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Abstract: Many epidemic models are naturally defined as individual-based models,
in which we track the state of each individual within a susceptible population.
However, inference for individual-based models is challenging because of the high-
dimensional state-space of such models, which increases exponentially with the
population size. Here, we consider sequential Monte Carlo algorithms for inference
for individual-based epidemic models, where we make direct observations of the
state of a sample of individuals. Standard implementations, such as the bootstrap
filter and auxiliary particle filter, are inefficient, owing to a mismatch between the
proposal distribution of the state and future observations. We develop new efficient
proposal distributions that consider future observations, leveraging the following
properties: (i) we can analytically calculate the optimal proposal distribution for
a single individual, given future observations and the future infection rate of that
individual; and (ii) the dynamics of individuals are independent if we condition
on their infection rates. Thus, we construct estimates of the future infection
rate for each individual, and then use an independent proposal for the state of
each individual, given this estimate. Empirical results show orders of magnitude
improvement in efficiency of the sequential Monte Carlo sampler for both SIS and
SEIR models.

Key words and phrases: Individual-based model, proposal distribution sequential
Monte Carlo.

1. Introduction

Dynamical disease transmission models are increasingly being used to inform
disease control policy related to both human and livestock outbreaks, for example,
the SARS and HIN1 pandemic influenza in humans (Zhou, Ma and Brauer
(2004)), avian influenza in poultry (Van der Goot et al. (2005)), and foot-and-
mouth disease in cloven-hoofed livestock (Zhou, Ma and Brauer| (2004); Jewell
et al.| (2009)). Most recently, such models have been central in informing national-
level decisions on social distancing and vaccination strategies for the SARS-CoV-
2 pandemic (Brooks-Pollock et al. (2021); [Funk et al.| (2020)). In addition to
managing outbreaks, such models are useful for studying the dynamics of endemic
diseases, with the ability to explain random fluctuations around an otherwise
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stable case incidence, particularly in highly heterogeneous populations (Britton
(2010)).

In essence, disease transmission models belong to the class of state-transition
models described by a directed (though not necessarily acyclic) graph. For
example, the susceptible-infected-susceptible (SIS) model proposes individuals as
existing as “susceptible” or “infected”, and individuals are allowed to transition
from either state to the other. In a stochastic setting, it is natural to assume
that an individual in a population experiences a hazard rate of progressing from
some source state to a destination state. This setup has particular relevance
when the transition hazard rates depend on both individuals’ characteristics as
well as the characteristics of their relationship with each other. Many applications
demand individual-level granularity, particularly when observations are of specific
individuals or when disease interventions are targeted to particular individuals
(Chapman et al.| (2020);|Jewell, Keeling and Roberts| (2009); |Cocker et al.| (2022)).

However, inference for such models is challenging, owing to the partial or total
censoring of transition events, for which the state-space increases exponentially
with the population size. For example, in an SIS model, we may have noisy
observations in which individuals exist in either the S or I states at particular
times, but no direct observation of when state transitions occur.

Following Rimella et al.| (2022)), we consider sequential Monte Carlo (SMC)
methods for inference for such models. We show that standard SMC imple-
mentations (Gordon, Salmond and Smith| (1993); Pitt and Shephard, (1999))) are
inefficient for individual-based epidemic models. In particular, they struggle to
propose states for all individuals that are consistent with future observations.
Ju, Heng and Jacob| (2021)) consider how to improve the efficiency of the SMC
for individual-based epidemic models. However, they consider observations of,
for example, the number of infected individuals, and their approach does not
obviously apply to the observation models we consider here.

To improve the efficiency of the SMC, we develop a novel proposal distri-
bution that takes into account future observations. The key idea is based on
two properties of the dynamics of individual-based epidemic models. First, it is
tractable to calculate the conditional distribution of the state of a single indi-
vidual, given future observations and the future infection rate of the individual.
This can be calculated using standard recursions for finite-state hidden Markov
models (Rabiner and Juang (1986)) together with the fact that the state-space
for a single individual is small (e.g., two for an SIS model or four for a susceptible-
exposed-infected-removed (SEIR) model). Second, there is a form of conditional
independence across individuals: if we condition on the future infection rates for
each individual, then the dynamics of the state for individuals are independent of
each other. In the models, we consider that the infection rate for each individual
depends only on the total number of infectious individuals. Thus, we can use the
ideas of Whiteley and Rimella| (2021) to estimate the future number of infectious
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Table 1. Notation table for probability mass and density functions.

