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Abstract: In recent years, statisticians and clinical scientists have defined two new

approaches for studying the effects of medical practice, extending the “gold stan-

dard” classical randomized clinical trial to remedy some of its defects, improve its fit

to clinical practice, and conform more closely to ethical principles. The contextual

multi-armed bandit provides a natural statistical structure for a learning health-

care system, allowing the optimization of patient outcomes by adaptively assigning

treatments, while building in experimental strength for accuracy in learning. The

sequential multiple assignment randomized trial has become the standard for com-

paring entire dynamic treatment strategies for the management of chronic disease,

which more closely matches the goals and practice of clinicians. The theory and

methods developed by Professor Tze Leung Lai over the course of his career are of

central importance in bringing these two apparently different approaches to bear in

efforts to improve clinical practice. We review these methods in this article.

Key words and phrases: Clinical trials, medical and pharmaceutical statistics, se-

quential analysis and optimal stopping.

1. Introduction

Throughout his career, Professor Tze Leung Lai has made major contribu-

tions to the design of randomized clinical trials. We note his creative work with

many students and colleagues in group sequential stopping (Lai and Shih (2004))

and adaptive trials (Lai, Lavori and Liao (2014); Bartroff, Lai and Shih (2012);

Lai and Liao (2012)), which have advanced the field of clinical trials. Here, we

focus on two areas of Lai’s work that may have an even greater impact on the

future of clinical research, as the medical community grapples with the challenges

of generating and applying knowledge at point of care in fulfillment of the con-

cept of the “learning healthcare system” (LHS) (Chamberlayne et al. (1998)). “A

learning healthcare system is one that is designed to generate and apply the best

evidence for the collaborative healthcare choices of each patient and provider; to
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drive the process of discovery as a natural outgrowth of patient care; and to ensure

innovation, quality, safety, and value in health care” (Olsen, Aisner and McGinnis

(2007)). The first branch of Lai’s work discussed below deals with methods for

incorporating true experimental strength into efforts to explore the comparative

effects of different treatments, while exploiting what is learned to improve out-

comes in patients. The underlying idea of the “multi-armed bandit” (MAB) for

clinical decision-making goes back almost a century (Thompson (1933)), and Lai

made his foundational contributions to that subject at the start of his career (Lai

and Robbins (1985)). Recent work on the contextual generalization of the MAB

(CMAB) has brought the idea back to the fore, as a sound theoretical basis for

the LHS enterprise. We surveyed the current literature on the use of the CMAB

in clinical medicine as part of a demonstration project currently underway in the

US Department of Veterans Affairs (VA) Cooperative Studies Program (CSP),

and below we discuss the current “state of the art.”

The other branch of Lai’s work discussed below has been used to further the

recent development of a natural framework for defining and comparing dynamic

treatment regimes (DTRs), also known as adaptive treatment strategies (ATS),

in the management of chronic disease using variants of the sequential multiple

assignment randomized trial (SMART) (Lavori and Dawson (2000, 2004); Murphy

(2005)). This is again an attempt to bring experimental rigor to the study of

clinical decision-making, taking full account of the inherently dynamic nature of

ongoing clinical management of chronic disease.

We hope that the review and discussion in this celebratory paper will illus-

trate two of the less well known, but no less promising and valuable contributions

made by Professor Lai in the course of his career, and perhaps encourage others

to take up his ideas and carry them forward, as we have done.

2. The Multi-Armed Bandit Problem

The name “multi-arm bandit” suggests a row of slot machines, which in the

1930s were nicknamed “one-armed bandits.” (Presumably the name is inspired

by their pull-to-play levers and the often large house edge.) For a gambler in an

unfamiliar casino, the “multi-arm bandit problem” would refer to a particular

challenge: to maximize the expected winnings over a total of T plays, moving

between machines as desired. The distribution of payouts from pulling each

arm may be unknown and different for each machine. How should the gambler
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play? Research into the MAB problem and its variants has led to foundational

insights for problems in sequential sampling, sequential decision-making, and

reinforcement learning.

Mathematical analysis of the MAB problem has been motivated by medi-

cal applications since Thompson (1933), with different medical treatments play-

ing the role of bandit machines. Subsequent theory has found wide application

across disciplines including finance, recommender systems, and telecommunica-

tions (Bouneffouf and Rish (2019)). According to Whittle (1979), the bandit

problem was considered by Allied scientists in World War II, but it “so sapped

[their minds] that the suggestion was made that the problem be dropped over

Germany, as the ultimate instrument of intellectual sabotage.” It was Lai and

Robbins (1985) who gave the first tractable asymptotically efficient solution.

