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S1 Proof of proposition 1

S1.1 Results from Rodriguez et al. (2008)

In the hierarchical and nested nonparametric prior (3.1), given G0, G(j)’s

come from the NDP, DP(ν,DP(γ,G0)). According to Rodriguez et al.

(2008), we have the following results for any Borel set A ∈ B.

1 E
(
G(j)(A)|G0

)
= G0(A).

2 E
((
G(j)(A)

)2 |G0

)
= G0(A)(γG0(A)+1)

γ+1
.

3 E
(
G(j)(A)G(j′)(A)|G0

)
= (G0(A))2 + 1

ν+1
G0(A)(1−G0(A))

γ+1
, j 6= j′.

4 Assume the first and second moments of G0 are a1 and a2, respectively.
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When D = 1, let µ
(j)
i and µ

(j′)
i′ denote random variables from G(j) and

G(j′), respectively. Conditional on G0, the expectation between µ
(j)
i

and µ
(j′)
i′ for i 6= i′ is E

(
µ

(j)
i µ

(j)
i′ |G0

)
= 1

γ+1
a2 + γ

γ+1
a2

1.

5 P
(
G(j)(A) = G(j′)(A)|G0

)
= 1

ν+1
> 0.

S1.2 Proposition 1(1)

Proof.

E
(
G(j)(A)|H

)
= E

(
E
(
G(j)(A)|G0

)
|H
)

= E (G0(A)|H)

= H(A).

S1.3 Proposition 1(2)

Proof. Since G0 ∼ DP(α,H), G0(A) ∼ Beta (αH(A), α(1−H(A))).

E
((
G(j)(A)

)2 |H
)

= E
(
E
((
G(j)(A)

)2 |G0

)
|H
)

= E
(
G0(A) (γG0(A) + 1)

γ + 1
|H
)

=
αγ (H(A))2 + (α + γ + 1)H(A)

(α + 1) (γ + 1)
.
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Therefore,

V
(
G(j)(A)|H

)
= E

((
G(j)(A)

)2 |H
)
−
(
E
(
G(j)(A)|H

))2

=
(α + γ + 1)H(A) (1−H(A))

(α + 1) (γ + 1)
.

S1.4 Proposition 1(3)

Proof. Since G0 ∼ DP(α,H), G0(A) ∼ Beta (αH(A), α(1−H(A))). For

j 6= j′,

E
(
G(j)(A)G(j′)(A)|H

)
= E

(
E
(
G(j)(A)G(j′)(A)|G0

)
|H
)

= E
(

(G0(A))2 +
G0(A) (1−G0(A))

(γ + 1)(ν + 1)
|H
)

=
α (H(A))2 +H(A)

α + 1
+

αH(A) (1−H(A))

(α + 1) (γ + 1) (ν + 1)
.

Then,

Cov
(
G(j)(A), G(j′)(A)|H

)
= E

(
G(j)(A)G(j′)(A)|H

)
− E

(
G(j)(A)|H

)
E
(
G(j′)(A)|H

)
=
α (H(A))2 +H(A)

α + 1
+

αH(A) (1−H(A))

(α + 1) (γ + 1) (ν + 1)
− (H(A))2

=
(α + (γ + 1) (ν + 1))H(A) (1−H(A))

(α + 1) (γ + 1) (ν + 1)
.
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Therefore,

Cor
(
G(j)(A), G(j′)(A)|H

)
=

Cov
(
G(j)(A), G(j′)(A)|H

)
(V (G(j)(A)|H)V (G(j′)(A)|H))

1/2

=
1

1 + ν

νγ + α + γ + ν + 1

α + γ + 1
.

S1.5 Proposition 1(4)

Proof. Since G0 ∼ DP(α,H), we can write G0 =
∑∞

k=1 πkδµk , where µk
i.i.d.∼

H, {πk}∞k=1 ∼ GEM(α). Assume the first and second moments of G0 are

a1 and a2, respectively. Let E(µk|H) = m1 and E(µ2
k|H) = m2 < ∞.

Then a1 =
∑∞

k=1 πkµk and a2 =
∑∞

k=1 πkµ
2
k imply that E(a1|H) = m1 and

E(a2|H) = m2. According to the construction of stick-breaking process,

E(π2
k) =

(
α

2+α

)k−1 2
(1+α)(2+α)

.
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First, we have

E
(
a2

1|H
)

= E

(
∞∑
k=1

πkµk

(
πkµk +

∑
`6=k

π`µ`

)
|H

)

=
∞∑
k=1

[
E(π2

k)E(µ2
k|H) + E(πk

∑
`6=k

π`)E(µkµ`|H)

]

=
∞∑
k=1

[
E(π2

k)m2 + E(πk
∑
`6=k

π`)m
2
1

]

=
∞∑
k=1

[
E(π2

k)(m2 −m2
1)
]

+m2
1

=
1

α + 1
(m2 −m2

1) +m2
1

=
1

α + 1
m2 +

α

α + 1
m2

1.

In addition,

E
(
µ

(j)
i |H

)
= E

(
E
(
µ

(j)
i |G0

)
|H
)

= E (a1|H) = m1,

V
(
µ

(j)
i |H

)
= E

(
E
((

µ
(j)
i

)2

|G0

)
|H
)
− E

(
µ

(j)
i |H

)2

= E (a2|H)− E
(
µ

(j)
i |H

)2

= m2 −m2
1.
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For i 6= i′, j = j′,

E
(
µ

(j)
i µ

(j′)
i′ |H

)
= E

(
E
(
µ

(j)
i µ

(j)
i′ |G0

)
|H
)

= E
(

1

γ + 1
a2 +

γ

γ + 1
a2

1|H
)

=
1

γ + 1
m2 +

γ

γ + 1

(
1

α + 1
m2 +

α

α + 1
m2

1

)
=

α + γ + 1

(α + 1) (γ + 1)
m2 +

αγ

(α + 1) (γ + 1)
m2

1.

Subsequently,

Cov
(
µ

(j)
i , µ

(j′)
i′ |H

)
= E

(
µ

(j)
i µ

(j)
i′ |H

)
− E

(
µ

(j)
i |H

)
E
(
µ

(j)
i′ |H

)
=

α + γ + 1

(α + 1) (γ + 1)
m2 +

αγ

(α + 1) (γ + 1)
m2

1 −m2
1

=
α + γ + 1

(α + 1) (γ + 1)
(m2 −m2

1).

Therefore,

Cor
(
µ

(j)
i , µ

(j′)
i′ |H

)
=

Cov
(
µ

(j)
i , µ

(j)
i′ |H

)
(
V
(
µ

(j)
i |H

)
V
(
µ

(j)
i′ |H

))1/2

=
α + γ + 1

(α + 1)(γ + 1)
.
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For j 6= j′,

E
(
µ

(j)
i µ

(j′)
i′ |G0

)
= E

(
µ

(j)
i µ

(j)
i′ |G0

)
P
(
G(j)(A) = G(j′)(A)|G0

)
+ E

(
µ

(j)
i µ

(j′)
i′ |G0

)
P
(
G(j)(A) 6= G(j′)(A)|G0

)
=

(
1

γ + 1
a2 +

γ

γ + 1
a2

1

)
1

ν + 1
+ a2

1

ν

ν + 1

=
1

(γ + 1) (ν + 1)
a2 +

νγ + γ + ν

(γ + 1) (ν + 1)
a2

1.

Then

E
(
µ

(j)
i µ

(j′)
i′ |H

)
= E

(
E
(
µ

(j)
i µ

(j′)
i′ |G0

)
|H
)

=
νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
m2 +

α(νγ + γ + ν)

(ν + 1)(α + 1)(γ + 1)
m2

1.

Subsequently,

Cov
(
µ

(j)
i , µ

(j′)
i′ |H

)
= E

(
µ

(j)
i µ

(j′)
i′ |H

)
− E

(
µ

(j)
i |H

)
E
(
µ

(j′)
i′ |H

)
=

νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
(m2 −m2

1).

Therefore,

Cor
(
µ

(j)
i , µ

(j′)
i′ |H

)
=

Cov
(
µ

(j)
i , µ

(j′)
i′ |H

)
(
V
(
µ

(j)
i |H

)
V
(
µ

(j′)
i′ |H

))1/2

=
νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
.
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S1.6 Proposition 1(5)

Proof. Since G0 ∼ DP(α,H), we can write G0 =
∑∞

k=1 πkδµk , where µk
i.i.d.∼

H, {πk}∞k=1 ∼ GEM(α). Assume the first and second moments of G0 are

a1 and a2, respectively. Let E(µk|H) = m1, E(µkµ
>
k |H) = m2 and

Cor(µk|H) = RH . Then a1 =
∑∞

k=1 πkµk and a2 =
∑∞

k=1 πkµkµ
>
k . Thus,

E(a1|H) = m1 and E(a2|H) = m2. According to the construction of

stick-breaking process, E(π2
k) =

(
α

2+α

)k−1 2
(1+α)(2+α)

.

First, we have

E
(
a1a

>
1 |H

)
= E

(
∞∑
k=1

πkµk

(
πkµ

>
k +

∑
` 6=k

π`µ
>
`

)
|H

)

=
∞∑
k=1

[
E(π2

k)E(µkµ
>
k |H) + E(πk

∑
`6=k

π`)E(µkµ
>
` |H)

]

=
∞∑
k=1

[
E(π2

k)m2 + E(πk
∑
` 6=k

π`)m1m
>
1

]

=
∞∑
k=1

[
E(π2

k)(m2 −m1m
>
1 )
]

+m1m
>
1

=
1

α + 1
(m2 −m1m

>
1 ) +m1m

>
1

=
1

α + 1
m2 +

α

α + 1
m1m

>
1 .

