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Abstract: Accurate statistical inference in logistic regression models remains a

critical challenge when the ratio between the number of parameters and sample

size is not negligible. This is because approximations based on either classical

asymptotic theory or bootstrap calculations are grossly off the mark. This paper

introduces a resized bootstrap method to infer model parameters in arbitrary

dimensions. As in the parametric bootstrap, we resample observations from a

distribution, which depends on an estimated regression coefficient sequence. The

novelty is that this estimate is actually far from the maximum likelihood estimate

(MLE). This estimate is informed by recent theory studying properties of the MLE

in high dimensions, and is obtained by appropriately shrinking the MLE towards the

origin. We demonstrate that the resized bootstrap method yields valid confidence

intervals in both simulated and real data examples. Our methods extend to other

high-dimensional generalized linear models.

Key words and phrases: Bootstrap, confidence interval, generalized linear models,

high-dimensional statistics.

1. Introduction

The bootstrap is a well-known resampling procedure introduced in Efron’s

seminal paper (Efron, 1979) for approximating the distribution of a statistic

of interest. Its popularity stems from a combination of several elements: it

is conceptually rather straightforward; it is flexible and can be deployed in a

whole suite of delicate inference problems (Efron, 1981, 1985; Efron, Halloran

and Holmes, 1996); and finally, whenever theoretical calculations are impossible,

the bootstrap often provides an excellent approximation to the distribution under

study. As a result, researchers from a spectacular array of disciplines have used

the bootstrap for hypothesis testing (Politis, Romano and Wolf, 1999, Ch. 1),

model selection (Shao, 1996), density estimation (Franke and Härdle, 1992), and

many other important statistical inference problems.

The bootstrap can usually be understood via the plug-in principle (Efron

and Tibshirani, 1994, Ch. 4). Suppose we observe Xi ∈ Rp, i = 1, . . . , n,

sampled independently and identically from a distribution F . We wish to infer
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the distribution of a statistic tF (X1, X2, . . . , Xn), which can be a complicated

functional of the data aimed at estimating the number of modes F has. For

instance, we may be interested in the 90% quantile of tF (X1, . . . , Xn). The

subscript F indicates which distribution Xi are sampled from; here, the Xi’s

are i. i. d. samples from F . The plug-in principle estimates the distribution of

tF (X1, . . . , Xn) by that of tF̂ (X
∗
1 , . . . , X

∗
n), wherein F̂ is an estimate of F , and

(X∗
1 , . . . , X

∗
n) is a draw from F̂ . In other words, by resampling observations from

F̂ , we obtain a distribution we hope closely resembles that of tF (X1, . . . , Xp).

Naturally, statisticians have since the beginning studied the accuracy of the

bootstrap. Broadly speaking, the bootstrap is known to be consistent, i.e.,

tF̂ (X
∗
1 , . . . , X

∗
n) −→ tF (X1, . . . , Xn) in distribution, under the conditions that

(1) the distribution of tF (X1, X2, . . . , Xn) varies smoothly near F , and (2) F̂

converges to F (Bickel and Freedman, 1981; Diciccio and Romano, 1988; Politis,

Romano and Wolf, 1999, Ch. 1). The second condition is typically satisfied for

appropriately chosen estimates F̂ whenever the data dimension p is fixed. In

addition to general theory, statisticians have carried out detailed studies for

specific statistics including the sample mean (Bickel and Freedman, 1981; Hall,

1992), regression coefficients (Shorack, 1982; Bickel and Freedman, 1982, 1981;

Mammen, 1993), and continuous functions of the empirical measure (Gine and

Zinn, 1990), and so forth.

Motivated by the abundance of high-dimensional data, researchers are in-

creasingly studying statistical methods in the high-dimensional setting in which

the number of variables p grows with the number of observations n. Specifically,

this article concerns the accuracy of bootstrap methods when p and n are both

very large and perhaps grow with a fixed ratio. In linear regression for example,

while the residual bootstrap is weakly consistent if p is fixed and n → ∞,

it is inconsistent when n, p → ∞ in such a way that p/n → κ > 0; to be

sure, Bickel and Freedman (1982) displays a data-dependent contrast, i.e., a

linear combination of coefficients, for which the estimated contrast distribution is

asymptotically incorrect. Motivated by results from high-dimensional maximum

likelihood theory (El Karoui et al., 2013; El Karoui, 2013, 2018), El Karoui and

Purdom (2018) proposed to use corrected residuals to achieve correct inference.

Another example is this: although the nonparametric bootstrap can be used to

construct a valid confidence region for the spectrum of a covariance matrix when

the problem dimension is fixed (Beran and Srivastava, 1985; Eaton and Tyler,

1991), it yields incorrect estimates of the distribution of the largest eigenvalue if

p/n → κ > 0 (El Karouis and Purdom, 2016). With the exception of these two

studies, the accuracy of the bootstrap in other high-dimensional problems has

not been much researched.