Given a set of arms k ∈ 1, . . . ,K, Lai and Robbins frame the question: How

should we sample y1, y2,. . . sequentially from the K arms in order to achieve the

greatest possible expected value of the sum ST = y1 + · · ·+ yT as T →∞? They

model each sample from arm k as an independent draw from a population Πk from

a family of densities fθk indexed by parameter θk. Then, they formalize the space

of (possibly random) strategies φ ∈ Φ, defining φ to be an adaptive allocation

rule if it is a collection of random variables that makes the arm selection at each

timestep, φ := (φ1, φ2, . . . , φT ). Thus, each φt is a random variable on {1, . . . ,K},
where the event {φt = k} (“arm k is chosen at time t”) belongs to the σ-field

generated by prior decisions and observations (φ1, x1, φ2, x2, . . . , φt−1, xt−1). In

this framework, Lai and Robbins (1985) define the cumulative regret of an adap-

tive allocation, rule which measures the strategy’s expected performance against

the best arm, equivalent to

RT (φ,θ) :=

T∑
t=1

µ∗(θ)− E [µ(θφt
)] ,

where µ(θk) is the expected value of arm k, and µ∗(θ) := maxk{µ(θk)}. Lai and

Robbins (1985) give a strategy that achieves an expected cumulative regret of

order O(log T ), and provide a matching lower bound to show it is nearly optimal.

This strategy creates an upper confidence bound (UCB) for each arm, where the

estimated return is given a bonus for uncertainty. A simple example of a UCB is

the UCB1 o Auer, Cesa-Bianchi and Fischer (2002), which at round t, picks the

arm maximizing
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ȳk,t +

√
2 ln(t)

nk,t
,

where the rewards yt are in [0, 1], ȳk,t is the average of the observed rewards

from arm k, and nk,t is the number of samples observed from arm k. Typically,

UCBs are designed so that inferior arm(s) are discarded with minimal investment,

and the best arm(s) are guaranteed to remain in play; a key contribution of

Lai and Robbins (1985) was to show how such statements can be quantified

using Chernoff bounds (or other concentration inequality arguments), and then

converted into an upper bound on the cumulative regret. Their approach has

been generalized and extended to yield algorithms and regret guarantees across

a variety of applications, with UCBs acting as a guiding design principle.

The richness of the bandit problem has generated a multitude of other ap-

proaches. By adding to the above model a prior distribution for the arm param-

eters θ, the bandit problem can be framed as a Bayesian optimization over φ to

find the allocation strategy that minimizes the expected regret
∫
RT (θ,φ)dpθ.

This optimization can, in principle, be solved with dynamic programming (as in

Cheng and Berry (2007)); however, dynamic programming does not scale well to

large or complicated experiments, because the number of possible states explodes.

Using results from Whittle (1980), Villar, Bowden and Wason (2015) show how

the computation can be reduced considerably by framing the optimal solution as

an index policy.

When solving for the optimal strategy is not feasible, the heuristic solution of

Thompson sampling is a popular choice, with good practical and theoretical per-

formance (Chapelle and Li (2011); Kaufmann, Korda and Munos (2012); Russo

and Van Roy (2016)). The decision rule proposed by Thompson (1933) is an

adaptive allocation rule, where φt, given all data observed prior to time t, is non-

deterministic and chooses arm k with probability equal to its posterior chance

of being the best arm. That is, φt = k with probability pk,t := PFt
{k∗ = k},

where PFt
is the posterior probability distribution given (φ1, x1, . . . , φt−1, xt−1),

and k∗ := argmaxk(µ(θk)) is the index of the best arm (which is a random vari-

able). If the best arm is not unique, the tie should be broken to ensure the

uniqueness of k∗. In fact, a Thompson allocation can be performed with just one

sample from the posterior Ft, as shown in the following workflow:
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Algorithm 1: Bayesian Workflow with Thompson Sampling

1 Assume a likelihood model parametrized by θ, such that θ determines

the arm means by µ(θ) = (µ1(θ), . . . , µk(θ));

2 Assume a prior F1;

3 for each sample t ∈ {1, . . . , T} do
4 Draw from the posterior a sample of the vector of arm means sample

θ′ ∼ Ft ; set µ′ := (µ1(θ′), . . . , µk(θ
′));

5 Allocate to the arm corresponding to the largest entry of µ′:

set φt := argmaxk{µ′k} (breaking ties at random);

6 Receive from arm φt the next payoff xt;

7 Given the new observation, update posterior to Ft+1

8 end

Exact sampling from the posterior is not always tractable. A popular tech-

nique for sampling the posterior approximately is the Markov Chain Monte Carlo

(MCMC) method. The convergence properties of MCMC to the posterior dis-

tribution, and in particular the number of steps that must be run to achieve

accurate sampling, are well understood only in special cases (Diaconis (2009);

Dwivedi et al. (2018)). Where theory falls short, practitioners may appeal to a

variety of diagnostics tools to provide evidence of convergence to the posterior

(Roy (2020)).

There are many other approaches to the bandit problem, including epsilon-

greedy (Sutton and Barto (1998)), knowledge gradient (Ryzhov, Powell and Fra-

zier (2012)), and information-directed sampling (Russo and Van Roy (2014a)).

3. Adaptive Randomization in an LHS

In an LHS, the arms of an MAB are treatments and the rewards are patient

outcomes. Thus, minimizing the cumulative regret corresponds to maximizing

patients’ measured quality of care, a primary function of the LHS. However,

typically, there is a secondary goal of learning from a trial: useful takeaways may

include confidence intervals for the treatment effects, developing a treatment

guide, or making recommendations for non-participating patients in parallel with

the trial.

