
Statistica Sinica: Supplement

0.4pt=0pt

An Online Projection Estimator for Nonparametric

Regression in Reproducing Kernel Hilbert Spaces

University of Washington

Supplementary Material



Tianyu Zhang and Noah Simon

S1 Supplementary Discussion on RKHS

In the main text we gave two equivalent definitions of RKHS: one based on

the reproducing property and another one based on the Mercer expansion

of the kernel.

The proposed method directly works with the eigenfunctions ψj, and

it does not directly approximate either the kernel function K or the ker-

nel matrix K. Although in many cases we start with a Mercer kernel in

hand and calculate its eigendecomposition afterwards, it is not uncommon

to begin with features and then attempt to calculate a closed-form of an

implied kernel. This situation suits perfectly with our method: for the well-

known the smoothing spline method proposed in Wahba (1990, Chapter 2),

the author starts with ψj(x) = sin(2jπx), cos(2jπx) and shows us how to

get the closed-form of the reproducing kernel for periodic Sobolev space

W 0
m(per). However, such a Bernoulli polynomial closed-form of the kernel

is no longer available when m is not an integer, which corresponds to a

fractional Sobolev space case; when considering kernel space on sphere S2,

some effort is required to obtain the closed-form expression even for simple

cases (Kennedy et al. (2013), Michel (2012)), but the features are just or-

thonormal spherical harmonics; for multiscale kernels defined by compactly-

supported wavelet eigenfunctions (Opfer, 2006) or Legendre polynomials
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(Xiu, 2010, Section 3.3.2), it is also simplest to work directly with features

rather than attempting to identify a closed-form expression for the implied

kernel.

In the main text we provide the Mercer expansion of a Sobolev space

W 0
1 ([0, 1]). We also state the (correct) expansion for Gaussian kernel (there

are several versions in the literature that are not correctly normalized):

When ρ̄X has density (w.r.t Lebesgue measure on R) p̄X = α√
π

exp(−α2x2),

we have the expansion of Gaussian kernel K(x, z) = exp(−ε2|x− z|2) with

λj =

√
α2

α2 + δ2 + ε2

(
ε2

α2 + δ2 + ε2

)j−1

ψj(x) = γj exp(−δ2x2)Hj−1(αβx)

(S1.1)

where the Hj are Hermite polynomials of degree j, and

β =

(
1 +

(
2ε

α

)2
)1/4

, γj =

√
β

2j−1Γ(j)
, δ2 =

α2

2

(
β2 − 1

)
(S1.2)

The multivariate Gaussian kernel’s eigenfunctions and eigenvalues are

just the tensor product of the 1-dimension Gaussian kernel. Formally, the

multivariate Gaussian kernel K(x, z) = exp(−ε2‖x− z‖2) has the following

expansion:

K(x, z) =
∑
j∈Nd

λ∗jψ
∗
j (x)ψ∗j (z) (S1.3)

where the eigenvalues and eigenfunctions are related to (S1.1) as

λ∗j =
d∏
l=1

λjl , ψ
∗
j (x) =

d∏
l=1

ψjl(x
(l)), (S1.4)
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where x(l) is the l-th component of x ∈ Rd. There are also available numeri-

cal methods (independent of (Xi, Yi)
′s) for approximating kernel eigenfunc-

tions in cases where analytical forms are not available, see Rakotch et al.

(1975); Santin and Schaback (2016), (Rasmussen, 2003, Section 4.3), Cai

and Vassilevski (2020) and (Fasshauer and McCourt, 2015, Chapter 12).

There is also an interesting formal similarity between Mercer expansions

and Bonchner’s theorem (see, e.g. Rahimi and Recht (2007)) which gives

rise to random Fourier feature-based methods. On one hand, we have the

Mercer expansion:

K(x, z) =
∞∑
j=1

λ(j)ψ(x, j)ψ(z, j) (S1.5)

On the other hand, the positive-definite (real-valued) kernel has a convo-

lutional representation by Bonchner’s theorem (Rahimi and Recht, 2007)):

K(x, z) =

∫
X×[0,2π]

p(ω, b) cos(ω>x+ b) cos
(
ω>z + b

)
dωdb (S1.6)

The random Fourier feature expansion (S1.6) uses a set of basis functions

(cosines) that is not sensitive to the expanded kernel. Only the probability

distribution we sample ω from depends on the kernel. Such a choice may

bring some convenience in application, but at the price of using an approx-

imation that converges to the kernel much slower. Another difference is in

the basis selection strategy: For the Mercer expansion it is very straight-
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forward – we choose the eigenfunctions corresponding to larger eigenvalues.

By this strategy, we can ensure the features we choose are more important

and orthogonal to each other w.r.t. RKHS inner product. For random

feature-based methodologies, one has to sample from a probability distri-

bution because there are uncountably infinitely many ω (versus countably

infinite j) and there is less we can say about the geometric properties of

random features (Yu et al., 2016).

Our readers can also find expansions of various kernels in Wainwright

(2019); Wahba (1990); Fasshauer (2012); Williams and Seeger (2000); Shi

et al. (2009); Liang (2014); Fornberg and Piret (2008). There are also

several existing online nonparametric learning methods not mentioned in

the main text, e.g. Kivinen et al. (2001); Ying and Zhou (2006); Rudi and

Rosasco (2017); Alaoui and Mahoney (2015); Xiong and Wang (2019) .

