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Sections S3 presents additional results on empirical distribution of MAC and real data example.
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S1 Two-Sample Distribution Comparison

In this section, additional simulations are conducted to explore the finite sample

performance of our new tests and compare them with other methods. The statistical

power of each method on each example is estimated from 2000 independent

replications under significance level 0.05.

S1.1 Univariate Case

In this section, we evaluate the performance of MAC1 for two-sample distribution

comparison in one-dimensional case through comparing it with the K-S test,

the A-D statistic, CvM and the latest method proposed in Zhou et al. [2017]

(denoted as ZZZ) based on the following five examples with either bumps or

high-frequency components. These examples are adopted from Zhou et al. [2017],

which were partially collected from Fan [1996] and Heyde [2010]. Example

1 corresponds to the case where the differences between two distributions are

local bumps with various widths and magnitudes. Example 2 illustrates the

effect of global features with different frequencies. Example 3 is designed to

test distributions different by an oscillating term of intermediate frequency in

the log scale. Example 4 and 5 aim to cover the high-frequency alternatives.

Example 1. X ∼ F = uniform(−1, 1) versus Y ∼ G = Gc with density

gc(x) = {0.5 + 2x c−|x|
c2
I(|x| < c)}I(|x| ≤ 1), (0 ≤ c ≤ 1).
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Example 2. X ∼ F = uniform(−1, 1) versus Y ∼ G = Gc with density

gc(x) = {0.5 + 0.5 sin(2πcx)}I(|x| ≤ 1), (0.5 ≤ c ≤ 5).

Example 3. X ∼ F = lognormal(0, 1) with density f(x) = (2π)−1/2x−1 exp{−(log x)2/2}

versus Y ∼ G = Gc with density gc(x) = f(x)(1 + c sin(2π log x)), (−1 ≤ c ≤

1)

Example 4. X ∼ F = uniform(0, 1) versus Y ∼ G = Gc with density

gc(x) = exp{c sin(5πx)}I(0 ≤ x ≤ 1), (0 ≤ c ≤ 2).

Example 5. X ∼ F = uniform(0, 1) versus Y ∼ G = Gc with density

gc(x) = {1 + c cos(5πx)}I(0 ≤ x ≤ 1), (0 ≤ c ≤ 2).

The empirical power of these methods for Example 1-5 under various settings

are presented in Figure S1 and Figure S2. Figure S1 focuses on comparing these

five methods under the same setting across different examples. Specifically, in

Example 1, our new test performed the best. For Example 2, ZZZ performed

better in the low frequency settings when sample sizes are small, but its advantage

disappeared with the increase of sample sizes; But, our new test always performed

the best in the high frequency settings regardless of the sample sizes. For Examples

3-5, where the parametric assumption of ZZZ held, ZZZ slightly outperformed

our new test, but the performance difference reduces with the increase of the

sample sizes. This is reasonable since parametric methods, compared with nonparametric

methods, have the advantage of requiring a smaller sample size to obtain the
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same power on the data satisfying their assumptions. However, in cases where

their parametric assumption fails (Example 1 and 2), our new test usually outperforms

ZZZ. The K-S test, A-D and CvM have a lower power in these examples,

which means they are unable to detect densities with bumps or high frequent

components.

Figure S2 shows the performance of each method under different sample

sizes. As expected, the power of our new method increases with the sample

sizes. However, this is not the case for other methods. For example, the power

of ZZZ in Example 2, comparing with that of MAC1, changed a little when the

sample sizes are increased from (180, 150) to (200, 200). This may be due to the

restrictive assumption of ZZZ on the alternative density. Similarly, the power of

A-D, K-S and CvM in Example 3 stay at a very low level under different sample

sizes due to their weakness in detecting densities with high frequent components.