The goals of regret minimization and knowledge generation, often framed

as “exploitation vs. exploration,” are indeed in fundamental conflict: Bubeck,

Munos and Stoltz (2011) formalized a notion of exploration-based experiments,

where recommendations are made outside the trial. They define the simple regret
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to be

rT = µ∗ − µc,T ,

where µc,T is the expectation of the recommended arm after round T , and µ∗ is

the expectation of the best arm. Bubeck, Munos, and Stoltz show that upper

bounds on the cumulative regret RT lead to lower bounds on rT , and vice versa.

In this sense, algorithms that minimize the cumulative regret occupy an extreme

point of a design space: they maximize the welfare of trial patients, but sacrifice

knowledge about inferior treatments. At the other extreme point of the design

space, an ideal trial for knowledge generation, with two arms of equal variance,

will split the sample sizes equally, consigning half of the patients to the inferior

treatment.

Most practical implementations of adaptive randomization in clinical trials

use modified bandit algorithms. A common prescription is to lead with a first

phase of equal randomization. Or, allocation probabilities may be shrunk toward

1/K in some fashion. Wathen and Thall (2017) discuss the design options of

restricting allocations to [0.1, 0.9], leading with a period of equal randomization

to prevent the algorithm from “getting stuck” on a worse arm, and altering the

Thompson sampling to allocate with probability proportional to pck,t, for c ∈ (0, 1].

Villar, Bowden and Wason (2015) consider forced sampling of the control arm

every 1/K patients. Kasy and Sautmann (2019) modify the Thompson sampling

to tamp down selection of the best arm(s), asymptotically leading to equal ran-

domization between the best candidates. Lai, Liao and Kim (2013) give a design

that maintains a preferred set of arms, randomizing equally between them, and

adaptively drops arms from this set at interim analyses. These various design

choices and algorithmic tweaks are typically investigated and tuned by simula-

tion. Even without explicit modification to the standard bandit approach, most

medical applications will have a delay between the treatment assignment and the

observation of an outcome; the resulting reduction in available information leads

to more exploration for most algorithms.

There are many benefits to using nearer-to-equal randomization probabili-

ties. First, balancing sample sizes between a pair of arms serves inference goals

such as increased power of hypothesis tests, shorter confidence intervals, and

more accurate future recommendations. Second, closer-to-equal randomization

may improve the information for interim decisions such as early stopping and

sample size re-estimation. Third, without tuning, there may be an unacceptably

high chance of sending a majority of patients to the wrong arm (Thall, Fox and

Wathen (2015)). Fourth, more equal randomization can help detect violated as-
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sumptions, such as time trends or a model misspecification. Fifth, the possibility

of violated assumptions suggests treating data as slightly less informative. Fi-

nally, probabilities nearer 1/2 are helpful for inverse-probability weighting and

randomization tests.

On the other hand, when a treatment is strongly disfavored for a patient,

ethical health care requires setting its randomization chance to zero. This may

be achieved by thresholding allocation probabilities according to some rule, or

suspending or dropping treatment arms at interim analyses. Furthermore, more

equal randomization comes at an opportunity cost to the welfare of trial par-

ticipants. Practical trial design in an LHS must seek a balance between these

competing objectives of knowledge generation and participant welfare.

4. Inference for MABs in an LHS

The LHS may desire several forms of knowledge from an adaptive random-

ization trial, including confidence intervals for the outcomes of arms (and their

differences), guarantees about selecting arms correctly, and recommendations for

treatments in non-participating patients.

Frequentist inference under adaptive randomization designs can be challeng-

ing. Owing to adaptive sampling, the distribution of standard estimates for the

mean of an arm is typically nonGaussian, and not pivotal with respect to the

treatment effect. Concentration techniques for UCBs, such as Chernoff bounds,

can be applied for confidence bounds that may hold uniformly over possible stop-

ping times (Jamieson and Nowak (2014); Zhao et al. (2016); Karnin, Koren and

Somekh (2013)). The concentration approach has been extended to FDR con-

trol with the always-valid p-values framework (Johari, Pekelis and Walsh (2015);

Yang et al. (2017)). Furthermore, self-normalization techniques from de la Peña,

Lai and Shao (2008) permit extensions to large classes of distributions. However,

confidence intervals from concentration bounds may be conservative, slack by a

constant or logarithmic factor of width.

In confirmatory trial design, adaptivity may be managed by dividing the

trial into segments, each having constant randomization probabilities so that

Gaussian theory can be used (with numerical integration for stopping boundaries

to compute the type-I error and power at fixed alternatives). Lai, Liao and Kim

(2013) and Shih and Lavori (2013) show how to do this for their MAB-inspired

designs. Alternatively, Korn and Freidlin (2011) suggest block-randomization

and block-stratified analysis. Compared to the constantly changing allocation

strategies of the standard bandit algorithms, discretization of strategy can come
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at a moderate or minimal cost, depending on the design and goals.