S2 Proof of Theorem 3

We can decompose the L2
ρX

-distance(i.e. ‖·‖2-distance) between f̂n,N and fρ

into two parts by inserting a fN function in between. Recall the definition
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of the previous two are:

f̂n := argmin
f∈FN

1

n

n∑
i=1

(Yi − f (Xi))
2

fρ := argmin
f∈L2

ρX

∫
X×R

(Y − f (X))2 dρ(X, Y )

(S2.1)

where FN is a subset of the N -dimension vector space spanned by ψ1, ..., ψN :

FN = FN(M) := {f ∈ L2
ρX
| f ∈ span(ψ1, ..., ψN), ‖f‖∞ < M} (S2.2)

. We insert a deterministic function fN in-between to facilitate the use of

the triangle inequality.

fN := argmin
f∈FN

∫
X×R

(Y − f (X))2 dρ(X, Y ) (S2.3)

So we have the following decomposition of L2
ρX

distance:

E‖f̂n,N − fρ‖2 ≤ E‖f̂n,N − fN‖2 + ‖f̂N − fρ‖2 (S2.4)

If we can bound the two terms at the correct rates separately at the desired

order, combining them together would give the result in Theorem 3.

S2.1 Bound ‖fN − fρ‖2

We first handle the second term in (S2.4). It is a deterministic quantity

which represents the approximation error of our estimator. In the main

text, we given two equivalent definitions of RKHS, respectively based on
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the reproducing property and the Mercer expansion. We will use the second

one to explicitly calculate the approximation error. LetH denote the native

space of K (the RKHS of interest).

Lemma S2.1. Assume (A1),(A2),(A4), we have

‖fN − fρ‖2 6 (D‖fρ‖HλN)1/2 (S2.5)

where ‖ · ‖H is the RKHS-norm. If we further assume (A3) and choose

N = Θ(n
d

2α+d ), then

‖fN − fρ‖2 = O(n−
α

2α+d ) (S2.6)

Proof. Since f ∈ H by assumption, we know fρ has the following expansion

w.r.t ψj: fρ =
∑∞

j=1 θjψj. Recall that we defined (λj, ψj) as the eigen-

system of operator Tk,ρ̄X in Section 2. By the definition of RKHS in Propo-

sition 2, the condition ‖fρ‖H <∞ in (A2) can be rewritten as:

‖fρ‖2
H =

∞∑
j=1

(
θj√
λj

)2

<∞ (S2.7)

Define fρ,N =
∑N

j=1 θjψj ∈ FN to be a truncated approximation of fρ

(which does not depend on data). We know that ‖fN −fρ‖2 is smaller than

‖fρ,N − fρ‖2 because fN is the minimizer of ‖f − fρ‖2 over f ∈ FN .
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So we have:

‖fN − fρ‖2 ≤ ‖fρ,N − fρ‖2

=

(∫
X

(fρ,N(x)− fρ(x))2 dρX(x)

)1/2

(1)

≤ D1/2

(∫
X

(fρ,N(x)− fρ(x))2dρ̄X(x)

)1/2

(2)
=

(
D

∞∑
j=N+1

θ2
j

)1/2

≤

(
DλN

∞∑
j=N+1

θ2
jλ
−1
j

)1/2

≤ (D‖fρ‖HλN)1/2

(S2.8)

In (1) we use assumption (A4) about the relationship between ρX and ρ̄X .

In (2) we use Parseval’s identity noting that ψj’s are orthonormal w.r.t. ρ̄X .

If we take N = Θ(n
1

2α+d ) and assume λj = Θ(j−2α/d), we have λN =

Θ(n−
2α

2α+d ), therefore ‖fN − fρ‖2 = O(n−
α

2α+d ). Thus we have proven the

first part of the Lemma.

S2.2 Bound E‖f̂n,N − fN‖2

In this section we bound the term associated with the stochastic error.

Our proof engages the following steps: We first show the hypothesis space

is a VC-class, then use this property to bound its localized Rademacher

complexity. This will further lead us to the final convergence rate because

f̂n,N is an M-estimator (ERM of the negative loss) over this hypothesis
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space. We use the novel result presented in Han et al. (2019) to bound the

multiplier process with a Rademacher process, which allows us to quantify

the interplay between hypothesis space size and the level of noise.

Proposition S2.2. Let FN be the N-dimension linear space defined in

(S2.2), then we know FN is VC-subgraph class with index less than or equal

to N + 2.

Proof. The definition of VC-subgraph class, together with the fact that a

N -dimension vector space FN of measurable functions is a VC-class of index

no more than N + 2, can be found in (Van Der Vaart and Wellner, 1996,

Lemma 2.6.15) or (Wainwright, 2019, Proposition 4.20).

Now we use the fact that FN is a VC-class to get an upper bound on

its covering number. For this, we need the following result.

Proposition S2.3. For a VC-subgraph class of functions F . One has for

any probability measure Q:

N (ε‖F‖Q,2,F , L2
Q) ≤ CN(16e)N

(
1

ε

)2(N−1)

(S2.9)

where N is the VC-dimension of F and 0 < ε < 1. And F is the envelope

function of F , i.e. |f(x)| ≤ F (x) for any x ∈ X , f ∈ F .