In this paper, we study the bootstrap for inferring the distribution of the

maximum likelihood estimator (MLE) in high-dimensional logistic regression

models. We find that the standard parametric bootstrap and the pairs bootstrap
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are both incorrect (Sec. 1.2), a finding which echoes with El Karoui and Purdom

(2018). We also show that recent high-dimensional maximum likelihood theory

(HDT) developed for multivariate Gaussian covariates does not correctly predict

the distribution of the MLE when the covariates are heavy tailed; this is analogous

to findings in El Karoui (2018). Both these failures call for solutions and in

this paper, we design a novel resized bootstrap by combining the bootstrap

method with insights from HDT. We demonstrate that the resized bootstrap

yields confidence intervals attaining nominal coverage regardless of the covariate

distribution. Finally, we extend our methods to other generalized linear models.

1.1. High-dimensional maximum likelihood theory

We begin by briefly reviewing recent theory about M-estimators in the high-

dimensional setting in which both the number of observations n and the number

of variables p go to∞ while the ratio p/n approaches a constant κ > 0. This high-

dimensional theory (HDT) generalizes the classical asymptotic setting, and offers

a more accurate characterization of the distribution of M-estimators when both n

and p are large. In particular, a considerable amount of research has studied the

behavior of M-estimators in high-dimensional regression and penalized regression

(El Karoui et al., 2013; El Karoui, 2013; Zhang and Zhang, 2014; van de Geer

et al., 2014; Donoho and Montanari, 2016; Celentano, Montanari and Wei, 2023;

Bellec, Shen and Zhang, 2022).

Consider a logistic model in which the covariates X ∈ Rp are mutivariate

Gaussian and P(Y = 1|X) = σ(X⊤β), where σ(t) = 1/(1 + e−t) is the usual

sigmoid function. Zhao, Sur and Candès (2020) showed that if β̂ denotes the

MLE, then √
n(β̂j − α⋆βj)

σ⋆/τj

d−→ N (0, 1), (1.1)

where βj (resp. β̂j) is the jth (resp. estimated) model coefficient. In contrast to

classical asymptotic theory, which states that the MLE is unbiased, the MLE is

centered at α⋆βj, for some α⋆ > 1 whenever κ is positive. The standard deviation

is σ⋆/τj; here, τj is the conditional standard deviation of the jth variable given

all the other variables whereas the parameters α⋆ and σ⋆ are determined by

κ and the signal strength γ defined as γ2 = Var(X⊤β). The parameters α⋆

and σ⋆ both increase as either the dimensionality κ increases or the signal-to-

noise ratio γ increases (Sur and Candès, 2019, Fig. 7). To be complete, we

stress that Eqn. (1.1) holds with the proviso that the magnitude of βj is not

extremely large. Zhao, Sur and Candès (2020) hypothesized that HDT holds

when τjβj = o(1). Empirically, they observed that the theoretical inflation and

std. dev. are reasonably correct when τjβj/γ ≤ 0.15; however, when τjβj/γ = 0.5,

the empirical std.dev. is 36% larger than the theoretical std.dev.
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The approximation (1.1) happens to be very accurate for moderately large

sample sizes, e.g., when n = 4000 and p = 400 (Zhao, Sur and Candès, 2020), and

is accurate for relatively small sample sizes, i.e., n = 200 and p = 20 (Sur and

Candès, 2019, Appendix G). Further, (1.1) is expected to hold for sub-Gaussian

covariates, see Zhao, Sur and Candès (2020) for empirical studies supporting this

claim.

Having said all of this, (1.1) does not hold when the covariates follow a general

distribution. For instance, El Karoui (2018) studied ridge regression in linear

models where the covariates follow a multivariate t-distribution, and proved that

the variance of the ridge estimate does depend on the geometry of the covariates.

Similarly, for a logistic regression we expect that α⋆ and σ⋆ would also depend on

the degrees of freedom of the t-distribution. In Section 1 of the supplementary

material (SM), we give a conjecture about the distribution of the MLE, and

compare it with empirical observations. Aside from these two scenarios, we know

very little about the distribution of M-estimators, or the inflation and std.dev. of

the MLE when the covariates follow an arbitrary distribution.

1.2. An example with non-Gaussian covariates

Having succinctly described the high-dimensional theory, we simulate a high-

dimensional logistic regression model with 4,000 observations and 400 covariates

(n = 4000 and p = 400). We sample covariates from a multivariate t-distribution

and standardize each variable so that Var(Xj) = 1/p. We pick 50 non-null

variables and sample their coefficients from a mixture of Gaussians N (5, 1) and

N (−5, 1) with equal weights.

Figure 1 presents a histogram of a coordinate of the MLE from repeated

experiments. From the bell-shaped curve, we conclude that the MLE is approxi-

mately Gaussian. Although the value of the true coefficient under study is 4.78,

the average MLE is 5.56, which shows that the MLE is biased upward and the

inflation factor is roughly equal to αj = β̄j/βj = 1.16. The empirical standard

deviation (std.dev.) of the MLE is equal to 1.34; however, the classical theory

estimates that the std.dev. equals 1.15. We thus see that because of both a

poor centering and a poor assessment of variability, the classical Wald confidence

interval would significantly undercover βj. Now HDT from Section 1.1 estimates

the bias to be α⋆ = 1.14 and the standard deviation to be σ⋆/τj = 1.25. This

implies that while capturing the bias, HDT slightly underestimates the std.dev.

of the MLE.

