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Abstract: The jackknife empirical likelihood (JEL) is an attractive approach for

statistical inferences with nonlinear statistics, such as U -statistics. However, most

contemporary problems involve high-dimensional model selection and, thus, the

feasibility of this approach in theory and practice remains largely unexplored in

situations in which the number of parameters diverges to infinity. In this paper, we

propose a penalized JEL method that preserves the main advantages of the JEL

and leads to reliable variable selection based on estimating equations with a U -

statistic structure in high-dimensional settings. Under certain regularity conditions,

we establish the asymptotic theory and oracle property for the JEL and its penalized

version when the numbers of estimating equations and parameters increase with the

sample size. Simulation studies and a real-data analysis are used to examine the

performance of the proposed methods and illustrate its practical utility.

Key words and phrases: Estimating equations, high-dimensional data analysis, jack-

knife empirical likelihood, penalized likelihood, U -statistics, variable selection.

1. Introduction

Statistical inference based on estimating equations with a U -statistic struc-

ture (U -type estimating equations) is common in nonparametric and semipara-

metric situations, such as quantile and rank regressions (Jin et al. (2003)). Sup-

pose that observations X1, . . . , Xn are independent and identically distributed

(i.i.d.) random vectors, and the unknown parameters θ = (θ1, . . . , θp)
T can be

estimated by solving the following r (r ≥ p) estimating equations:

Un(θ) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

h(Xi1 , . . . , Xik ; θ) = 0, (1.1)

where h(·) = (h1(·), . . . , hr(·))T are symmetric in X = (X1, . . . , Xk)
T and satisfy

Eh(X1, . . . , Xk; θ0) = 0 with θ0, which denotes the true value of θ. Here, Σ
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denotes the summation over subsets of k integers {i1, . . . , ik} from {1, . . . , n}. For

many estimation procedures in the literature, the estimator θ̂ is defined formally

as the solution of the above U -type estimating equations (1.1), which is known

as a U -type estimating problem; see Jin, Ying and Wei (2001); Song and Ma

(2010), and Li, Xu and Zhou (2016), among others. In this study, we examine

this problem under a high-dimensional setting; that is, p and r diverge with the

sample size n. Hence we use pn and rn throughout the paper to emphasize the

dependence of p and r on n.

High-dimensional data have become ubiquitous in many applications, in-

cluding microarray data analysis, neuroimaging, and portfolio selection, where

the number of parameters or variables, pn, is very large, usually in thousands

or more. Penalized methods are effective in analyzing such data, and various

penalty functions have been proposed, including the lasso (Tibshirani (1996)),

SCAD (Fan and Li (2001)), adaptive lasso (Zou (2006)), and least squares ap-

proximation (Wang and Leng (2007)). Although these methodologies significantly

improve inference and variable selection procedures in high-dimensional settings,

such as linear regression and generalized linear models, to the best of our knowl-

edge, its feasibility in jackknife empirical likelihood (JEL) inferences with U -type

estimating equations (1.1) remains largely unexplored.

The empirical likelihood (EL) method introduced by Owen (1988, 1990) has

been studied extensively, and is widely used in the literature to construct confi-

dence regions and test hypotheses. One nice feature of this method is that the

confidence intervals and p-values of a test can be easily obtained without estimat-

ing the covariance matrix. More details can be found in Owen (2001) and Chen

and Van Keilegom (2009). Note that the standard EL method works well when

dealing with linear constraints. An effective way of formulating the EL ratio

statistic is to use estimating equations, as in Qin and Lawless (1994), although

for nonlinear constraints, the EL method is extremely complicated in terms of its