Proof. One can find the proof of a slightly more general version in (Van

Der Vaart and Wellner, 1996, Theorem 2.6.7).
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For a function space F , define the localized uniform entropy integral

as:

J(δ,F , L2) :=

∫ δ

0

sup
Q

√
1 + logN (ε‖F‖Q,2,F , L2(Q))dε (S2.10)

Applying this to the space FN , we have the following result:

Lemma S2.4. Let FN be the function space defined in (S2.2), we have

J(δ,FN , L2) ≤ CM

√
Nδ2 log

(
1

δ

)
(S2.11)

for sufficiently small δ. The constant CM only depends on M .

Proof. We first note FN is a subset of an N -dimension vector space with

envelope F (x) = M . By Proposition S2.2 and Proposition S2.3, we have

N (εM,FN , L2(Q)) ≤ CN(16e)N
(

1

Mε

)2N−2

for any measure Q

⇒ J(δ,F , L2) ≤ C

∫ δ

0

√
N log

(
1

Mε

)
dε for sufficiently small δ

≤ C
√
N

∫ 1
Mδ

∞

√
log u

M2u2
du

≤ CMδ

√
N log

(
1

Mδ

)
(S2.12)

We can see for the linear space FN , the localized uniform entropy is

basically O(
√
Nδ) (if we omit the

√
log(1/δ) term). When we construct the
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online projection estimator, the dimension of hypothesis space N increases

with sample size (we can also call FN a sieve). As we will see later, the

local diameter δ = δn we consider decreases to zero at rate Θ(n−
α

2α+d ).

We use εi = Yi−gρ(Xi), i = 1, 2, .., n to denote the i.i.d zero-mean noise

variables and use ei, i = 1, 2, .., n to denote n i.i.d. Rademacher variable,

that is P(e1 = 1) = P(e1 = −1) = 1
2
.

In the following Proposition we require the noise to have a finite ‖εi‖m,1-

moment, which is defined as

‖ε‖m,1 :=

∫ ∞
0

P(|ε| > t)1/mdt (S2.13)

Let ∆ > 0, it is known that if ε1 has a finite m + ∆-th moment, then it

has a finite ‖ · ‖m,1-moment (Ledoux and Talagrand, 2013, Chapter 10). So

requiring having a finite ‖·‖m,1, as assumed in (A1), is only slightly stronger

than requiring a finite m-th moment.

Now we state and prove a proposition that connects the bounds on the

multiplier/Rademacher process to the convergence rate of our M-estimator.

This proposition is essentially the same as Theorem 3.4.1 in Van Der Vaart

and Wellner (1996) and is a slight generalization of Proposition 2 in Han

et al. (2019). In Proposition S2.5, for better presentation we drop the

subscript of FN and simply denote it as F . But we should keep in mind

that F is a function space that depends on n.
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Proposition S2.5. Denote F − fρ := {f − fρ | f ∈ F} and F − fN :=

{f − fN | f ∈ F}. Assume (F − fρ)
⋃

(F − fN) has an envelope function

F (x) ≤ 1. Let Xi
i.i.d.∼ ρX and assume εi are i.i.d. with finite ‖ε1‖m,1-norm

for some m > 1. Assume that for any δ ≥ 0, for each f ∗ ∈ {fρ, fN},

E sup
f∈F :‖f−f∗‖2≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f ∗) (Xi)

∣∣∣∣∣ = O (φn(δ)) (S2.14)

and

E sup
f∈F :‖f−f∗‖2≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

ei (f − f ∗) (Xi)

∣∣∣∣∣ = O (φn(δ)) (S2.15)

for some φn such that δ 7→ φn(δ)/δ is nonincreasing. Further assume that

‖fN − fρ‖2 ≤ Cδn.

Then ∥∥∥f̂n,N − fN∥∥∥
2

= OP (δn) (S2.16)

for any δn ≥ n−
1
2

+ 1
2m such that φn (δn) ≤

√
nδ2

n. If ε1 has a finite m-th

moment for some m ≥ 2, then:

E
[∥∥∥f̂n,N − fN∥∥∥

2

]
= O (δn) (S2.17)

Proof. The proof is a slight generalization of Proposition 2 in Han et al.

(2019). The distance we are going to bound is not between f̂n,N and fρ

but between f̂n,N and fN (the population risk minimizer over F). We first
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define a random process and its mean functional:

Mnf :=
2

n

n∑
i=1

(f − fρ) (Xi) εi −
1

n

n∑
i=1

(f − fρ)2 (Xi)

Mf := E [Mn(f)] = −P (f − fρ)2

(S2.18)

We have the following property of M(·). For any f ∈ {f ∈ F | ‖f −fN‖2 ≥

4‖fN −fρ‖2}, Mf −MfN ≤ −1
4
‖f −fN‖2

2. For the proof of this elementary

inequality, see p.337 Exercise 5 in Van Der Vaart and Wellner (1996), taking

their x = f, y = fN , z = fρ.