Distribution Categorical Bernoulli Binomial = Gaussian  Uniform Multinomial
Notation Catr(ilp)  Be(ilg)  Bin(i|N,q) N(alp,o?) Unif(gla,b) Mult(c|N,p)

individuals. Then, conditioning on this estimate and the corresponding infection
rates for each individual, we have a proposal distribution that is independent
across individuals. Furthermore, for each individual, the proposal distribution is
equal to the true conditional distribution of the state, given the estimated future
infection rates and observations for that individual.

The computational cost of using this proposal is proportional to the number
of time steps at which we have future observations. In practice, we can implement
the proposal distribution by conditioning only on future observations over a
suitable time window. We show empirically that using such a distribution can
lead to an order of magnitude improvement in Monte Carlo efficiency, even after
accounting for the increased computational cost.

2. Preliminaries

We use bold lowercase letters for vectors, for example, a, and bold uppercase
letters for matrices, for example, A. We use A7) for the (i, j)th element of A
and we use A®* (or A(*9)) to represent the column vector given by the (i)th
column (or the (j)th row) of matrix A. We use o and / to denote the elementwise
product and ratio, respectively, between vectors or matrices, and 1;; denotes the
M-dimensional vector of ones. Given ¢,s € N with ¢ > s, we use [s : t] for the set
{s,...,t}, for example, for t € N, we use yp. for {y1,...,y:}. The notation for
the main probability distributions is reported in Table 1.

3. Model
3.1. Individual-based epidemic models

We consider individual-based models defined as follows: the number of
compartments M, the population size N, the initial probability of an individual
being assigned to a compartment (P, 0)neq1:n], and the probability of an individual
transitioning from one compartment to another (Kn,o)ne[l: ~], where the stochastic
transition matrix K,, , is defined as a function of an M-dimensional vector c, that
is, ¢ = K, . In practice, ¢ is the number of individuals in compartment 4,
and so the transition matrix K,, . depends only on the state of the compartment.
However, more general versions are possible, and are briefly discussed in Section
6 (e.g., spatial models). We use (x;);>0 for the population state, and (c;):>o for
the compartments state, as follows:



1170 RIMELLA, JEWELL AND FEARNHEAD

Time 0: x{ ~ Catys(e|pno), for n € [1: N], and c{” = 3N | L. (i), for i e [1:
M;

n) 4
Time ¢: x\"™|x;_1 ~ Caty(e \Knétli )7 for n € [1: N], and ¢!’ = ¥ 1]1x<n)(z'),
for i € [1: M].

SIS example. We can make the SIS model heterogeneous by following the
construction in [Ju, Heng and Jacob| (2021)). Suppose that we have d € N
covariates for each individual. We can then define (Wn)ne[L ~] as the collection
of d-dimensional vectors of individual-specific covariates, from which we can
compute, for n € [1: NJ,

(1= e (Aw)}
T\ e (aTw)y )

Kk _ (1o (=Blw)} T eE {1+ exp(=Bw,)} o
" {1 +exp(=BJw,)}" 1—{1+exp(—fw,)}"

with 8y € R? and 8,8, € R’ In this model, we have individual-specific
probabilities of infection and recovery.

3.2. Observation model

The observation process is denoted by (y;);>1 and, given (qy, ¢ )nep:n,e>1, with
Qn: € [0, 1]M | we generate observations per each time step ¢ as follows:

(n
vy = xMr™ with r™ ~ Be (o qg; )> for n € [1: NJ, (3.1)

which we refer to as the “granular observations model”. Note that y(") € [0: M],
meaning that we either report the state of individual n as it is (y§”) = x§”>),
or we do not report it at all (y§”) = 0). This model includes observations from
random samples of the population, where each component of q,, ; is the same and
equal to the probability that individual n is included in the sample at time ¢, as
well as situations in which observations are made preferentially for certain states
(e.g., observations of infected farms for foot-and-mouth disease). To simplify the
notation and derivations, we focus on individual homogeneous reporting rates,
that is, g, = q¢, and under this assumption, >, .y I <n>( ) ~ Bin(e ]cti ,qti ),
for any ¢ € [1 : M|, which recovers the binomial observatlon model (Whiteley and
Rimella) (2021); |Ju, Heng and Jacob| (2021))).

SIS example. Given q; € [0, 1]?, q; () is the probability of reporting a susceptible,
and qu) is the probability of reporting an infected.
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3.3. Inference in individual-based models with granular observations

In epidemiology, we are interested in inferring both the unknown state
of the population x; and the parameters of the epidemic 6. Given the time
horizon ¢, the individual-based model with granular observation (x,,y)scp: is,
by construction, a hidden Markov model (HMM). We can compute the filtering
distribution p(x,|yp.s,#) and marginal likelihood p(yi.s|@) using the forward
algorithm (Rabiner and Juang| (1986))). Then, we can infer the parameters using,
for example, the EM algorithm (Yang, Balakrishnan and Wainwright| (2017))).

