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Abstract: Inference based on the partial envelope model is variational or non-

equivariant under rescaling of the responses, and tends to restrict its use to responses

measured in identical or analogous units. The efficiency acquisitions promised by

partial envelopes frequently cannot be accomplished when the responses are mea-

sured in diverse scales. Here, we extend the partial envelope model to a scaled

partial envelope model that overcomes the aforementioned disadvantage and en-

larges the scope of partial envelopes. The proposed model maintains the potential

of the partial envelope model in terms of efficiency and is invariable to scale changes.

Further, we demonstrate the maximum likelihood estimators and their properties.

Lastly, simulation studies and a real-data example demonstrate the advantages of

the scaled partial envelope estimators, including a comparison with the standard

model estimators, partial envelope estimators, and scaled envelope estimators.

Key words and phrases: Dimension reduction, grassmannian, scaled envelope model,

partial envelope model, scale invariance.

1. Introduction

The standard multivariate linear regression model with a p×1 non-stochastic

predictor X and an r × 1 stochastic response Y can be represented as

Y = α+ βX + ε, (1.1)

where α ∈ Rr is the unknown intercept, β ∈ Rr×p is the unknown coefficient

matrix, and the error vector ε has mean zero and covariance matrix Σ > 0, and

is independent of X. The data involve n independent values Yi of Y , which are

observed at corresponding values Xi of X(i = 1, . . . , n). In general, we assume

that the predictor is centered in the sample. The model is a cornerstone of

multivariate statistics. Here, we focus on the interrelation between X and Y

using the regression coefficient matrix β ∈ Rr×p. As such, our interest lies in

estimating β.
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Cook, Li and Chiaromonte (2010) introduced response envelopes, and em-

ployed a subspace to envelop the material information and eliminate the im-

material variation. This method results in significant efficiency gains when the

immaterial variation is larger than the material variation. Based on the work of

Cook, Li and Chiaromonte (2010), several papers have extended the idea of en-

veloping to more general settings, and have proposed new models to accomplish

greater efficiency gains (Su and Cook (2011, 2012, 2013); Cook, Helland and Su

(2013); Cook and Zhang (2015, 2016, 2018); Khare, Pal and Su (2017); Li and

Zhang (2017); Zhang and Li (2017); Ding and Cook (2018); Pan, Mai and Zhang

(2019); Zhu and Su (2020)).

The partial envelope model introduced by Su and Cook (2011) results in a

parsimonious method for multivariate linear regression when some of the predic-

tors are of special interest. In contrast to the standard model, it has the potential

for extensive efficiency gains in the estimation of the coefficients for the chosen

predictors. The partial envelope model is a variation of the envelope model pro-

posed by Cook, Li and Chiaromonte (2010), but it pays close attention to part of

the predictors. It has looser restrictions and can further enhance efficiency. The

envelope estimator decreases to the standard estimator when r ≤ p and β has

rank r. There is no possibility of an efficiency gain in this case. Nevertheless, the

partial envelope removes this restriction, offering gains even when r ≤ p.
The scaled envelope model proposed by Cook and Su (2013) is scale-unchanging,

and achieves efficiency gains except in the case of the initial envelope model. This

is achieved by incorporating a scaling matrix into the model, so scale transfor-

mations are taken into account during estimation. It maintains the advantages

of the original envelope methods in terms of efficiency and is invariant to scale

variations. Cook and Su (2016) employed the relationship between partial least

squares and envelopes to exploit new method-scaled predictor envelopes that in-

volve predictor scaling into partial least squares-type applications. By estimating

suitable scales, the scaled predictor envelope model estimators provide efficiency

gains, surpassing those offered by partial least squares, and further decrease pre-

diction errors.

The scaled envelope model pays close attention to all predictors. However,

we focus on part of the predictors, looser restrictions, and further improving

efficiency. Our research is motivated by the study of Cook and Su (2013). In

order to further improve the efficiency of the parameter estimation and keep

the scale invariant, we first apply the dimension reduction ideas of the partial

envelope model to focus on predictors of special interest. Next, we combine the

partial envelopes with the scaled envelopes to form the scaled partial envelope
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model, the estimators of which show promising performance in our simulation

studies and real-data analysis. From the simulation results, when the envelope

subspace is equal to the full space, we find that the standard model and the scaled

envelope model have the same standard deviations. In addition, the scaled partial

envelope estimators exhibit a remarkable efficiency gain over the partial envelope

estimators, and the latter have an obvious efficiency gain over the ordinary least

squares estimators and the scaled envelope estimators, regardless of whether the

error is normal or nonnormal. In the real-data analysis, we also see the advantages

of the scaled partial envelope model. When the part of the response variable Y

that is material to all predictors is no less variable than the immaterial part,

but the part of Y that is material to part of the predictors is much less variable

than the immaterial part, the scaled partial envelope estimators have a significant

advantage over the standard model estimators, partial envelope estimators, and

scaled envelope estimators.

The rest of the paper is organized as follows. Section 2 reviews the envelope

model, partial envelope model, and scaled envelope model. Furthermore, the

scaled partial envelope model is proposed. Section 3 demonstrates the maximum

likelihood estimators and identifiability for the scaled partial envelope model pa-

rameters. Section 4 describes the theoretical properties of the scaled partial enve-

lope estimator. In Section 5, we discuss selecting the partial envelope dimension

u1. Simulation studies are carried out to compare our proposed model with the

standard model, partial envelope model, and scaled envelope model in Section 6.

A real-data example is given in Section 7. Section 8 concludes the paper. The

proofs of the propositions are provided in the Supplementary Material.