Next, we apply the parametric bootstrap and pairs bootstrap and display in

Figure 1 the density curves of the bootstrap MLEs from one experiment.

� For the parametric bootstrap, we generate samples by fixing the covariates

at the observed values and sample responses from a logistic model whose

coefficients equal the MLE; put another way, we choose F̂ = Fβ̂. The para-
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Figure 1. Histogram of the logistic MLE of a randomly chosen coefficient in 10,000
repeated experiments. Here, the covariates are sampled from a multivariate t-distribution
with 8 degrees of freedom. The bootstrap MLE densities are displayed for the parametric
bootstrap (dashed), the pairs bootstrap (solid) and the proposed resized bootstrap
(longdash). The triangle indicates the true coefficient and the dashed line indicates
the average MLE.

metric bootstrap (dashed) does not begin to describe the MLE distribution

since the average value is 8.68, about twice that of the true coefficient, and

the std.dev. is 1.55.

� The pairs bootstrap generates bootstrap samples by sampling with re-

placement from the observed data, i.e., we choose F̂ to be the empirical

distribution. The pairs bootstrap also fails to approximate the MLE

distribution since the solid curve shifts to the right and is much wider than

the histogram (mean is 8.63 and std.dev. is 1.71).

Finally, the longdashed curve in Figure 1 shows the accuracy of the proposed

resized bootstrap. We can see that this best describes the MLE distribution; for

instance, both the mean (5.54) and standard deviation (1.39) are close to the

true values.

2. Why Does the Bootstrap Fail?

The pairs bootstrap fails in the high-dimensional setting because it effectively

inflates the dimensionality ratio κ = p/n. In particular, when n is large, the

number of unique pairs (X∗
i , Y

∗
i ) in a bootstrap sample is approximately (1−1/e)n

on average (Mendelson et al., 2016). Consequently, the effective dimensionality

ratio κe/(e − 1) in the bootstrap sample is larger than κ. Because the bias and

variance of the MLE increase as κ increases (Sur and Candès, 2019, Fig. 7), the

pairs bootstrap tends to over-estimate both the bias and standard error.

While the pairs bootstrap over-estimates κ, the parametric bootstrap fails

because the signal strength γ is inflated in the bootstrap samples. Suppose for
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Figure 2. According to the high-dimensional theory (Sec. 1.1), the asymptotic
distribution of the MLE depends on the problem dimension κ and the signal strength γ.
The pairs bootstrap over-estimates κ whereas the parametric bootstrap over-estimates
γ. Therefore, both methods lead to incorrect estimates of the MLE distribution. The
blue region shows pairs of values of (κ, γ) where the MLE exists when β0 = 0.

simplicity that the covariates are independent N (0, 1). Then (Sur and Candès,

2019, Thm. 2) shows that

lim
n,p→∞

Var(X⊤
newβ̂)

a.s.
= α2

⋆γ
2 + κσ2

⋆ > γ2, (2.1)

whereas Var(X⊤β) = γ2. Here, Xnew is a new random sample independent from

the training set. Because a higher γ leads to higher bias and variance (Sur and

Candès, 2019, Fig. 7), the parametric bootstrap also tends to over-estimate the

bias and standard error of the MLE.

In addition to over-estimating the bias and standard error, another problem

of using the bootstrap is that when working with bootstrap samples, the MLE

may cease to exist. We can explain this issue via the phase transition: for every

ratio κ and intercept β0, there exists an asymptotic threshold γ(κ, β0) such that

the MLE does not exist once the signal strength γ > γ(κ, β0). Similarly, for every

γ and β0, there exists a threshold κ(γ, β0) such that the MLE does not exist once

κ > κ(γ, β0). Because the pairs bootstrap over-estimates κ while the parametric

bootstrap over-estimates γ, the bootstrap MLE may not exist if either κ or γ

exceeds the phase transition threshold. Figure 2 provides a visual illustration of

these points.

3. A Resized Bootstrap Method

We propose to construct parametric bootstrap samples from Fβ⋆
, where β⋆

is obtained by shrinking the MLE towards zero. We would like β⋆ to obey

Var(X⊤
newβ⋆) = γ2 = Var(X⊤β) as to preserve the signal-to-noise ratio. We
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set out to estimate γ in Section 3.1 since γ is unobserved. Upon obtaining β⋆,

we follow the standard parametric bootstrap procedure to generate bootstrap

samples. That is to say, the bth bootstrap sample consists of (xi, Y
b
i ), i = 1, . . . , n,

where xi is the vector of features for the ith sample and Y b
i is sampled from our

GLM with features xi and coefficients β⋆. We then compute the bootstrap MLE

β̂b ∈ Rp by fitting the GLM using pairs (xi, Y
b
i ). Repeating this process B times

yields B bootstrap MLEs. We then infer the inflation and std.dev. of the MLE

from the bootstrap MLE.