For analyzing MAB designs with a constantly updating allocation strategy,

a key idea for constructing valid frequentist p-values is the randomization test.

The randomization test assumes the sharp null hypothesis that the treatment

has exactly zero effect, and relies on probabilistic randomization in the allocation

algorithm to generate power. In exchange, with other minimal assumptions, it

grants valid p-values, even in the presence of time trends and other confounders in

the patient population (Simon and Simon (2011)). To form confidence intervals,

a sharp additive model for the treatment effect may be considered. Confidence

bounds then follow by inverting the randomization test, as in Ernst (2004).

Another tool for constructing confidence intervals is hybrid resampling, by

Lai and Li (2006). This procedure considers families of different shifts and scales

of the observed data, and simulates via resampling to infer which distributions

are consistent with the observed treatment effects. Lai and Li show that for

group sequential trials, confidence intervals from hybrid resampling can have

more accurate coverage than that of standard normal approximations.

Hadad et al. (2019) suggest a double-robust estimation approach. In addition

to using an augmented inverse-probability weight (AIPW) model, they propose

further adaptively re-weighting the data to force the treatment effect estimate into

an asymptotically Gaussian distribution. Double-robust estimation may help to

correct for time trends or other confounding. However, data re-weighting comes

at a cost to efficiency, as pointed out by Tsiatis and Mehta (2003).

Finally, if one assumes a prior and enters the Bayesian framework, posterior

inference is a highly flexible approach to analysis. Because Bayes’ rule decou-

ples the experimenter’s allocation decisions from the rest of the likelihood, the

standard Bayesian workflow can be applied to the data without concern for the

adaptivity of the design (Berger and Wolpert (1988)). Subject to typical caveats

on prior selection and accurate posterior sampling, posterior inference can yield

Bayes factors for testing, credible intervals for treatment effects, and decision

analysis for treatment recommendations.

5. Contextual MABs and Personalized Medicine

For an LHS that continuously seeks to improve and personalize treatment, the

important question is not which treatment is best, but for whom each treatment

is best. To address this question, one must augment the bandit model with

information about each patient. Calling this side information “covariates” or

“contexts,” one arrives at the CMAB problem.
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CMABs have found great success in the internet domain for problems such as

serving ads, presenting search results, and testing website features. In contrast,

applications in medicine have lagged (with the prominent exception of mobile

health (Greenewald et al. (2017); Xia (2018))). The design of trials in an LHS

brings new challenges to the CMAB framework, such as ethical requirements,

small sample sizes (roughly 102 –104 patients, in comparison to 104 –109 clicks

for internet applications), requirements for medical professionals to inspect and

understand processes, feedback times, and demand for generalizable conclusions.

In the following section, we focus on correctly specified linear models. This

assumption derives some justification from the features of an LHS: assuming that

covariates are continuous and low dimensional, the patient population of greatest

interest is expected to occupy a small region of the covariate domain, owing

to the systematic filtering of equipoise requirements and further shrinking of

the population under experimental focus as “exploiting” increases. Additionally,

the conditional expectation of the response is typically a smooth function of

the covariates. Therefore, assuming both smoothness of conditional expectation

and locality of the studied population, Taylor’s theorem implies approximate

correctness of the linear model. Similar arguments can be applied to logistic

models and other smooth model classes.

5.1. Linear models for the reward

If at step t we observe a context vector xt of length d, sample from arm

φt = k, and receive reward yt, we may consider the following simple linear model

for the expected reward:

E[yt|xt, φt = k] = xTt θ
∗
k,

where θ∗k is an unknown parameter vector of length d. The LinUCB algorithm of

Li et al. (2010) brings the UCB of Lai and Robbins (1985) to this linear model.

Assuming the linear model parameters are not shared between arms and that

contexts do not depend on the arm chosen (see Li et al. (2010) for the general

case,) they suggest estimating θ∗k for each arm using a ridge regression θ̂k. That is,

if Xk,t is a design matrix whose rows are the contexts of the individuals previously

assigned to arm k before time t and Yk,t is a vector of their rewards, the ridge

estimator with tuning parameter λ is

θ̂k,t = (XT
k,tXk,t + λId)

−1XT
k,tYk,t.

Next, Li et al. (2010) construct a UCB for the expected reward around the
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ridge regression prediction, suggesting the confidence interval

|xTt θ̂k,t − xTt θ∗k| ≤ α
√
xTt (XT

k,tXk,t + λId)−1xt

where λ is set to one and α is a tuning parameter. This confidence interval im-

plicitly assumes a correctly specified linear model and independence of Yk,t given

XT
k,t, an assumption which is typically broken by the allocation mechanism unless

(xt, yt) is independent and identically distributed (i.i.d.) for all t. Nevertheless,

analogously to the basic UCB algorithm, they propose the LinUCB algorithm,

which chooses the arm with the highest UCB,

φUCBt := argmax
k

{
xTt θ̂k,t + α

√
xTt (XT

k,tXk,t + λId)−1xt

}
.