The forward algorithm requires marginalizing over the whole state-space,
making it unfeasible for our individual-based model, where marginalizations
are O(M"™). As an alternative, we can use sequential Monte Carlo (SMC)
algorithms to obtain particle approximations of p(x,|yp.g,60) and p(yp.q|6)
(Ionides, Breté and King (2006)); Kucharski et al. (2020)) at a cost that is
linear in the number of particles and the time horizon. Given a number of
particles P € N, at each time step s, an SMC algorithm proposes instances
(xP)pep:p) of the latent process (x;)scpi: based on the proposal distribution
G(%aXa 1, Y1), With q(XolX 1, ¥(1) = a(Xolyiy), and q(xoly(y), proposal
distribution at time s = 0, and assigns weights (w?),c;1.p) to the particles
to produce an importance sample that approximates the filtering distribution.
Before moving to the next step, the algorithm uses a resampling scheme (i),
a distribution over the indeces of the particles [1 : PJ], to discard low-weight
particles. Finally, the procedure generates particle estimates of the filtering
distribution, p(x,|yp.s,0) = (X sep.p) Wh) ' 2 pep.p) Whoxr (X;), and the marginal
likelihood, p(y(1:410) = [Tseqr 2pep:py wh-

The performance of SMC algorithms depends heavily on the proposal dis-
tribution (q(xs|Xs—1,¥1:4))sefo) and the resampling scheme (7,(7))scpo.), Where
poor choices might lead to high variance of the marginal likelihood estimator,
particles/weights degeneracy, and even observation mismatches, which might
cause the algorithm to fail. The bootstrap particle filter (BPF) (Gordon,
Salmond and Smith| (1993); |Candy| (2007)) proposes new particles based on
the transition kernel, and resamples according to the current weights; that
is, g(x,[%, 1, ¥(a) = P(X:[Xe1,0), With q(Xo|yp) = p(xol6), and ry(i) =
Catp (i [w}, ..., wP]). The BPF is known to perform poorly in high-dimensional
scenarios (Bickel, Li and Bengtsson (2008)) and with informative observations,
especially when the simulated particles have to match certain paths. An easy
fix is to include the information from the current observations in the proposal
distributions, thus avoiding a mismatch at the current time step when proposing
new particles. The resulting algorithm is called the auxiliary particle filter
(APF) (Pitt and Shephard| (1999); |Carpenter, Clifford and Fearnhead| (1999);
Johansen and Doucet| (2008)), where ¢(x,|X;_1,¥[1.4) = P(Xs|Xs-1,¥s,0), with

q(%olyp:1) = p(x0|0), and 7 (i) = Catp (il [wy, ..., w]).
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Figure 1. Illustration of the BPF (left) and the APF (right) in an SIS scenario. Colored
dots show the state of each individual, with green for susceptible and red for infected.
Dots in gray squares are observations. Horizontal lines from s — 1 to s are used for the
proposed states in s.

In Figure 1, we graphically compare between BPF and APF in an individual-
based model. The BPF fails after three iterations, because the proposed particle
does not match the observed state for individuals 1 and 3; we observe yél) =2
and y¥ = 2, but the BPF proposes (x5)® = 1 and (x)® = 1 (green
lines). In contrast, the APF proposes particles that are constrained to match the
observation, because it includes the current data in the proposal. However, the
APF’s proposal is still inefficient, because it does not take into account future
observations. In Figure 1, this is seen by it tending to propose a switch to
the infected state immediately before the observation of an infected individual,
whereas an individual often becomes infected one or more time steps earlier. For
more complicated models, such as the SEIR model we consider in Section 5.2,
the APF can also suffer from mismatch, because the transition to an observed
state may not be possible for the current state of a particle.

In the next section, we show how to build, for any s € [0 : ¢], an
approximation of p(x,|X,_1,¥s:,8) for an individual-based model with granular
observations. Given that computing p(xs|Xs_1,¥[s:4, #) requires (cs)sefs—1), the
main idea is to approximate (c;)sc[s+—1) using the expectation of a precomputed
multinomial distribution (Whiteley and Rimellal (2021)), and then to propagate
backward the observation y(,.; to inform the proposal in s.