We summarize the procedure in Algorithm 1 and discuss how to compute

confidence intervals using the bootstrap MLE in Section 3.2. We evaluate our

method through simulated examples in Section 4.

Algorithm 1: Resized bootstrap procedure.

Input: Observed data (xi, yi), 1 ≤ i ≤ n, and a GLM formula.
1 Compute resized coefficients β⋆;
2 for b = 1, . . . , B do
3 Simulate Y b

i given xi using β⋆ as model coefficients;

4 Fit a GLM for (xi, Y
b
i ) to obtain the bootstrap MLE β̂b;

5 end
6 Estimate the standard deviation of the MLE σ̂j (See Eqn. (3.7));
7 Estimate a common factor α̂ by regressing β̄ onto β⋆ with weights proportional

to 1/σ̂2
j ;

Output: α̂ and σ̂j

3.1. Estimating the signal strength

Since we would like to have Var(Xnew
⊤β⋆) = γ2, we discuss how to estimate

γ from observed data (see Alg. 2 for a summary). We begin by reviewing the

existing ProbeFrontier method, which applies to Gaussian covariates, and then

introduce a new approach applicable to general covariate distributions.

The ProbeFrontier method (Sur and Candès, 2019) estimates γ by using

the phase transition curve κ(β0, γ): if the intercept equals β0 and the signal

strength equals γ, then the MLE does not exist almost surely (asymptotically)

if κ > κ(β0, γ); that is, the cases and controls can be perfectly separated by a

hyperplane (see Sec. 2). The ProbeFrontier method identifies the threshold κ̂s at

which the MLE ceases to exist by subsampling observations. It then estimates γ̂ in

such a way that κ(β0, γ̂) = κ̂s holds. While the ProbeFrontier method accurately

estimates γ when the covariates are Gaussian, it does not apply here because

the phase transition curve actually depends on the covariate distribution. For

example, if the covariates are from a multivariate t-distribution, then the phase

transition curve depends on the degrees of freedom of the t-distribution (Tang

and Ye, 2020).
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Figure 3. An illustration of using η = sd(Xnew
⊤β̂) to estimate the signal strength

γ = sd(Xnew
⊤β). The dashed curve shows η versus γ. This is obtained by generating

100 random samples for each γ, the dashed curve being the smoothed LOESS fit. The
solid curve shows an estimated curve using one dataset only; it is a smoothed version of
η̂(γ) (black points). The dotted line shows η̃, and the estimated γ̂ = 1.92 approximates
γ = 2 well. Here, we sample covariates from a multivariate t-distribution and responses
from a logistic model. The coefficients β are sampled once and then re-scaled to achieve
a value of γ shown on the x-axis.

As an alternative, we estimate γ by using a one-to-one relation between

γ2 = Var(X⊤
newβ) and η2 = Var(X⊤

newβ̂). (3.1)

The dashed curve in Figure 3 plots η as γ varies, and we observe that η(γ)

increases monotonically when γ increases. (Once again, this is because both the

bias and the variance of the MLE increase as γ increases (Sur and Candès, 2019,

Fig. 7).) Since the MLE does not exist when γ exceeds the phase transition

threshold γs, which satisfies κ(β0, γs) = κ, we expect that η would increase to

infinity as γ approaches the threshold.

The one-to-one relation between γ and η(γ) suggests that, if Var(X⊤β⋆) ∼=
Var(X⊤β), then Var(X⊤β̂⋆) ∼= Var(X⊤β̂), where β̂⋆ denotes the MLE when the

true coefficient is β⋆. Thus, we estimate γ2 by Var(X⊤β⋆), where β⋆ obeys

Var(X⊤
newβ̂⋆) = η2. (3.2)

In this paper, we set β⋆ to be a rescaled version of the MLE, i.e., β⋆ = s × β̂.

Because the MLE is biased upwards in absolute magnitude, the rescaling factor

s is less than one and shrinks the MLE towards zero.

Although we cannot compute η directly because it is evaluated at a new

observation Xnew, we estimate η by using the SLOE estimator introduced in

Yadlowsky et al. (2021). We briefly describe SLOE here, and defer detailed

formulae to SM Section 2. The SLOE estimator proceeds in two steps. First, it

approximates Var(X⊤
newβ̂) by the variance of x⊤

i β̂(i) where β̂(i) is the leave-ith-
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observation-out MLE. Second, instead of re-evaluating β̂(i) for each observation,

SLOE uses the first-order approximation of the score equation to approximate β̂(i)

from the MLE. The theory is this: Yadlowsky et al. (2021) proves that the SLOE

estimator is consistent in logistic regression models with Gaussian covariates.

Furthermore, we expect that SLOE yields reliable estimates for a broad class of

covariates, for which the Euclidean norm ∥X∥ is concentrated and the Hessian

at the MLE is positive definite.

Now that we are able to approximate η(γ) at a given γ, we estimate η =

Var(X⊤β̂)1/2 and denote it as η̃. Next, we estimate the curve η(t) at a sequence

of signal strengths t, from which we estimate γ by setting γ̂ such that η̃ = η̂(γ̂).