computation. To overcome this computational difficulty, Jing, Yuan and Zhou

(2009) proposed the JEL, focusing particularly on nonlinear statistics involving

U -statistics. Subsequently, Li, Peng and Qi (2011) and Peng (2012) extended the

JEL to include general estimating equations. Recently, high-dimensional data

analyses incorporating the EL method have attracted increasing attention; see

Hjort, McKeague and Van Keilegom (2009); Chen, Peng and Qin (2009); Tang

and Leng (2010); Lahiri and Mukhopadhyay (2012); Leng and Tang (2012); Peng,

Qi and Wang (2014); Chang, Chen and Chen (2015); Chen et al. (2015); Li, Liu

and Liu (2017); Chang, Tang and Wu (2018); Wang, Wu and Zhao (2019); Tang,

Yan and Zhao (2020); Chang et al. (2021), and the references therein. Motivated
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by these developments, when the dimension grows with the sample size n, the

simultaneous estimation of the parameters and variable selection using U -type

estimating equations (1.1) is of great interest and challenging, both in theory and

in terms of computation. Our study yields two main theoretical results.

(1). We prove that the JEL method is efficient when dealing with high-dimensional

U -type estimating equations, and provide the corresponding algorithms in

this scenario. This extends the scope of JEL methods for U -type estimating

equations from fixed dimensions (Li, Xu and Zhou (2016)) to the case of

diverging dimensions.

(2). We propose a novel penalized JEL (PJEL) approach based on U -type es-

timating equations. By choosing a proper penalty function, the approach

preserves the main advantages of the JEL and the penalized method, and

the resulting estimator possesses good properties, such as the oracle prop-

erty, correctly selecting the true sparse model with probability tending to

one and with optimal efficiency. Furthermore, Wilks’ theorem continues to

hold when constructing confidence regions and when testing hypotheses.

The rest of the paper is organized as follows. Section 2 presents the JEL method

in high-dimensional settings. In Section 3, we describe the PJEL methodology

and derive its asymptotic theory. In Sections 4 and 5, we report our simulation

results and present a real-data application to assess the finite-sample performance

of our method and illustrate its practical utility. All proofs are relegated to the

Supplementary Material.

2. JEL with a Diverging Number of Parameters

For U -type estimating problems, the estimator θ̂ of θ0 is the solution to

UTn (θ) = (Un,1(θ), . . . , Un,rn(θ))T = 0, where

Un,l(θ) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

hl(Xi1 , . . . , Xik ; θ), l = 1, . . . , rn.

The straightforward application of the standard EL method involves many non-

linear constraints, resulting in a heavy computational burden, and thus is not

favorable. To overcome this difficulty, Jing, Yuan and Zhou (2009) proposed first

obtaining n jackknife pseudo values, and then applying the standard EL to the

nonlinear constraints in the U -statistics. They demonstrated that this procedure

is particularly efficient in this situation. However, their discussion is restricted to

estimating the mean of one-sample and two-sample statistics, where the dimen-
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sion is fixed. In this paper, we propose a general JEL procedure for inferences

for this U -type estimation problem that avoids nonlinear constraints and per-

mits high-dimensional estimating equations. The method is based on the fact

that Un(θ) is an unbiased and consistent estimator of Eh(X1, . . . , Xk; θ) and has

mean zero at the true parameter value θ0. The details are as follows.

Define Tn = Un(θ) and T
(−i)
n−1 = T (X1, . . . , Xi−1, Xi+1, . . . , Xn; θ), the statis-

tic computed on the original data set, with the ith observation removed. The

jackknife pseudo values

V̂i(θ) = nTn − (n− 1)T
(−i)
n−1 (2.1)

can be shown to be asymptotically independent under mild conditions. Because

they also estimate Eh(X1, . . . , Xk; θ) in an unbiased and consistent manner, a

standard EL can then be constructed on V̂i(θ), for i = 1, . . . , n, instead of on

the original observations X1, . . . ., Xn, as follows. Specifically, the JEL function

is defined as

L(θ) = max

{
n∏
i=1

pi :

n∑
i=1

pi = 1,

n∑
i=1

piV̂i(θ) = 0

}
, (2.2)

with the corresponding likelihood ratio

R(θ) = max

{
n∏
i=1

(npi) :

n∑
i=1

pi = 1,

n∑
i=1

piV̂i(θ) = 0

}
. (2.3)

Throughout this paper, ‖ · ‖ refers to the l2-norm ‖ · ‖2 and q is any fixed

integer. In the Supplementary Material, we prove the following theorems.