S1.2 Multi-dimensional Case

In this section, we compare the finite sample performance of MAC3 with that

of ZZZ and gCvM [Kim et al., 2020] in multi-dimensional cases under the

setting n = 180 and m = 160 based on examples taken from Zhou et al. [2017].
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Figure S1: Power of K-S ( ), A-D ( ), CvM ( ), MAC1 ( ), and ZZZ ( ) for

Example 1-5 based on 2000 independent replications under significance level 0.05. In this sub-

plot matrix, different rows correspond to different examples and different columns correspond

to different sample size settings.
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Figure S2: Power of MAC1, K-S, ZZZ, CvM and A-D (corresponding to Column 1-5

respectively) under different sample sizes ( for n=120 and m=90; for n=180 and

m=150; for n=200 and m=200) for Example 1-5 (corresponding to Row 1-5 respectively)

based on 2000 independent replications under significance level 0.05
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Example 6 and 7 consider two distributions with the same dependence structure

but different marginal distributions. Specifically, the marginal distributions in

Example 6 are different in local bumps with various widths and magnitudes. In

Example 7, the marginal distributions are different in global features of a high

frequency and different magnitude. Example 8 and 9 are two five-dimensional

examples constructed from Gaussian distribution and t distribution, respectively.

In either example, the two distributions differ in the first two dimensions in terms

of both marginal distribution and dependence structure.

Example 6. X = (X1, X2, X3)
′, X1, X2 ∼i.i.d. Uniform(−1, 1), X3 =

0.3X1+0.7X2 versus Y = (Y1, Y2, Y3)
′, Y1, Y2 ∼i.i.d. gc(x) = {0.5+2x c−|x|

c2
I(|x| <

c)}I(|x| ≤ 1), (0 ≤ c ≤ 1), and Y3 = 0.3Y1 + 0.7Y2.

Example 7. X = (X1, X2, X3)
′, X1, X2 ∼i.i.d. Uniform(0, 1), X3 = 0.3X1+

0.7X2 versus Y = (Y1, Y2, Y3)
′, Y1, Y2 ∼i.i.d. gc(x) = exp{c sin(5πx)}I(0 ≤

x ≤ 1), (0 ≤ c ≤ 2), and Y3 = 0.3Y1 + 0.7Y2.

Example 8. X ∼ N(0, I5) versus Y = AZ,Z ∼ N(0, I5), where

A =

 A0 0

0 I3

 , A0 =


√

1− c
√
c

√
c

√
1− c

 , (0 ≤ c ≤ 0.5).

Example 9. X ∼ t4(0, I5) versus Y = AZ,Z ∼ t4(0, I5), where
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A =

 A0 0

0 I3

 , A0 =


√

1− c
√
c

√
c

√
1− c

 , (0 ≤ c ≤ 0.5).

As shown in Figure S3, MAC3 outperformed ZZZ and gCvM in all these

four examples, and the power improvement of MAC3 over ZZZ is dramatic in

Example 8 and 9, the 5-dimensional case. The lower power of ZZZ may due to

the difficulty from the corresponding optimization problem. gCvM performs the

worst in Example 6 and 7 due to bumps and high-frequency components, and

also in Example 8 and 9 due to its insensitiveness to local differences.

S2 Additional Simulation Results for Screening Procedures

S2.1 Example 4.1-4.5 with smaller sample sizes

In this section, we present simulation results for Example 4.1-4.5 under smaller

sample sizes. Table S1 shows the results for the case where sample sizes are n =

m = 50, Table S2 corresponds to the case where sample sizes are n = m = 100,

and Table S3 is for the case where sample sizes are n = m = 150. MAC1-F

significantly outperformed KF in all cases.
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Figure S3: Power of MAC3 ( ), ZZZ ( ) and gCvM ( ) for Example 6-9 based on

2000 independent replications under significance level 0.05.

Table S1: Smallest model size required to contain all the true variables for sample sizes n =

m = 50. The numbers are medians from 500 replicates with the standard errors of these median

estimates (estimated by Bootstrap) given in parentheses.

Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

KF 820(66) 1500(28) 1100(6.9) 1100(4.1) 16(0.33)

MAC1-F 570(20) 1100(31) 560(19) 530(27) 5(0)
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Table S2: Smallest model size required to contain all the true variables for sample sizes n =

m = 100. The numbers are medians from 500 replicates with the standard errors of these

median estimates (estimated by Bootstrap) given in parentheses.

Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

KF 310(5.8) 1200(5.2) 580(26) 730(6.8) 5(0)

MAC1-F 78(3.9) 400(27) 63(4.5) 43(2) 5(0)

Table S3: Smallest model size required to contain all the true variables for sample sizes n =

m = 150. The numbers are medians from 500 replicates with the standard errors of these

median estimates (estimated by Bootstrap) given in parentheses.

Method Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

KF 120(5.7) 900(7.2) 360(8.3) 460(5.9) 5(0)

MAC1-F 16(0.47) 96(6.6) 9(0.35) 7(0.46) 5(0)
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S2.2 Extra Examples for Comparing MAC1-F with KF

In this section, we show additional simulation results based on examples taken

from Mai and Zou [2013]. We set p = 2000 and n = m = 200 in our simulation.

For each example, 500 independent experiments are performed to evaluate the

performance of these two methods. Results are summarized in Table S4, which

shows that these two methods work equally well.

Example B1

• Xj|Y = 1 ∼ N(1.922, 1), Xj|Y = 0 ∼ N(0, 1), j = 1, · · · , 8

• Xj : j = 9, · · · , p ∼i.i.d. N(0, 1)

Example B2

• log P (Y=1|X)
P (Y=−1|X)

= −3 + 2X1 + 2X2 + 2X3 + 3 sin(X4) + 4X2
5

• Xj : j = 6, · · · , p ∼i.i.d. N(0, 1)

Example B3

• X|Y = 1 ∼ N(µ,Σ), X|Y = 0 ∼ N(0,Σ) where µ = Σβ, β = −0.41 ×

18,Σ = (σij)8×8, σ = 0.8|i−j|, 18 ∈ R8 is a vector whose elements are all

1.

• Xj : j = 9, · · · , p ∼i.i.d. N(0, 1)

Example B4
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Table S4: Smallest model size required to contain all the true variables for Example B1-B6. The

numbers are medians from 500 replicates with standard errors (estimated by Bootstrap) given in

parentheses.

Method Example B1 Example B2 Example B3 Example B4 Example B5 Example B6

KF 8(0) 5(0) 8(0) 8(0) 4(0) 4(0)

MAC-F 8(0) 5(0) 8(0) 8(0) 4(0) 4(0)

• W |Y follows the model in Example B3, let Xj = e2Wj for j = 1, · · · , 8.

• Xj : j = 9, · · · , p ∼i.i.d. N(0, 1)

Example B5

• X|Y = 1 ∼ N(µ,Σ),X|Y = 0 ∼ N(0,Σ) where µ = 0.63×(1,−1,−1, 1), σij =

0.8, i 6= j.

• Xj : j = 5, · · · , p ∼i.i.d. N(0, 1)

Example B6

• W |Y follows the model in Example B5, let Xj = e2Wj for j = 1, · · · , 4.

• Xj : j = 5, · · · , p ∼i.i.d. N(0, 1)

S2.3 Example 4.6-4.8 with smaller sample sizes

In this section, we present simulation results for Example 4.6-4.8 under smaller

sample sizes. Table S5 presents the results for the case with sample sizes n =
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Table S5: The True/False positive (TP/FP) for Example 4.6-4.8 with n = m = 100. The

numbers are from 500 replicates with standard errors given in parentheses.

Example 4.6 Example 4.7 Example 4.8

MAC1-F† MAC-F‡ MAC1-F MAC-F MAC1-F MAC-F

α1 = 5%

TP 0.33(0.55) 2(0) 1.17(0.38) 2(0) 1.21(0.46) 4(0)

FP 15.5(3.5) 4.7(2.2)+9.5(0.67)§ 16(3.8) 4.8(2.1)+9.6(0.68) 16(3.7) 5.3(2.5)+9.5(0.67)

α1 = 0.5%

TP 0.09(0.21) 2(0) 1.03(0.18) 2(0) 1.0(0.12) 4(0)

FP 1.6(1.15) 1.3(1.0)+9.4(0.66) 1.65(1.2) 1.25(1.1)+9(0.67) 1.65(1.21) 1.7(1.2)+9(0.68)

† Quantile of MAC1 is estimated based on 500000 simulations

‡ Quantile of MAC2 is estimated based on 500000 simulations

§ FP of MAC-F is represented by FP of MAC2-F2 + FP of MAC2-F1

m = 100, and Table S6 presents the results for the case with sample sizes n =

m = 150. It shows that MAC-F performed well while MAC1-F may miss some

important variables.