To implement this, we pick a sequence of scaling factors {0 = s1, . . . , sL = 1}.
At each sl, we set the coefficients to be βsl = sl × β̂ and the signal strength

corresponding to si as γ(sl) = sd(Xβsl), where X refers to the observed covariate

matrix. We use βsl as the true coefficient to generate new responses (as in a

parametric bootstrap) and then use this sample to obtain one estimate of η̂(γ(sl)).

Repeating the process J times yields J estimates η̂j(γ(sl)) for every sl. We next fit

a smoothed curve η̂(γ(sl)) through the points η̂j(γ(sl)), l = 1, . . . , L, j = 1, . . . , J .

Finally, we set γ̂ such that η̂(γ̂) = η̃.

We demonstrate our method in Figure 3, which shows η̂(t) estimated from

a single dataset. The estimated curve offers an excellent fit across all values of

γ. In this example, the estimated η̃ = 3.48 (dotted horizontal line), and this

corresponds to γ̂ = 1.92 on the solid curve. This estimate is close to the actual

signal strength set to γ = 2.

Algorithm 2: Estimating signal strength

Input: Observed data (xi, yi), 1 ≤ i ≤ n, and a GLM formula.

1 Estimate η̃ = Var(X⊤
newβ̂) via leave-one-out techniques;

2 Pick a sequence {0 = s1, . . . , sL = 1};
3 for l = 1, . . . L do

4 Set βsl = sl × β̂ and γl = sd(Xβsl);
5 for j = 1, . . . , J do

6 Simulate Y j
l,i given xi using βsl as model coefficients for each

observation i = 1, . . . , n;

7 Fit a GLM for (xi, Y
j
l,i) to estimate η̂j(γ(sl));

8 end

9 end
10 Fit a smooth curve η̂(γ);
11 Estimate γ̂ by solving η̂(γ̂) = η̃;

Output: Estimated γ̂.
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3.2. Constructing confidence intervals

We consider two ways of computing confidence intervals (CI) from boot-

strapped MLEs: first, assuming that the MLE is approximately Gaussian, i.e.,

β̂j − αjβj

σj

≈ N (0, 1), (3.3)

where αj and σj denote the bias and standard deviation, inverting Eqn. (3.3)

yields the following (1− q) CI for βj:[
1

α̂j

(
β̂j − z1−q/2 σ̂j

)
,
1

α̂j

(
β̂j − zq/2 σ̂j

)]
. (3.4)

Here, zq is the quantile of a standard Gaussian, while α̂j and σ̂j refer to estimates

of αj and σj.

When the normal approximation is inadequate, we use the approximation

β̂j − αjβj

σj

d≈
β̂b
j − α̂jβ⋆,j

σ̂j

, (3.5)

where the right-hand side refers to the distribution of β̂b
j conditional on the

observed covariates. We obtain a (1− q) CI as[
1

α̂j

{
β̂j − tbj

(
1− q

2

)
σ̂j

}
,
1

α̂j

{
β̂j − tbj

(
q

2

)
σ̂j

}]
, (3.6)

where tbj[q] denotes the quantile of the right-hand side of (3.5). We refer to the

confidence interval in (3.6) as the “bootstrap-t” confidence interval, and examine

the approximation (3.5) in Section 4.2.

Finally, we describe how to estimate the bias αj and the standard deviation

σj. To estimate σj, we use the standard deviation of the bootstrap MLE, i.e.,

σ̂2
j =

1

B − 1

B∑
b=1

(β̂b
j − β̄j)

2, where β̄j =
1

B

B∑
b=1

β̂b
j . (3.7)

We estimate αj by weighted regression: that is, we regress β̄b onto β⋆ by assigning

to each MLE coordinate a weight inversely proportional to its estimated variance

σ̂2
j . We assume a common bias factor because all the αj’s are equal when the

covariates are multivariate Gaussian. In practice, we can plot β̄b
j versus β⋆,j: if

bias factors are all equal, then the points should align on a line, which we observe

in all our simulations (Fig. 4).
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3.3. When is the resized bootstrap adequate?

When the covariates are multivariate Gaussian, Zhao, Sur and Candès (2020)

observed that while Eqn. (1.1) is accurate when βj is moderately large (assuming

the covariates Xj are standardized to have zero mean and unit variance), the

std.dev. of β̂j increases as the absolute magnitude of βj increases. This result

implies that the resized coefficient β⋆,j should be close to βj in order to correctly

estimate the MLE distribution. However, the resized coefficients only satisfy

Var(X⊤β⋆) = γ2, and yet β⋆j
̸= βj in general. Therefore, we expect that the CIs

to be approximately correct when βj is moderately large, but inaccurate when βj

is large. We explore the performance of our method when the model coefficients

are large in SM Section 5. While we expect that correct inference can be obtained

by shrinking the large and small coefficients separately, we leave this study for

future research.