Theorem 1. Let θ̂E be the minimizer of (2.3). Under Conditions C1–C5 in the

Supplementary Material, as n→∞ and with probability tending to one, we have

(i) θ̂E
p→ θ0 and (ii) ‖θ̂E−θ0‖ = Op(an), where an is given in the Supplementary

Material.

Theorem 2. Under Conditions C1–C5 in the Supplementary Material, we have

AnΩ
1/2
22.1

√
n(θ̂E − θ0)

d→ N(0,∆),

where An ∈ Rq×pn, such that AnA
T
n → G and G is a q × q nonnegative matrix;

Ω22.1 is given in the Supplementary Material.
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3. PJEL

In this section, we establish the asymptotic theory for the PJEL estima-

tor. Suppose that θ can be partitioned as θ = (θT1 , θ
T
2 )T , where θ1 ∈ Rd and

θ2 ∈ Rpn−d are the nonzero and zero components, respectively. Then, the true

parameter value θ0 = (θT10,0)T . We estimate the unknown parameter vector θ0
by minimizing

lp(θ) =

n∑
i=1

log{1 + λT V̂i(θ)}+ n

pn∑
j=1

pτ (|θj |), (3.1)

where pτ (|θj |) is some penalty function, and τ is a tuning parameter that controls

the trade-off between the bias and the model complexity (see Fan and Li (2001)).

Then, the PJEL has the following oracle property.

Theorem 3. Let θ̂ = (θ̂T1 , θ̂
T
2 )T be the minimizer of (3.1). Under Conditions

C1–C7 in the Supplementary Material, as n→∞, we have

(i) P (θ̂2 = 0)→ 1;

(ii) n1/2Bn∆
−1/2
11.2 (θ̂1 − θ10)

d→ N(0, G∗), where Bn is a q × d matrix, such that

BnB
T
n → G∗, G∗ is a q × q nonnegative symmetric matrix, and ∆11.2 is

given in the Supplementary Material.

Because the number of parameters may diverge to infinity, we next study the

problem of testing the following linear hypothesis:

H0 : Lnθ10 = 0, v.s. H1 : Lnθ10 6= 0,

where Ln is a q × d matrix, such that LnL
T
n = Iq for fixed q. Note that this

type of hypothesis includes simultaneously testing whether a few variables are

statistically significant. In the penalized likelihood context, Fan and Peng (2004)

investigated this type of hypothesis testing in a parametric likelihood framework,

and Leng and Tang (2012) considered the problem in a standard EL setting

for general estimating equations. Our results further generalize their results.

Specifically, a PJEL ratio test statistic is defined as

l̃(Ln) = −2{lp(θ̂)− min
θ1,Lnθ1=0

lp(θ)}. (3.2)

The following theorem derives the asymptotic null distribution of the above test

statistic.
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Theorem 4. Under the null hypothesis and Conditions C1–C7 in the Supple-

mentary Material, we have

l̃(Ln)
d→ χ2

q , as n→∞.

From Theorem 4, a (1−α)-level confidence region for Lnθ1 can be constructed

as

Cα = {v : −2{lp(θ̂)− min
θ1,Lnθ1=v

lp(θ)} ≤ χ2
q,1−α},

where χ2
q,1−α is the (1− α)th quantile of the χ2

q distribution.

Finally, the algorithms for implementing the proposed PJEL method and

constructing the related confidence region are summarized as follows.

Algorithm 1 Algorithm of PJEL
.