Our proof is a standard peeling argument. Let

Fj :=
{
f ∈ F : 2j−1tδn ≤ ‖f − fN‖2 < 2jtδn

}
(S2.19)

We choose a fixed t large enough such that tδn ≥ 4‖fN − fρ‖2, we use the

ERM property of f̂n,N :

P
(∥∥∥f̂n,N − fN∥∥∥

2
≥ tδn

)
≤
∑
j≥1

P

(
sup
f∈Fj

(Mn(f)−Mn (fN)) ≥ 0

)

≤
∑
j≥1

P

(
sup
f∈Fj

(Mn(f)−Mn (fN)−M(f) +M(fN)) ≥ 22j−2t2δ2
n

)
(S2.20)

We write (Mn(f)−Mn (fN)−M(f) +M(fN)) explicitly:

Mn(f)−Mn (fN)−M(f) +M(fN)

=
2

n

n∑
i=1

(f − fN)(Xi)εi + (P − Pn)(f − fρ)2 + (Pn − P )(fN − fρ)2

(S2.21)
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Then we can continue the peeling argument:

P
(∥∥∥f̂n,N − fN∥∥∥

2
≥ tδn

)
≤
∑
j≥1

P

(
sup

f∈F :‖f−fN‖2≤2jtδn

∣∣∣∣∣ 1√
n

n∑
i=1

(f − fN)(Xi)εi

∣∣∣∣∣ ≥ 22j−5t2
√
nδ2

n

)
+

P

(
sup

f∈F :‖f−fN‖2≤2jtδn

∣∣∣∣∣ 1√
n

n∑
i=1

(f − fρ)2(Xi)− E(f − fρ)2

∣∣∣∣∣ ≥ 22j−4t2
√
nδ2

n

)
+

P

(∣∣∣∣∣ 1√
n

n∑
i=1

(fN − fρ)2(Xi)− E(fN − fρ)2

∣∣∣∣∣ ≥ 22j−4t2
√
nδ2

n

)

≤
∑
j≥1

P

(
sup

f∈F :‖f−fN‖2≤2jtδn

∣∣∣∣∣ 1√
n

n∑
i=1

(f − fN)(Xi)εi

∣∣∣∣∣ ≥ 22j−5t2
√
nδ2

n

)
+

2P

(
sup

f∈F :‖f−fN‖2≤2jtδn

∣∣∣∣∣ 1√
n

n∑
i=1

(f − fρ)2(Xi)− E(f − fρ)2

∣∣∣∣∣ ≥ 22j−4t2
√
nδ2

n

)
(S2.22)

The first term is the multiplier process that contains the noise variable εi’s,

for which we have bound (given by our assumptions). The second term

can be related to the Rademacher process by standard symmetrization and

contraction principles (Van Der Vaart and Wellner, 1996). There is still a

miss-match between the supremum and the random variable to be bounded,

to fix this we need to use the condition ‖fN − fρ‖2 ≤ Cδn:

‖f − fρ‖2 ≤ ‖f − fN‖+ ‖fN − fρ‖2

≤ ‖f − fN‖+ Cδn

⇒ {f ∈ F : ‖f − fN‖ ≤ 2jtδn} ⊂ {f ∈ F : ‖f − fρ‖2 ≤ (2jt+ C)δn}
(S2.23)
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Therefore the second term is bounded by

2P

(
sup

f∈F :‖f−fρ‖2≤(2jt+C)δn

∣∣∣∣∣ 1√
n

n∑
i=1

(f − fρ)2(Xi)− E(f − fρ)2

∣∣∣∣∣ ≥ 22j−4t2
√
nδ2

n

)
(S2.24)

And the rest of the proof is the same as Proposition 2 in Han et al. (2019).

When εi is sub-Gaussian noise (note that sub-Gaussian/sub-exponential

random variables have finite moments of all orders), the bound on the

empirical process terms (S2.14) and (S2.15) usually only depend on the

entropy of FN : Thus the convergence rate will only depend on the entropy as

well. However if we only assume moment conditions, then φn(δ) will depend

on both the entropy and the moment order (Han et al., 2019, Lemma 9):

Thus the convergence rate would depend on both as well when m is not

large enough.

Now we state the following Lemma to complete our bound of E‖f̂n,N −

fN‖2. Its proof is postponed to after we conclude the main result.

Lemma S2.6. Assume (A1) and f̂n,N ∈ FN defined in (S2.2). We select

N = Θ
(
n

d
2α+d

)
. (Recall that α is the smoothness parameter, d is the

dimension of Xi and m is the moment index of εi)
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Then with δn = Θ
(
n−

α
2α+d ∨ n− 1

2
+ 1

2m

)
, for each f ∗ ∈ {fN , fρ} we have

E sup
f∈FN :‖f−f∗‖2≤δn

∣∣∣∣∣
n∑
i=1

εi (f − f ∗) (Xi)

∣∣∣∣∣ ∨ E sup
f∈FN :‖f−f∗‖2≤δn

∣∣∣∣∣
n∑
i=1

ei (f − f ∗) (Xi)

∣∣∣∣∣
≤ Cα


n

d
2α+d
√

log n
(

1 ∨ ‖ε1‖2α+1,1

)
, m ≥ 2α/d+ 1

n
1
m

√
log n

(
1 ∨ ‖ε1‖m,1

)
, 1 ≤ m < 2α/d+ 1

(S2.25)

where ‖ε1‖2α+1 is the 2α + 1-th moment of ε1.