In addition,

E
(
µ

(j)
i |H

)
= E

(
E
(
µ

(j)
i |G0

)
|H
)

= E (a1|H) = m1,
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V
(
µ

(j)
i |H

)
= E

(
E
((
µ

(j)
i

)2

|G0

)
|H
)
− E

(
µ

(j)
i |H

)2

= E (a2|H)− E
(
µ

(j)
i |H

)2

= m2 −m1m
>
1 .

For i 6= i′, j = j′,

E
(
µ

(j)
i µ

(j′)
i′ |H

)
= E

(
E
(
µ

(j)
i µ

(j)>
i′ |G0

)
|H
)

= E
(

1

γ + 1
a2 +

γ

γ + 1
a1a

>
1 |H

)
=

1

γ + 1
m2 +

γ

γ + 1

(
1

α + 1
m2 +

α

α + 1
m1m

>
1

)
=

α + γ + 1

(α + 1) (γ + 1)
m2 +

αγ

(α + 1) (γ + 1)
m1m

>
1 .

Subsequently,

Cov
(
µ

(j)
i ,µ

(j′)
i′ |H

)
= E

(
µ

(j)
i µ

(j)>
i′ |H

)
− E

(
µ

(j)
i |H

)
E
(
µ

(j)
i′ |H

)>
=

α + γ + 1

(α + 1) (γ + 1)
m2 +

αγ

(α + 1) (γ + 1)
m1m

>
1 −m1m

>
1

=
α + γ + 1

(α + 1) (γ + 1)
(m2 −m1m

>
1 ).

Therefore,

Cor
(
µ

(j)
i ,µ

(j′)
i′ |H

)
= diag

(
V
(
µ

(j)
i |H

))−1/2

Cov
(
µ

(j)
i ,µ

(j)
i′ |H

)
diag

(
V
(
µ

(j)
i′ |H

))−1/2

=
α + γ + 1

(α + 1)(γ + 1)
RH .
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For j 6= j′,

E
(
µ

(j)
i µ

(j′)
i′ |G0

)
= E

(
µ

(j)
i µ

(j)
i′ |G0

)
P
(
G(j)(A) = G(j′)(A)|G0

)
+ E

(
µ

(j)
i µ

(j′)
i′ |G0

)
P
(
G(j)(A) 6= G(j′)(A)|G0

)
=

(
1

γ + 1
a2 +

γ

γ + 1
a1a

>
1

)
1

ν + 1
+ a1a

>
1

ν

ν + 1

=
1

(γ + 1) (ν + 1)
a2 +

νγ + γ + ν

(γ + 1) (ν + 1)
a1a

>
1 .

Then

E
(
µ

(j)
i µ

(j′)
i′ |H

)
= E

(
E
(
µ

(j)
i µ

(j′)
i′ |G0

)
|H
)

=
νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
m2 +

α(νγ + γ + ν)

(ν + 1)(α + 1)(γ + 1)
m1m

>
1 .

Subsequently,

Cov
(
µ

(j)
i ,µ

(j′)
i′ |H

)
= E

(
µ

(j)
i µ

(j′)
i′ |H

)
− E

(
µ

(j)
i |H

)
E
(
µ

(j′)
i′ |H

)
=

νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
(m2 −m1m

>
1 ).

Therefore,

Cor
(
µ

(j)
i ,µ

(j′)
i′ |H

)
= diag

(
V
(
µ

(j)
i |H

))−1/2

Cov
(
µ

(j)
i ,µ

(j′)
i′ |H

)
diag

(
V
(
µ

(j′)
i′ |H

))−1/2

=
νγ + α + γ + ν + 1

(ν + 1)(α + 1)(γ + 1)
RH .
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S2 The PLN distribution accounts for the over-dispersion

Let Y ∼ PLN(η, σ2), which is equivalent to θ ∼ N(η, σ2) and Y ∼ Poi(eθ).

The mean and variance of Y can be derived based on the law of the total

expectation as follows.

E(Y ) = E(E(Y |θ))

= eη+σ2

2 ,

V(Y ) = E(V(Y |θ)) + V(E(Y |θ))

= eη+σ2

2 (1 + eη+ 3σ2

2 − eη+σ2

2 ).

The variance of PLN is larger than the mean, so PLN is able to model

over-dispersed data.

S3 Library size

The cell library size is the total number of reads mapped to one single cell.

For example, there are two genes and two cells. We assume the two genes in

fact have the same expression in the two cells. However, two cells usually go

through different polymerase chain reaction (PCR) amplification, resulting

in different read counts on genes, e.g., gene 1 has 4 reads in cell 1 and 12

reads in cell 2, and gene 2 has 6 reads in cell 1 and 18 reads in cell 2. Then

library sizes of two cells are 10 and 30, respectively. Without consideration
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of cell library sizes, we will have the wrong conclusion that the two genes are

differentially expressed between the two cells. If library sizes are accounted

for, we divide the expressions in cell 2 by 30/10 = 3 and thus obtain the

correct results that the two genes have the same expression levels in the

two cells.

S4 The proof of Theorem 1

We denote the set of all parameters in SCSC except µ by Θ−µ.

∫ ∣∣pKL(x)− p∞∞(x)
∣∣ dx ≤ ∫∫∫ p(x|µ,Θ−µ)

∣∣pKL(dµ)− p∞∞(dµ)
∣∣ p(dΘ−µ)dx

=

∫ ∣∣pKL(dµ)− p∞∞(dµ)
∣∣

≤
∫∫ ∣∣pKL(dµ|G0)− p∞∞(dµ|G0)

∣∣ p(dG0)

≤
∫
εKL(ν, γ)p(dG0)

= εKL(ν, γ).

εKL(ν, γ) = 4

{
1−

[
1−

(
ν

1+ν

)L−1
]m
×
[
1−

(
γ
γ+1

)K−1
]∑m

j=1 nj
}

. The

last inequality in this theorem follows the proof of the Theorem 2 of Ro-

driguez et al. (2008).



S5. PROOF OF EQUIVALENCE BETWEEN MODELS (4.1) AND (4.2)

S5 Proof of equivalence between Models (4.1) and

(4.2)

We prove that Model (4.1) is equivalent to Model (4.2).

Proof. In Model (4.1), we first focus on the first three lines,



G0 ∼ DP(α,H)

G(j)|G0 ∼ DPL(ν,DPK(γ,G0))

µ
(j)
i |G(j) ∼ G(j)

⇐⇒ (∗)



G0 ∼ DP(α,H)

G∗` |G0 ∼ DPK(γ,G0) for 1 ≤ ` ≤ L

φ = (φ1, φ2, . . . , φL) ∼ GEML(ν)

G(j)|G∗` ,φ ∼
∑L

`=1 φ`δG∗`

µ
(j)
i |G(j) ∼ G(j).

Note that G0 ∼ DP(α,H) and G∗
′

` |G0 ∼ DP(γ,G0) are equivalent to

ρ = (ρ1, ρ2, . . .) ∼ GEM(α), µk ∼ H, π′` = (π′1`, π
′
2`, . . .)|ρ ∼ DP(γ,ρ)

and G∗
′

` =
∑∞

k=1 π
′
k`δµk according to the results from the HDP paper (Teh

et al., 2006). Subsequently, when there is a truncation K on the distribution

G∗
′

` =
∑∞

k=1 π
′
`kδµk , we have G∗` =

∑K
k=1 πk`δµk , where πk` = π′k` for 1 ≤ k ≤

K − 1 and πK` =
∑∞

i=K π
′
i`. Therefore, the first two lines of the expression

(∗) are
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
G0 ∼ DP(α,H)

G∗` |G0 ∼ DPK(γ,G0)

⇐⇒



ρ = (ρ1, ρ2, . . .) ∼ GEM(α)

µk ∼ H

π` = (π1,`, . . . , πK−1,`, πK,`)|ρ

∼ Dir(γρ1, . . . , γρK−1, γ
∑∞

i=K ρi)

G∗` |π`,µk =
∑K

k=1 πk`δµk

⇐⇒



ξ := (ξ1 = ρ1, . . . , ξK−1 = ρK−1, ξK =
∑∞

i=K ρi)

∼ GEMK(α)

µk ∼ H

π`|ξ ∼ Dir(γξ1, . . . , γξK)

G∗` |π`,µk ∼
∑K

k=1 πk`δµk .

The second equivalence holds because for any ξ ∼ GEMK(α) we can

find a ρ following GEM(α) by letting ρk = ξk for 1 ≤ k ≤ K − 1, ρK =

(1−
∑K−1

i=1 ρi) ·ρ′K , and ρk = (1−
∑K−1

i=1 ρi) ·
∏k−1

i=K(1−ρ′i) ·ρ′k for k ≥ K+1,

where ρ′i ∼ Beta(1, α) (i ≥ K); and on the opposite direction, for any

ρ ∼ GEM(α), ξ follows GEMK(α) through the construction above. Next,
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we plug the result above into the expression (∗), leading to



G0 ∼ DP(α,H)

G(j)|G0 ∼ DPL(ν,DPK(γ,G0))

µ
(j)
i |G(j) ∼ G(j)

⇐⇒



ξ ∼ GEMK(α)

µk ∼ H

π`|ξ ∼ Dir(γξ1, . . . , γξK)

G∗` |π`,µk =
∑K

k=1 πk`δµk

φ = (φ1, φ2, . . . , φL) ∼ GEML(ν)

G(j)|G∗` ,φ ∼
∑L

`=1 φ`δG∗`

µ
(j)
i |G(j) ∼ G(j).