4. Numerical Studies

We now study the accuracy of the proposed resized bootstrap method by

simulating GLMs with non-Gaussian covariates. In this section, we consider an

example of logistic regressions. Results in other settings (with various levels of

signal strength, problem dimensions and class imbalance) and with other types

of GLM (including Probit and Poisson regressions) are reported in Sections 3.2–

3.4 of the Supplementary Material (SM). We also consider an example where the

sample size is small (n = 400) in SM Section 4. Lastly, we study the situation

when the M-estimator is obtained by minimizing a general loss function that

may not be the negative log-likelihood in SM Section 6. R code used for these

simulations is publicly available at https://github.com/zq00/glmboot. The

R package glmhd (https://github.com/zq00/glmhd) implements the resized

bootstrap method and provides tutorials.

4.1. Simulation design

First, we set n = 4000 and p = 400 (κ = p/n = 0.1). Without specifying,

we sample covariates from a multivariate t-distribution (MVT) with ν = 8

degrees of freedom whose covariance matrix Σ is a circulant matrix equal to

Σij = 0.5min(|i−j|,p−|i−j|). This structure implies that the Σ−1
ii ’s are all equal. (If

the covariates were Gaussian, then the variance of a predictor conditional on the

others is the same regardless of the predictor. In turn, HDT then predicts that

in this case all the MLE coefficients have equal standard deviation.)

After sampling the covariates, we sample responses from a logistic model. We

sample model coefficients by first picking 50 non-null variables; then, we sample

the magnitude of the non-null coefficients from an equal mixture of N (5, 1) and

N (−5, 1). This signal strength ensures that the MLE exists. At the same time,

the magnitude of the coefficient is sufficiently large so that we can tell a large

https://github.com/zq00/glmboot
https://github.com/zq00/glmhd
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proportion the the non-null variables apart from the nulls. For instance, when

βj = 4.78 as in the example in Section 1.2 , over 90% of the 95% CI excludes 0,

and approximately 90% of the non-null coefficients from the mixture distribution

satisfy this property.

4.2. Results

We report below the estimated inflation and standard deviation of the MLE

as well as the coverage proportions. We also examine the MLE distribution and

the assumption that the bias factors αj are all equal.

4.2.1. Estimated inflation and variance

From Section 1.1 we know that the MLE is just too sure in the sense that

the estimated magnitude is biased upwards. As an illustration, Figure 4 plots

the average MLE versus the model coefficients when the covariates are from

(modified) ARCH model (see SM Sec. 3.2). Since the scatterplot lies near a line,

we can see that the αj’s do not seem to much depend on the magnitude of the

coefficients; additionally, the plot confirms the bias of the MLE since the line

has a slope greater than 1. For information, we get a very similar plot for the

multivariate t-covariates.

We now examine the accuracy of the estimated inflation using existing high-

dimensional theory and the resized bootstrap (recall that both estimate a common

bias factor). Table 1 reports the estimated inflation and variance of a single null

and a single non-null variable. As observed in Section 1.2, HDT captures the bias,

and Table 1 shows that the resized bootstrap estimate is also reasonably accurate.

As to the standard deviation, while both methods slightly underestimate the

std.dev., the resized bootstrap is more accurate and its relative error is less

than 1%. In particular, the resized bootstrap captures the increased std.dev.

of the MLE of non-null variables in comparison to null variables. In contrast,

classical calculations based on the Fisher information significantly underestimate

the std.dev.. Since the resized bootstrap yields a more accurate std.dev., we

would expect enhanced CIs.

4.2.2. Coverage proportion

Section 3.2 introduced two types of CIs, based on the assumptions that the

MLE is approximately Gaussian (3.3) or that the standardized bootstrap MLE

approximates the distribution of the standardized MLE (3.5). Before evaluating

accuracy, we examine these assumptions by showing a normal Q-Q plot of the

MLE (Fig. 5(a)) and a Q-Q plot of the standardized bootstrap MLE versus the

standardized MLE (Fig. 5(b)). Here, we standardize the bootstrap MLE by the

estimated inflation and estimated std.dev. and the MLE by the correct bias and

std.dev. Along the points align on the 45 degree line in both plots, we conclude

that both assumptions are reasonable and, therefore, expect that both CIs would
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Figure 4. Average MLE versus model coefficients for the non-null variables. The x-axis
shows the magnitude of each non-null coefficient and the y-axis shows the average MLE
over 832 repetitions. The gray line has zero intercept and slope equal to 2.08. In this
example, the covariates are sampled from the modified ARCH model described in SM
Section 3.2.

Table 1. Estimated inflation and std.dev. of the MLE. The correct values (empirical bias
and std.dev.) have been obtained from 10,000 repetitions. The std.dev. from classical
theory is calculated by the glm function in R and averaged over 10,000 repetitions. The
resized bootstrap estimates are computed by taking an average over 1,000 repetitions and
uses an estimated signal strength γ. We highlight the number closest to the empirical
observation in bold.

Inflation Standard Deviation

High-dim Resized Empirical Classical High-dim Resized Empirical

Theory Bootstrap Bias Theory Theory Bootstrap Std.dev.

β = 0 - - - 1.232 1.259 1.316 1.327

β = 5.519 1.151 1.159 1.160 1.244 1.259 1.327 1.337

perform well.