In light of Proposition S2.5, (S2.25) can be written as

E sup
f∈FN :‖f−f∗‖2≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f ∗) (Xi)

∣∣∣∣∣
∨ E sup

f∈FN :‖f−f∗‖2≤δn

∣∣∣∣∣ 1√
n

n∑
i=1

ei (f − f ∗) (Xi)

∣∣∣∣∣ ≤ φn(δn)

(S2.26)

where

φn(δ) =


Cα
√

log n/nδ−1/α
(

1 ∨ ‖ε1‖1+2α,1

)
, m ≥ 1 + 2α

Cα
√

log n/nδ−2/(m−1)
(

1 ∨ ‖ε1‖m,1
)
, 1 ≤ m < 1 + 2α

(S2.27)

Lemma S2.7. Assume (A1) and f̂n,N ∈ FN . Choosing N = Θ(n
d

2α+d ),

E[‖f̂n,N − fN‖2] = O
(
n−

α
2α+d

√
log n ∨ n−

1
2

+ 1
2m

√
log n

)
(S2.28)

Proof. We use the result of Lemma S2.6 as conditions of Proposition S2.5,

and then identfy the smallest δn satisfying φn(δn) ≤
√
nδ2

n, which will give

the stated convergence rate.
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Proof of Theorem 3. We need only combine the bounds in Lemma S2.1 and

Lemma S2.7 using the triangle inequality.

We now return to proving Lemma S2.6. We first state two results,

Propositions S2.8, and S2.9, from the literature which we will use to prove

our Lemma. We begin with a standard result connecting Rademacher com-

plexity and the entropy integral.

Proposition S2.8 (Theorem 2.1, Van Der Vaart and Wellner (2011)).

Suppose that G has a finite envelope G(x) ≤ 1 and X1, . . . , Xn ’s are i.i.d.

random variables with law P .

Then with G(δ) := {g ∈ G : Pg2 < δ2},

E sup
g∈G(δ)

∣∣∣∣∣ 1√
n

n∑
i=1

eig (Xi)

∣∣∣∣∣ = O

(
J (δ,G, L2)

(
1 +

J (δ,G, L2)√
nδ2‖G‖P,2

)
‖G‖P,2

)
(S2.29)

We next give a recent inequality established in Han et al. (2019). This

allows us to relax common subgaussian assumptions to only moment con-

ditions on the εi’s.

Proposition S2.9 (Theorem 1,Han et al. (2019)). Suppose Xi’s, εi’s are

all i.i.d. random variables and Xi’s are independent of εi’s. Let {Gk}nk=1 be

a sequence of function classes such that Gk ⊃ Gn for any 1 ≤ k ≤ n. Assume

further that there exists a nondecreasing concave function ψn : R≥0 → R≥0
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with ψn(0) = 0 such that

E sup
f∈Gk

∣∣∣∣∣
k∑
i=1

eif (Xi)

∣∣∣∣∣ ≤ ψn(k) (S2.30)

holds for all 1 ≤ k ≤ n. Then

E sup
f∈Gn

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣ ≤ 4

∫ ∞
0

ψn

(
n∑
i=1

P (|εi| > t)

)
dt (S2.31)

With these two results in hand, we are now ready to prove Lemma S2.6.

Proof of Lemma S2.6. We need to show the result for both f ∗ = fN and

f ∗ = fρ. We will explicitly show the result for f ∗ = fN : The proof in the

case f ∗ = fρ is exactly the same.

Denote

FN(δk) := {f ∈ FN | ‖f − fN‖2
2 ≤ δ2

k} (S2.32)

We first combine Proposition S2.8 with the entropy bound we established

in Lemma S2.4 to derive

E sup
f∈FN (δk)

∣∣∣∣∣
k∑
i=1

eif (Xi)

∣∣∣∣∣ ≤ Cδkk
d

2(2α+d)
+ 1

2

√
log k (S2.33)

where δk = k−
α

2α+d ∨ k− 1
2

+ 1
2m .

When m ≥ 2α/d+ 1 (recall m is the moment index for εi’s), k
− α

2α+d >

k−
1
2

+ 1
2m , so the above bound becomes

E sup
f∈FN (δk)

∣∣∣∣∣
k∑
i=1

eif (Xi)

∣∣∣∣∣ ≤ Ck
d

2α+d

√
log k (S2.34)
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Using (S2.34) we see that the conditions of Proposition S2.9 are satisfied,

thus giving us

E sup
f∈FN (δk)

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣ ≤ C

∫ ∞
0

(
n∑
i=1

P (|εi| > t)

) d
2α+d

√√√√log

(
n∑
i=1

P (|εi| > t)

)
dt

= Cn
d

2α+d

√
log n(1 ∨ ‖ε1‖2α+1,1)

(S2.35)

Note that we used εi’s are i.i.d. random variables.

When 1 < m < 2α/d+ 1, (S2.33) becomes

E sup
f∈FN (δk)

∣∣∣∣∣
k∑
i=1

eif (Xi)

∣∣∣∣∣ ≤ Ck
1
m

√
log k. (S2.36)

Plugging this in to Proposition S2.9 we get

E sup
f∈FN (δk)

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣ ≤ Cn
1
m

√
log n(1 ∨ ‖ε1‖m,1) (S2.37)

This compeltes the proof.

S3 Online Projection Estimator and Functional Stochas-

tic Gradient Descent

The computational expense of Algorithm 2 is a dramatic improvement

compared with SGD based algorithms, whose expense is O(n) per updat-

ing. We also note that the computational expense of Algorithm 2 depends

on our assumption of the spectrum of operator TK . The larger α is, the
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stronger our statistical assumption is, the faster our algorithm is. However,

the expense of SGD-based algorithm is not sensitive to the statistical as-

sumptions.

In this section we use the same notation as in Section 3 in the main text.