2. Scaled Partial Envelope Model

2.1. Envelope model and partial envelope model

The envelope model (Cook, Li and Chiaromonte (2010)) aims to find the

smallest subspace E ⊆ Rr that satisfies the following two conditions:

(a)QSY |X ∼ QSY, (b)QSY q PSY |X. (2.1)

The sign “∼” means identically distributed, and “q” means statistically inde-

pendent. The symbol P(·) projects onto the subspace and Q = Ir − P . Property

(a) implies that the distribution of QSY does not rely on X, so QSY has no

information about β. Property (b) implies that QSY is conditionally indepen-

dent of PSY given X, and thus QSY cannot transmit information about β via
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a link with PSY . The properties provided by (2.1) are equal to the condition

QSY |(PSY,X) ∼ QSY . This expression signifies that the projection QSY is not

material to the estimation of β. All of the immaterial information in Y can be

gained by detecting the smallest subspace S that meets the requirements in (2.1).

Let B = span(β). Cook, Li and Chiaromonte (2010) showed that the pair of

conditions (2.1) is equal to the following two conditions:

(2a)B ⊆ S, (2b)Σ = PSΣPS +QSΣQS . (2.2)

Condition (2b) holds if and only if PSY and QSY are uncorrelated given X, and

is equivalent to claiming that S is a reducing subspace of Σ. These conditions

signify that all of the immaterial information can be obtained by choosing S as

the intersection of all reducing subspaces of Σ that include B. This is called the

Σ-envelope of B, and is denoted by EΣ(B), or simply E .

Let u = dim{EΣ(B)}, and let Γ ∈ Rr×u and Γ0 ∈ Rr×(r−u) denote semi-

orthogonal basis matrices for EΣ(B) and its orthogonal complement E⊥Σ (B), re-

spectively. By forcing conditions (2.2) on the standard model (1.1), the coordi-

nate form of the envelope model can be acquired as follows:

Y = α+ ΓηX + ε,Σ = ΓΩΓT + Γ0Ω0ΓT
0 , (2.3)

where η ∈ Ru×p are the coordinates of β, which is relative to Γ, and Ω ∈ Ru×u

and Ω0 ∈ R(r−u)×(r−u) are both positive-definite matrices. In model (2.3), EΣ(B)

connects the mean and the covariance matrices, and it is this connection that

provides the efficiency gains, particularly when the variation of the immaterial

part ΓT
0 Y is mainly larger than that of the material part ΓTY . The parameters

in (2.3) are obtained by maximizing a normal likelihood function. Let Σ̃Y , β̃,

and Σ̃res denote the sample covariance matrix of Y , the least squares estimator

of β, and the sample covariance matrix of the residuals from the least squares

regression of Y on X, respectively. The estimator of the envelope subspace is

the span of arg min{log|ΓT Σ̃resΓ| + log|ΓT Σ̃−1
Y Γ|}, and its minimization is the

r × u Grassmannian (Edelman, Arias and Smith (1998); Adragni, Cook and Wu

(2012)).

Su and Cook (2011) extended the envelope model to the partial envelope

model. The partial envelopes center on the coefficients corresponding to the

predictors of interest. Partition X into two sets of predictors, X1 ∈ Rp1 and

X2 ∈ Rp2 , where p1 + p2 = p and p1 < r, and partition the columns of β into β1

and β2. Then, model (1.1) can be rewritten as Y = α+ β1X1 + β2X2 + ε, where

β1 corresponds to the coefficients of interest. The Σ-envelope for B1 = span(β1)
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is mainly taken into account, leaving β2 as an unconstrained parameter. This

results in the parametric structure B1 ⊆ EΣ(B1) and Σ = PE,1ΣPE,1 +QE,1ΣQE,1,

where PE,1 denotes the projection onto EΣ(B1), called the partial envelope for

B1. This is identical to the envelope structure, except the partial envelope is

correlated with B1 instead of the larger space B. In order to focus on the partial

envelope, EΣ(B) is considered as the full envelope. Because B1 ⊆ B, the partial

envelope is included in the full envelope, EΣ(B1) ⊆ EΣ(B), which permits the

partial envelope to provide gains that may be impossible with the full envelope.

Let Γ ∈ Rr×u1 be a semi-orthogonal matrix with ΓTΓ = Iu1
, the columns

of which form a basis for EΣ(B1). Let (Γ,Γ0) ∈ Rr×r be an orthogonal matrix

and η ∈ Ru1×p1 be the coordinates of β1, which is related to the basis matrix Γ.

Then, the coordinate version of the partial envelope model can be expressed as

follows:

Y = α+ ΓηX1 + β2X2 + ε,Σ = ΓΩΓT + Γ0Ω0ΓT
0 , (2.4)

where Ω ∈ Ru1×u1 and Ω0 ∈ R(r−u1)×(r−u1) are both positive-definite matrices

that serve as coordinates of ΣE1 and ΣE⊥1 , respectively, which are related to the

basis matrices Γ for EΣ(B1) and its orthogonal complement.

To explain it better, let R1|2 denote the population residuals from the multi-

variate linear regression of X1 on X2. The predictor X is required to be centered.

Then, the linear model can be re-parameterized as Y = α + β1R1|2 + β∗2X2 + ε,

where β∗2 is a linear combination of β1 and β2. Next, let RY |2 = Y −α−β∗2X2, the

population residuals from the regression of Y on X2 alone. A linear model that

contains β1 alone is written as RY |2 = β1R1|2 + ε. The partial envelope EΣ(B1) is

identical to the full envelope for B1 in the regression of RY |2 on R1|2. That is, the

partial envelope can be interpreted in light of QSY |X ∼ QSY,QSY q PSY | X,

which is applied to the regression of RY |2 on R1|2. The predictors have been cen-

tered, so the maximum likelihood estimator of α is simply α̂ = Y . The estimators

of the remaining parameters require the estimator of EΣ(B1).