Considering S(j), C
(j)
i , and the distribution for scRNA-seq data, it fol-

lows that
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

G0 ∼ DP(α,H)

G(j)|G0 ∼ DPL(ν,DPK(γ,G0))

µ
(j)
i |G(j) ∼ G(j)

X
(j)
gi |µ

(j)
i ∼

ZIPLN(λg0, λg1, s
(j)
i , µ

(j)
gi + β

(j)
g , σ2

g)

⇐⇒



ξ ∼ GEMK(α)

µk ∼ H

π` ∼ Dir(γξ1, . . . , γξK)

φ = (φ1, φ2, . . . , φL) ∼ GEML(ν)

S(j) ∼ MN(1;φ1, φ2, . . . , φL)

C
(j)
i |S(j) = ` ∼ MN(1; π1`, . . . , πK`)

X
(j)
gi |S(j) = `, C

(j)
i = k ∼

ZIPLN(λg0, λg1, s
(j)
i , µgk + βg`, σ

2
g).

S6 SCSC-vs

Tadesse et al. (2005) proposed a Bayesian variable selection method to clus-

ter high-dimensional samples and identify discriminating variables simulta-

neously, so we incorporated this idea into the proposed model SCSC, result-

ing in a variable selection version, which we termed SCSC-vs. SCSC-vs can

identify genes that discriminate cell types to improve the clustering accu-

racy. Specifically, we introduced binary latent variables Z = {z1, · · · , zD},
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where zg = 1 indicates that gene g is a marker across cell types (1 ≤ g ≤ D).

We denoted the common cell-type effects by µg,com when zg = 0, which

means the gene g cannot distinguish cell types. Following Tadesse et al.

(2005), the likelihood function of Z,µ given all other variables is

p(Z,µ|−) =
∏
i,j

 ∏
g:zg=0

N
(
θ

(j)
gi ;µg,com + βgS(j) , σ2

g

) ∏
g:zg=1

N
(
θ

(j)
gi ;µ

gC
(j)
i

+ βgS(j) , σ2
g

) ,

where N(x;µ, σ2) is the normal density evaluated at x with mean µ and

variance σ2. We assigned a Bernoulli distribution Ber(q) to zg and a normal

distribution N(ηµ, τ
2
µ) to µg,com and µgk.

By combining the conditional distribution above and the Model (4.2)

in the manuscript, we implemented the MCMC algorithm to perform pos-

terior inference. The following steps are different from those in the MCMC

sampling scheme of SCSC in Section S7.

1. The augmented parameter θ
(j)
gi in the PLN distribution is generated

from

p(θ
(j)
gi |−) ∝ exp

{
−s(j)

i eθ
(j)
gi + Y

(j)
gi θ

(j)
gi −

(θ
(j)
gi − µgk − βg`)2

2σ2
g

}
,

when S(j) = `, C
(j)
i = k and zg = 1;

p(θ
(j)
gi |−) ∝ exp

{
−s(j)

i eθ
(j)
gi + Y

(j)
gi θ

(j)
gi −

(θ
(j)
gi − µg,com − βg`)2

2σ2
g

}
,
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when S(j) = `, C
(j)
i = k and zg = 0.

4. For each gene g, we first sample the marker indicator zg from the

Bernoulli distribution

Ber(
1

1 + dg
),

where

dg =
1− q
q

(τ 2
µ)(K−1)/2

K∏
k=1

(
m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1
τ2µ

)1/2

(
m∑
j=1

nj/σ2
g + 1

τ2µ

)1/2

× exp


(K − 1)

η2
µ

2τ 2
µ

+

(
m∑
j=1

nj∑
i=1

(θ
(j)
gi − βgS(j))/σ2

g + ηµ
τ2µ

)2

2

(
m∑
j=1

nj/σ2
g + 1

τ2µ

)


× exp


−

K∑
k=1

(
m∑
j=1

nj∑
i=1

(θ
(j)
gi − βgS(j))I(C(j)

i = k)/σ2
g + ηµ

τ2µ

)2

2

(
m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1
τ2µ

)

.

If zg = 1, then we sample the cell-type k effect on gene g, µgk, from

the normal distribution

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − βgS(j))I(C(j)

i = k)/σ2
g + ηµ/τ

2
µ

m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1/τ 2
µ

,
1

m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1/τ 2
µ

 .

If zg = 0, we sample the common cell effect on gene g, µg,com, from
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the normal distribution

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − βgS(j))/σ2

g + ηµ/τ
2
µ

m∑
j=1

nj/σ2
g + 1/τ 2

µ

,
1

m∑
j=1

nj/σ2
g + 1/τ 2

µ

 .

5. Update the hyper-parameters in the cell-type effect prior,

ηµ|− ∼ N

(∑D
g=1

(∑K
k=1 µgkI(zg = 1) +Kµg,comI(zg = 0)

)
/τ 2
µ + uµ/ω

2
µ

DK/τ 2
µ + 1/ω2

µ

,

1

DK/τ 2
µ + 1/ω2

µ

)
,

τ 2
µ|− ∼ InvΓ

(
bµ1 +DK/2, bµ2 +

D∑
g=1

( K∑
k=1

(µgk − ηµ)2I(zg = 1)

+K(µg,com − ηµ)2I(zg = 0)
)
/2

)
.

6. The subgroup ` effect on gene g for ` ≥ 2, βg`, is sampled from the

normal distribution

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − µgC(j)

i
)I(S(j) = `)/σ2

g + ηβ/τ
2
β

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

,
1

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

 ,

when zg = 1;

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − µg,com)I(S(j) = `)/σ2

g + ηβ/τ
2
β

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

,
1

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

 ,

when zg = 0.

We notice that subgroup 1 effect, βg1, is restricted to zero across 1 ≤
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g ≤ D for identifying the subgroup and cell-type effects.

8. Update the variance σ2
g for gene g by sampling from the inverse-gamma

distribution

InvΓ(bσ1 +
m∑
j=1

nj/2, bσ2 +
m∑
j=1

nj∑
i=1

(θ
(j)
gi − µgC(j)

i
− βgS(j))2/2),

when zg = 1;

InvΓ(bσ1 +
m∑
j=1

nj/2, bσ2 +
m∑
j=1

nj∑
i=1

(θ
(j)
gi − µg,com − βgS(j))2/2),

when zg = 0.

9. For each subject j, update the subtype indicator S(j) and the cell-type

indicators C
(j)
i for cell i = 1, . . . , nj from multinomial distributions

P (S(j) = `|−) ∝ φ`

nj∏
i=1

[ K∑
k=1

πk`
∏
g:zg=1

N(θ
(j)
gi ;µgk + βg`, σ

2
g)×

∏
g:zg=0

N(θ
(j)
gi ;µg,com + βg`, σ

2
g)

]
,

P (C
(j)
i = k|S(j) = `,−) ∝ πk`

∏
g:zg=1

N(θ
(j)
gi ;µgk + βg`, σ

2
g)
∏
g:zg=0

N(θ
(j)
gi ;µg,com + βg`, σ

2
g),

` = 1, . . . , L and k = 1, . . . , K.

The other steps are the same as those in the MCMC sampling scheme

in Section S7.

We acknowledge that the similar variable selection feature can be ap-

plied to subject-specific effects β
(j)
g and even cell-type proportions parame-

ters π`. However, the procedure would further complicate the derivation of
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the sampling scheme and increase the computation burden of the MCMC

algorithm especially for a large gene number and a large cell-type num-

ber. How to address the question efficiently and effectively is an interesting

research direction in this project, and we thus leave it to the future work.

S7 Blocked Gibbs sampler

Given the priors and Model (4.2), we utilize the blocked Gibbs sampler to

carry out the posterior sampling: (“−” means given all other variables)

1 The augmented parameter θ
(j)
gi in the PLN distribution is generated

from

p(θ
(j)
gi |−) ∝ exp

{
−s(j)

i eθ
(j)
gi + Y

(j)
gi θ

(j)
gi −

(θ
(j)
gi − µgk − βg`)2

2σ2
g

}
,

when S(j) = ` and C
(j)
i = k.

2 Sample the missing variable Y
(j)
gi for which its observation X

(j)
gi equals

zero from

p(Y
(j)
gi |−) ∝


(s

(j)
i eθ

(j)
gi )Y

(j)
gi /Y

(j)
gi ! · Φ(λg0 + λg1 log2(Y

(j)
gi + 1)) if Y

(j)
gi ≥ 1

1 if Y
(j)
gi = 0

.

3 Update the zero-inflation intensity parameters λg0 and λg1 by gener-
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ating

p(λg0, λg1|−) ∝
∏

(j,i):X
(j)
gi >0

(
1− Φ(λg0 + λg1 log2(Y

(j)
gi + 1))

)

·
∏

(j,i):X
(j)
gi =0,Y

(j)
gi >0

Φ
(
λg0 + λg1 log2(Y

(j)
gi + 1)

)

· N(λg0; ηλg0 , τ
2
λg0

) · N(λg1; ηλg1 , τ
2
λg1

)I(λg1 < 0),

where the I(A) is an indicator function, being one if A is true and zero

otherwise; the N(x; a, b2) represents the density value at x of a normal

distribution with mean a and standard deviation b.