We define θ̂θθN,n as the minimizer of the empirical loss

min
θθθ∈RN

n∑
i=1

(Yi − θθθ>ψψψN(Xi))
2 (S3.1)

Here we use double subscript to emphasize that θ̂θθN,n is calculated with N

basis function and n data. Similarly, we can define θ̂θθN,n−1 as the minimizer

when there is one less sample (Xn, Yn) (but keep the other samples the

same). There is actually a recursive relationship between θ̂θθN,n and θ̂θθN,n−1:

θ̂θθN,n = θ̂θθN,n−1 + Φnψψψn

[
Yn − f̂n−1,N(Xn)

]
(S3.2)

See Ljung and Söderström (1983) p.18-20 for the derivation. This formula

tells us how θ̂θθN,n changes when one additional data-pair is observed. If we

see θ̂θθN,n as an update of θ̂θθN,n−1 with (Xn, Yn), the step size will scale in

proportion to the prediction error |Yn − f̂n−1,N(Xn)|, and the direction is

Φnψψψn (which, in general, is not equal to ψψψn)

Similarly, we can derive a recursive relationship for how θ̂θθN,n changes when
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one more basis function ψN+1 is added in. Specifically,

θ̂θθN+1,n =

 θ̂θθN,n

0

+

(
ψψψN+1

)>
∆∆∆n

‖(I − Pn)ψψψN+1‖2

 −PnψψψN+1

1

 (S3.3)

Where ∆∆∆n is the residual vector, whose i-th component is defined by:

∆∆∆(i)
n = Yi − f̂n,N(Xi) (S3.4)

and Pn = (Ψ>nΨn)−1Ψ>n is the projection matrix of the column space of

design matrix Ψn with N features. We give the derivation in the later part

of this section.

The influence of a new feature on the regression coefficients is quantita-

tively associated with how much the residual can be explained by the new

feature (represented by the term
(
ψψψN+1

)>
∆∆∆n) and how orthogonal the new

feature is to the old features (represented by Pnψψψ
N+1).

However, if we use parametric stochastic gradient descent to solve the

problem (S3.1), then the updating rule should be:

θ̂θθN,n = θ̂θθN,n−1 + εnψψψn

[
Yn − f̂n−1,N(Xn)

]
(S3.5)

where we usually choose εn � 1
n
.

Comparing (S3.5) with (S3.2), we see that it replaces the structured

matrix Φn with a diagonal matrix εnI. By doing so it omits the information
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of the correlation between features, this can help to illustrate why the SGD-

based estimator (S3.5) usually has a larger generalization error than the

empirical risk minimizer (S3.2).

S3.1 Proof of recursive formula (S3.3)

Proof. In this proof, we use a double subscript to indicate the dimension of

the matrices. By definition of OLS estimator:

θ̂θθN+1,n = Φ(N+1)×(N+1) ·Ψ>n×(N+1) · YYY n

= Φ(N+1)×(N+1) ·

(
n∑
i=1

Yi [ψ1 (Xi) , . . . , ψN+1 (Xi)]
>

)

= Φ(N+1)×(N+1) ·


∑n

i=1ψψψN (Xi)Yi∑n
i=1 ψN+1 (Xi)Yi


(1)
= Φ(N+1)×(N+1) ·

 Φ−1
N×N · θ̂θθN,n∑n

i=1 ψN+1 (Xi)Yi


(2)
=


 ΦN×N 0

0 0

+ A

 ·
 Φ−1

N×N · θ̂θθN,n∑n
i=1 ψN+1 (Xi)Yi



where

A =

 1
k
Φn−1 bbbbbb

T Φn−1 − 1
k
Φn−1 bbb

− 1
k
bbbT Φn−1

1
k


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bbb = ΨT
n−1ψψψN+1

k = ψψψTN+1ψψψN+1 − bbbTΦn−1 bbb

In (1) we use the definition of θ̂θθN,n and in (2) use the block matrix inversion

formula.

θ̂θθN+1,n =

 θ̂θθN,n

0

+
1

k
·

 ΦN×Nbbb
(
bbbT θ̂θθN,n −

∑n
i=1 ψN+1 (Xi)Yi

)
(∑n

i=1 ψN+1 (Xi)Yi − bbb>θ̂θθN,n
)

 (S3.6)

Note that

bbb>θ̂θθN,n =
n∑
i=1

ψN+1 (Xi)
N∑
j=1

ψj(Xi)θ̂θθ
(j)

N,n =
n∑
i=1

ψN+1 (Xi) f̂n,N(Xi) (S3.7)

So

n∑
i=1

ψN+1 (Xi)Yi − bbb>θ̂θθN,n =
n∑
i=1

ψN+1 (Xi) (Yi − fn,N(Xi)) (S3.8)

Continuing, we see that

θ̂θθN+1,n =

 θ̂θθN,n

0

+
ψψψ>N+1∆∆∆n

k
·

 −ΦN×Nbbb

1


Now we expand k:

k = ψψψ>N+1ψψψN+1 −ψψψ>N+1Ψn×NΦN×NΨ>n×NψψψN+1

= ψψψ>N+1

(
I −Ψn×N

(
Ψ>n×NΨn×N

)−1
Ψn×N

)
ψψψN+1

= ‖(I − Pn)ψψψN+1‖2
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And use the definition of b:

θ̂θθN+1,n =

 θ̂θθN,n

0



+
ψψψ>N+1∆∆∆n

‖(I − Pn)ψψψN+1‖2


−ΦN×N


ψψψ>1 ψψψN+1

...