2.2. Scaled envelope model

The envelope model (2.3) is not invariant or equivariant under linear trans-

formations of the response. Assume that Y is rescaled via multiplication by a

nonsingular diagonal matrix A. Let YN = AY denote the new response, let β̂ and

Σ̂ denote the estimators of β and Σ, respectively, based on the envelope model

for Y on X, and let β̂N and Σ̂N denote the estimators of β and Σ, respectively,

based on the envelope model for YN on X. Accordingly, there is usually no in-

variance, for example, β̂N = β̂, Σ̂N = Σ̂. Or equivalently, for instance, β̂N = Aβ̂,
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Σ̂N = AΣ̂A. In fact, the dimension of the envelope subspace may alter on ac-

count of the transformation. Based on the above motivation and thinking, Cook

and Su (2013) extended the envelope model to the scaled envelope model.

For the sake of exhibiting a rescaling, a diagonal matrix Λ = diag{1, λ2, . . . ,

λr} ∈ Rr×r is introduced, with λi > 0 for i = 2, . . . , r, such that YN = Λ−1Y fol-

lows an envelope model, where the dimension of the envelope subspace EΛ−1ΣΛ−1

(Λ−1B) is equivalent to u. As a result, Λ−1B ⊆ span(Γ) and Λ−1ΣΛ−1 = PΓΛ−1

ΣΛ−1PΓ + QΓΛ−1ΣΛ−1QΓ, where Γ ∈ Rr×u is an orthogonal basis of EΛ−1ΣΛ−1

(Λ−1B) and Γ0 ∈ Rr×(r−u) is a completion of Γ.

The coordinate form of the scaled envelope model is as follows:

Y = α+ ΛΓηX + ε,Σ = ΣE + ΣE⊥ = ΛΓΩΓTΛ + ΛΓ0Ω0ΓT
0 Λ. (2.5)

Here, β = ΛΓη, with η = ΓTΛ−1β ∈ Ru×p, is the coefficient matrix, and Ω =

var(ΓTΛ−1Y ) = ΓTΛ−1ΣΛ−1Γ ∈ Ru×u and Ω0 = var(ΓT
0 Λ−1Y ) = ΓT

0 Λ−1ΣΛ−1Γ0

∈ R(r−u)×(r−u) are both positive-definite matrices.

2.3. Scaled partial envelope model

Now, we discuss the case n > max(r, p). A diagonal matrix Λ = diag{1, λ2,

. . . , λr} ∈ Rr×r, with λi > 0(i = 2, . . . , r), is introduced, so that (Y )N = Λ−1Y

follows a partial envelope model, where the dimension of the partial envelope

subspace EΛ−1ΣΛ−1(Λ−1B1) is equivalent to u1. Hence, Λ−1B1 ⊆ span(Γ) and

Λ−1ΣΛ−1 = PΓΛ−1ΣΛ−1PΓ +QΓΛ−1ΣΛ−1QΓ, where Γ ∈ Rr×u1 is an orthogonal

basis of EΛ−1ΣΛ−1(Λ−1B1) and Γ0 ∈ Rr×(r−u1) is a completion of Γ.

The coordinate form of the scaled partial envelope model is as follows:

Y = α+ ΛΓηX1 + β2X2 + ε,Σ = ΣE1 + ΣE⊥1 = ΛΓΩΓTΛ + ΛΓ0Ω0ΓT
0 Λ. (2.6)

Here, β1 = ΛΓη with η = ΓTΛ−1β1 ∈ Ru1×p1 is the coefficient matrix, and Ω =

var(ΓTΛ−1Y )=ΓTΛ−1ΣΛ−1Γ ∈ Ru1×u1 and Ω0 =var(ΓT
0 Λ−1Y ) = ΓT

0 Λ−1ΣΛ−1Γ0

∈ R(r−u1)×(r−u1) are both positive-definite matrices. A linear model that involves

β1 alone is written as RY |2 = ΛΓηR1|2 + ε. In this model, R1|2 denotes the

population residuals from the multivariate linear regression of X1 on X2, and

RY |2 = Y − α− β∗2X2 denotes the population residuals from the regression of Y

on X2 alone, where β∗2 is a linear combination of β1 and β2. To aid the computa-

tion, we set the first element of Λ to one for the scaling parameters. Otherwise,

we can multiply Λ by an arbitrary constant c and multiply η by its reciprocal

1/c.

For a fixed dimension u1, the number of parameters in the scaled partial
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envelope model (2.6) is NSPE = 2r− 1 + p1u1 + p2r+ r(r+ 1)/2. This is because

we need r parameters for α, r − 1 parameters for Λ, p1u1 parameters for η, p2r

parameters for β2, u1(u1 + 1)/2 parameters for Ω, and (r − u1)(r − u1 + 1)/2

parameters for Ω0. The envelope subspace EΛ−1ΣΛ−1(Λ−1B1) is on an r × u1

Grassmann manifold, which is the set of all u1-dimensional subspaces in an r-

dimensional space, with u1(r− u1) free parameters. Then, we have the following

summary for each model:

(i) standard linear model: NOLS = r+pr+r(r+1)/2 (Cook, Li and Chiaromonte

(2010));

(ii) envelope model: NE = r + pu + r(r + 1)/2 (Cook, Li and Chiaromonte

(2010));

(iii) partial envelope model: NPE = r + p1u1 + p2r + r(r + 1)/2 (Su and Cook

(2011));

(iv) scaled envelope model: NSE = 2r−1+pu+r(r+1)/2 (Cook and Su (2013));

(v) scaled partial envelope model: NSPE = 2r − 1 + p1u1 + p2r + r(r + 1)/2.