4 Sample the cell-type k effect on gene g, µgk, from the normal distribu-

tion

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − βgS(j))I(C(j)

i = k)/σ2
g + ηµ/τ

2
µ

m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1/τ 2
µ

,
1

m∑
j=1

nj∑
i=1

I(C(j)
i = k)/σ2

g + 1/τ 2
µ

 .

5 Update the hyper-parameters in the cell-type effect prior,

ηµ|− ∼ N

(∑D
g=1

∑K
k=1 µgk/τ

2
µ + uµ/ω

2
µ

DK/τ 2
µ + 1/ω2

µ

,
1

DK/τ 2
µ + 1/ω2

µ

)
,

τ 2
µ|− ∼ InvΓ

(
bµ1 +DK/2, bµ2 +

D∑
g=1

K∑
k=1

(µgk − ηµ)2/2

)
.

6 The subgroup ` effect on gene g for ` ≥ 2, βg`, is sampled from the
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normal distribution

N


m∑
j=1

nj∑
i=1

(θ
(j)
gi − µgC(j)

i
)I(S(j) = `)/σ2

g + ηβ/τ
2
β

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

,
1

m∑
j=1

I(S(j) = `)nj/σ2
g + 1/τ 2

β

 .

We notice that subgroup 1 effect, βg1, is restricted to zero across

1 ≤ g ≤ D for identifying the subgroup and cell-type effects.

7 Update the hyper-parameters in the subgroup effect prior,

ηβ|− ∼ N

(∑D
g=1

∑L
`=2 βg`/τ

2
β + uβ/ω

2
β

D(L− 1)/τ 2
β + 1/ω2

β

,
1

D(L− 1)/τ 2
β + 1/ω2

β

)
,

τ 2
β |− ∼ InvΓ

(
bβ1 +D(L− 1)/2, bβ2 +

D∑
g=1

L∑
`=2

(βg` − ηβ)2/2

)
.

8 Update the variance σ2
g for gene g by sampling from the inverse-gamma

distribution

InvΓ(bσ1 +
m∑
j=1

nj/2, bσ2 +
m∑
j=1

nj∑
i=1

(θ
(j)
gi − µgC(j)

i
− βgS(j))2/2).

9 For each subject j, update the subtype indicator S(j) and the cell-type

indicators C
(j)
i for cell i = 1, . . . , nj from multinomial distributions

P (S(j) = `|−) ∝ φ`

nj∏
i=1

[
K∑
k=1

πk`

D∏
g=1

N(θ
(j)
gi ;µgk + βg`, σ

2
g)

]

P (C
(j)
i = k|S(j) = `,−) ∝ πk`

D∏
g=1

N(θ
(j)
gi ;µgk + βg`, σ

2
g),

` = 1, . . . , L and k = 1, . . . , K.

10 Update the subtype proportion vector (φ1, φ2, . . . , φL). We first sample



QIUYU WU AND XIANGYU LUO

φ′` ∼ Beta(1 +m`, ν +
L∑

j=`+1

mj)

for ` = 1, . . . , L − 1 and φ′L := 1, where m` = #{j : S(j) = `} is

the number of subjects allocated to subgroup `. Subsequently, we let

φ1 = φ′1 and φ` = φ′`
∏`−1

i=1(1− φ′i) for ` = 2, . . . , L.

11 Update the stick-breaking length vector (ξ1, ξ2, . . . , ξK). We first sam-

ple

p((ξ′1, . . . , ξ
′
K−1)|−) ∝

∏K−1
k=1 (1− ξ′k)α−1∏K

k=1 ΓL(γ
∏k−1

i=1 (1− ξ′i)ξ′k)

K∏
k=1

(
L∏
`=1

πk`

)γ
∏k−1
i=1 (1−ξ′i)ξ′k−1

.

and ξ′K := 1. Subsequently, we let ξ1 = ξ′1 and ξk =
∏k−1

i=1 (1− ξ′i)ξ′k for

k = 2, . . . , K.

12 The concentration parameter α is sampled from the gamma distribu-

tion

Γ

(
aα1 +K − 1, aα2 −

K−1∑
k=1

log(1− ξ′k)

)
,

where and ξ′ks are the variables generated in the previous iteration.

13 Sample the cell type proportions (π1`, . . . , πK`) for each subtype ` from

the Dirichlet distribution

Dir(
m∑
j=1

nj∑
i=1

I(S(j) = `, C
(j)
i = 1)+γξ1, . . . ,

m∑
j=1

nj∑
i=1

I(S(j) = `, C
(j)
i = K)+γξK).
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S8 Proposal distributions and acceptance rates

S8.1 Details of the MH algorithm in steps 1, 2, 3 and 11

Updating of θ
(j)
gi

The proposal density q(θ
(j)∗
gi |θ

(j)
gi ) for θ

(j)∗
gi is set to N(θ

(j)
gi , τ

2
θ ). We set τθ = 1

in our implementation. The Metropolis-Hastings ratio is r = min(r∗, 1),

where

r∗ =
p(θ

(j)∗
gi |−)q(θ

(j)
gi |θ

(j)∗
gi )

p(θ
(j)
gi |−)q(θ

(j)∗
gi |θ

(j)
gi )

= exp

−(eθ(j)∗gi − eθ
(j)
gi

)
s

(j)
i + Y

(j)
gi

(
θ

(j)∗
gi − θ

(j)
gi

)
−

(
θ

(j)∗
gi − θ

(j)
gi

)(
θ

(j)∗
gi + θ

(j)
gi − 2(µgk + βg`)

)
2σ2

g

 .

Updating of Y
(j)
gi

Proposal distribution 1: We generate a proposal Y
(j)∗
gi from a discrete uni-

form distribution

q(Y
(j)∗
gi |Y

(j)
gi ) = Unif{Y (j)

gi − 5, Y
(j)
gi + 5},

where Unif{a, b} samples an integer from [a, b] uniformly.
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The Metropolis-Hastings ratio is r = min(r∗, 1), where

r∗ =
p(Y

(j)∗
gi |−)q(Y

(j)
gi |Y

(j)∗
gi )

p(Y
(j)
gi |−)q(Y

(j)∗
gi |Y

(j)
gi )

=



exp
((
θ

(j)
gi + log(s

(j)
i )
)(

Y
(j)∗
gi − Y

(j)
gi

))
Y

(j)
gi !

Y
(j)∗
gi !

if Y
(j)
gi = 0, Y

(j)∗
gi = 0

exp
((
θ

(j)
gi + log(s

(j)
i )
)(

Y
(j)∗
gi − Y

(j)
gi

))
Y

(j)
gi !

Y
(j)∗
gi !

1

Φ(λg0+λg1 log2(Y
(j)
gi +1))

if Y
(j)
gi ≥ 1, Y

(j)∗
gi = 0

exp
((
θ

(j)
gi + log(s

(j)
i )
)(

Y
(j)∗
gi − Y

(j)
gi

))
Y

(j)
gi !

Y
(j)∗
gi !

Φ(λg0 + λg1 log2(Y
(j)∗
gi + 1)) if Y

(j)
gi = 0, Y

(j)∗
gi ≥ 1

exp
((
θ

(j)
gi + log(s

(j)
i )
)(

Y
(j)∗
gi − Y

(j)
gi

))
Y

(j)
gi !

Y
(j)∗
gi !

Φ(λg0+λg1 log2(Y
(j)∗
gi +1))

Φ(λg0+λg1 log2(Y
(j)
gi +1))

if Y
(j)
gi ≥ 1, Y

(j)∗
gi ≥ 1

0 else

.

Proposal distribution 2: We generate a proposal Y
(j)∗
gi from a Poisson

distribution which relies on the newly updated θ
(j)
gi ,

Poi(s
(j)
i exp(θ

(j)
gi )),

where Poi(a) represents a Poisson distribution with mean a.

The Metropolis-Hastings ratio is r = min(r∗, 1), where

r∗ =



1 if Y
(j)
gi = 0, Y

(j)∗
gi = 0

1

Φ(λg0+λg1 log2(Y
(j)
gi +1))

if Y
(j)
gi ≥ 1, Y

(j)∗
gi = 0

Φ(λg0 + λg1 log2(Y
(j)∗
gi + 1)) if Y

(j)
gi = 0, Y

(j)∗
gi ≥ 1

Φ(λg0+λg1 log2(Y
(j)∗
gi +1))

Φ(λg0+λg1 log2(Y
(j)
gi +1))

if Y
(j)
gi ≥ 1, Y

(j)∗
gi ≥ 1

0 else

.
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Updating of λg0 and λg1

The proposal densities q(λ∗g0|λg0) and q(λ∗g1|λg1) for λg0 and λg1 are N(λg0, τ
2
λ0

)

and N(λg1, τ
2
λ1

), respectively. We set τλ0 = 0.15 and τλ1 = 0.15 in our im-

plementation. The Metropolis-Hastings ratio is r = min(r∗, 1), where

r∗ =
p(λ∗g0, λ

∗
g1|−)q(λg0, λg1|λ∗g0, λ∗g1)

p(λg0, λg1|−)q(λ∗g0, λ
∗
g1|λg0, λg1)

=
p(λ∗g0, λ

∗
g1|−)q(λg1|λ∗g1)q(λg0|λ∗g0)

p(λg0, λg1|−)q(λ∗g1|λg1)q(λ∗g0|λg0)

=
∏

(j,i):X
(j)
gi =0,Y

(j)
gi >0

Φ
(
λ∗g0 + λ∗g1 log2(Y

(j)
gi + 1)

)
Φ
(
λg0 + λg1 log2(Y

(j)
gi + 1)

) ∏
(j,i):X

(j)
gi >0

1− Φ
(
λ∗g0 + λ∗g1 log2(Y

(j)
gi + 1)

)
1− Φ

(
λg0 + λg1 log2(Y

(j)
gi + 1)

)
· exp

(
−
(
λ∗g0 − λg0

) (
λ∗g0 + λg0 − 2ηλg0

)
2τ 2
λg0

−
(
λ∗g1 − λg1

) (
λ∗g1 + λg1 − 2ηλg1

)
2τ 2
λg1

)
I(λ∗g1 < 0).