S3 Additional details on real data application

In this section, we show additional results from the real data application. Figure S4

shows the empirical distribution of MAC1 and MAC2. Figure S5 shows the K-S

values and MAC1 values of CpG sites for CHD and ESRD. Figure S6 shows the

empirical distribution of log(MAC2) under H0.
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Table S6: The True/False positive (TP/FP) for Example 4.6-4.8 with n = m = 150. The

numbers are from 500 replicates with standard errors given in parentheses.

Example 4.6 Example 4.7 Example 4.8

MAC1-F† MAC-F‡ MAC1-F MAC-F MAC1-F MAC-F

α1 = 5%

TP 0.37(0.62) 2(0) 1.21(0.41) 2(0) 1.26(0.46) 4(0)

FP 15.5(3.7) 4.9(2.0)+9.2(0.67)§ 16(3.7) 5(2.1)+9.4(0.68) 15.7(3.7) 5.2(2.1)+9.3(0.62)

α1 = 0.5%

TP 0.1(0.32) 2(0) 1.06(0.23) 2(0) 1.0(0.21) 4(0)

FP 1.7(1.21) 1.3(1.2)+9.1(0.66) 1.8(1.21) 1.25(1.1)+9(0.68) 1.5(1.21) 1.75(1.3)+9.2(0.67)

† Quantile of MAC1 is estimated based on 500000 simulations

‡ Quantile of MAC2 is estimated based on 500000 simulations

§ FP of MAC-F is represented by FP of MAC2-F2 + FP of MAC2-F1

Histogram of MAC1

F
re

qu
en

cy

5 10 15 20 25 30

0
20

00
0

60
00

0

Histogram of MAC2

F
re

qu
en

cy

10 20 30 40

0
40

00
0

80
00

0
12

00
00

Histogram of MAC1

F
re

qu
en

cy

5 10 15 20 25 30

0
20

00
0

60
00

0

Histogram of MAC2

F
re

qu
en

cy

10 20 30 40

0
40

00
0

80
00

0
12

00
00

Figure S4: Empirical distribution of MAC1 (Left) and MAC2 (Right) under the null hypothesis

based on 500,000 independent experiments with n = m = 200.
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Figure S5: K-S values versus MAC values of all CpG sites for CHD and ESRD. The vertical and

horizontal dotted lines corresponds to the screening threshold of MAC-F and KF, respectively.

S4 Proof of Theoretical Results

Firstly, we introduce some notations used in our proofs. Let X →d Y denote

the convergence of X to Y in distribution, X →p Y the convergence of X to

Y in probability, X →a.s. Y denotes that X converges almost surely to Y , and

X =d Y denotes that X and Y have the same distribution.
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Figure S6: Empirical distribution of log(MAC2) under H0 with n = 435,m = 436 from

1000,000 simulations with its normal approximation. The red lines is the density function of

N(3.006, 0.163).
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Lemma S.1. Suppose that Um = (Um,1, · · · , Um,k) and Vn = (Vn,1, · · · , Vn,k)

are independently sampled from multinominal distributions with parameters (m, a1, · · · , ak)

and (n, b1, · · · , bk), respectively. Define the column vectors a = (a1, · · · , ak)

and b = (b1, · · · , bk). Under the null hypothesis H0: a = b, we have T =∑k
i=1

(Um,i−mĉi)2
mĉi

+
(Vn,i−nĉi)2

nĉi
→ χ2

k−1, where ĉ = Um+Vn
n+m

be the estimate of a

under H0.

