(w): The pooled estimate that pools all observations together and
uses the true weight w(x) = {0%(x)}~*. This serves as a benchmark for
algorithm 1.

2. Edist’l(w): The distributed estimate that uses w(x) = {o?(x)} .

3. Bdist’l(w*): The distributed estimate that uses w*(x) = 1.

4. Bpoom(w): The regularized pooled estimate that aggregates all observations
together and uses the true weight w(x) = {o?(x)}~!. This serves as a
benchmark for algorithm 2

5. Bdist o(w): The regularized distributed estimate that uses w(x) = {o?(x)} .

6. Bdm o(w*): The regularized distributed estimate that misspecifies w(x) as
w(x) =1,

7. Bpoom(w): The pooled estimate that aggregates all observations together
and uses the true weight w(x) = {o%(x)}~*. This serves as a benchmark for
algorithm 3.

8. Bdist73(w): The distributed estimate that uses w(x) = {o?(x)} .

9. Bdist,g(w*): The distributed estimate that misspecifies w(x) as w*(x) = 1.
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Let B3 be a basis matrix of the central mean subspace, and ,B be its estimate.
To assess the estimation accuracy of B, we use the Euclidean distance between 3
and ,@, defined as the Frobenius norm of the matrix B(BT,/B\)”BT —-B(B"B) 18"
A smaller distance indicates a better estimate.

Throughout, we fix the total sample size N = 2,500. We consider three
combinations, (n,m) = (500, 5), (250, 10), and (100, 25), where m is the number
of machines. We choose the initial value ﬂ(o) for algorithms 1 and 3 by using a
minimum average variance estimation (Xia et al. 2002). For the initial value of
algorithm 2, we implement the sparse sliced inverse regression (Lin, Zhao and Liu,
2019). We choose the bandwidths using a “rule-of-thumb” approach because the
semiparametric estimating equations approach is not sensitive to the bandwidth
selections (Ma and Zhu, 2014). In particular, we set hy = hy = hg = cn~Y/(4+d),

Tables 1 summarizes the average distances and CPU running times (in
seconds) of various estimates. For j € {1,2,3}, the pooled estimate 3poou (w)
performs best, in that it has the smallest biases across all scenarios. Furthermore,
the biases of the distributed estimates, Bdism (w) and ,Bdist,j(w*), increase with
the number of machines. Not surprisingly, Bdist,j(w*) is relatively less accurate
among the distributed estimates because the weight function is misspecified.
The distributed algorithms reduce the computational complexity substantially.
Algorithm 1 is slightly faster, but less accurate than algorithm 3. Algorithm 2
has the smallest distance of the distributed algorithms, because it benefits from
a sparse structure. However, it requires the most computational resources.

7. Conclusion

In this paper, we have introduced distributed algorithms for estimating the
central mean subspace under two sets of identifiability conditions. The first set
requires that the upper block of the basis of the central mean subspace is an
identity matrix. Under this condition, we design two distributed algorithms.
The first produces a dense solution, which suffices if the covariate dimension is
moderate. The second generates a sparse solution, which allows the covariates
to be high or even ultrahigh dimensional. For the second distributed algorithm,
an important contribution is that we recast the problems of estimating equations
under a least squares framework. This enables us to incorporate an appropriate
penalty to produce a solution, and more importantly, allows us to solve the
penalized algorithms under a linear regression framework. This idea is interesting
and can be adapted to solve other problems that use estimating equations.

The second set of identifiability conditions assumes that the basis of the
central mean subspace is orthonormal. Here, determining a feasible solution is
challenging. We address this problem using the first order descent algorithm.
However, finding a sparse feasible solution remains challenging owing to the
discontinuity of the sparse solution path, and thus warrants further research.
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Table 1. The average distance and CPU running time (in seconds) of various estimates.

(n,m) (500,5) (250, 10) (100, 25)
distance time distance time distance time
Example 1

Broot,1 (w) 0.224  (26.564)

Baise.1 (w) 0236 (10.391)  0.245 (7.613) 0261  (3.158)
Bdism(W*) 0.249 (8.484) 0.252 (5.322) 0.273 (2.613)
Brool 2(w) 0144  (33.216)

Bist 2 (w) 0.157  (15.729)  0.169  (10.048)  0.178  (6.165)
Baweo(w?) 0163 (13.963) 0184  (8.371)  0.197  (4.687)
Broos(w) 0.219  (31.854)

Baist,3(w) 0.226 (13.432) 0.238 (9.583) 0.255 (5.227)
ﬁdist,:z(w*) 0.234 (10.038) 0.243 (7.255) 0.264 (3.641)

Example 2

Brool,1 (W) 0.304  (31.859)

5dlst,1(w) 0.315 (14.337) 0.322 (10.741) 0.341 (4.845)
Bdm’l(w*) 0.323 (12.148) 0.334 (8.066) 0.358 (3.275)
Broot2 () 0160  (34.738)

Bdlst,z(w) 0.177 (18.344) 0.182 (13.765) 0.189 (7.148)
Bdlst,z(W*) 0.188 (16.731) 0.194 (11.142) 0.205 (5.671)
Boot3(t0) 0.291  (32.530)

Bdist"g(w) 0.299 (15.138) 0.316 (11.435) 0.322 (5.836)
Baist.3(w*) 0.314 (13.256) 0.327 (8.997) 0.349 (4.158)

Numerous works have proposed solutions to the problem of high dimension-

ality. Here, we focus on massive data of high dimensions and large volumes.

We propose several distributed algorithms, which have nearly minimal commu-

nication cost and almost the lowest computational complexity. In addition, our

solutions possess many desirable theoretical properties. However, adapting these
distributed algorithms to identify and recover the central subspaces, particularly
when the response variables are multivariate or even high dimensional, remains

an open problem, and thus is left to future research.

Supplementary Material

The online Supplementary Material contains descriptions of the pooled
algorithms, additional simulations, and technical proofs of all theorems.
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