LinUCB is easy to implement and has proven popular in applications, inspiring

further improvements and competitors. Chu et al. (2011) analyze a theoreti-

cal fix to LinUCB and give a regret analysis for a modified algorithm of order

O(
√
Td ln3(KT ln(T )/δ)). They also give a nearly-matching general lower bound

for the problem of order Ω(
√
KT ).

Alternatively, Abbasi-Yadkori, Pál and Szepesvári (2011), working within a

more general framework called “linear bandits” or “linear stochastic bandits,”

construct self-normalized confidence sets for the arm parameters. In the linear

bandit, rather than choosing among a discrete set of arms, one chooses the context

xt from a set Dt, and the rewards are modeled as yt = xTt θ
∗ + ηt. Note that

model (5.1) can be embedded within the linear bandit by sufficiently increasing

the dimensions of xt and θ∗ and taking Dt as an appropriate finite set of K

vectors. Abbasi-Yadkori, Pál and Szepesvári (2011) assume that, conditioned

on data prior to time t, ηt is mean-zero and R-sub-Gaussian for some R ≥ 0.

Further, it is assumed that ‖θ∗‖2 ≤ S, for some S ≥ 0. Then, defining Xt as a

(t − 1) × d matrix whose rows consist of the contexts xTs , for s = 1, . . . , t − 1,

defining the reward vector Yt as a vector of length (t − 1) of the corresponding

rewards ys, for s = 1, . . . , t − 1, and denoting V̄t := λId + XT
t Xt, for all t ≥ 1,

one may write the ridge estimator as

θ̂t := V̄ −1
t XT

t Yt.

Abbasi-Yadkori, Pál and Szepesvári (2011) then derive the confidence set

Ct :=

{
‖θ̂t − θ∗‖V̄t

≤ R

√
2 log

(
det(V̄t)1/2 det(λId)−1/2

δ

)
+ λ1/2S

}
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where ‖ · ‖V̄t
is a matrix weighted 2-norm. The collection of these sets, C :=⋂

t≥1Ct, provides 1− δ uniform confidence that θ∗ ∈ C, regardless of an adaptive

mechanism for the context choice. Abbasi-Yadkori, Pál and Szepesvári (2011)

leverage this confidence approach into a strategy that generalizes the UCB. They

follow the underlying principle of “optimism in the face of uncertainty” to select

the context

xt := argmax
x∈Dt

max
θ∈Ct

xT θ,

and prove regret guarantees for the linear bandit with this algorithm. For a

K-arm trial designer, a key takeaway is that uniform confidence sets offer an

approach to model inference (noting that practical use requires strong modeling

assumptions, a choice of λ, and bounds for the unknown parameters R and S).

A different approach to the CMAB problem is to generalize the ε-greedy

algorithm: periodic exploration can be used to estimate a model, and to verify

that estimates based on adaptive data collection are not far off. Under the simple

linear model (5.1), Goldenshluger and Zeevi (2013) propose maintaining two sets

of linear model estimates: θ̂∗k, estimated on a small amount of equal-randomized

data, and θ̃∗k, based on all of the (adaptively allocated) data. If the estimated

rewards from equal randomization xTt θ̂
∗
k are well separated, the arm with the

largest estimate is chosen. Else, the arm with the largest value of xTt θ̃
∗
k is chosen.

Under strong assumptions including K = 2 arms, i.i.d samples, and a margin

condition that ensures that the decision boundary between the arms is sharp,

that is,

P
{
|(θ∗1 − θ∗2)TXt| ≤ ρ

}
≤ Lρ, ∀ρ ∈ (0, ρ0],

they derive a cumulative regret bounded by O(d3 log T ). Bastani and Bayati

(2019) improve these bounds and extend this approach to high-dimensional sparse

linear models using L1 penalization. Bastani, Bayati and Khosravi (2020) also

show that under certain conditions, a pure greedy approach can yield rate-optimal

regret.

5.2. More general models for the reward

The Bayesian workflow for the MAB naturally extends to linear models and

beyond. Russo and Van Roy (2014b) show that for several classes of well-specified

Bayesian problems with contexts, Thompson sampling achieves near-optimal

performance and behaves like a problem-adaptive UCB. A variety of competi-

tive risk bounds have been proven for Thompson sampling (Agrawal and Goyal

(2012, 2013); Kaufmann, Korda and Munos (2012); Korda, Kaufmann and Munos
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(2013)). In empirical studies, Thompson sampling often outperforms competitors

by a small margin (Scott (2010); Chapelle and Li (2011); Dimakopoulou et al.

(2017)).

An alternative for the nonBayesian is what we call “pseudo-Thompson boot-

strapping.” Given a black box algorithm that models the outcomes under each

arm, the idea is to bootstrap-resample data to generate variation in the model’s

estimates. Pretending that this resampling distribution is a posterior, one can

drop the estimated “probabilities” of arm superiority into the Thompson rule and

hope to recover its performance advantages. While this technique approximates

Thompson sampling for some known cases (Eckles and Kaptein (2014)), its gen-

eral theoretical properties remain unclear. The main appeal of the approach is to

offer a wrapper for popular estimation algorithms for large data sets, including

regression trees, random forests, and neural networks (Elmachtoub et al. (2017);

Osband et al. (2016)).