4. Optimal proposal distributions for individual-based models

The optimal proposal for an SMC is p(Xs|Xs_1,¥[s,0), which we can
compute recursively as follows:

Time t: p(y¢|x¢—1,0) = the[l:M]N P(ye|xe, 0)p(xe|x-1,0) and p(x¢|x¢—1,y4,0) =
P(yelxe, 0)p(xe|x-1,0) /p(ye|xe-1,0);

Time s: p(Y[s:t] ‘xs—ly 9) - sze[l:M]N p(y[s+1:t] ’Xsa 9>p(YS|Xsa g)p(xs‘xs—h 9) and
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p(xs ’xs—l ) y[s:t]7 9) = p(y[s+1:t] |xs7 9)p(ys‘xsa e)p(xs |Xs—17 9)/p(y[st] |Xs—17
0);

Time 0: p(}’[l it]s 9) - ZxOG[l :MN p(Y[lf] ’X07 e)p(X07 9) and p(x()’y[lzt]v 0) = p(y[lt]‘
X0, 0)p(%0, 0)/P(y1:416)-

See [Fearnhead| (2008]) for a review of the optimal proposal for importance
sampling, |Chopin and Papaspiliopoulos| (2020)) for a discussion on the optimal
proposal distribution for particle filters and [Whiteley and Lee| (2014) for a more
technical discussion.

A marginalization over the whole state-space is required, resulting in a
computational cost of O(MY) per step. Observe that at the beginning of the
recursion, we can exploit the factorization over the individuals at time ¢, that is,
the components of x;, of the transition kernel and the emission distribution to
reduce the computational cost of the marginalization to O(NM):

S I () (x(™) n (0)
T H Z Kng&)llx( ) (qugm)) y{™ <1 4 n))> v{™ .
n€1:N] (™ ¢[1:0]

(4.1)
Note that y§"> is not conditionally independent given x@l, because of the
dependence of the transition kernel on the compartments state c;_;. This breaks
the computational trick, because we cannot express p(y;|x:_1,0) as a product over
the individuals at time ¢ — 1, and so the cheap marginalization has to be repeated
for each state of x;,_;, leading to O(NMY*!). However, yﬁ") is conditionally
independent given X,@l and c;_;, meaning that if an estimate of c,_; is available
a priori, the factorization is preserved, and the same trick can be iterated in the
subsequent time steps.

4.1. A priori estimates of the compartments state

Whiteley and Rimella (2021)) propose an efficient way of approximating the
smoothing distribution p(c,|y(.,#) using a multinomial distribution Mult(c,|
N,m,;), with the parameters computed recursively using a forward and a
backward step through the data at a computational cost O(tM?3). In the
multinomial approximation, there are two key assumptions: the homogeneity of
the individuals, and a binomial observation model of the form Bin(e|c(?, q{")). We
can recover homogeneity in the individual-based model with granular observations
by defining the mean initial distribution p, o and the mean transition kernel K. :

Pro = Z Py, for i € [1: M],
nE[lN

_ 1
K7 = > KD, fori,jell: M].

n,cg?
n€[l:N]

(4.2)
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Note that recovering homogeneity by approximating the individuals’ transition
kernel using an average is also a key step in [Ju, Heng and Jacob| (2021), where
the transition probabilities are approximated by averaging over the individuals
to avoid an exponential computational cost in the population size.

We already have 3, Lo (i) ~ Bin(elc?, qV), for i € [1 : M], from
which we can define the cumulative observations per compartment as the vector
o, with components of") := 37, ;. x) L (¢)-

Using the aforementioned approximate dynamic and observation model,
the multinomial approximation in |Whiteley and Rimellal (2021)) scans the data
forward and backward, and computes multinomial approximations of the filtering
and smoothing distributions (the full algorithm is reported in the Supplementary
Material). The forward pass consists of a prediction step and an update step
preserving the multinomial form, precisely, starting from myjg = Py, 0, we have

% + 1— 1}\/[03 ms—l\s S (]—M - qs)
N N l-m, q;

T
— T —
m,—_qs = (ms—l\s—lesfl) y Mg =

9

which yields an approximation for the filtering distribution p(ci|yp.s) =~
Multi(c,|N,m,,). The backward pass implements the following reverse kernel
and applies it backward:

T
(m,;17,) 0 Kpn,

outputting the A -dimensional probability vector m,, and so approximating
the smoothing distribution with p(c,|y.g,6) =~ Multi(c,|N,m,;). Given the
multinomial approximations, we can approximate the compartments state with

Cs = IE./\/lult(cs|N,m5|t)(cs) = Nms|t- (43)

We have imposed a restriction on the emission distribution by assuming a
uniform reporting probability for all individuals. However, our approach can be
extended to accommodate a more general scenario in which q,, varies with n.
To do so, we can compute the mean reporting rate q;, = (N)~! ZnE[l:N] din
when running Whiteley and Rimella (2021)), and then substitute back q;, when
computing the approximation to the optimal proposal.