ψψψ>NψψψN+1


1



=

 θ̂θθN,n

0

+
ψψψ>N+1∆∆∆n

‖(I − Pn)ψψψN+1‖2

 −PnψψψN+1

1



(S3.9)

S4 Regression in Additive Models

In the main text we discussed estimation in multivariate RKHS and how

it suffers from the curse of dimensionality. For Xi ∈ Rd, it is also quite

common to impose an extra additive structure on the model, in other words,

we assume

fρ(xi) =
d∑

k=1

fρ,k

(
x

(k)
i

)
(S4.1)

where the component functions fρ,i belong to a RKHS H (in general they

can belong to different spaces), and x
(k)
i is the k-th entry of xi. Such a model
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is a generalization of the multivariate linear model. It balances modeling

flexibility with tractability of estimation. See eg. Hastie et al. (2009) and

Yuan and Zhou (2016) for further discussion.

The projection estimator for an additive model is obtained by solving

the following least-squares problem in Euclidean space (which is essentially

the same as solving the problem (S3.1)).

min
θθθ∈RN×d

n∑
i=1

(Yi −
d∑

k=1

N∑
j=1

θjkψj(x
(k)
i ))2 (S4.2)

here N still needs to be chosen of order n
1

2α+1 , when λj = Θ(j−2α). The

online projection estimator in an additive model is

f̂n,N =
d∑

k=1

N∑
j=1

θ̂jkψj (S4.3)

For a fixed d, the minimax rate for estimating an additive model is identical

(losing a constant d) to the minimax rate in the analogous one-dimension

nonparametric regression problem working with the same hypothesis space

H (Raskutti et al., 2009).

The design matrix of (S4.2) now is of dimension n×(Nd). When a new

data point is collected, our design matrix grows by one row. When we need

to increase the model capacity however, we need to add one feature for each

dimension (in total d columns). Updating such estimators when Xi ∈ Rd

has a computational expense of order O(d2n
2

2α+1 ), by a argument similar
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to that presented in Section 3.4. To clarify, in Section 3.4 we are assuming

the eigenvalue λj = Θ(j−2α/d) (for example, the RKHS is d-dimension,

α-th order Sobolev space); however in this section we are discussing d-

dimension additive model, each component lies in a 1-dimension RKHS

whose λj = Θ(j−2α). The additive model is more restrictive, therefore

we have better statistical and computational guarantee when the model is

well-specified.

S4.1 Additive Model Application

We chose a 10-dimension additive function to illustrate the efficacy of our

method for fitting additive models. In this example, the components of the

fρ in each dimension are Doppler-like functions. For x ∈ R10,

fρ(x) =
10∑
k=1

fρ,k(x
(k))

=
10∑
k=1

{
sin

(
2π

(x(k) + 0.1)k/20

)
− sin

(
2π

0.1k/20

)} (S4.4)

Similar functions are used in Sadhanala and Tibshirani (2019). The

kernel (for each dimension) we consider is

K(s, t) =
2∑

m=1

smtm +B4({s− t}) (S4.5)

In Figure 1, we compare the method in this paper with the additive smooth-

ing spline estimator calculated with back fitting using R package ’gam’
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(Hastie, 2019). Both of the methods achieve rate-optimal convergence, but

we note the smoothing spline method takes dramatically more time as an

offline estimator.
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Figure 1: Additive model: generalization error and CPU time. (A) Both smoothing

spline and online projection estimator achieve the optimal rate O(n−4/5). The black

line has slope −4/5. Each curve is based on 15 independent runs. (B) The CPU time

decreases as α becomes larger (repetitions=10).

S5 Details of simulation studies

In the main text we gave important details on of the settings of our simula-

tion studies. To help our readers replicate our result, we now list all details
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for our simulations.

S5.1 Notation and general setting

The ‖f̂n,N − fρ‖2
2 on the y-axis of Figure 2 is estimated with 1,000 X gen-

erated from ρX . The estimator based on kernel ridge regression (KRR) is

defined as the minimizer of penalized mean-square error

min
f∈H

1

n

n∑
i=1

(Yi − f (Xi))
2 + λn,KRR‖f‖2

H (S5.1)

for a closed form solution and theoretical optimal selection of λn,KRR, see

12.5.2 and Theorem 13.7 of Wainwright (2019).

In the main text, we slightly simplify the update rule for nonparametric

SGD estimator without losing the essential principles. In all the simulation

study of this paper, the SGD estimator we use is the version with Polyak

averaging (p.1375-1376 of Dieuleveut and Bach (2016))

f̃n = f̃n−1 + γn,SGD

[
Yn − f̃n−1 (Xn)

]
KXn (S5.2)

f̂n =
1

n+ 1

n∑
k=0

f̃k (S5.3)

The nonparametric SGD estimator we use is f̂n. To update such an esti-

mator, the computational cost is also O(n).
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All the simulation study examples are coded in R version 3.5.1.

S5.2 One Dimension Example Settings

We give the details of example 1 (resp. example 2) in Table 1 (resp. Ta-

ble 2).