Vaswani et al. (2019) propose the RandUCB algorithm, which gives LinUCB

nondeterministic allocation probabilities by perturbing the confidence bound ran-

domly in a way that somewhat resembles bootstrapping. For the linear model,

RandUCB can be viewed as a generalization of Thompson sampling under a

Gaussian model. Vaswani et al. also prove competitive regret guarantees for

RandUCB.

Finally, there are nonparametric methods that leverage the smoothness of

the expected response. Rigollet and Zeevi (2010) discretize space into buckets,

and run MABs on each of them independently. Lu, Pál and Pál (2010) give a

contextual bandit that clusters data adaptively and provides guarantees under

Lipschitz assumptions. Kim, Lai and Xu (2020) perform a local linear regression

and pair it with ε-greedy randomization and arm elimination, meeting minimax

lower bounds on regret under certain regularity conditions.

6. Dynamic Treatment Regimes

An LHS bears responsibility for patients over time as their clinical status

and treatment needs evolve. Formalizing the notion of a complete care strategy,

a DTR is a set of rules that dictates treatment decisions, given a patient’s history

of covariates and prior treatment (Lavori and Dawson (2004)).

Thus, if a patient is observed at time-points τi when observations xi are

recorded and treatment action ai is taken, a DTR is a function that maps

(τi, x1:i, a1:i−1) to ai.

DTRs may be studied using a SMART, which begins with an initial treatment



BANDIT THEORY FOR LEARNING HEALTHCARE SYSTEMS 2301

randomization and at each subsequent decision point, re-randomizes patients

among further treatment options. A SMART culminates in an outcome Y for

each individual (which may be a function of (x1, . . . , xI)), by which the treatments

will be assessed. Lavori and Dawson (2007, 2008) construct confidence intervals

for comparing DTRs based on their expected outcomes.

In the group sequential clinical trial setting, Zhong (2018) demonstrates

asymptotic multivariate normal approximations to estimated outcomes and tran-

sition probabilities. Zhong proposes likelihood-based Wald tests with simultane-

ous coverage for comparing DTRs, and demonstrates the approach on adaptive

play-the-winner designs.

Key challenges in the design and analysis of SMARTs include incorporating

patient covariates and handling estimations as the length of the decision tree

grows, because the number of treatment strategies and possible patient histories

explodes rapidly. Most SMARTS do not consider more than two decision points

per patient.

One approach for handling patient covariates is Q-learning (Sutton and Barto

(1998); Murphy (2005)). Q-learning seeks to model the patient’s expected final

outcome, conditional on taking action ai and given the history (τi, x1:i, a1:i−1),

and assuming optimal decision making thereafter. This model is thus a function,

E[Y |τi, x1:i, a1:i] ∼ Q(τi, x1:i, a1:i), called the Q-function. In order to estimate

a Q-function, Q-learning alternates between model estimation of expected val-

ues of states and backward induction to select optimal actions, using a modified

version of Bellman’s inequality. Q-learning is therefore an approximate dynamic

programming technique. It has been combined with a variety of modeling ap-

proaches including linear models (Murphy (2005)), regression trees (Ernst, Geurts

and Wehenkel (2005)), and kernels (Ormoneit and Sen (2002)). Chakraborty and

Murphy (2014) discuss nonregular asymptotics for Q-learning with the linear

model.

7. Recent Advances for Learning about DTRs

Intuitions and approaches from MAB and CMAB theory, including Lai and

Robbins (1985), are proving fruitful in constructing algorithms with theoretical

guarantees and good performance for analyzing DTRs.

In the general DTR setting, Zhang and Bareinboim (2019) use the UCB

approach to motivate a reinforcement learning algorithm and derive regret guar-

antees. Following the techniques of Lai and Robbins (1985) and Auer, Jaksch

and Ortner (2009), at each time t, they construct a uniform confidence set Mt
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with two-sided bounds on the final payouts and transitions, and then use the

Bellman equation recursively to find an optimal DTR in Mt. Note that this ap-

proach also permits confidence bands for the values of individual DTRs. Zhang

and Bareinboim derive regret guarantees, and further show that weak evidence

from observational data collection can be used to narrow the range of possible

transitions, thus narrowing Mt and improving performance.

Hu and Kallus (2020) analyze a two-stage DTR model. Assuming a linear

model for Q-functions, they extend the contextual bandit approaches of Golden-

shluger and Zeevi (2013) and Bastani, Bayati and Khosravi (2020) to the two-

stage two-treatment DTR setting, using a combination of unbiased estimates

from a small sample and biased estimates from the full sample. They derive

regret bounds under several margin conditions on the Q-functions, notably show-

ing under a sharp margin condition a regret bound of order O(d(log d)2/3 log T +

(d log d)2). They demonstrate that their bounds have optimal dependence on T

by applying lower bounds from contextual bandits.