Input {Xi, Yi}. Suppose γ and ε0 are two predefined small numbers, for example,
γ = 10−4.
For fixed θ, define λ(θ) that minimizes lp(θ;λ);
Let k = 0, and initialize θ(0) using a general PIM estimator (e.g., probabilistic index
model in the simulations, etc.).
repeat

Let Θk = {j : θ
(k)
j 6= 0}, and find θ such that

θ = argmin
θ,θΘc

k
=0
lp(θ;λ(θ)),

where Θc
k is the complimentary set of Θk and θA = {θj , j ∈ A}.

for j ∈ Θk do
if |θj | < γ then

Take θ
(k+1)
j = 0,

else
Take θ

(k+1)
j = θj ;

end if
end for
Calculate Lk+1 = lp(θ

(k+1);λ(θ(k+1));
k = k + 1;

until maxj∈Θk−1
|θ(k−1)
j − θ(k)

j | < ε0.

4. Simulation Studies

In this section, we use the probabilistic index model (PIM) (Thas et al.

(2012)) as an example to illustrate the proposed method for U -structured prob-

lems. The effect of the covariates X on the response Y is evaluated using the
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Algorithm 2 Construct confidence region by PJEL
.

Input {Xi, Yi}, and the matrix Ln ∈ Rq×d for the hypothesis testing.

Let θ̂ be the optimal estimator of θ0 by Algorithm 1, and calculate the corresponding
lp(θ̂;λ(θ̂)). C is a set of grid points {cj , j = 1, . . . ,K} with some predefined constant

K > 0, where cj are evenly spaced in the interval C0 = [Lnθ̂ − c0, Lnθ̂ + c0]. Here
c0 is some predefined positive constant that ensures C0 can cover the (1 − α)th-level
confidence interval.
for j from 1 to K do

Fix θ10 such that Lnθ10 = cj , obtain the optimal estimator θ̃T = (θ10, θ20)T that

minimizes lp(θ̃;λ(θ̃)) by Algorithm 1, and obtain lp(θ̃;λ(θ̃));

if −2(lp(θ̂;λ(θ̂))− lp(θ̃);λ(θ̃)) ≤ χ2
q,1−α; then

Add cj into Θ0;
end if

end for
Construct the (1 − α)th-level confidence region for Lnθ10: Cα = [cl, cu], where cl and
cu are the minimum and maximum of C, respectively.

probabilistic index, which is defined as the probability P (Yi 4 Yj) := P (Yi < Yj)+

0.5P (Yi = Yj), where Yi and Yj are independent response variables with an iden-

tical distribution function F . The data consist of i.i.d. observations (Yi, Xi), for

i = 1, . . . , n. The PIM is defined as

P (Yi 4 Yj |Xi, Xj) = m (Xi, Xj ;β) = g−1
(
ZTijβ

)
,

where g(·) is a link function and Zij depends on Xi and Xj . Following (Thas et

al. (2012)), let Zi,j = Xj−Xi. For the probit and logit link functions, the models

are referred to as the linear PIM and the Cox PIM, respectively. De Neve and

Thas (2015) proposed the following U -type estimating equations:∑
(i,j)

Uij(β) = 0, Uij(β) := Zij
[
I (Yi 4 Yj)− g−1

(
ZTijβ

)]
.

As in Thas et al. (2012), we consider two scenarios.

(a) Normal linear model: Yi|Xi are i.i.d. N (α1X1i + α2X2i, 1). In this setting,

the corresponding PIM is given by Φ−1{P (Yi 4 Yj |Xi, Xj)} = β1 (X1j −X1i)

+ β2 (X2j −X2i), where βi = αi/
√

2 and Φ is the distribution function of

the standard normal distribution.

(b) Exponential model: Yi|Xi are i.i.d. Exponential {exp (α1X1i + α2X2i)}. In

this setting, the corresponding PIM is given by logit {P (Yi 4 Yj |Xi, Xj)} =

β1 (X1j −X1i) + β2 (X2j −X2i), where βi = −αi.
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In the above settings, the covariate X1 is a Bernoulli random variable with

success probability 0.5, X2 follows U [0, 10], α1 = 1, and α2 = 1. We conducted

simulations for various combinations of p and n, with 1,000 repetitions.