Updating of (ξ1, ξ2, . . . , ξK)

The proposal densities q(ξ
′∗
k |ξ′k) for ξ′k(k = 1, 2, · · · , K − 1) is N(ξ′k, τ

2
ξ′).

We set τξ′ = 0.01 in our implementation. The Metropolis-Hastings ratio is

r = min(r∗, 1), where

r∗ =
p((ξ

′∗
1 , . . . , ξ

′∗
K−1)|−)

∏K−1
k=1 q(ξ

′
k|ξ
′∗
k )

p((ξ′1, . . . , ξ
′
K−1)|−)

∏K−1
k=1 q(ξ

′∗
k |ξ′k)

=
K−1∏
k=1

(
1− ξ′∗k
1− ξ′k

)α−1 K∏
k=1

ΓL(γξk)

ΓL(γξ∗k)

K∏
k=1

(
L∏
`=1

πk`

)γ(ξ∗k−ξk)

,

where ξ∗1 = ξ
′∗
1 and ξ∗k =

∏k−1
i=1 (1− ξ′∗i )ξ

′∗
k for k = 2, . . . , K.
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S8.2 Acceptance rates

For the variance of proposal distributions in the MH steps, we actually tried

multiple values and selected the one with the maximal effective sample size

(Gelman et al., 2013). Using the current variance specification, the average

acceptance rates for parameters (θ,Y , ξ,λ) are (0.155, 0.650, 0.263, 0.082)

in the simulation study. We acknowledge that some adaptive schemes (e.g.,

Roberts and Rosenthal (2009)) can be adopted and could further improve

the effective size.

For the missing variables Y , if we used the uniform proposal dis-

tribution, the average acceptance rate was 0.650. If we employed the

Pois(s
(j)
i exp(θ

(j)
gi )) proposal distribution, we can obtain a higher average

acceptance rate 0.806. The trace plots for the two types of proposal distri-

bution are shown in Figure S8.

S9 Data generation details in simulation

We generated data following Model (4.2) with three subject subgroups,

four cell types. The subject size was selected as 50, and for each subject

we sampled its corresponding cell number from a uniform distribution on

integers between 15 and 35. The subject proportions for the three subgroups
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were 40%, 30%, and 30%. For each subject subgroup, there were different

cell type proportions π` (` = 1, 2, 3). Subject subgroup 1 had 20%, 30%,

30%, and 20% for cell types one to four, respectively. If we denote those

as π1 = (0.2, 0.3, 0.3, 0.2), then we set π2 = (0.4, 0.2, 0.3, 0.1) for subject

subgroup 2, and π3 = (0.3, 0.1, 0.3, 0.3) for subject subgroup 3. The number

of genes for each cell was 1, 000, and the first 150 genes were treated as

marker genes with differential expressions between at least two cell types,

whereas the remaining genes had the same cell effects across all cell types.

Regarding the subject subgroup effects, the subject subgroup 1 effects were

fixed at zero. Using subgroup 1 as the reference, subgroup 2 had marker

genes from 401 to 475, and subgroup 3 had marker genes from 501 to 575.

We generated cell type effects µgks from normal distributionsN(µ̃gk, σ
2
µg).

We set µ̃g1s of the first 75 genes to 2, and µ̃g1s of the genes from 76 to 150

to 1 in cell type 1. Subsequently, we set µ̃g2 = 5 (1 ≤ g ≤ 75) and µ̃g2 = 1

(76 ≤ g ≤ 150) in cell type 2; let µ̃g3 be 2 on the first 75 genes and µ̃g3 be 5

on the second 75 genes in cell type 3; and similarly in cell type 4 µ̃g4 = 5 on

1 ≤ g ≤ 75 and µ̃g4 = 4 on 76 ≤ g ≤ 150. The µ̃gks for the genes from 151 to

1,000 in all cell types were set to 3. We finally let σ2
µg(1 ≤ g ≤ 150) = 0.22

and σ2
µg(151 ≤ g ≤ 1, 000) = 0.12 .

With regard to the subject subgroup effects, we used the subgroup 1 as
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the reference subgroup. The subgroup 2 had intrinsic genes from 401 to 475,

while the subgroup 3 had intrinsic genes from 501 to 575. We generated

subject subgroup effects βg`s of intrinsic genes from a normal distribution

N(1, 0.22). The rest of subject subgroup effects βg`s were set to 0.

The scaling factors were fixed at one. The dropout coefficients λg0 and

λg1 were sampled respectively from N(3, 0.12) and N(−1, 0.12), and σg’s

were fixed at 0.1.

In simulation, 10,000 iterations took approximately 3.49 hours using

24 CPU cores and retained the second half of the posterior samples for

statistical inference. The trace plots of parameters are given in Figures S8

and S9, which demonstrate that the chain had attained convergence by the

5,000th iteration. The posterior mode of the number of the occupied subject

clusters was three, and the posterior mode of the occupied cell types was

four, both of which are the same as the truth. To measure the clustering

accuracy, we used the adjusted Rand index (ARI), which is bounded above

by one, and the larger the ARI, the more accurate the clustering results.

The SCSC produced a perfect clustering for the subjects and cells with both

ARIs being one. Hence, the SCSC model can automatically and accurately

distinguish the underlying heterogeneity for subjects and cells.

With the available posterior samples of µ and β, we further detected
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the DE genes across cell types or subject subgroups using Bayesian credible

intervals. For example, to test if gene g is DE between cell type 1 and cell

type k (k ≥ 2), we constructed the 99% credible interval for the difference

µgk − µg1 using the posterior samples. If zero was not in this credible

interval, we treated the gene as DE. Otherwise, the gene was non-DE.

Although we conducted multiple hypothesis tests, it was unnecessary to

implement multiple comparison adjustments as µ and β were modeled in

a hierarchical Bayesian fashion (Gelman et al., 2012). A similar procedure

was applied to detecting DE genes across subject subgroups, and SCSC

correctly detected most DE genes with high true positive rates (TPR) and

small false positive rates (FPR) as shown in Supplementary Table S1.

We compared the SCSC against some popular cell and subject clus-

tering approaches, respectively. For the cell clustering approaches k-means,

SC3, DIMM-SC, and Seurat, we stacked the expression matrices for all sub-

jects by row and used this large expression matrix as the input. Regarding

the subject clustering approaches kmeans, SparseKmeans, and BCPlaid,

we calculated the row means of its corresponding expression matrix (loga-

rithm transformed) for each subject and combined all row means to form

a gene-by-subject aggregated expression matrix. Overall, SCSC performed

better in both cell clustering and subject clustering. When clustering cells,
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SCSC borrows information across multiple subjects and considers the sub-

ject differences. When grouping subjects, the model exploits the cell in-

formation of each subject to discover the subtle difference. Owing to the

two-way information-sharing strategy, SCSC outperforms competing meth-

ods in both cell clustering and subject grouping.

S10 Label-switching correction

We designed a strategy to deal with the label-switching by borrowing the

idea from relabelling algorithms (Stephens, 2000). Specifically, we assume

that T posterior samples were collected from MCMC, and for tth posterior

sample let ρ∗t represent a permutation of {1, 2, . . . , L} and ρ∗∗t denote a per-

mutation of {1, 2, . . . , K}. For each t from 2 to T , we minimize the squared

loss, minρ∗t ,ρ∗∗t
∑m

j=1

∑nj
i=1

∑D
g=1(θ

(j)
gi,t−1− µgρ∗∗t (C

(j)
it ),t−1

− β
gρ∗t (S

(j)
t ),t−1

)2. Sub-

sequently, we reorder subject subgroup indicators S
(j)
t and cell type indica-

tors C
(j)
it by S

(j)
t ← ρ∗t (S

(j)
t ) and C

(j)
it ← ρ∗∗t (C

(j)
it ). In addition, we have to

modify the posterior samples of parameters which depend on clustering in-

dicators. If we let zgk`,t be µgρ∗∗−1(k),t+βgρ∗−1(`),t, then we have µgk,t ← zgk1,t,

βg1,t ← 0 and βg`,t ← zg1`,t − µg1,t.

In fact, we found that in the simulation and real application the identity

permutations are usually the solutions for ρ∗t , ρ
∗∗
t , indicating the MCMC
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chain usually explores only one mode out of K! × L! equivalent modes in

the target distribution.

S11 Details of Implementing Competing Methods in

the Simulation Study

S11.1 Cell clustering methods

We call X = (X(1), . . . ,X(`), . . . ,X(m)) the raw count data and call log2(X+

1) the transformed data.