3. Maximum Likelihood Estimators and Identifiability for Scaled Par-

tial Envelope Model Parameters

3.1. Maximum likelihood estimators when Λ is known

Here, we discuss maximum likelihood estimation when Λ is known. When

Λ = Ir, the subscript “o” is employed to indicate quantities in this model to

differentiate it from the ordinary partial envelope model (2.4). The response Y

in (2.6) is converted to Λ−1Y , and then we express the generating partial envelope

model as {
Λ−1Y = αo + ΓηX1 + β2X2 + εo,

var(εo) = Σo = ΣE1 + ΣE⊥1 = ΓΩΓT + Γ0Ω0ΓT
0 .

(3.1)

Using the above equations, we can obtain the scaled partial envelope estima-

tors β̂1,Λ of β1 and Σ̂Λ of Σ. When Λ is known, we convert Y to Λ−1Y , and then

estimate β1,o = Γη and Σo in model (3.1), which follows Su and Cook (2011).

Then, β̂1,Λ = Λβ̂1,o and Σ̂Λ = ΛΣ̂oΛ. Model (3.1), which has response Λ−1Y , is

simply an ordinary partial envelope model.

3.2. Maximum likelihood estimators when Λ is unknown

Supposing that the errors ε in (2.6) follow the normal distribution, we can

obtain maximum likelihood estimators of β1 and Σ. The definition of scaled
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partial envelopes does not require the assumption of normality. In Section 6, we

discuss different nonnormal error distributions when normality does not hold.

We assume that the data ((R1|2)i, (RY |2)i)(i = 1, . . . , n) are independent, and

n is the sample size. Let RY |2 denote the sample mean of RY |2. By minimizing

the objective function, we can acquire the maximum likelihood estimators Γ̂ of Γ

and Λ̂ of Λ. The objective function is as follows:

L(Λ,Γ) = log|ΓTΛ−1Σ̃resΛ
−1Γ|+ log|ΓTΛΣ̃−1

RY |2
ΛΓ|. (3.2)

More details are provided in the Supplementary Material. Here, Σ̃res denotes

the sample covariance matrix of the residuals from the least squares regression of

RY |2 on R1|2.

Next, we give the maximum likelihood estimators of the remaining param-

eters, as follows: Γ̂0 can be any orthogonal basis of the orthogonal complement

of span(Γ̂), η̂ = Γ̂T Λ̂−1β̃1, Ω̂ = Γ̂T Λ̂−1Σ̃resΛ̂
−1Γ̂, Ω̂0 = Γ̂T

0 Λ̂−1Σ̃RY |2Λ̂
−1Γ̂0,

β̂1 = Λ̂P̂ΓΛ̂−1β̃1, and

Σ̂ = Λ̂P̂ΓΛ̂−1Σ̃resΛ̂
−1P̂ΓΛ̂ + Λ̂P̂Γ0

Λ̂−1Σ̃RY |2Λ̂
−1P̂Γ0

Λ̂,

= Λ̂Γ̂Ω̂Γ̂T Λ̂ + Λ̂Γ̂0Ω̂0Γ̂T
0 Λ̂.

Using the structures of β̂1 and Σ̂, we can uncover the course of estimation in the

scaled partial envelope model. We consider β̂1 = Λ̂P̂ΓΛ̂−1UTF1(F T
1 F1)−1, where

U is an n×r matrix with ith row ((RY |2)i−RY |2)T , and F1 is an n×p1 matrix with

ith row (R1|2)Ti (i = 1, . . . , n). First, the response is rescaled, RY |2 → Λ̂−1RY |2,

and centered to obtain Λ̂−1UT . Then, we perform the ordinary partial envelope

estimation by employing the rescaled response to obtain P̂ΓΛ̂−1UTF1(F T
1 F1)−1.

Next, the estimator is converted back to the original scales to obtain β̂1. The

scaled partial envelope model transforms RY |2 to Λ̂P̂ΓΛ̂−1RY |2, and the process

Λ̂P̂ΓΛ̂−1 is identical, regarding Λ̂−1 as an analogous transformation to the original

scale of (RY |2)N .

3.3. Parameter identifiability

There is almost always a unique pair {Λ̂, span(Γ̂)} to make the objective

function (3.2) the global minimizer. When Λ and span(Γ) are not identified, the

objective function will usually be flat along some directions, and can return any

value in those directions. The parameters β1 and Σ are our focus of research

interest, so this potential nonuniqueness is not a concern. In reality, Proposition

1 guarantees that the maximizers of β1 and Σ, with reference to the loglikelihood
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function, are uniquely defined. Then, we obtain the identical estimators β̂1 and

Σ̂, regardless of whether or not the global minimizer {Λ̂, span(Γ̂)} is unique.

According to Henderson and Searle (1979), the operator vec implies that

Ra×b → Rab stacks the columns of a matrix, and the operator vech implies that

Ra×a → Ra(a+1)/2 stacks the lower triangular part of a symmetric matrix. Here,

we associate the constituent parameters Λ, η,Γ,Ω, and Ω0 in the scaled par-

tial envelope models (2.6) with the vector φ = {λT , vec(η)T , vec(Γ)T , vech(Ω)T ,

vech(Ω0)T }T = (λT , φTo )T , where φo = {vec(η)T , vec(Γ)T , vech(Ω)T , vech(Ω0)T }T

involves the constituent parameters in the model (3.1), and λ = (λ2, . . . , λr)
T is

the vector of the second to the rth diagonal elements of Λ. Let A⊗B denote the

Kronecker product of matrices A and B, and let L denote the r2× (r− 1) matrix

with columns ei ⊗ ei, where ei ∈ Rr contains a one in the ith position and zero

elsewhere, for i = 2, . . . , r. Then, λ = LTvec(Λ). Because β1 = ΛΓη = Λβ1,o and

Σ = Λ(ΓΩΓT + Γ0Ω0ΓT
0 )Λ = ΛΣoΛ, β1 and Σ are both functions of φ.