4.2. Approximate optimal proposals for individual-based models

Conditioning on ¢; = Nmy,, for § € [s : t], makes the individuals evolve
independently from each other, and so it allows an analytical computation of
P(¥is:)|Xs-1,0) at a cost O(NM). Starting again from (4.1):
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T () (x4™) T (n(0)
(xiz) 7xt")) x§"> yg A xEn) v§
pyelxe-1,0) ~ l l § : K, Nm, ), q 1—q

ne[l:N] (n)e[l :M]

= ]I ey, (4.4)

n€[l:N]

where we define the quantities §,,,—; for each individual n as the approximate
probability of observing the future observation y , given the state at time ¢t — 1.
We can then follow a similar argument and approximate p(yis..|xs_1, #) as follows:

p(Y[s:t] ’XS—lv 9)

(M) (xi"_" X)) ey o (67) <) Lo (0)
~ [T X e (o) (1-a>"™)
n€[l:N] (")G[l'M]
(™))

= H Ens 17 (4.5)

n€[l:N]

where &, ;_1 is the approximate probability for each individual n of observing
the future observation yi.;, given the state at time s — 1. Note that the
marginalization is repeated for all states of xg@l, and not x,_1, which reduces the
cost from O(NMN*1) to O(NM?). We can now build our proposal distribution
for an SMC, and approximate p(X,|Xs_1, ¥[s:,0) as

n,s n,Cs—1

<X§"))K(XE";)l7Xi"))(qu§">))Hny”("i"))(l B qug")))ﬂyg") (0)

P(Xs|Xs—17Y[s:t]7 9) ~ H

n.) )

nell:N] éflxs
(x(")) (x ("))
n,0 pnO
p(olyp 0) = [ =", (4.6)
n€[l:N] ‘S"»O
for s € [1: t], and with
~(x(™ ) g () () NONLSOICSS! ) I (n)(0)
w3 e (g (1= aqx)
x{Mel1:M]
~ M) (5
b= > €59 plY ), (4.7)
x{Me[1:M]
for n € [1: NJ.

It is crucial to understand the difference between &, s and én,s. We use &, s
to approximate p(y(st1.4|Xs,#) without knowing x,, and so it is computed by
substituting ¢, with Nm,,. We use éms to approximate p(y[s+1:t]\xs,0) when
we know x,, and so have access to the actual c,. The latter is important,
because when considering the proposal distribution of an SMC, we know the
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Algorithm 1 Computation of (6n,h,svén,h,s)n€[1:N]~

Req11i1‘e= (Kn,')ne[l:N]v (q§)§6[8+1:s+h] ( e\t)ee[s s+h—1]) Y [s+1:s+h]s if s 7é 0 add Ys;Cs—1
1: forn=1,...,N do

2: Enhsth — 1mr

3: fors=s+h—-1,...,sdo

4: £E,h 5 K‘E;K/)ms\th-‘rl&n h, 511 21)1 (@) + K"’ng” (Lar —Gs+1 0 g"’h’gﬂ)ﬂygﬂ ©)
5: if s 7é 0 then

6: £n h,s — K’El.cl)71 qs >£n h, s]I (")( ) + K’ﬂ-vcs—l (]'M S £n,h,s) Hygn) (0)

7: else~

8: gn,h,O <~ pOT,nenthl

latest particles, and want to propose the next time step given the last. Note that
there are no latest particles in the special case s = 0, and hence the recursion
looks different; in particular, 5,170 is a scalar, and can be used to approximate the
marginal likelihood p(y1.|@). This approximation could be useful, for pseudo-
likelihood methods (Andrieu and Roberts| (2009)) or when implemented in a
delayed acceptance particle MCMC (Golightly, Henderson and Sherlock| (2015)).

We need only &, s and én,s to compute our approximate proposal distribution,
and both can be computed before running the SMC at a computational cost
O(tNM?). However, this also requires a memory cost O(tNM?), because they
have to be accessible when running the SMC, which is problematic when t is
large. As an alternative, we can compute &, and éms at each step of the
SMC, which requires a computational cost O(Pt*NM?). A computational cost
that is quadratic in ¢ is still undesirable; hence, we can reduce it by using the
observations from the closest future instead of those from the whole sequence.
We can indeed focus on approximating p(X,|Xs—1,¥(ss+n), ), for h € N and
h < t. Given that we have presented our approximation for an arbitrary t,
approximating p(X,|X,_1, ¥s:s+n), ) is like approximating p(x,|X,_1, ¥s, ), for
t = s+ h. However, we make the dependence on h explicit by defining §,, , s and
émh’s as &, s and éms, respectively, obtained from the algorithm when looking h
steps ahead. The whole procedure is summarized in Algorithm 1, and requires a
computational cost O(hNM?). Embedding this algorithm in an SMC demands
a computational cost O(PthN M?), which can be controlled, depending on the
computational resources and application. We conclude the section by stating our
optimal proposal distribution:

n) _(n ny (xV) I (n)(0)
(x(™) (x( ) x(m)y (x(M) Hyg,m( ) (x™)\ ly(m
Enhs n,Cs_1 (qs ° ) (1_(15 ® )