Kmeans We applied Kmeans to the transformed data. Regarding the num-

ber of clusters, we used the function “fviz nbclust” to estimate the op-

timal number, where the argument “method” was set to ”wss”. We let

the cluster function argument “FUNcluster” to “kmeans”. Other ar-

guments in the function “fviz nbclust” were default. Subsequently, we

used the estimate of cluster number as the input of “centers”. Other

parameters in the function “kmeans” were set to default. The R pack-

age is available on https://github.com/cran/factoextra.

DIMM-SC DIMMSC aims to cluster droplet-based single cell transcrip-

tomic data. It uses the Dirichlet mixture prior to characterize the

variations across different cell clusters. An EM algorithm is used for

https://github.com/cran/factoextra
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the parameter estimation. We used DIMMSC on the raw count data.

The number of desired clusters “K” was set to the true cell type num-

ber in the simulation. Other parameters in the function “DIMMSC”

were default. The R package is available on http://www.pitt.edu/

~wec47/singlecell.html.

SC3 Single-Cell Consensus Clustering (SC3) is a tool for unsupervised clus-

tering of scRNA-seq data. SC3 achieves high accuracy and robustness

by consistently integrating different clustering solutions through a con-

sensus approach. We firstly created an object of SingleCellExperiment

class with “counts” and “logcounts” being the raw and transformed

data, respectively. Subsequently, we used the funtion “sc3 estimate k”

with the default arguments to find the optimal number of clusters,

which was 5. Finally, we set the number of clusters “ks” to 5 in

the function “sc3”. The argument “biology”, which defines whether

to compute differentially expressed genes, marker genes and cell out-

liers, was set to “FALSE”. The number of cores to be used on the

machine ”n cores” was set to 20, and the seed of the random num-

ber generator “rand seed” was set to 1. Other arguments in the

function ”sc3” were default. The R package is available on http:

//bioconductor.org/packages/release/bioc/html/SC3.html.

http://www.pitt.edu/~wec47/singlecell.html
http://www.pitt.edu/~wec47/singlecell.html
http://bioconductor.org/packages/release/bioc/html/SC3.html
http://bioconductor.org/packages/release/bioc/html/SC3.html
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Seurat Seurat identified cell types through a shared nearest neighbor (SNN)

modularity optimization based clustering algorithm. We used the raw

count data in this method. The parameters in the function “FindClus-

ters” were default. The R package is available on https://github.

com/satijalab/seurat.

S11.2 Subject clustering methods

For each subject, we transformed the raw data matrix X(`) to rowMeans(log2(X(`)+

1)), the vector of row-means of log2(X(`) + 1).

Kmeans Regarding the number of clusters, we used the function “fviz nbclust”

to estimate the optimal number, where the argument “method” was

set to ”wss”. We let the cluster function argument “FUNcluster” to

“kmeans”. Other arguments in the function “fviz nbclust” were de-

fault. Subsequently, we used the estimate of cluster number as the

input of “centers”. Other parameters in the function “kmeans” were

set to default. The R package is available on https://github.com/

cran/factoextra.

SparseKmeans We used the same number of clusters in Kmeans. Firstly,

we used the function “KMeansSparseCluster.permute” to find the tun-

ing parameter which controls the L1 bound on the feature weights. The

https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
https://github.com/cran/factoextra
https://github.com/cran/factoextra
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range of tuning parameters “wbounds” was set to “seq(3,7,len=15)”.

The number of permutations “nperms” was 5. We then used the

estimate of tunning parameter in the function “KMeansSparseClus-

ter”. Other parameters in the function “KMeansSparseCluster” were

default. The R package is available on https://github.com/cran/

sparcl.

BCPlaid This method performs Plaid Model Biclustering. This algo-

rithm models data matrices via a sum of layers. We set the argument

“method” in the function “biclust” to “BCPlaid”. Other parameters

in the function “biclust” were set to default. The package is available

on https://github.com/cran/biclust

S12 Low signal scenarios and model misspecification

cases

S12.1 Low signal scenarios

We further investigated the performances of SCSC and SCSC-vs in two

scenarios with low signals. (1) We reduced the number of cell marker genes

from 150 to 100 and 50. Supplementary Table S2 provides the ARI com-

parisons, showing that SCSC-vs has better clustering performance than

 https://github.com/cran/sparcl
 https://github.com/cran/sparcl
https://github.com/cran/biclust
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SCSC when cell marker gene number is small. When cell marker gene

number is relatively high, the performances of SCSC and SCSC-vs are sim-

ilar, but SCSC-vs has the advantage of automatically selecting important

genes. Supplementary Table S3 displays the FPR and TPR of SCSC-vs in

identifying the cell marker genes.

(2) The subject subgroup effects are set as zero in all the cell types

β
(j)
g = 0. In this case, only the cell-type proportions contribute to the

subject clustering. Supplementary Table S4 shows that compared to the

ideal case where β
(j)
g is nonzero on subject marker genes, the clustering

result for cells are still good, but the mean ARI for subjects decreases. The

clustering accuracy loss is reasonable as we lost the differential subgroup

effect information and only resorted to the cellular composition information

to separate subjects.

S12.2 Model misspecification cases

The performances of SCSC was also examined on three types of cases, where

the model assumptions are violated. (1) Inspired by the paper (Shen-Orr

et al., 2010), we let β
(j)
g be present in only one cell type. Specifically, we let

subject subgroup effects be 2 on genes from 400 to 600 and zero on other

genes in one cell type and be zero across all genes in all other cell types.
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Supplementary Table S4 displays the clustering results of SCSC and SCSC-

vs in this scenario. We observed that the mean ARI values decreased for

subject clustering compared to the case where assumptions hold (correct

specification), while cell clustering is still satisfactory, and SCSC-vs has

overall better performances than SCSC.

Moreover, we considered two more cases, where (2) there exist gene

correlations with a large number of cell types and (3) the data distribution

is from zero-inflated negative binomial distributions instead of zero-inflated

Poisson log-normal distribution. Details are given as follows. Supplemen-

tary Table S5 provides the average and standard deviation of ARI after

10 replications, showing that SCSC is robust to cell number per subject,

cell-type number, the violation of the expression independence assumption,

and the misspecification of the data distribution.

(2) Gene correlations with a large number of cell types. The

advantage of Poisson-log-normal distribution over negative binomial distri-

bution is that we can easily incorporate gene expression correlations through

the correlated multi-normal distribution. Therefore, in this setting, we con-

sidered three factors—number of cells per subject, cell-type number, and

expression correlation—based on the zero-inflated Poisson-log-normal dis-

tribution. Specifically, we set two subject subgroups and 20 cell types. The
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subject number was 20, and the cell number for each subject was sampled

from a uniform distribution on integers between 100 and 110. The gene

number for each cell was 1, 000, and K=30, L=10. To model the correlated

expression, we generated observed count data X as follows.

θ
(j)
i ∼ N(µ

(j)
i + β(j),Σ),

Y
(j)
gi ∼ Poi(s

(j)
i eθ

(j)
gi ),

X
(j)
gi =


0 with probability p(Y

(j)
gi )

Y
(j)
gi with probability 1− p(Y (j)

gi )

,

where Σ was set as a blocked diagonal matrix, and each block was a 50×50

matrix with diagonal elements 0.3 and off-diagonal elements 0.1. We then

applied SCSC and investigated its clustering performance. Table S5 pro-

vides the average and standard deviation of ARI after 10 replications, show-

ing that SCSC is robust to cell number per subject, cell-type number, and

the violation of the expression independence assumption.

(3) Zero-inflated negative binomial distributions. We considered

a model-misspecified case where the observed count data were generated

from a zero-inflated negative binomial distribution rather than zero-inflated

Poisson-log-normal. In this case, we set 3 subgroups and 4 cell types. The

subject number was 50, and cell number for each subject was sampled from
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a uniform distribution on integers between 15 and 35. The gene number

for each cell was 1, 000. Noting that negative binomial is equivalent to

Poisson-gamma, we simulated observed data X as follows.

T
(j)
gi ∼ Gamma

(
1

eσ
2
g − 1

,
1

(eσ
2
g − 1)eµ

(j)
gi +β

(j)
g +σ2

g/2

)
,

Y
(j)
gi ∼ Poi(s

(j)
i T

(j)
gi ),

X
(j)
gi =


0 with probability p(Y

(j)
gi )

Y
(j)
gi with probability 1− p(Y (j)

gi )

.

Table S5 provides the average and standard deviation of ARI after 10 repli-

cations. SCSC can achieve mean ARI=0.87 for cell clustering and mean

ARI=0.97 for subject clustering, indicating that SCSC is not sensitive to

the data distribution choice.