Denote the confidence interval for βj in the ith simulation as CIi,j, and define

the proportion of times a single variable βj is covered as

qj :=
1

N

N∑
i=1

I{βj ∈ CIi,j}. (4.1)

Define the coverage proportion of all of the variables in the ith experiment only

as

q̄i =
1

p

p∑
j=1

I{βj ∈ CIi,j} (4.2)

We report both coverage of a single non-null coefficient qj and the proportion

of variables covered in a single-shot experiment q̄ =
∑N

i=1 q̄i/N in Tables 2 and

3 respectively (we report the coverage proportion qj for a single null variable in
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Figure 5. (a) Normal Q-Q plot of the MLE. (b) Q-Q plot of the standardized bootstrap
MLE (in one simulated example) versus the standardized MLE. In this example, the
covariates are sampled from a multivariate t-distribution.

Table 2. Coverage proportion of a single non-null variable (qj in Eqn. (4.1)) with standard
deviation between parentheses. This example uses multivariate-t covariates. We highlight
the number closest to the empirical observation in bold.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t

95
87.3 93.5 71.1 76.3 93.6 93.9 94.2 94.4

(0.3) (0.3) (1.6) (1.3) (0.7) (0.7) (0.8) (0.8)

90
79.4 87.9 61.2 66.6 88.5 88.7 88.6 89.1

(0.3) (0.3) (1.7) (1.4) (1.0) (1.0) (1.1) (1.1)

80
67.4 77.2 46.8 52.7 79.5 79.6 80.8 80.0

(0.5) (0.4) (1.7) (1.5) (1.2) (1.2) (1.3) (1.4)

SM Sec. 3.1). Both the Gaussian approximation (Boot-g) and bootstrap MLE

distribution (Boot-t) are used to compute the CIs. The two CIs not only differ in

their formulae, but also in the number of bootstrap samples: we use B = 10000

bootstrap samples to compute the boot-t CI, but only B = 100 bootstrap samples

to compute the boot-g CI. This is because boot-g CI requires only estimates of the

bias and variance, while boot-t CI requires an estimate of the entire distribution.

While the resized bootstrap slightly undercovers a single coefficient (Tbl. 2),

the relative error is within 2% in all of the levels we examined. Similarly, the

proportion of variables covered in a single-shot experiment (Tbl. 3) is also close to

the nominal coverage and the relative error is within 1%. In addition, boot-g and

boot-t CI achieve similar accuracy at every level we examined. Since boot-g CI

uses a smaller sample size, we prefer boot-g CI when the Gaussian assumption

holds. We can verify the normality assumption by comparing the quantiles of

bootstrap MLEs with normal quantiles. Table 2 shows the coverage of a non-null
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Table 3. The proportion of covered variables in a single-shot experiment (q̄ in Eqn. (4.2)).
The standard deviation is given between parentheses.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known γ Estimated γ

coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t

95
92.5 93.7 90.8 93.3 94.6 94.9 94.7 95.0

(0.02) (0.02) (0.06) (0.05) (0.04) (0.04) (0.04) (0.04)

90
86.6 88.2 84.5 87.8 89.5 89.7 89.7 89.9

(0.02) (0.02) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06)

80
75.7 77.7 73.6 77.5 79.4 79.5 79.6 79.7

(0.03) (0.03) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08)

variable, and we report coverage of a null variable in the supplement. Comparing

the coverage probability using the estimated signal strength γ̂ versus its true

value γ shows that the method with estimated parameters perform as well as if

we had an oracle.

As to the other methods, the HDT CIs slightly undercover since variability

is underestimated as seen earlier. Classical CIs significantly undercover. Neither

the parametric nor the pairs bootstrap provide the correct coverage, and this is

consistent with observations from Figure 1.

5. Application to a Real Data Set

Having observed that the resized bootstrap procedure provides more accurate

inference compared to classical and high-dimensional theory, we now analyze

a real data set. In this study by Lim, Jun and Lee (2019), researchers aim

to understand which factors are associated with restrictive spirometry pattern

(RSP), which is a lung condition. In particular, they hypothesize that glomerular

hyperfiltration (GHF), which assesses the kidney function, may be associated

with the risk of RSP. To evaluate their hypothesis, they collected participants

data from from the Korea National Health and Nutrition Examination Survey

(KNHANES) from 2009-2015. They performed a logistic regression, where the

response variable is RSP (defined as FVC < 80% AND FEV1/FVC ≥ 0.7) and

the covariates include demographic variables, medical history, medications used,

and a variety of health-related variables.

For the purpose of illustrating our approach, we fit a logistic regression using

subsamples of sample size n = 200 and include p = 18 covariates including the

intercept (κ = 18/200 = 0.09). We only include binary variables such that both

positive and negative classes occur in at least 5% of all the samples. We examine

whether the confidence intervals of the model coefficients, i.e., the log odds ratios,

cover the “true” coefficients, which we estimate by the logistic MLE using the

full data that contains about 22,000 observations. Figure 6 shows the CI for

each covariate using classical theory (solid line), resized bootstrap (dashed line),
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Figure 6. Confidence interval for each variable using classical theory (solid line) and
the resized bootstrap (dashed line). The black points indicate true model coefficients,
estimated using the full data set. While we include demographic variables in the logistic
model, we do not present their fitted coefficients as in Table 2 of the paper.

and the estimated coefficient using the full data (black points). Because the

estimated γ is random, we repeat 10 times and use the average as the estimated

signal strength. The resized bootstrap CI is closer to zero compared to CI using

the classical theory, and is slightly more accurate. For instance, the coefficient

for waist circumference is covered by the dashed line segment, but is not covered

by the solid line segment.