Proposition 1. Suppose that the errors in the scaled partial envelope model (2.6)

are independent, but not necessarily normal, and have finite second moments, and

that (1/n)
∑n

i=1(R1|2)i(R1|2)Ti > 0. Then, β1(φ) and Σ(φ) are identifiable and β̂1

and Σ̂ are uniquely defined.

Remark 1. From Proposition 1, when φ is not identifiable, β1 and Σ are iden-

tifiable. Moreover, we can obtain unique estimators β̂1 = β1(φ̂) and Σ̂ = Σ(φ̂).

This offers the basis for our discussion of the asymptotic distribution and consis-

tency of β̂1 and Σ̂ in Section 4. The proof of Proposition 1 is contained in the

Supplementary Material.

4. Theoretical Properties of the Scaled Partial Envelope Estimator

Here, we investigate the asymptotic distribution and consistency of the scaled

partial envelope model. Because the parameters β1 and Σ are our primary fo-

cus, the asymptotic distribution of the estimator {vec(β̂1)T , vech(Σ̂)T }T under

normality is provided. To better illustrate the results, we have prepared several

definitions below. That is, the contraction matrix Cr ∈ Rr(r+1)/2×r2 and the

expansion matrix Er ∈ Rr2×r(r+1)/2 link the vec and vech operators. For any

symmetric matrix A ∈ Rr×r, vec(A) = Ervech(A) and vech(A) = Crvec(A). Let

ΣR1|2 = limn→∞(1/n)
∑n

i=1(R1|2)i(R1|2)Ti , and let p1,ii denote the ith diagonal

element of the projection matrix P1,F1
, where F1 is the n × p1 matrix with ith

row (R1|2)Ti (i = 1, . . . , n). Let A† denote the Moore–Penrose inverse of A. The

symbol PA(S) denotes the projection in the S inner product onto A or span(A) if

A is a subspace or a matrix, and QA(S) = I − PA(S). If
√
n(θ̂ − θ) converges to
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a normal random vector with mean zero and covariance matrix V , we write its

asymptotic covariance matrix as avar(
√
nθ̂) = V .

The asymptotic covariance matrix in model (3.1) is written with subscripts

“o”. Next, we represent several formulations. The gradient matrix Go = ∂{
vec(β1,o)

T , vech(Σo)
T }T /∂φTo in model (3.1) has dimension

{
p1r+ r(r+ 1)/2

}
×{

p1u1 + r(r + 1)/2
}

, and is expressed as follows:(
Ip1
⊗ Γ ηT ⊗ Ir 0 0

0 2Cr(ΓΩ⊗ Ir − Γ⊗ Γ0Ω0ΓT
0 ) Cr(Γ⊗ Γ)Eu1

Cr(Γ0 ⊗ Γ0)Er−u1

)
.

The Fisher information for
{

vec(β1,o)
T , vech(Σo)

T
}T

in model (3.1) is the
{
p1r+

r(r + 1)/2
}
×
{
p1r + r(r + 1)/2

}
block diagonal matrix

Jo =

(
ΣR1|2 ⊗ Σ−1

o 0

0 2−1ET
r (Σ−1

o ⊗ Σ−1
o )Er

)
.

Let ho =
{
LT (β1,o ⊗ Ir), 2L

T (Σo ⊗ Ir)C
T
r

}T
. We can obtain ho from ho =

∂
{

vec(β1)T , vech(Σ)T
}T
/∂λ in the scaled partial envelope model (2.6) assessed

at Λ = Ir. At the same time, we have Ao = QGo(Jo)hoL and DΛ = bdiag
{
Ip1
⊗

Λ, Cr(Λ⊗ Λ)Er

}
, which is a block diagonal matrix and has identical dimensions

to those of Jo. Here, of all of the quantities defined above, only DΛ depends on

Λ.

The gradient matrix H = ∂
{

vec(β1)T , vech(Σ)T
}T
/∂φT in the scaled partial

envelope model (2.6) has dimension
{
p1r+r(r+1)/2

}
×
{
r−1+p1u1+r(r+1)/2

}
,

and we can express the gradient matrix as H =
{
DΛho(Ip1

⊗ Λ−1)L,DΛGo

}
.

The Fisher information J in the scaled partial envelope model can be acquired

by substituting Σ for Σo in Jo, and then we obtain J as follows:

J =

(
ΣR1|2 ⊗ Σ−1 0

0 2−1ET
r (Σ−1 ⊗ Σ−1)Er

)
.

Proposition 2. Suppose that maxi≤n p1,ii → 0 as n → ∞. Then, under model

(2.6), which has normal errors,
√
n[{vec(β̂1)−vec(β1)}T , {vech(Σ̂)−vech(Σ)}T ]T

converges in distribution to a normal random vector with mean zero and covari-

ance matrix

V = H(HTJH)†HT ,

= DΛ

{
Ao(A

T
o JoAo)

†AT
o

}
DΛ +DΛ

{
Go(G

T
o JoGo)

†GT
o

}
DΛ,

= V1 + V2,
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where V1 = DΛ

{
Ao(A

T
o JoAo)

†AT
o

}
DΛ and V2 = DΛ

{
Go(G

T
o JoGo)

†GT
o

}
DΛ.

The proof of Proposition 2 is provided in the Supplementary Material. Be-

cause J−1−V = J−1−H(HTJH)†HT = J−1/2QJ1/2HJ
−1/2 ≥ 0, we obtain V ≤

J−1, where J−1 is the asymptotic covariance matrix of
{

vec(β̃1)T , vech(Σ̃res)
T
}T

.

We employ the normal likelihood as an objective function to get the scaled

partial envelope estimators. When the normality assumption fails, a material

question is on the consistency of these estimators. The next proposition provides

conditions for the
√
n-consistency of β̂1 and Σ̂.

