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Supplementary Material

The Supplementary Material includes technical proofs of Propositions 1–3 in the main manuscrip-

t.

The following is proofs of the main results. The notations and def-

initions will be employed in our exposition. Let Rm×n be the set of all

real m × n matrices. The Grassmannian, which consists of the set of all

u-dimensional subspaces of Rr(u ≤ r), is denoted by Gr,u. If M ∈ Rm×n,

then span(M) ⊆ Rm is the subspace spanned by the columns of M . With

A ∈ Ra×a and a subspace S ⊆ Ra, AS = {As : s ∈ S}. If
√
n(θ̂ − θ)

converges to a normal random vector with mean 0 and covariance matrix
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V , we write its asymptotic covariance matrix as avar(
√
nθ̂) = V . We use

PA(V ) = A(ATV A)−1ATV to denote projection onto span(A) with the V

inner product and use PA to denote projection onto span(A) with the i-

dentity inner product. Let QA(V ) = I − PA(V ). We will use operators vec:

Ra×b → Rab, which vectorizes an arbitrary matrix by stacking its column-

s, and vech: Ra×a → Ra(a+1)/2, which vectorizes a symmetric matrix by

extracting its columns of elements below or on the diagonal. The symbol

bdiag(·) denotes a block diagonal matrix with the diagonal blocks as argu-

ments. Let A⊗B denote the Kronecker product of matrices A and B, and

let A† denote the Moore–Penrose inverse of A. We employ θ̂ξ to denote an

estimator of θ with known true parameter value of ξ.

Maximum likelihood estimators

The maximum likelihood estimator of α is Y . In that way, with the

dimension of the Λ−1ΣΛ−1-partial envelope of Λ−1B1, which is fixed at u1,



Scaled Partial Envelope Model

the loglikelihood function L1 is

L1 =− nr

2
log(2π)− n

2
log|Σ| − 1

2
tr
{

(U − F1β
T
1 )Σ−1(U − F1β

T
1 )T
}
,

(S0.1)

=− nr

2
log(2π)− n

2
log|Σ|

− 1

2
tr

[
Σ−1

{
nΣ̃res + (β̃1 − β1)F T

1 F1(β̃T1 − βT1 )
}]
, (S0.2)

=− nr

2
log(2π)− nlog|Λ| − n

2
log|ΓΩΓT + Γ0Ω0ΓT0 |

− 1

2
tr
{

(UΛ−1 − F1η
TΓT )(ΓΩΓT + Γ0Ω0ΓT0 )−1(UΛ−1 − F1η

TΓT )T
}
.

(S0.3)

There are three forms of the likelihood function: (S0.1), (S0.2), and

(S0.3). (S0.1) is a common form, which has the observed data and param-

eters β1 and Σ. (S0.2) substitutes sufficient statistics β̃1 and Σ̃res for the

observed data in (S0.1). (S0.3) rewrites (S0.1) in light of the constituent

parameters. (S0.3) has the identical form with the loglikelihood function

from the partial envelope model, except we have the extra term −nlog|Λ|

and the response is Λ−1Y . In addition, we maximize over all constituent
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parameters apart from Λ and Γ, and obtain the partially maximized form

L2(Λ,Γ) =− nr

2
log(2π)− nlog|Λ| − n

2
log|ΓTΛ−1Σ̃resΛ

−1Γ|

− n

2
log|ΓT0 Λ−1Σ̃RY |2Λ

−1Γ0|,

=− nr

2
log(2π)− nlog|Λ| − n

2
log|ΓTΛ−1Σ̃resΛ

−1Γ|

− n

2
log|Λ−1Σ̃RY |2Λ

−1| − n

2
log|ΓTΛΣ̃−1

RY |2
ΛΓ|,

=− nr

2
log(2π)− n

2
log|Σ̃RY |2| −

n

2
log|ΓTΛ−1Σ̃resΛ

−1Γ|

− n

2
log|ΓTΛΣ̃−1

RY |2
ΛΓ|.

Proof of Proposition 1.

Proposition 3.1 in Shapiro (1986) is employed to prove this proposition,

and we will match our notations with Shapiro’s proving process. We aug-

ment a subscript “s” in Shapiro’s notation to distinguish better. The θs of

Shapiro’s setting is our φ =
{
λT , vec(η)T , vec(Γ)T , vech(Ω)T , vech(Ω0)T

}T
.

Shapiro’s x̂s is equivalent to our
{

vec(β̃1)T , vech(Σ̃res)
T
}T

, and Shapiro’s ξs

is
{

vec(β1)T , vech(Σ)T
}T

in our setting. The discrepancy function Fs is our
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loglikelihood function, except we delete a constant factor n.