Table 1: Settings of example 1. See Wahba (1990) and Dieuleveut and Bach (2016)

fρ B4(x) = x4 − 2x3 + x2 − 1
30

ε Unif([-0.02,0.02])

pX(x) 1[0,1](x)

K(s, t) −1
24 B4({s− t}) =

∑∞
j=1

2
(2πj)4 [cos(2πjs) cos(2πjt) + sin(2πjs) sin(2πjt)]

RKHS H W per
2 =

{
f ∈ L2([0, 1])|

∫ 1

0
f(u)du = 0,

f(0) = f(1), f ′(0) = f ′(1),
∫ 1

0

(
f (2)(u)

)2
du <∞

}
λj

2
(2πj)4 = O(j−4)

ψj(x) sin(2πjx) and cos(2πjx)

basis adding step n = b0.2N5c

Hyperparameter KRR λn,KRR λn,KRR = 10−3n−4/5

Learning rate γn,SGD γn,SGD = 128n−0.5

S5.3 Additive Model Example

We use the function gam() in R package gam Hastie (2019) to fit the

additive model with smoothing spline. The degrees of freedom parameter
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Table 2: Settings of example 2. See Wainwright (2019, Chap. 12) for more discussion on

the kernel space W 0
1 .

fρ (6x− 3) sin(12x− 6) + cos2(12x− 6)

ε Normal(0,5)

pρ(x) (x+ 0.5)1[0,1](x)

K(s, t) min{s, t} =
∑∞
j=1

8
(2j−1)2π2 sin

(
(2j−1)πs

2

)
sin
(

(2j−1)πt
2

)
RKHS H W 0

1 =
{
f ∈ L2([0, 1])|f(0) = 0,

∫ 1

0
(f ′(u))2du <∞

}
λj

2
(2j−1)2π2 = O(j−2)

ψj(x) 2 sin
(

(2j−1)πx
2

)
basis adding step n = b0.5N3c

Hyperparameter KRR λn,KRR λn,KRR = 0.1n−2/3

Learning rate γn,SGD γn,SGD = 5n−0.5
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used in the s() function were selected to increase with n. The details for

the additive model example (including parameter selection) are given in

Table 3.

Table 3: Settings of Additive model example.

fρ
∑10
k=1

{
sin
(

2π
(X(k)+0.1)k/20

)
− sin

(
2π

0.1k/20

)}
ε Normal(0,5)

pρ(X1, ..., X10) Π10
k=11[0,1](X

(k))

K(s, t) (for each dimension)
∑2
m=1 s

mtm +B4({s− t})

RKHS H W2 =
{
f ∈ L2([0, 1]) |

∫ 1

0
(f ′′(u))2du <∞

}
λj

2
(2πj)4 = O

(
j−4
)

ψj(x) x, x2, sin(2πjx), cos(2πjx)

basis adding step n = b0.2N5c

df for smoothing spline 2bn1/5c

S6 A Note for Application and Additional Examples

The hypothesis spaces used so far in this paper have been well-studied in

previous work, and are relatively easy to engage with: Their kernel func-

tions have a closed form, and their eigenfunctions can also be explicitly

written out with respect to some special measures ρ̄.
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However, they are usually equipped with some undesirable boundary con-

ditions. For example, in example 2, it is more interesting to consider the

space

W1 =

{
f ∈ L2([0, 1])|

∫ 1

0

(f ′(u))
2
du <∞

}
(S6.1)

rather than the one we use in our simulation study

W 0
1 =

{
f ∈ L2([0, 1])|f(0) = 0,

∫ 1

0

(f ′(u))
2
du <∞

}
(S6.2)

Although it is known that W1 is also an RKHS Wainwright (2019) with

kernel K̃(s, t) = 1 + min{s, t}, it takes extra analytical work to get the

form of eigenfunctions for K̃.

For practical purposes, it is enough to consider functions of the following

form as estimator:

f̂n,N(x) = θ0 · 1 +
N∑
j=1

θjψj(x) (S6.3)

where ψj =
√

2 sin
(

(2j−1)πx
2

)
as stated in Table 1. Because the difference

between W 0
1 and W1 is merely a constant function in the sense that

W1 = {1} ⊕W 0
1 (S6.4)

When a new sample comes in, we update f̂n,N (and potentially add a new

basis function) in an online manner as in Algorithm 2. Similarly, in example
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1, the more interesting space is

W2 =

{
f ∈ L2([0, 1])|

∫ 1

0

(
f (2)(u)

)2
du <∞

}
(S6.5)

Note that

W2 = {1} ⊕ {x} ⊕ {x2} ⊕W per
2 (S6.6)

So the projection estimator can be of the form

f̂n,N(x) =
2∑

k=0

θ̃kx
k +

N∑
j=1

θjψj(x) (S6.7)

where ψj’s are the trigonometric functions listed in Table 1.
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Figure 2: Generalization error for additional examples.(A) Example A.1, black line has

slope −2/3 (B) Example A.2, the black line has slope −4/5. Both estimators achieve

the minimax rates in W1 and W2. Each curve is based on 15 independent repetitions.

The settings for our two additional examples are given in Table 4
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Table 4: Settings of additional examples.

Example A.1 Example A.2

fρ 1 + (x− 0.5)1[0.5,1](x) 1 + (6x− 3) sin(12x− 6) + cos2(12x− 6)

+2(x− 0.2)1[0.2,1](x) +10(x− 0.5)21[0.5,1](x)

ε Normal(0,1) Unif(-5,5)

pρ(x) (x+ 0.5)1[0,1](x) 1[0,1](x)

RKHS W1 W2

basis function 1, sin
(

(2j−1)πx
2

)
, j = 1, 2, ... 1, x, x2, sin(2πjx), cos(2πjx), j = 1, 2, ...

basis adding step n = b0.5N3c n = b 1
30N

5c
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