Proof. Let {Xt}mt=1 and {Yt}nt=1 be the observed category series of the count

vectors Um and Vn, respectively. So we have P (Xt = i) = ai and P (Yt = i) =

bi. Let N = n+m, we define

X∗i = (X∗1,i, · · · , X∗N,i) = (δi,X1 , · · · , δi,Xm , 0, · · · , 0)

Y ∗i = (Y ∗1,i, · · · , Y ∗N,i) = (0, · · · , 0, δi,Y1 , · · · , δi,Yn)

where δi,j = I(i = j).

Firstly, we have Um,i −mĉi =
nUm,i−mVn,i

N
, and Vn,i − nĉi =

−nUm,i+mVn,i
N

.

Thus,

T =
k∑
i=1

(Um,i −mĉi)2

mĉi
+

(Vn,i − nĉi)2

nĉi
=

k∑
i=1

(nUm,i −mVn,i)2

nmNĉi
.

Let Zi = nUm,i − mVn,i = n
∑N

k=1X
∗
k,i − m

∑N
k=1 Y

∗
k,i, under H0, we have

E(Zi) = 0,Var(Zi) = nm(n+m)ai(1− ai),Cov(Zi, Zj) = −nm(n+m)aiaj .

So, by the multivariate central limit theorem, we have

1√
nmN

Z =
nUm −mVn√

nmN
→d N(0,Σ),
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where σi,j , the (i, j)-th element of Σ, is equal to ai(δij − aj). Since ĉ→p a, we

have

nUm −mVn√
nmN ĉ

→d N(0, Ik −
√

a
√

a′)

Thus, we have T → χ2
k−1, as n,m→ +∞.

S4.1 Proof of Theorem 1

Lemma S.2. Suppose that X1, X2, · · · , Xn, X are i.i.d. sub-exponential with

parameters (v, b), i.e.,E(eλ(X−µ)) ≤ ev
2λ2/2 for all |λ| ≤ 1/b, where µ = E(X),

then

max
1≤i≤n

Xi ≤ max{2b log(n), v
√

2 log(n)}+ µ

holds with probability going to 1 as n→ +∞.

Proof. If we have

P (X ≥ µ+ t) ≤


e−

t2

2v2 , 0 ≤ t ≤ v2/b

e−
t
2b , otherwise

(A.1)

then P (max1≤i≤nXi ≥ µ + t) ≤ nP (X ≥ µ + t). So, if t1 = v
√

2 log(nα) ≤

v2/b for any α > 1, we have nP (X ≥ µ+t1) ≤ n1−α. If t2 = 2b log(nα) > v2/b

for any α > 1, we have nP (X ≥ µ+ t2) ≤ n1−α.

Thus, we have max1≤i≤nXi < µ+max{infα>1 t2, infα>1 t1} = µ+max{2b log(n), v
√

2 log(n)}

with probability going to 1.
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To prove (A.1), basic analyses based on the Chernoff inequality, i.e., P (X−

µ ≥ t) ≤ e−λtEeλ(X−µ), can do the work.

Lemma S.3. SupposeX is χ2
n distributed, thenX is sub-exponential with parameters

(2
√
n, 4).

Proof. It is easy to show that Y ∼ χ2
1 is sub-exponential with parameters (2, 4),

and X =
∑n

i=1 Yi where Yi ∼i.i.d. χ2
1. Thus Eeλ(X−n) = E(eλ(

∑n
i=1(Yi−1))) ≤

e4nλ
2/2 for |λ| ≤ 1/4, and the result follows.

Corollary S.1. Suppose thatZ,Z1, · · · , Zn i.i.d∼ χ2
k, we have P (max1≤i≤n Zi ≤

8 log(n) + k)→ 1 as n→ +∞.

Proof. By Lemma S.3, Z is sub-exponential with parameters (2
√
k, 4). By

Lemma S.2, we have max1≤i≤n Zi ≤ 8 log(n) + k with probability going to

1 as n→ +∞.