Fs =L1/n,

=− r

2
log(2π)− 1

2
log|Σ| − 1

2
tr
{

(U − F1β
T
1 )Σ−1(U − F1β

T
1 )T/n

}
,

=− r

2
log(2π)− 1

2
log|Σ|

− 1

2
tr

[
Σ−1

{
nΣ̃res + (β̃1 − β1)(F T

1 F1/n)(β̃T1 − βT1 )
}]
.

When we build Fs under a normal likelihood function, it meets the con-

ditions 1–4 in ξ 3 of Shapiro (1986). Shapiro’s ∆s is the gradient ma-

trix ∂ξs/∂θs, and it is identical to H in our setting. Let e = U − F1β
T
1 ,

Vs = bdiag
{

(F T
1 F1/n) ⊗ Σ−1, ET

r (Σ−1 ⊗ Σ−1)Er/2
}

of Shapiro’s contex-

t is 1/2 times the Hessian matrix ∂2Fs/∂ξs∂ξ
T
s , which is evaluated at

(ξs, ξs). When we suppose
n∑
i=1

(R1|2)i(R1|2)Ti /n > 0, Vs is full rank and

rank(∆T
s Vs∆s) = rank(∆s). Hence, all conditions in Proposition 1 are sat-

isfied, and the maximizers β̂1 and Σ̂ are uniquely defined.

�

Proof of Proposition 2.

We begin the proof from the asymptotic covariance matrix ∆s(∆
T
s Vs∆s)

†

∆T
s VsΓsVs∆s(∆

T
s Vs∆s)

†∆T
s , which is provided at the end of Proposition 3.

Shaprio’s Γs = V −1
s is under the additional assumption of normality. Hence,

the asymptotic covariance matrix has the form ∆s(∆
T
s Vs∆s)

†∆T
s , which is
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V = H(HTJH)†HT . We employ merely our notation, which contains sim-

plifying V .

We compute straightly

H = ∂
{

vec(β1)T , vech(Σ)T
}T
/∂φT ,

=
{
DΛho(Ip1 ⊗ Λ−1)L,DΛGo

}
,

= (H1, H2),

where H1 and H2 are defined to simplify subsequent formulas. Because V

is unchanging under full rank linear conversions of the columns of H, below

we convert the columns of H by the nonsingular matrix

T =

 Ir−1 0

− (HT
2 JH2)†HT

2 JH1 Ir(r+1)/2

 .

ThenHT =
(
QH2(J)H1, H2

)
and T THTJHT = bdiag

(
HT

1 Q
T
H2(J)JQH2(J)H1,

GT
o JoGo

)
. Therefore, we have

V = HT (T THTJHT )†T THT ,

= J−1/2PJ−1/2 +DΛGo(G
T
o JoGo)

†GT
oD

T
Λ ,

where P is the projection onto the span of J1/2QH2(J)H1. The second term

on the right of the last equation is identical to V2. The first term can be
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represented as V1 by employing the identities

QH2(J)H1 = DΛQGo(Jo)D
−1
Λ H1,

= DΛQGo(Jo)hoLΛ−1
1 ,

= DΛAoΛ
−1
1 ,

where Λ1 = diag(λ2, . . . , λr).

�

Proof of Proposition 3.

Proposition 2 is a particular case of Proposition 3. When Γ is over-

ly parameterized, we use Proposition 4.1 in Shapiro (1986) to build the

proof. The conditions for Proposition 4.1 are identical to Proposition 3.1 in

Shapiro, except with an additional assumption that n1/2(x̂s− ξs) is asymp-

totically normal. When we discussed the proof of our Proposition 1, we

have demonstrated that all the conditions in Shapiro’s Proposition 3.1 are

satisfied. Then, the condition on p1,ii ensures that the asymptotic distri-

bution of n1/2

[{
vec(β̃1)T , vech(Σ̃res)

T
}T −{vec(β1)T , vech(Σ)T

}T]
is multi-

variate normal, so the additional assumption is also satisfied. Hence, from

Proposition 4.1 of Shapiro (1986) and employing Shapiro’s notation, the

asymptotic variance has the form ∆s(∆
T
s Vs∆s)

†∆T
s VsΓsVs∆s(∆

T
s Vs∆s)

†∆T
s ,

where Shapiro’s Γs is the asymptotic variance of
{

vec(β̃1)T , vech(Σ̃res)
T
}T

.

�
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