S13 Sensitivity analyses

In real application, we carried out sensitivity analyses for hyper-parameters

aα1 , aα2 , uµ, ω
2
µ, bµ1, bµ2, uβ, ω

2
β, bβ1, bβ2, bσ1, bσ2, ηλg0 , τ

2
λg0
, ηλg1 , τ

2
λg1
, ν, γ,K, and

L. For hyper-parameters aα1 , aα2 , bµ1, bµ2, bβ1, bβ2, bσ1, bσ2, we varied their

values on 1, 2, 3, and 4; for hyper-parameters uµ, uβ, we tried values−1, 0, 1,

and 2; for hyper-parameters ω2
µ, ω

2
β, we adjusted values from 202 to 502, 1002,

and 1502; for hyper-parameter ηλg0 , we set it as 1, 2, 3 and 4; for hyper-
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parameter ηλg1 , we changed its value from −1 to −2, −3, and −4; for

hyper-parameters τ 2
λg0
, τ 2
λg1

, their values were set at 0.052, 0.12, 0.22, and

0.32; for hyper-parameters ν, γ, we tried values 0.1, 0.3, 0.5 and 0.7; for up-

per bounds K, L, we varied their values from 13 to 16. Figure S5, S6 and S7

displays how these hyper-parameters change the final results compared to

the obtained clustering results in terms of ARI: a large ARI indicates that

the clustering in the current hyper-parameter setting is similar to the ob-

tained clustering result shown in the manuscript. We can see that SCSC is

a little bit sensitive to the choice of K,L and is robust to hyper-parameters

aα1 , aα2 , uµ, ω
2
µ, bµ1, bµ2, uβ, ω

2
β, bβ1, bβ2, bσ1, bσ2, ηλg0 , τ

2
λg0
, ηλg1 , τ

2
λg1
, ν, and γ.

S14 Validation of clustering results in real application

To validate the clustering results, we conducted the gene set enrichment

analysis (Subramanian et al., 2005) for detected marker genes based on the

KEGG database. The maker genes for Yoruba subgroups were called if

they were DE in at least one subgroup. Similarly, the marker genes for

iPSC types were called if they were DE in at least one cell type. We identi-

fied 2,932 DE genes between the Yoruba subgroups and found 10 significant

pathways with q-value < 0.05 (Supplementary Table S6), where three path-

ways (KEGG PARKINSONS DISEASE, KEGG HUNTINGTONS DISEASE,
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and KEGG ALZHEIMERS DISEASE ) are all related to neurodegenerative

disorders. Previous studies (Myers, 2004; Bertram and Tanzi, 2008; Shul-

man et al., 2011) have presented that the three diseases are likely caused

by inheritable gene defects, and thus can be inherited across generations.

These observations suggest that SCSC separated the Yoruba subjects pos-

sibly in terms of the lineage. In addition, we detected 2,698 DE genes

across the cell types and identified 87 significant pathways (Supplemen-

tary Tables S7 and S8) including KEGG P53 SIGNALING PATHWAY,

KEGG WNT SIGNALING PATHWAY, KEGG NOTCH SIGNALING PATHWAY,

and KEGG MTOR SIGNALING PATHWAY. The four signaling pathways

may regulate the pluripotency of induced stem cells (Ye et al., 2012; Kate

et al., 2014; Meng et al., 2018). These findings indicate the validity of the

SCSC in discovering subject and cell heterogeneity.
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Figure S1: A simple demonstration of library sizes.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure S2: Trace plots for MCMC in the real application. (a)Trace plot of µgk. (b)Trace

plot of βgl. (c)Trace plot of λg0. (d)Trace plot of λg1. (e)Trace plot of σ2
g . (f)Trace plot

of ηµ. (g)Trace plot of ηβ .
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Cell similarity matrix Subject similarity matrix

Figure S3: Posterior similarity matrix heatmaps for cells and subjects in the real appli-

cation.

Figure S4: Estimated subject subgroup effects in the real application.
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(a) Hyper-parameters in the prior of 𝛼 (b) Hyper-parameters in the prior of 𝜂𝜇 (c)  Hyper-parameters in the prior of 𝜏𝜇
2

(d) Hyper-parameters in the prior of 𝜂𝛽 (e) Hyper-parameters in the prior of 𝜏𝛽
2 (f) Hyper-parameters in the prior of 𝜎𝑔

2

(g) Hyper-parameters in the prior of 𝜆𝑔0 (h) Hyper-parameters in the prior of 𝜆𝑔1 (i)                     𝐾 and 𝐿

Figure S5: ARI values of cell clustering for different hyper-parameters, K and L. (a)

ARI values for hyper-parameters in the prior of α. (b) ARI values for hyper-parameters

in the prior of ηµ. (c) ARI values for hyper-parameters in the prior of τ2µ. (d) ARI

values for hyper-parameters in the prior of ηβ . (e) ARI values for hyper-parameters in

the prior of τ2β . (f) ARI values for hyper-parameters in the prior of σ2
g . (g) ARI values

for hyper-parameters in the prior of λg0. (h) ARI values for hyper-parameters in the

prior of λg1. (i) ARI values for K and L.
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(a) Hyper-parameters in the prior of 𝛼 (b) Hyper-parameters in the prior of 𝜂𝜇 (c)  Hyper-parameters in the prior of 𝜏𝜇
2

(d) Hyper-parameters in the prior of 𝜂𝛽 (e) Hyper-parameters in the prior of 𝜏𝛽
2 (f) Hyper-parameters in the prior of 𝜎𝑔

2

(g) Hyper-parameters in the prior of 𝜆𝑔0 (h) Hyper-parameters in the prior of 𝜆𝑔1 (i)                     𝐾 and 𝐿

Figure S6: ARI values of subject clustering for different hyper-parameters, K and L. (a)

ARI values for hyper-parameters in the prior of α. (b) ARI values for hyper-parameters

in the prior of ηµ. (c) ARI values for hyper-parameters in the prior of τ2µ. (d) ARI

values for hyper-parameters in the prior of ηβ . (e) ARI values for hyper-parameters in

the prior of τ2β . (f) ARI values for hyper-parameters in the prior of σ2
g . (g) ARI values

for hyper-parameters in the prior of λg0. (h) ARI values for hyper-parameters in the

prior of λg1. (i) ARI values for K and L.



QIUYU WU AND XIANGYU LUO

(a)                Cell clustering (b) Subject clustering

Figure S7: ARI values of the clustering for different pairs of γ and ν compared to the

clustering result with (γ, ν) = (0.5, 0.5). (a) ARI values of cell clustering. (b) ARI values

of subject clustering.
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(a)

(b)

Figure S8: Trace plots of missing variables Y for 5,000 MCMC iterations after burn-in.

(a) Uniform proposal distribution. (b) Pois(s
(j)
i exp(θ

(j)
gi )) proposal distribution.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure S9: Trace plots for MCMC in the simulation. (a)Trace plot of µgk. (b)Trace plot

of βgl. (c)Trace plot of λg0. (d)Trace plot of λg1. (e)Trace plot of σ2
g . (f)Trace plot of

ηµ. (g)Trace plot of ηβ .



S14. VALIDATION OF CLUSTERING RESULTS IN REAL APPLICATION

Table S1: The TPR and FPR of the differentially expressed gene detection across subject

subgroups and cell types in the simulation (three decimal places are kept). The subject

subgroup 1 is chosen as the reference subject subgroup, and the cell type 1 is chosen as

the reference cell type.

Subject Subject cell cell cell

subgroup subgroup type type type

2 3 2 3 4

FPR 0.006 0.003 0.011 0.008 0.006

TPR 1 1 1 1 1

Table S2: Clustering accuracy comparisons using ARI for SCSC and SCSC-vs based on

10 replicates. The number outside the parentheses is the mean, and the number in the

parentheses represents the standard deviation.

Cell marker gene number

50 100 150

Cell

clustering

Subject

clustering

Cell

clustering

Subject

clustering

Cell

clustering

Subject

clustering

SCSC 0.73(0.11) 0.91(0.10) 0.83(0.11) 0.81(0.11) 0.98(0.03) 0.96(0.04)

SCSC-vs 0.76(0.15) 0.94(0.07) 0.83(0.12) 0.95(0.05) 0.93(0.08) 0.95(0.08)
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Table S3: TPR and FPR of SCSC-vs in identifying cell marker genes based on ten

replicates. The number outside the parentheses is the mean, and the number in the

parentheses represents the standard deviation.

Cell marker gene number

50 100 150

SCSC-vs
TPR 1(0.00) 1(0.00) 1(0.00)

FPR 0.00(0.00) 0.00(0.01) 0.00(0.00)

Table S4: Clustering accuracy using ARI for SCSC and SCSC-vs in different situations

based on ten replicates. The number outside the parentheses is the mean, and the

number in the parentheses represents the standard deviation.

β
(j)
g only on one cell type All β

(j)
g = 0 Correct specification

Cell

clustering

Subject

clustering

Cell

clustering

Subject

clustering

Cell

clustering

Subject

clustering

SCSC 0.83(0.10) 0.46(0.14) 0.92(0.05) 0.33(0.14) 0.86(0.08) 0.87(0.08)

SCSC-vs 0.90(0.06) 0.57(0.25) 0.96(0.06) 0.36(0.15) 0.88(0.11) 0.89(0.09)
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Table S5: Clustering accuracy using ARI for SCSC in different situations based on ten

replicates. The number outside the parentheses is the mean, and the number in the

parentheses represents the standard deviation.

20 cell types with correlated genes Zero-inflated negative binomial

Cell

clustering

0.92(0.03) 0.87(0.12)

Subject

clustering

0.77(0.19) 0.97(0.06)

Table S6: The gene set enrichment analysis for differentially expressed genes across

subject subgroups. Since GSEA only allows up to 1,994 genes as input, we randomly

selected 1,994 genes from 2,932 detected marker genes. Pathways with FDR q-value less

than 0.05 are displayed. The pathways mentioned in Section S14 are colored in red.