™)

n,h,s

q(Xs‘Xs—17 y[l:t]7 9) == H "'(x
ne[l:N] €
("))

)

x)

Sn pn
Q(XO|Y[1:t]’9) = H 2mh0 70 (4.8)

n€[l:N] én,h,o
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4.3. Resampling

The resampling scheme (r4(7))sep0:4 is not trivial. Indeed, choosing resam-
pling schemes that do not consider future observations negates the effort of
building optimal proposals (Fearnhead (2008)). Ideally, resampling should be
done according to the smoothing distribution p(x,|yp.,#) (Scharth and Kohn
(2016)):

P(Yist1:4|Xs, O)D(Xs| Y1125, )
P(Yisv1:a|yi:e5 0)

X p(Y[s+1:t] |XS7 e)p(XSb’[l:s], 9)?

(4.9)
which is a combination of the probability of observing the future observations,
given the current sample x,, and the filtering distribution. In the equivalent of

p(XS |y[1:t]7 0) =

the low-cost case, the proposal distribution approximation p(X|Xs—1, ¥(s:s+n], 0)
follows trivially for ¢t = s + h.

The quantities involved in the optimal resampling cannot be computed in
closed form, and thus need to be approximated. An SMC outputs a particle
approximation (V)™ 35 ;. p whdxr (x,) of the filtering distribution p(x;|y(i., 0),

~(x(™
and Algorithm 1 yields an approximation Hne[l:N] E?S,JSL,SE‘,-D for p(yis+1:4]%s,0). It
then follows that the approximate optimal resampling is

ro(@) ocwi [[ &G forie[i: Pl (4.10)

n€[l:N]

with (xP),eq.p) being the sampled particles at time s.

5. Experiments

In this section, we analyze the performance of SMC algorithms when using
our approximation of the optimal proposal and resampling scheme. We consider
simulated data from the SIS model and the SEIR model, which we analyze
in Section 5.1 and Section 5.2, respectively. For each model, we follow an
experimental routine inspired by [Ju, Heng and Jacob (2021), to compare our
method with the BPF and APF: (i) we compare the methods based on the
effective sample size (ESS) 1/, 7s(4); (ii) we compare the methods based
on the standard deviation of the estimate of marginal likelihood; and (iii) we
study the marginal likelihood surface on a grid of parameter values for different
t when using our method.

All experiments are run on a 32 GB Tesla V100 GPU, made available from
the HEC (High-End Computing) facility from Lancaster University. The code is
available in the GitHub repository “Optimal IBM _proposal” (https://github.
com/LorenzoRimella/Optimal_IBM_proposal).


https://github.com/LorenzoRimella/Optimal_IBM_proposal
https://github.com/LorenzoRimella/Optimal_IBM_proposal
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Figure 2. ESS percentage over time for BPF, APF, and our method when h =
1,5,10,20,50. The left plot shows all the listed methods, and the right plot considers
only h = 10,20, 50 and zoom-in.

5.1. The SIS model

The SIS model is used in epidemiology to model the spread of a disease in a
population when herd immunity is not possible. As already mentioned in Section
3.1, we can formulate an individual-based model by having individuals specific
covariates (W, )ne1:n], and using these covariates to define a unique dynamic per
individual. We have covariates of the form w, = (W, w®)T where w() = 1
and w? ~ N(e]0, 1) independently, for all n € [1 : N]. If not specified otherwise,
we consider N = 100, the time horizon ¢ = 100, and data-generating parameters
(DGP) given by By = (—log(N —1),0)", Bx = (-1,2)* , B, = (-1,-1)", and
q: = q, with g = (0.8,0.8)T.