Proposition 3. Suppose that maxi≤n p1,ii → 0 as n→∞, and the scaled partial

envelope model (2.6) has independent, but not necessarily normal errors, with

mean zero and finite fourth moments. Then,

√
n

[{
vec(β̂1)T , vech(Σ̂)T

}T − {vec(β1)T , vech(Σ)T
}T]

is asymptotically normally distributed, and β̂1 and Σ̂ are
√
n-consistent estimators

of β1 and Σ, respectively.

Remark 2. Huber (1973) established the consistency of the standard model

estimator vec(β̃1), which requires primarily that the maximum leverage tends

to zero as n → ∞. The assumption about p1,ii has the identical condition to

that of Huber (1973). Furthermore, the estimators are relatively robust to mild

deviations from normality in the finite samples. The proof of Proposition 3 is

provided in the Supplementary Material.

5. Selection of Partial Envelope Dimension u1

In the scaled partial envelope model, we can employ standard techniques

such as sequential likelihood-ratio tests (LRTs), the Akaike information criterion

(AIC), and the Bayesian information criterion (BIC) to select u1. Similarly, we

can employ nonparametric methods such as cross-validation or permutation tests

(Cook and Yin (2001)) to choose u1.

The BIC estimator of u1 is arg min− 2L̂(u1) + log(n)N (u1), where the min-

imum ranges from zero to the integer r, and n is the sample size. In the above

expression, N (u1) = 2r−1+p1u1 +p2r+r(r+1)/2 is the number of parameters,

and L̂(u1) is the maximized loglikelihood in the scaled partial envelope model

with dimension u1,

L̂(u1) =− nr

2
log(2π)− n

2
log|Σ̃RY |2 | −

n

2
|Γ̂T Λ̂−1Σ̃resΛ̂

−1Γ̂|
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− n

2
log|Γ̂T Λ̂Σ̃−1

RY |2
Λ̂Γ̂|.

Here, span(Γ̂) is the maximum likelihood estimator for EΛ−1ΣΛ−1(Λ−1B1) and Λ̂

is the maximum likelihood estimator of Λ in the scaled partial envelope model.

The AIC estimator of u1 is arg min − 2L̂(u1) + 2N (u1), and the AIC operates

analogously.

The properties of the AIC and BIC were researched by Cook and Su (2013,

Proposition 4) in the context of response scaling. Similar results are established

for the scaled partial envelope model. The candidate set is the set of scaled partial

envelope models with dimensions varying from zero to r. Suppose that there are

normal errors in the scaled partial envelope model (2.6). Then, if there is one

and only one true model in the candidate set as n→∞, the BIC will choose the

true model with probability approaching one, and the AIC will choose a model

that at least includes the true model.

6. Simulation Study

In this section, we carry out a simulation study to compare the scaled partial

envelope estimator with the standard model estimator, partial envelope estima-

tor, and scaled envelope estimator in terms of the finite sample size. At the same

time, we employ the algorithm proposed by Cook, Forzani and Su (2016) for the

scaled partial envelope estimation, which does not require optimization over a

Grassmannian and is shown to be much faster and typically more accurate than

the best existing algorithm proposed by Cook and Zhang (2016). We generated

data based on the scaled partial envelope model (2.6) following three cases. The

first case was r = 10, p = 12, p1 = 8, u = 3, and u1 = 2, the second case was

r = 10, p = 10, p1 = 6, u = 5, and u1 = 3, and the third case was r = 10, p = 6,

p1 = 4, u = 6, and u1 = 2. The elements in X1 were generated as independent

N(0, p1) random variables, and the elements in X2 were generated as indepen-

dent N(0, p−p1) random variables. The matrix β2 was generated as independent

N(r, p−p1) random variables. We took Ω = σ2Iu1
and Ω0 = σ2

0Ir−u1
. The matrix

η was generated as a u1 × p1 matrix of independent N(0, 2) random variables,

and Γ was obtained by orthogonalizing an r × u1 matrix of independent U(0, 1)

random variables. The scale matrix Λ is a diagonal matrix with diagonal elements

20, 20.5, 21, 21.5, . . . , 24.5. We took σ2 as 0.25 and σ2
0 as 5. The sample sizes were

100, 300, 600, 1000, and 1500, and we produced 1,000 replicates for each sample

size. For each sample size, we calculated the standard deviation of each element

in β̂1 over the replicates, which we refer to as the actual standard deviations of
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the elements in β̂1. In addition, we calculated the bootstrap standard deviations

by bootstrapping the residuals 1,000 times.

Using the above parameter settings, we then fitted four models to the data:

(1.1), (2.4), (2.5), and (2.6). Figure 1 plots the standard deviations of a chosen

element in β̂1 for three different situations, where the error is normally distributed

when u < r. As the sample size increases, all standard deviations show a down-

ward trend as a whole, and the efficiency gain increases effectively. In Figure 1,

the partial envelope estimators improve on the ordinary least squares estimators,

and the scaled envelope estimators improve on the partial envelope estimators.

When u < r, in all three cases, the scaled partial envelope estimators show an

obvious improvement over the ordinary least squares estimators and the partial

envelope estimators. The performance between the scaled partial envelope esti-

mators and the scaled envelope estimators is analogous in such a situation, where

they have the same parameters σ2 and σ2
0, and the part of Y that is material

to the predictors is much less variable than the immaterial part, regardless of

whether it is for all predictors or part of predictors. In either case, the boot-

strap standard deviation is a good approximate estimator of the actual standard

deviation.

In the above three parameter settings, except for letting u = r = 10, the

other parameter settings are unchanged. When u = r, the scaled envelope model

reduces to the standard multivariate linear regression model, abbreviated as the

standard model, so there is no possibility of efficiency gains in this setting. How-

ever, we can employ the scaled partial envelope model and still get efficiency

gains, as long as p1 < r. In this sense, the scaled partial envelope model is more

flexible than the scaled envelope model. Figure 2 plots the standard deviations

of a chosen element in β̂1 for three different situations with a normal error when

u = r. From Figure 2, we find that the standard model and the scaled envelope

model have the same standard deviations, and the scaled partial envelope esti-

mators show a remarkable efficiency gain over the partial envelope estimators.