The tuning parameters τ are taken from a fine grid and chosen using the

BIC-type criterion (Wang, Li and Leng (2009))

BIC(τ) = 2`p(βτ ) + Cn log ndfτ ,

where βτ is the PJEL estimator with tuning parameter τ , and dfτ is the num-

ber of nonzero coefficients in βτ . For fixed p, Cn = 1 and for diverging p,

Cn = max{log log p, 1}. In our numerical study, we find that the selected tuning

parameter for BIC decreases as the sample size increases, whereas the remain-

ing parameters, such as the dimension of the covariates and the value of β stay

the same. Furthermore, the ratio of λ to the square root of p/n increases with

the sample size (not shown in the tables). These results are consistent with the

regularized condition in our assumptions, which validates the BIC-type criterion

used here.

We also compare the proposed method with the penalized empirical likeli-

hood (PEL) introduced by Tang and Leng (2010), and the penalized maximum

smoother rank correlation (PMSRC) introduced by Lin and Peng (2013), using

the same data sets and tuning criteria. The method of Tang and Leng (2010) con-

siders only linear constraints. Therefore, we first use the sequential linearization

method of Wood, Do and Broom (1996) to linearize the nonlinear constraints, and

then apply the PEL to it. The latter method achieves the estimation using a pe-

nalized smoothing objective function for the maximum rank correlation, which is

a typical U -statistic. The simulation results are summarized in Table 1 and Table

2, which report the performance of the proposed method in terms of the median

of the L2 distance (MD) of the estimation, the average of the correctly selected

zero coefficients (C), and the average of the incorrectly estimated zero coefficients

(IC) for variable selection. In both scenarios, the PJEL method performs well in

terms of the estimation and variable selection. Moreover, it identifies most of the

true zero coefficients as zero, whereas for the PEL, the performance is not good

enough for the variable selection. For the PMSRC, although the estimation is

quite good for the linear PIM model, for the Cox model, the performance is not

as good as that of the PJEL. Moreover, the variable selection capability is not

comparable with that of the PJEL. In addition, in order to illustrate the com-

putational improvement of including the jackknife method in the EL model, we

report the average computational time of the PJEL and PEL in the above setting
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Table 1. Simulation results for the linear PIM model with the PJEL, PEL, and PMSRC
methods.

n p

PJEL PEL PMSRC

MD C IC MD C IC MD C IC

200 5 0.0548 2.936 0.000 0.0527 2.346 0.000 0.0354 2.442 0.000

300 10 0.0418 7.934 0.000 0.0392 5.878 0.000 0.0295 6.763 0.000

400 15 0.0378 12.918 0.000 0.0366 9.395 0.000 0.0207 11.275 0.000

Table 2. Simulation results for the Cox PIM model with the PJEL, PEL, and PMSRC
methods.

n p
PJEL PEL PMSRC

MD C IC MD C IC MD C IC
200 5 0.0647 2.930 0.053 0.0850 2.278 0.000 0.1252 2.112 0.000
300 10 0.0551 7.905 0.000 0.0548 6.598 0.000 0.1058 6.245 0.000
400 15 0.0446 12.904 0.000 0.0460 9.732 0.000 0.0919 7.246 0.000

Table 3. The average time (in seconds) for the PJEL and PEL with a deterministic
sample size n and covariates p.

n p
Linear PIM Cox PIM

PJEL PEL PJEL PEL

200 5 4.140 16.394 5.236 34.895

300 10 18.093 115.586 40.399 344.050

400 15 58.542 451.907 191.416 1,692.695

for the simulation shown in Table 3. Here, we find that in both the linear and

the Cox PIM models, the PEL takes much longer than the PJEL, and when the

sample size or the dimension of the covariates grows, the ratio of the time expen-

diture between these two methods increases. Thus, when we have a large sample

size data set and U -statistic structure estimating equations with high dimension

covariates, the PEL is not applicable, owing to the computational burden. This

reveals the advantage of the PJEL method over the PEL method in terms of the

computational efficiency.