Lemma S.4. Let ρ(X, Y ) be the correlation between random variables X and

Y . Suppose that Z1, Z2, · · · , Zn are random variables such that ρ(Zi, Zj) ≥ 0,

for any 1 ≤ i < j ≤ n, and Z∗1 , Z
∗
2 , · · · , Z∗n are independent random variables

such that Zi =d Z∗i , for any 1 ≤ i ≤ n, we have P (max1≤i≤n Zi > t) ≤

P (max1≤i≤n Z
∗
i > t) for any t ∈ R.

Proof. Define Ai = {Zi > t} and A∗i = {Z∗i > t} for any i for convenience,

and we have P (Ai) = P (A∗i ) by assumption. The proof goes through induction.
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When n = 1, it is easy to see the conclusion holds.

Now, we consider the case n = 2. We have P (max{Z1, Z2} > t) =

P (A1) + P (A2) − P (A1A2), and P (max{Z∗1 , Z∗2} > t) = P (A∗1) + P (A∗2) −

P (A∗1)P (A∗2) = P (A1)+P (A2)−P (A1)P (A2). Now, we consider two random

variables IA1 and IA2 , and have Cov(IA1 , IA2) = P (A1A2) − P (A1)P (A2) =

ρ(IA1 , IA2)
√
var(IA1)var(IA2). Since ρ(Z1, Z2) ≥ 0, we have ρ(IA1 , IA2) ≥ 0,

and thus P (A1A2) ≥ P (A1)P (A2), which leads to P (max1≤i≤n Zi > t) ≤

P (max1≤i≤n Z
∗
i > t).

Next, we assume the conclusion holds for n = k − 1, and consider the case

n = k. Define M = max1≤i≤k−1 Zi, M∗ = max1≤i≤k−1 Z
∗
i , AM = {M > t}

and A∗M = {M∗ > t}. We have P (AM) ≤ P (A∗M) by assumption.

Furthermore,

P (max
1≤i≤k

Zi > t) = P (max{M,Zk} > t)

= P (AM) + P (Ak)− P (AMAk)

≤ P (AM) + P (Ak)− P (AM)P (Ak) (By result for case n = 2)

= P (AM)(1− P (Ak)) + P (Ak)

≤ P (A∗M)(1− P (Ak)) + P (Ak) (By assumption)

= P (max{M∗, Z∗k} > t) = P ( max
1≤i≤n

Z∗i > t)

Thus, the conclusion follows, and the proof is completed.
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Proof of Theorem 1

Proof. Now, we are ready to prove Theorem 1.

Part (1.a)

By Lemma S.1 and Assumption A, we have T1(xi, yj) →d χ2
1 for each

(xi, yj), as n → +∞, under H0. Also, we may rewrite it as T1(xi, yj) →d

Zij , as n → +∞ with Zij ∼ χ2
1. By the construction of the local statistic

T1(xi, yj) that measures the local difference between two distributions, we have

ρ(T1(xi, yj), T1(xk, yl)) ≥ 0, for any (xi, yj) and (xk, yl).

Firstly, we construct random variable T ∗1 (xi, yj) such that (1) T ∗1 (xi, yj) =d

T1(xi, yj); and (2) T ∗1 (xi, yj) for i = 1, · · · , n; j = 1, · · · ,m are independent.

LetUij for i = 1, · · · , n; j = 1, · · · ,m, i.i.d∼ U(0, 1), and denote the distribution

of T1(xi, yj) asFij(t), then T ∗1 (xi, yj) can be constructed by T ∗1 (xi, yj) = F−1ij (Uij).

Now, we have by Lemma S.4, for any t > 0,

P ( max
1≤i≤n,1≤j≤m

T1(xi, yj) > t) ≤ P ( max
1≤i≤n,1≤j≤m

T ∗1 (xi, yj) > t) (S4.1)

Next, since T ∗1 (xi, yj) =d T1(xi, yj) →d χ2
1, as n → +∞, following

Skorohod’s representation theorem, there exits random variable T ∗∗1 (xi, yj) such

that T ∗∗1 (xi, yj)→a.s. Wij as n→ +∞, T ∗∗1 (xi, yj) =d T
∗
1 (xi, yj) andWij ∼ χ2

1.