Furthermore, the partial envelope estimators have an obvious efficiency gain over

the ordinary least squares estimators and the scaled envelope estimators.

Table 1 shows the mean and standard deviation of 1,000 estimated scales

with σ2
0 = 5 in the r < p situation when u < r. The results in the r ≥ p situation

are analogous to the r < p situation. Our algorithm is shown to be relatively

stable.

Figure 3 exhibits the asymptotic action of the scaled partial envelope esti-

mators under nonnormal errors when u < r, including a comparison with the

standard model estimators, partial envelope estimators, and scaled envelope esti-
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u<r and normal distribution in r<p situation
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Figure 1. Comparison of the scaled partial envelope estimators, standard model estima-
tors, partial envelope estimators, and scaled envelope estimators: the actual standard
deviation of the scaled partial envelope estimators is denoted by “−∗”; the asymptotic
standard deviation of the scaled partial envelope estimators is denoted by “−·”; the boot-
strap standard deviation of the scaled partial envelope estimators is denoted by “−©”;
the actual standard deviation of the standard model estimators is denoted by “−4”; the
asymptotic standard deviation of the standard model estimators is denoted by “−−”;
the actual standard deviation of the partial envelope estimators is denoted by “−I”;
the asymptotic standard deviation of the partial envelope estimators is denoted by “. . .”;
the actual standard deviation of the scaled envelope estimators is denoted by “−�”, the
asymptotic standard deviation of the scaled envelope estimators is denoted by “−+”.

mators. We implemented the simulations using the same setup as that in the first

case of Figure 1. However, we employed a centered t-distribution with six degrees

of freedom, a centered uniform (0,1) distribution, and a chi-squared distribution

with four degrees of freedom to represent the distributions with heavier tails,

shorter tails, and skewness, respectively. Figure 3 does not show any obvious

differences causing the different error distributions, so we conclude that mod-

erate departures from normality do not materially influence the performance of

the scaled partial envelope. When the errors obey a nonnormal distribution, the

estimator is no longer a maximum likelihood estimator, but efficiency gains are
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u=r and normal distribution in r<p situation
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u=r and normal distribution in r=p situation
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u=r and normal distribution in r>p situation
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Figure 2. Comparison of the scaled partial envelope estimators, standard model estima-
tors, and partial envelope estimators: the actual standard deviation of the scaled partial
envelope estimators is denoted by “−∗”; the asymptotic standard deviation of the scaled
partial envelope estimators is denoted by “−·”; the bootstrap standard deviation of the
scaled partial envelope estimators is denoted by “−©”; the actual standard deviation of
the standard model estimators is denoted by “−4”; the asymptotic standard deviation
of the standard model estimators is denoted by “−−”; the actual standard deviation of
the partial envelope estimators is denoted by “−I”; the asymptotic standard deviation
of the partial envelope estimators is denoted by “. . .”; the bootstrap standard deviation
of the partial envelope estimators is denoted by “−♦”.

still accomplished. The bootstrap standard deviation is still a good approximate

estimator of the actual standard deviation. More importantly, the performance of

the scaled partial envelope estimators is significantly better than that of the stan-

dard model estimators and the partial envelope estimators. The scaled partial

envelope estimators and the scaled envelope estimators also have similar behavior

when they have the same parameters σ2 and σ2
0 and the part of Y that is material

to predictors is much less variable than the immaterial part, whether it is for all

predictors or part of predictors.

Figure 4 displays the asymptotic action of the scaled partial envelope esti-
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Table 1. Mean of base-2 logarithms of the diagonal elements in Λ̂. The numbers in
parentheses are standard deviations.

n 100 600 1,500

log2(λ̂2) 0.5012(0.0640) 0.5022(0.0241) 0.5015(0.0318)

log2(λ̂3) 1.0002(0.0856) 1.0030(0.0260) 1.0003(0.0448)

log2(λ̂4) 1.5012(0.1185) 1.5033(0.0385) 1.5003(0.0664)

log2(λ̂5) 2.0017(0.2551) 2.0024(0.0766) 2.0005(0.0940)

log2(λ̂6) 2.5065(0.4660) 2.5035(0.4651) 2.4993(0.1268)

log2(λ̂7) 3.0028(0.2971) 3.0028(0.2312) 3.0039(0.1854)

log2(λ̂8) 3.5031(0.4375) 3.5045(0.1948) 3.5000(0.2564)

log2(λ̂9) 4.0006(0.8645) 4.0026(0.2501) 4.0000(0.3702)

log2(λ̂10) 4.5033(0.9594) 4.5018(0.3681) 4.5000(0.5038)

mators under nonnormal errors when u = r, including a comparison with the

standard model estimators, partial envelope estimators, and scaled envelope es-

timators. We implemented the simulations using the same setup as that in the

first case of Figure 2, but we employed a centered t-distribution with six degrees

of freedom, a centered uniform (0,1) distribution, and a chi-squared distribution

with four degrees of freedom to represent the distributions with heavier tails,

shorter tails, and skewness, respectively. From Figure 4, we find that when u = r

and the errors follow a nonnormal distribution, the standard model and the scaled

envelope model have the same standard deviations. In addition, the scaled partial

envelope estimators show a remarkable efficiency gain over the partial envelope

estimators, and the latter show a distinct efficiency gain over the ordinary least

squares estimators and the scaled envelope estimators. This agrees with the

performance under the normal error.