The first experiment measures the ESS for the BPF, the APF, and h =
1,5,10,20,50 when P = 512. Figure 2 displays our findings for a number
of particles P = 512. The BPF fails in terms of sampling any epidemics
trajectories, because of the mismatch problem mentioned in Section 3.3, where
a single mismatch out of IV individuals is sufficient to assign a zero probability
to the associated particle. The APF corrects the proposal by considering the
current observation, and so avoids a mismatch. Even though this is a significant
improvement on the BPF, the ESS is still very low. Our approximate optimal
proposal reaches a significantly better ESS than that of the APF by just looking
at the next step in the future (h = 1). Furthermore, choosing h > 5 does not
improve the performance, owing to the forgetting property of our HMM (Douc,
Moulines and Ritov] (2009)).

In the next experiment, we examine the standard deviation of the marginal
likelihood estimates. We consider two frameworks: one using the data-generating
parameters, and the other substituting 8y with (—3,0)T. Standard deviations
are computed over 100 runs. The APF is three to four times faster than our
method when h = 5, but the standard deviation in both frameworks is 10 to
20 times higher than h = 5 for small P, and 20 to 30 times higher than h = 5



APPROXIMATE OPTIMAL PROPOSAL FOR IBM 1179

Table 2. The standard deviation for the APF and our method when h = 5, 10, 20 under
the data-generating process (DGP) and non-data-generating process (NDGP) with P =
128,512,2048. The mean computational cost of a single step of the SMC is reported in
the first row with the name of the algorithm.

- APF 0.7s h=5 2.5s h=10 3.94s h=20 6.61s

- DGP NDGP DGP NDGP DGP NDGP DGP NDGP
P std std std std std std std std
128 4.99 9.89 0.3 0.92 0.31 1.0 0.37 0.89
512  4.01 6.66 0.17 0.48 0.18 0.49 0.18 0.48
2,048 2.83 6.23 0.11 0.25 0.11 0.22 0.11 0.22

-4’ u “
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2 2
By By
I |
—400 0 =1000 0

Figure 3. Marginal likelihood contour plots on a 8y grid and a 8, grid in log-scale. The
first and second columns refer to ¢ = 50, 100, from left to right, for 5. The third and
fourth columns refer to ¢ = 50, 100, from left to right, for 5,. Rows refer to h = 5,10,
from top to bottom. The colorbars are common across parameters, and their maximum
is set to zero. In red, are the data-generating parameters, and in black are the MLEs on
the grid.

for big P. Again, we find no substantial improvement when using A > 5. The
computational cost depends highly on the implementation. Our scripts run on
GPUs and parallelize each step of the SMC across individuals and particles.
Hence we do not report significant changes in the running time when increasing
P.

Now, suppose we want to infer 3\ or 3,. We start by setting ) in a two-
dimensional grid on (—4,4)?, and the other parameters to the data-generating
parameters (including ,). We then compute estimates of the marginal likelihood
with an SMC using our proposal and a resampling scheme when P = 512. The
procedure is replicated for 38,. Both experiments are run for h = 5,10 and
t = 50,100, with new data generated for each value of t. Marginal likelihood
contour plots are reported in Figure 3 in log scale, and are normalized to have
their maximum in zero.
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Figure 4. ESS percentage over time for the BPF, the APF, and our method when
h =1,5,10,20,50. The left plot shows the listed methods, and the right plot considers
only h = 5,10, 20,50 and zoom-in.

In both figures, increasing the time concentrates the likelihood around the
data-generating parameters. Choosing h = 10 does not improve the inference
over f35, but it helps to infer 8, by removing some combinations of parameters
from the inference (white space).

5.2. The SEIR model

The SEIR model is popular in epidemiology (He, Peng and Sun (2020);
Deguen, Thomas and Chaul (2000); Porter and Oleson| (2013)) when the disease
is expected to have a latent period (exposed compartment) and herd immunity

(removed compartment). The SEIR case is significantly more challenging than the
SIS, because the transition kernel constrains the dynamic on S - F — I — R,
and so if in our SMC at time t — 1 we have a particle with individual n
in compartment S, and we then observe the same individual at time t in
compartment I or R, the SMC assigns a zero probability to that particle.

As for the SIS case, a heterogeneous SEIR model is obtained by including
a collection of covariates defining (w,)neq:ny. The initial distribution p, o is
defined on compartments 1 (S) and 3 (I), as for the SIS case, with zeros for
compartments 2 (E) and 4 (I). Similarly, (K, «)nep:n is defined as the SIS for
transitions 1,2 (S, E) and 3,4 (I, R), with the additional transition 2,3 (E, I)
given by 1 — exp(—p). Full definitions of p, o and (K, 4),ep.n] are available in
the Supplementary Material. The emission distribution follows .