Next, we illustrate the performance of the PJEL when constructing the con-

fidence region. We set Ln in (3.2) to (1, 0, . . . , 0), and test the null hypothesis

H0 : β10 = a, with a = β1 − 0.2, β1 − 0.1, β1, β1 + 0.1, and β1 + 0.2 separately,

where β10 denotes the first component of β. Under the nominal level α0 = 0.05,

we summarize the empirical size for the deterministic value of a in Table 4. The

table shows that the size of our test is close to the nominal level, and increases

when the null value differs from the true value β1. These results validate the

likelihood ratio test under the PJEL, and indicates the feasibility of constructing
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Table 4. The empirical percentages that a given value does not fall in the 95% confidence
interval.

PIM model n p β10 − 0.2 β10 − 0.1 β10 β10 + 0.1 β10 + 0.2

Normal linear
200 5 24.40 11.20 4.60 10.00 26.10
300 10 40.40 15.80 6.40 12.00 33.80
400 15 54.70 22.50 4.70 12.20 40.70

Exponential
200 5 26.90 14.10 6.50 9.10 16.80
300 10 31.70 15.60 6.30 10.10 21.40
400 15 41.60 20.00 6.90 10.60 26.70

Table 5. The 15 variables in the air pollution study.

PREC Average annual precipitation in inches
JANT Average January temperature in degrees F
JULT Average July temperature in degrees F
OVR65 Percent of 1960 SMSA population aged 65 or older
POPN Average household size
EDUC Median school years completed by those over 22
HOUS Percent of housing units which are sound & with all facilities
DENS Population per sq. mile in urbanized areas, 1960
NONW Percent of non-white population in urbanized areas, 1960
WWDRK Percent of employed in white collar occupations
POOR Percent of families with income less than $3,000
HC Relative hydrocarbon pollution potential
NOX Relative nitric oxides pollution potential
SO 2 Relative sulphur dioxide pollution potential
HUMID Annual average percent of relative humidity at 1pm

the confidence region by taking the hypothesis at finer grid points.

5. An Application to an Air Pollution Study

The adverse effects of air pollution on human health have been explored in

many scientific studies, particularly in terms of the effect on human mortality.

Here, we apply the proposed method to an air pollution study1 (McDonald and

Schwing (1973)) to identify the factors associated with air that most affect mor-

tality. The data set consists of 60 observations and 15 features. The response

variable is “Mortality”, representing the total age-adjusted mortality rate per

100,000. Detailed descriptions of the 15 variables in the air pollution study are

given in Table 5. McDonald and Schwing (1973) proposed using a multiple linear

regression to assess the covariate effects on the mortality rate. Here, we apply

the proposed method to fit a normal linear PIM to identify those factors that

1 Data source: http://lib.stat.cmu.edu/datasets/pollution

http://lib.stat.cmu.edu/datasets/pollution
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Table 6. The 95% confidence intervals of the estimated nonzero coefficients for the air
pollution study.

Covariate Estimated coefficient Confidence interval by PJEL
PREC 0.731 [0.361, 1.203]
JANT -1.113 [-1.472, -0.822]
EDUC -0.390 [-0.712, -0.161]
NONW 1.743 [1.36, 2.23]

HC -3.542 [-5.612, -2.65]
NOX 3.956 [2.096, 5.89]

are relevant to mortality. The BIC-type criterion is used to choose the param-

eter λ. Then, using the PJEL method, six covariates are identified as relevant,

and are reported in Table 6, along with the constructed 95% confidence inter-

vals, using the PJEL procedures for the inference. The identified covariates are

as follows: average annual precipitation (PREC), average January temperature

(JANT), median school years completed by those over 22 (EDUC), non-white

percentage (NONW), hydrocarbon pollution potential (HC), and nitric oxide pol-

lution potential (NOX). The variables selected here are similar to those selected

by McDonald and Schwing (1973). They used two different criteria to choose the

factors. When using the ridge regression, we identify four features in common

with their six (annual precipitation, January temperature, education, and non-

white percentage). In addition, we find that hydrocarbon has adverse effect on

the human mortality rate.

Supplementary Material

The online Supplementary Material includes detailed proofs of the main the-

orems.
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