Wang and Powell (2016) demonstrate an important connection between DTRs

and contextual bandits in a Bayesian framework. They model binary outcomes

using Bayesian generalized linear models and handle posterior computations using

Laplace approximations. With quick recursive computation of the value function,

they show how to collapse the DTR problem into a CMAB problem, where each

decision point becomes a bandit sample, and payoffs are given by the change in

the posterior expected value. This formulation naturally permits them to use

Bayesian CMAB algorithms, including the knowledge gradient, Thompson sam-

pling, and greedy Bayes algorithms, for learning and executing DTRs.

8. Conclusion

In this paper, we have reviewed the current literature on the use of adaptive

randomization, as represented by the CMAB, as a natural model for an LHS that

seeks to add experimental strength to its portfolio of learning methodologies.

Lai’s contributions to the theory and practice of bandits goes back almost 40

years, and his basic insights have led to innovations in diverse areas, such as

finance, internet commerce, and medical drug development.

This past year, the world has been engulfed in a global pandemic, and many

of the ideas reviewed here have taken on much greater significance. Governments

are learning how to control the outbreak using a combination of interventions,

including masks and “social distancing,” rapid learning by intensivists faced with

a virus having pleiotropic clinical effects, development of new therapeutics and
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the repurposing of existing drugs, and ambitious programs of vaccine develop-

ment. They are also dealing with the economic disruption, both directly from

the pandemic and indirectly from the control efforts.

The limitations of observational, non-experimental approaches and conven-

tional randomized clinical trials have been cast in sharp relief. Each scientific

specialty has begun to propose ways to make its responses better and faster “next

time around.” Virologists propose beginning therapeutic drug and vaccine devel-

opment, even in advance of knowing the identity of the new pandemic agent.

Ecologists and wildlife conservationists urge a greatly expanded global project

to survey likely animal sources of the next spillover event, and to target those

agents that are likely to pose a substantial global threat. Clinical scientists and

trialists seek to create pre-formed platforms for rapid testing of the drugs, non-

pharmacologic interventions, and vaccines that will be proposed. In this area,

innovative experimental design will be critical, and as statisticians are recruited

to help prepare for the next emergency, they will find, as we have, that the work

of Tze Leung Lai will provide a sturdy basis and flexible, but reliable framework

for their efforts.
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Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011). Improved algorithms for linear stochastic

bandits. In Advances in Neural Information Processing Systems 24 (Edited by J. Shawe-

Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K. Q. Weinberger), 2312–2320. Curran

Associates, Inc.

Agrawal, S. and Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit

problem. In Conference on Learning Theory, 39–1.

Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs.

In International Conference on Machine Learning 28, 127–135.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

problem. Machine Learning 47, 235–256.

Auer, P., Jaksch, T. and Ortner, R. (2009). Near-optimal regret bounds for reinforcement learn-

ing. In Advances in Neural Information Processing Systems, 89–96.

Bartroff, J., Lai, T. L. and Shih, M. (2012). Sequential Experimentation in Clinical Trials:

Design and Analysis. Springer Science & Business Media.

Bastani, H. and Bayati, M. (2019). Online decision making with high-dimensional covariates.

Operations Research.

Bastani, H., Bayati, M. and Khosravi, K. (2020). Mostly exploration-free algorithms for contex-



2304 SKLAR, SHIH AND LAVORI

tual bandits. Management Science.

Berger, J. O. and Wolpert, R. L. (1988). The Likelihood Principle. IMS.

Bouneffouf, D. and Rish, I. (2019). A survey on practical applications of multi-armed and

contextual bandits. arXiv preprint arXiv:1904.10040.

Bubeck, S., Munos, R. and Stoltz, G. (2011). Pure exploration in finitely-armed and continuous-

armed bandits. Theoretical Computer Science 412, 1832–1852.

Chakraborty, B. and Murphy, S. (2014). Dynamic treatment regimes. Annual Review of Statistics

and its Application 1, 447–464.

Chamberlayne, R., Green, B., Barer, M. L., Hertzman, C., Lawrence, W. J. and Sheps, S. B.

(1998). Creating a population-based linked health database: A new resource for health

services research. Canadian Journal of Public Health 89, 270–273.

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In Advances in

Neural Information Processing Systems, 2249–2257.

Cheng, Y. and Berry, D. (2007). Optimal adaptive randomized designs for clinical trials.

Biometrika 94, 673–689.

Chu, W., Li, L., Reyzin, L. and Schapire, R. (2011). Contextual bandits with linear payoff func-

tions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence

and Statistics, 208–214.

Diaconis, P. (2009). The markov chain monte carlo revolution. Bulletin of the American Math-

ematical Society 46, 179–205.

Dimakopoulou, M., Zhou, Z., Athey, S. and Imbens, G. (2017). Estimation considerations in

contextual bandits. arXiv preprint arXiv:1711.07077.

Dwivedi, R., Chen, Y., Wainwright, M. and Yu, B. (2018). Log-concave sampling: Metropolis-

hastings algorithms are fast! In Conference on Learning Theory, 793–797.