Pathway names Description FDR q-value

KEGG RIBOSOME Ribosome 4.21E-41

KEGG HUNTINGTONS DISEASE Huntington’s disease 2.07E-40

KEGG SPLICEOSOME Spliceosome 2.57E-38

KEGG PARKINSONS DISEASE Parkinson’s disease 1.45E-36

KEGG OXIDATIVE PHOSPHORYLATION Oxidative phosphorylation 6.38E-34

KEGG ALZHEIMERS DISEASE Alzheimer’s disease 3.12E-24

KEGG PROTEASOME Proteasome 7.72E-24

KEGG CELL CYCLE Cell cycle 7.55E-17

KEGG UBIQUITIN MEDIATED PROTEOLYSIS Ubiquitin mediated proteolysis 1.05E-15

KEGG PROTEIN EXPORT Protein export 2.93E-10
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Table S7: The gene set enrichment analysis for differentially expressed genes across cell

types (Part I). Since GSEA only allows up to 1,994 genes as input, we randomly selected

1,994 genes from 2,698 detected marker genes. Pathways with FDR q-value less than

0.05 are displayed. The pathways mentioned in Section S14 are colored in red.

Pathway names Description FDR q-value

KEGG RIBOSOME Ribosome 1.56E-56

KEGG HUNTINGTONS DISEASE Huntington’s disease 4.90E-46

KEGG SPLICEOSOME Spliceosome 2.24E-38

KEGG PARKINSONS DISEASE Parkinson’s disease 8.35E-38

KEGG OXIDATIVE PHOSPHORYLATION Oxidative phosphorylation 2.80E-36

KEGG ALZHEIMERS DISEASE Alzheimer’s disease 3.68E-33

KEGG PROTEASOME Proteasome 5.47E-21

KEGG CELL CYCLE Cell cycle 4.13E-15

KEGG PATHOGENIC ESCHERICHIA COLI INFECTION Pathogenic Escherichia coli infection 1.79E-12

KEGG PURINE METABOLISM Purine metabolism 3.81E-11

KEGG RNA DEGRADATION RNA degradation 5.16E-11

KEGG PATHWAYS IN CANCER Pathways in cancer 2.17E-10

KEGG REGULATION OF ACTIN CYTOSKELETON Regulation of actin cytoskeleton 3.75E-10

KEGG ADHERENS JUNCTION Adherens junction 4.13E-10

KEGG OOCYTE MEIOSIS Oocyte meiosis 4.78E-10

KEGG UBIQUITIN MEDIATED PROTEOLYSIS Ubiquitin mediated proteolysis 5.65E-09

KEGG CARDIAC MUSCLE CONTRACTION Cardiac muscle contraction 1.22E-08

KEGG WNT SIGNALING PATHWAY Wnt signaling pathway 6.58E-08

KEGG PYRIMIDINE METABOLISM Pyrimidine metabolism 1.09E-07

KEGG LYSOSOME Lysosome 2.34E-07

KEGG RNA POLYMERASE RNA polymerase 5.65E-07

KEGG PROTEIN EXPORT Protein export 7.50E-07

KEGG TIGHT JUNCTION Tight junction 1.09E-06

KEGG FOCAL ADHESION Focal adhesion 1.49E-06

KEGG GLUTATHIONE METABOLISM Glutathione metabolism 4.83E-06

KEGG COLORECTAL CANCER Colorectal cancer 1.11E-05

KEGG PROSTATE CANCER Prostate cancer 4.73E-05

KEGG NUCLEOTIDE EXCISION REPAIR Nucleotide excision repair 4.73E-05

KEGG ONE CARBON POOL BY FOLATE One carbon pool by folate 5.76E-05

KEGG N GLYCAN BIOSYNTHESIS N-Glycan biosynthesis 7.01E-05

KEGG NOTCH SIGNALING PATHWAY Notch signaling pathway 8.07E-05

KEGG VASCULAR SMOOTH MUSCLE CONTRACTION Vascular smooth muscle contraction 8.07E-05

KEGG NEUROTROPHIN SIGNALING PATHWAY Neurotrophin signaling pathway 8.07E-05

KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION Leukocyte transendothelial migration 8.75E-05

KEGG VIBRIO CHOLERAE INFECTION Vibrio cholerae infection 3.00E-04

KEGG THYROID CANCER Thyroid cancer 3.08E-04

KEGG PROGESTERONE MEDIATED OOCYTE MATURATION Progesterone-mediated oocyte maturation 3.52E-04

KEGG P53 SIGNALING PATHWAY p53 signaling pathway 5.61E-04

KEGG PYRUVATE METABOLISM Pyruvate metabolism 5.63E-04

KEGG AMINOACYL TRNA BIOSYNTHESIS Aminoacyl-tRNA biosynthesis 6.72E-04

KEGG INSULIN SIGNALING PATHWAY Insulin signaling pathway 6.77E-04

KEGG LONG TERM POTENTIATION Long-term potentiation 6.77E-04

KEGG GLYCOLYSIS GLUCONEOGENESIS Glycolysis / Gluconeogenesis 9.01E-04

KEGG ENDOCYTOSIS Endocytosis 1.10E-03

KEGG GLIOMA Glioma 1.32E-03

KEGG GAP JUNCTION Gap junction 1.93E-03

KEGG RENAL CELL CARCINOMA Renal cell carcinoma 2.44E-03

KEGG CITRATE CYCLE TCA CYCLE Citrate cycle (TCA cycle) 2.56E-03
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Table S8: The gene set enrichment analysis for differentially expressed genes across cell

types (Part II). Since GSEA only allows up to 1,994 genes as input, we randomly selected

1,994 genes from 2,698 detected marker genes. Pathways with FDR q-value less than

0.05 are displayed. The pathways mentioned in Section S14 are colored in red.

Pathway names Description FDR q-value

KEGG GLYOXYLATE AND DICARBOXYLATE METABOLISM Glyoxylate and dicarboxylate metabolism 3.09E-03

KEGG CHRONIC MYELOID LEUKEMIA Chronic myeloid leukemia 3.27E-03

KEGG BLADDER CANCER Bladder cancer 3.27E-03

KEGG FATTY ACID METABOLISM Fatty acid metabolism 3.27E-03

KEGG ENDOMETRIAL CANCER Endometrial cancer 3.27E-03

KEGG TGF BETA SIGNALING PATHWAY TGF-beta signaling pathway 3.66E-03

KEGG STEROID BIOSYNTHESIS Steroid biosynthesis 3.74E-03

KEGG CYSTEINE AND METHIONINE METABOLISM Cysteine and methionine metabolism 3.94E-03

KEGG MELANOGENESIS Melanogenesis 4.68E-03

KEGG PEROXISOME Peroxisome 4.96E-03

KEGG DNA REPLICATION DNA replication 5.33E-03

KEGG PPAR SIGNALING PATHWAY PPAR signaling pathway 6.28E-03

KEGG MELANOMA Melanoma 7.67E-03

KEGG FC GAMMA R MEDIATED PHAGOCYTOSIS Fc gamma R-mediated phagocytosis 8.28E-03

KEGG SMALL CELL LUNG CANCER Small cell lung cancer 8.34E-03

KEGG BIOSYNTHESIS OF UNSATURATED FATTY ACIDS Biosynthesis of unsaturated fatty acids 1.11E-02

KEGG ANTIGEN PROCESSING AND PRESENTATION Antigen processing and presentation 1.16E-02

KEGG MISMATCH REPAIR Mismatch repair 1.32E-02

KEGG LYSINE DEGRADATION Lysine degradation 1.48E-02

KEGG VALINE LEUCINE AND ISOLEUCINE DEGRADATION Valine, leucine and isoleucine degradation 1.48E-02

KEGG VASOPRESSIN REGULATED WATER REABSORPTION Vasopressin-regulated water reabsorption 1.48E-02

KEGG PANCREATIC CANCER Pancreatic cancer 1.98E-02

KEGG SELENOAMINO ACID METABOLISM Selenoamino acid metabolism 2.13E-02

KEGG ECM RECEPTOR INTERACTION ECM-receptor interaction 2.18E-02

KEGG ARRHYTHMOGENIC RIGHT VENTRICULAR CARDIOMYOPATHY ARVC Arrhythmogenic right ventricular cardiomyopathy (ARVC) 2.71E-02

KEGG SPHINGOLIPID METABOLISM Sphingolipid metabolism 2.90E-02

KEGG AXON GUIDANCE Axon guidance 2.90E-02

KEGG GLYCEROPHOSPHOLIPID METABOLISM Glycerophospholipid metabolism 3.30E-02

KEGG MTOR SIGNALING PATHWAY mTOR signaling pathway 3.30E-02

KEGG CELL ADHESION MOLECULES CAMS Cell adhesion molecules (CAMs) 3.53E-02

KEGG AMYOTROPHIC LATERAL SCLEROSIS ALS Amyotrophic lateral sclerosis (ALS) 3.55E-02

KEGG ARGININE AND PROLINE METABOLISM Arginine and proline metabolism 3.81E-02

KEGG NON SMALL CELL LUNG CANCER Non-small cell lung cancer 3.81E-02

KEGG GLYCINE SERINE AND THREONINE METABOLISM Glycine, serine and threonine metabolism 3.88E-02

KEGG BASAL CELL CARCINOMA Basal cell carcinoma 4.09E-02

KEGG EPITHELIAL CELL SIGNALING IN HELICOBACTER PYLORI INFECTION Epithelial cell signaling in Helicobacter pylori infection 4.15E-02

KEGG BETA ALANINE METABOLISM beta-Alanine metabolism 4.68E-02

KEGG LONG TERM DEPRESSION Long-term depression 4.71E-02

KEGG PROPANOATE METABOLISM Propanoate metabolism 4.71E-02
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