7. Real-Data Analysis

This section is devoted to an example that illustrates the advantages of the

scaled partial envelope model. The data set is from Johnson and Wichern (2007)

and contains information on the properties of pulp fibers and the paper made

from them. The data have 62 measurements on four paper properties: breaking

length, elastic modulus, stress at failure, and burst strength. The predictors are

three properties of fiber: arithmetic fiber length, long fiber fraction, and fine fiber

fraction. We consider how the pulp fiber properties X affect the paper properties

Y , yielding r = 4, p = 3, and p1 = 1. Fine fiber fraction is assigned to the

main predictor. Arithmetic fiber length and long fiber fraction are assigned to
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u<r and normal distribution in r<p situation
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u<r and uniform distribution in r<p situation
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u<r and chi-square distribution in r<p situation
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Figure 3. Comparison of the scaled partial envelope estimators with normal, t6, U(0, 1),
and χ2

4 errors when u < r. The line marks are the same as those in Figure 1.

the covariates.

We compared the standard errors of the scaled partial envelope estimator

β̂1 with those of the ordinary least squares estimator β̃1 by employing the frac-

tions f1,ij = 1− âvar1/2(
√
nβ̂1,ij)/âvar1/2(

√
nβ̃1,ij), where the subscripts i, j show

the elements of the estimator of β1. The standard errors of the ordinary partial

envelope estimator and the ordinary least squares estimator were compared in

the same manner. We also compared the standard errors of the scaled envelope

estimator β̂ with those of the ordinary least squares estimator β̃ by using the

fractions fij = 1− âvar1/2(
√
nβ̂ij)/âvar1/2(

√
nβ̃ij), where the subscripts i, j show

the elements of the estimator of β. It is well known (Shao (1997); Yang (2005))

that the BIC behaves better than the AIC if the true model has a simple limited

dimensional construction. If we are more concerned about the estimation bias of

the associated envelope model itself over prediction, the AIC is more advanta-

geous, because it is more conservative when choosing the dimensions. Here, we

mainly consider u and u1 from the BIC.

We first fitted the scaled envelope model to all the predictors, and the BIC
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u=r and normal distribution in r<p situation
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u=r and uniform distribution in r<p situation
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u=r and chi-square distribution in r<p situation
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Figure 4. Comparison of the scaled partial envelope estimators with normal, t6, U(0, 1),
and χ2

4 errors when u = r. The line marks are the same as those in Figure 2.

suggested that u = 2. Compared with β̃, the standard deviations of the elements

in the scaled envelope estimator were 0.15% to 1.97% smaller, 0.0015 ≤ fij ≤
0.0197. A sample size of about n = 65 observations would be needed to reduce

the standard error of the ordinary least squares estimator by 1.97, so employing

the scaled envelope estimator is roughly the same as using the sample size for

inference on some elements of β with the ordinary least squares estimator. This

implies that the scaled envelope model does not offer much of an efficiency gain

over the standard model. The reason roots in the estimated structure of Σ: the

eigenvalues of Σ̂E are 6.6441 and 0.0176 and the eigenvalues for Σ̂E⊥ are 0.1310

and 0.0109. Thus, the part of Y that is material to X is no less variable than the

immaterial part, and we do not acquire much efficiency from the scaled envelope

model.

Next, we fitted an ordinary partial envelope model to the data, and the

BIC suggested that u1 = 1. Compared with β̃1, the standard deviations of

the elements in the ordinary partial envelope estimator were 61.62% to 87.46%

smaller, 0.6162 ≤ f1,ij ≤ 0.8746. Therefore, employing the ordinary partial
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envelope estimator is roughly equal to being 64 times the sample size for inference

on some elements of β1 with the ordinary least squares estimator.

When the scaled partial envelope model was fitted to the data, the BIC

suggested that u1 = 1. The scale transformation matrix Λ was estimated with

diagonal elements 1, 20.5, 21, 21.5. Compared with β̃1, the standard deviations

of the elements in the scaled partial envelope estimator were 44.62% to 99.10%

smaller, 0.4462 ≤ f1,ij ≤ 0.9910, which is a significant improvement over the

gains provided by the scaled partial envelope model. In other words, a sample

size of about n = 12× 103 observations would be needed to reduce the standard

error of the ordinary least squares estimator by 99.10. Because the part of Y that

is material to this predictor is much less variable than the immaterial part, there

is substantial reduction achieved when we pay close attention to the fine fiber

fraction. Focusing on the estimated structure of Σ̂, Σ̂E1 has eigenvalue 0.00007,

while Σ̂E⊥1 has eigenvalues 3.9521, 0.0145, and 0.00002. In general, when the part

of Y that is material to all predictors is no less variable than the immaterial part,

but the part of Y that is material to part of the predictors is much less variable

than the immaterial part, the scaled partial envelope estimators have a significant

advantage over the scaled envelope estimators.

8. Conclusion

We have extended the partial envelope model to the scaled partial envelope

model to reduce the dimension efficiently and keep the scale invariable. Then, we

gave the maximum likelihood estimation and parameter identifiability. We also

showed the theoretical properties and selection of the partial envelope dimension.

Simulation studies compared the proposed scaled partial envelope model with the

standard model, partial envelope model, and scaled envelope model. A real-data

example demonstrated the superiority of the scaled partial envelope model. By

introducing a scaling parameter for each response variable, the scaled partial

envelope estimator widens the effective range of partial envelope structures, and

can bring efficiency gains that are not provided by the ordinary partial envelope

estimator.

We consider the case where the predictor and the response variables in the

scaled partial envelope model are vector valued. In future work, we will inves-

tigate the case where the predictor and the response variables in the model are

extended to functional data or are matrix valued. The techniques described here

can be applied to other settings, such as tensor regression and discriminant anal-

ysis. If prior information emerges, a Bayesian version of this model is possible.
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The same idea and techniques can be extended to semiparametric settings, such

as quantile regression and expectile regression.

Supplementary Material

The online Supplementary Material contains detailed proofs of Propositions

1–3 in the main manuscript.
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