Eckles, D. and Kaptein, M. (2014). Thompson sampling with the online bootstrap. arXiv

preprint arXiv:1410.4009.

Elmachtoub, A., McNellis, R., Oh, S. and Petrik, M. (2017). A practical method for solving

contextual bandit problems using decision trees. arXiv preprint arXiv:1706.04687.

Ernst, D., Geurts, P. and Wehenkel, L. (2005). Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research 6, 503–556.

Ernst, M. (2004). Permutation methods: A basis for exact inference. Statistical Science 19, 676–

685.

Goldenshluger, A. and Zeevi, A. (2013). A linear response bandit problem. Stochastic Systems

3, 230–261.

Greenewald, K., Tewari, A., Murphy, S. and Klasnja, P. (2017). Action centered contextual

bandits. In Advances in Neural Information Processing Systems 30, 5973–5981.

Hadad, V., Hirshberg, D., Zhan, R., Wager, S. and Athey, S. (2019). Confidence intervals for

policy evaluation in adaptive experiments. arXiv preprint arXiv:1911.02768.

Hu, Y. and Kallus, N. (2020). Dtr bandit: Learning to make response-adaptive decisions with

low regret. arXiv preprint arXiv:2005.02791.

Jamieson, K. and Nowak, R. (2014). Best-arm identification algorithms for multi-armed bandits

in the fixed confidence setting. In 2014 48th Annual Conference on Information Sciences

and Systems (CISS), 1–6. IEEE.

Johari, R., Pekelis, L. and Walsh, D. J. (2015). Always valid inference: Bringing sequential

analysis to a/b testing. arXiv preprint arXiv:1512.04922.



BANDIT THEORY FOR LEARNING HEALTHCARE SYSTEMS 2305

Karnin, Z., Koren, T. and Somekh, O. (2013). Almost optimal exploration in multi-armed

bandits. In International Conference on Machine Learning, 1238–1246.

Kasy, M. and Sautmann, A. (2019). Adaptive treatment assignment in experiments for policy

choice. Econometrica 89, 113–132.

Kaufmann, E., Korda, N. and Munos, R. (2012). Thompson sampling: An asymptotically op-

timal finite-time analysis. In International Conference on Algorithmic Learning Theory,

199–213. Springer.

Kim, D., Lai, T. L. and Xu, H. (2020). Multi-armed bandits with covariates: Theory and

applications.

Korda, N., Kaufmann, E. and Munos, R. (2013). Thompson sampling for 1-dimensional expo-

nential family bandits. In Advances in Neural Information Processing Systems, 1448–1456.

Korn, E. and Freidlin, B. (2011). Outcome-adaptive randomization: is it useful? Journal of

Clinical Oncology 29, 771–776.

Lai, T., Liao, O. and Kim, D. (2013). Group sequential designs for developing and testing

biomarker-guided personalized therapies in comparative effectiveness research. Contempo-

rary Clinical Trials 36, 651–663.

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in

Applied Mathematics 6, 4–22.

Lai, T. L., Lavori, P. and Liao, O. (2014). Adaptive choice of patient subgroup for comparing

two treatments. Contemporary Clinical Trials 39, 191–200.

Lai, T. L. and Li, W. (2006). Confidence intervals in group sequential trials with random group

sizes and applications to survival analysis. Biometrika 93, 641–654.

Lai, T. L. and Liao, O. (2012). Efficient adaptive randomization and stopping rules in multi-arm

clinical trials for testing a new treatment. Sequential Analysis 31, 441–457.

Lai, T. L. and Shih, M. (2004). Power, sample size and adaptation considerations in the design

of group sequential clinical trials. Biometrika 91, 507–528.

Lavori, P. and Dawson, R. (2000). A design for testing clinical strategies: Biased adaptive

within-subject randomization. Journal of the Royal Statistical Society: Series A (Statistics

in Society) 163, 29–38.

Lavori, P. and Dawson, R. (2004). Dynamic treatment regimes: Practical design considerations.

Clinical Trials 1, 9–20.

Lavori, P. and Dawson, R. (2007). Improving the efficiency of estimation in randomized trials

of adaptive treatment strategies. Clinical Trials 4, 297–308.

Lavori, P. and Dawson, R. (2008). Adaptive treatment strategies in chronic disease. Annu. Rev.

Med. 59, 443–453.

Li, L., Chu, W., Langford, J. and Schapire, R. (2010). A contextual-bandit approach to person-

alized news article recommendation. In Proceedings of the 19th International Conference

on World Wide Web, 661–670.

Lu, T., Pál, D. and Pál, M. (2010). Contextual multi-armed bandits. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence and Statistics, 485–492.

Murphy, S. A. (2005). An experimental design for the development of adaptive treatment strate-

gies. Statistics in Medicine 24, 1455–1481.

Olsen, L., Aisner, D. and McGinnis, J. M. (2007). Institute of medicine roundtable on evidence-

based medicine: The learning healthcare system. In Workshop Summary.
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