We have covariates of the form w, = (w), w)T where w() = 1 and
w? ~ N (e|0,1) independently, for all n € [1: N]. If not specified otherwise, we
consider N = 1000, the time horizon ¢ = 100, and data-generating parameters
given by Bo = (—log(N/10 —1),0)*, Bx = (1,2)", p=0.2, B, = (—1,—-1)", and
qs = q, with g = (0,0,0.4,0.6)™.
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Table 3. The standard deviation for our method when h = 5,10, 20,50 under the data-
generating parameters (DGP) and non-data-generating parameters (NDGP) with P =
128,512,2048. The mean computational cost of a single step of the SMC is reported in
the first row with the name of the algorithm.

- h=5 0.9s h=10 3.5s h=20 5.45s h=50 9.03s
- DGP NDGP DGP NDGP DGP NDGP DGP NDGP
P std std std std std std std std
128 58.18 68.2 20.47 32.6 9.59 18.32 6.93 11.71
512 48.23 74.78 18.37 28.64 6.39 15.76 6.23 10.72
2,048 42.7  58.37 15.03  24.68 5.69 13.25 4.57 10.45

-2 2 4 —4 -2 2 4 0 2 4 4 -2 2 4

0 0 0
2 2 2
B B By
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Figure 5. Marginal likelihood contour plots on a 3y grid and a /3, grid in log-scale. The
first and second columns refer to t = 50,100 from left to right for gx. The third and
fourth columns refer to ¢ = 50,100 from left to right for 5,. Rows refer to h = 5,10 from
top to bottom. The colorbars are common across parameters and their maximum is set
to 0. In red are the data-generating parameters and in black are the MLE on the grid.

As for the SIS case, we start by analyzing the ESS for the BPF, the APF,
and h = 1,5, 10,20, 50, with P = 512. In Figure 4, both the BPF and the APF
fail because of a mismatch between the proposed particles and the observations.
Even our method fails for A < 5, but when choosing h > 10, we avoid a mismatch,
and get an increasing in time ESS.

We then investigate the standard deviation and computational cost of our
method when h changes, and report our results in Table 3. There is a significant
improvement in the standard deviation when increasing h to 50, with the jump
from h = 20 to h = 50 being less substantial. Clearly, there is a trade-off,
because a decrease in the standard deviation increases the computational cost,
which appears to be worth it for h < 50, because halving the standard deviation
less than doubles the computational cost.

We conclude by reproducing the marginal likelihood surfaces of 8, and j,
on grids for the SEIR scenario. The experiments are run for h = 10,20 and
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t = 50,100, with new data generated for each value of ¢. Figure 5 shows the
marginal likelihood contour plots on a log scale, and are normalized to have their
maximum in zero. As in the SIS case, an increase in ¢ concentrates the likelihood
around the DGP, as shown in both figures. Note that the log-likelihood surface of
B is multi-modal, because we observe individuals who are neither susceptible nor
exposed, which makes inference on this parameter significantly harder. Choosing
h = 20 seems to smooth the likelihood surface, and avoids failure close to the data-
generating parameters, as seen by the white holes in the surface for h = 10 and
t = 100. In addition, /3, has a smoother surface than that of 35, and increasing
h seems to improve the shape.

6. Discussion

Our findings demonstrate the difficulties in fitting individual-based epidemic
models in the presence of censored data, and highlight the significance of
incorporating future observations when choosing proposal distributions in SMC
algorithms. The underlying framework in which proposal distributions is general,
and the algorithm requires only that we obtain, estimates of the transition rates
at the times [t+ 1, ¢+ h] for each individual, which are then propagated backward
to build a proposal distribution that includes future observations.

Although the proposed procedure computes good proposal distributions,
several aspects can be used to improve existing methods. For example, our
backward recursion method can be used to compute the marginal likelihood
approximation in pseudo-likelihood methods (Andrieu and Roberts| (2009)), or as
the first approximate model stage in the delayed acceptance scheme of |Golightly,
Henderson and Sherlock! (2015).

Our implementation focuses on the case of homogeneous reporting rates in a
fully connected population, but can be extended to heterogeneous reporting rates,
as discussed at the end of Section 4.1. For spatial epidemic models, we simply
need to obtain an estimate of the spatial risk of infection to be able to run the
recursion. Epidemic models with an open population (e.g., migration or births-
deaths) and misreporting can also be included in the class of models we deal with
by substituting the multinomial approximation (Whiteley and Rimellal (2021))
with alternative approximations (Whitehouse, Whiteley and Rimella| (2022))).

Supplementary Material

The online supplementary material is divided into five sections:

1. the main notation and conventions;
2. an introduction to the compartmental model;

3. the main computation in the HMM and SMC;
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4. the algorithm of [Whiteley and Rimella) (2021); and

5. additional experiments and extra details on some of the experiments pre-
sented in the main paper.
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