Then, we generate B = 24 disjoint subsamples of sample size n = 200

and compare classical theory and the resized bootstrap based on the estimated

inflation, std.dev., and the coverage proportion of CIs. First, we examine the

bias of the MLE by plotting the average of the logistic MLE estimated using

each subsample versus the true coefficients (Fig. 7(a)). While the average MLEs

are scattered across, their absolute magnitude is slightly larger than the true

coefficients. The resized bootstrap yields an estimate α̂b = 1.14 (dashed).

Though this is a small adjustment, it allows the resized bootstrap to produce

more accurate CI as observed in Figure 6.

Next, we plot the average estimated std.dev. versus the empirical std.dev.

in Figure 7(b) calculated across batches. The resized bootstrap and the classical

estimates are similar, and both methods tend to underestimate the true standard

deviation. In Table 4, we evaluate the proportion of variables covered in each

batch as well as the coverage probability of the variable “systolic blood pressure”.

Since both methods under-estimates the std.dev., we expect that the bootstrap

provides some improvement in coverage, but does not yield correct coverage

either, and this is indeed what we observe in the table. In this example, we

use the large sample coefficient as a proxy for the true model coefficients, and our
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Table 4. Coverage probability of confidence intervals (the coverage standard deviation is
between parentheses). The first columns report the coverage proportion for the variable
“systolic blood pressure”. The next two columns compute the proportion of variables
covered in each batch and report the average over 24 batches.

Nominal I. Single variable II. Single experiment

Coverage Classical Resized Bootstrap Classical Resized Bootstrap

95 87.5 (6.9) 91.7 (6.0) 92.2 (1.3) 94.9 (1.1)

90 87.5 (6.9) 87.5 (7.2) 85.8 (1.6) 88.2 (1.4)

80 83.3 (7.8) 83.3 (8.1) 72.3 (1.9) 75.3 (1.7)
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Figure 7. Bias and std.dev. of the MLE. (a) Average MLE for the variables versus true
coefficients. The black points show the average MLE averaged over B = 24 batches.
The dashed line shows the resized bootstrap estimate of the bias factor (α̂b = 1.14).
(b) Average estimated standard deviation of the MLE for each variable versus standard
deviation across batches. The square and triangular points respectively use classical
theory and the resized bootstrap. In both plots, the solid line is the 45 degree line.

results suggest that when the sample size is small, while the resized bootstrap

may not yield accurate coverage, it may perform better than the classical theory.

6. Discussion

In this paper, we demonstrated that the distribution of the MLE in large

logistic regression models depends on the distribution of the covariates and that

bootrstrap methods fail to approximate this distribution. This is in line with

previous findings concerned with linear regression (El Karoui, 2018; El Karoui

and Purdom, 2018). To fix this problem, we introduced a resized bootstrap, which

correctly adjusts inference. The key is to resample from a parametric distribution

obtained by shrinking the MLE towards zero in a data-dependent fashion, where

the amount of shrinkage is informed by insights from HDT. Resized bootstrap

CIs yield correct coverage proportions for different types of covariate distributions
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and types of GLMs. Our findings echo previous results in El Karoui and Purdom

(2018) and Lopes, Blandino and Aue (2019); combining HDT with bootstrap

resampling methods can provide improved estimates.

We conclude with several future research questions. First, while the re-

sized bootstrap procedure provides a high-quality approximation to the MLE

distribution, it slightly underestimates the standard deviation. Therefore, future

research on the theoretical accuracy of the procedure might lead to improvements

in the design of the resized MLE, for example, by adjusting the coefficients to not

only match the standard deviation of the linear predictor, but also a few higher

moments. Second, one drawback of the resized bootstrap is its relatively high

computational cost: we need to compute the MLE many times to estimate γ

and the MLE distribution. Although a few hundred bootstrap samples suffice

to yield accurate CIs when the MLE is approximately Gaussian, being able

to reduce the computational cost would make it even more suitable for larger

datasets. Third, as mentioned in Section 3.3, the resized bootstrap is expected

to accurately estimate the distribution of the MLE for coefficients with moderate

magnitudes. While the resized bootstrap is reasonably accurate for relatively

large βj (see Supplementary Material), novel insights might further enhance it.

Supplementary Material

Additional materials contain the following: (1) a conjecture about the

MLE distribution when the covariates follow a multivariate t-distribution; (2) a

description of the SLOE estimator; (3) additional logistic regression examples; (4)

simulated examples for Probit and Poisson regressions; (5) a simulated example

when the sample size is small; (6) simulations when the coefficients are sparse;

(7) application of the resized bootstrap method to the case when the M-estimator

minimizes a general function.
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