Now, we have

P ( max
1≤i≤n,1≤j≤m

T ∗1 (xi, yj) > t) = P ( max
1≤i≤n,1≤j≤m

T ∗∗1 (xi, yj) > t) (S4.2)
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On the other hand, by construction of T ∗∗1 (xi, yj) and continuous mapping theorem,

we have

max
1≤i≤n,1≤j≤m

T ∗∗1 (xi, yj)→a.s. max
1≤i≤n,1≤j≤m

Wij (S4.3)

By Corollary S.1, we have P (max1≤i≤n,1≤j≤mWij > 8 log(nm)+1)→ 0. Thus,

we have P (max1≤i≤n,1≤j≤m T
∗∗
1 (xi, yj) > 8 log(nm) + 1) → 0. Combining

(S4.1) and (S4.2), we have P{MAC1(X, Y ) > 8 log(2nm) + 1} → 0.

Part (1.b)

By Lemma S.1, we have T2(x0, y0) → χ2
3, as n,m → +∞, under H0.

Similar to the proof of Part (1.a), we can show MAC2(X,Y) < 8 log(2nm) + 3

with probability going to 1.

Part (1.c)

By Lemma S.1, for any nonempty s $ S = {1, · · · , d}we have Ts(x0, y0)→

χ2
3, as n,m → +∞, under H0. Similar to the proof of Part (1.a), we have with

probability going to 1, MAC3(X,Y) < 8 log(2d+1nm) + 3.

Part (2)

UnderH1, let pi = Pi/n, qi = Qi/m, ri = Ri/(n+m) = (Pi+Qi)/(n+m),

(i = 1, 2), there is at least one point denoted by (x0, y0) such that ∆1i =

(pi − ri)
2 > 0 and ∆2i = (qi − ri)

2 > 0 for i = 1 or i = 2. Without loss

of generality, we assume it holds for i = 1, then we have MAC1(X,Y) >

n∆11/r1 + m∆21/r1 ≥ (n + m) min(∆11,∆21)/r1 = c(n + m), with c =
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min(∆11,∆21)/r1.

Similarly, we can prove the corresponding results for MAC2(X,Y) and MAC3(X,Y).

S4.2 Proof of Corollary 1

Proof. Similar to the proof of part (a) in Theorem 1, we have with probability

going to 1,

max
Zj∈S∗c1

MAC1(Z
1
j , Z

0
j ) < 8 log(2|S∗c1 |nm) + 1 < 8 log(2pnm) + 1.

If p = e(n+m)η with 0 < η < 1, we have 8 log(pnm) + 1 = O((n + m)η),

which is smaller than the lower bound of MAC1(Z
1
j , Z

0
j ), Zj ∈ S∗1 . Thus, we

have P (M1(MAC1
1(n,m)) = S∗1)→ 1, as n,m→∞.

S4.3 Proof of Corollary 2

Proof. The proof of (2.a) and (2.b) exactly follow the same manner as the proof

of the first part of Corollary 1.

For convenience, we write M21(MAC1
2(n,m)) as M21, M1(MAC1

1(n,m))

as M1, and M22(MAC2
2(n,m)) as M22.

P (M21 = S∗21) = P{(M21 = S∗21)
⋂

(M1 = S∗1)}+P{(M21 = S∗21)
⋂

(M1 6=

S∗1)}.

By Corollary 1, we have P (M1 = S∗1)→ 1, as n,m→∞. Thus,
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P (M21 = S∗21) = P{(M21 = S∗21)
⋂

(M1 = S∗1)} → P (M∗
21 = S∗21) → 1,

as n,m→∞.

where M∗
21 = {Xij = (Zi, Zj) : Zi, Zj ∈ S∗c1 and MAC2(X

1
ij, X

0
ij) >

MAC1
2(n,m)}.

Similarly, we can prove P (M22 = S∗22)→ 1, as n,m→∞.
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