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Abstract: Accurate statistical inference in logistic regression models remains a
critical challenge when the ratio between the number of parameters and sample
size is not negligible. This is because approximations based on either classical
asymptotic theory or bootstrap calculations are grossly off the mark. This paper
introduces a resized bootstrap method to infer model parameters in arbitrary
dimensions. As in the parametric bootstrap, we resample observations from a
distribution, which depends on an estimated regression coefficient sequence. The
novelty is that this estimate is actually far from the maximum likelihood estimate
(MLE). This estimate is informed by recent theory studying properties of the MLE
in high dimensions, and is obtained by appropriately shrinking the MLE towards the
origin. We demonstrate that the resized bootstrap method yields valid confidence
intervals in both simulated and real data examples. Our methods extend to other
high-dimensional generalized linear models.
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1. Introduction

The bootstrap is a well-known resampling procedure introduced in Efron’s
seminal paper (Efron) 1979) for approximating the distribution of a statistic
of interest. Its popularity stems from a combination of several elements: it
is conceptually rather straightforward; it is flexible and can be deployed in a
whole suite of delicate inference problems (Efron, 1981} 1985; Efron, Halloran
and Holmes, 1996)); and finally, whenever theoretical calculations are impossible,
the bootstrap often provides an excellent approximation to the distribution under
study. As a result, researchers from a spectacular array of disciplines have used
the bootstrap for hypothesis testing (Politis, Romano and Wolf, |1999, Ch. 1),
model selection (Shao|, [1996)), density estimation (Franke and Hardlel |1992), and
many other important statistical inference problems.

The bootstrap can usually be understood via the plug-in principle (Efron
and Tibshirani, 1994, Ch. 4). Suppose we observe X; € RP, i = 1,...,n,
sampled independently and identically from a distribution F'. We wish to infer
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the distribution of a statistic tz(X;, Xs,...,X,,), which can be a complicated
functional of the data aimed at estimating the number of modes F' has. For
instance, we may be interested in the 90% quantile of tp(X;,...,X,). The
subscript F' indicates which distribution X; are sampled from; here, the X;’s
are i. i. d. samples from F. The plug-in principle estimates the distribution of
tp(X1,...,X,) by that of t4(X7,...,X?), wherein F' is an estimate of F, and
(X3,...,X}) is a draw from F. In other words, by resampling observations from
F, we obtain a distribution we hope closely resembles that of ¢ r(X1, .., X,).

Naturally, statisticians have since the beginning studied the accuracy of the
bootstrap. Broadly speaking, the bootstrap is known to be consistent, i.e.,
ta( XY, .., XY) — tp(Xq,...,X,) in distribution, under the conditions that
(1) the distribution of t7(X;, X,,...,X,) varies smoothly near F, and (2) F
converges to F' (Bickel and Freedman, |1981} Diciccio and Romanol, 1988} Politis,
Romano and Wolf, 1999, Ch. 1). The second condition is typically satisfied for
appropriately chosen estimates F whenever the data dimension p is fixed. In
addition to general theory, statisticians have carried out detailed studies for
specific statistics including the sample mean (Bickel and Freedman) (1981} Hall,
1992)), regression coefficients (Shorack, [1982; |Bickel and Freedman, (1982, |1981;
Mammen, 1993), and continuous functions of the empirical measure (Gine and
Zinn,, 1990), and so forth.

Motivated by the abundance of high-dimensional data, researchers are in-
creasingly studying statistical methods in the high-dimensional setting in which
the number of variables p grows with the number of observations n. Specifically,
this article concerns the accuracy of bootstrap methods when p and n are both
very large and perhaps grow with a fixed ratio. In linear regression for example,
while the residual bootstrap is weakly consistent if p is fixed and n — oo,
it is inconsistent when n,p — oo in such a way that p/n — k > 0; to be
sure, Bickel and Freedman| (1982)) displays a data-dependent contrast, i.e., a
linear combination of coefficients, for which the estimated contrast distribution is
asymptotically incorrect. Motivated by results from high-dimensional maximum
likelihood theory (El Karoui et al., 2013; |El Karoui, 2013, 2018)), [El Karoui and
Purdom (2018]) proposed to use corrected residuals to achieve correct inference.
Another example is this: although the nonparametric bootstrap can be used to
construct a valid confidence region for the spectrum of a covariance matrix when
the problem dimension is fixed (Beran and Srivastava, [1985; |Eaton and Tyler,
1991)), it yields incorrect estimates of the distribution of the largest eigenvalue if
p/n — k > 0 (El Karouis and Purdom), 2016). With the exception of these two
studies, the accuracy of the bootstrap in other high-dimensional problems has
not been much researched.

In this paper, we study the bootstrap for inferring the distribution of the
maximum likelihood estimator (MLE) in high-dimensional logistic regression
models. We find that the standard parametric bootstrap and the pairs bootstrap
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are both incorrect (Sec. 1.2), a finding which echoes with El Karoui and Purdom
(2018). We also show that recent high-dimensional maximum likelihood theory
(HDT) developed for multivariate Gaussian covariates does not correctly predict
the distribution of the MLE when the covariates are heavy tailed; this is analogous
to findings in [El Karoui (2018)). Both these failures call for solutions and in
this paper, we design a novel resized bootstrap by combining the bootstrap
method with insights from HDT. We demonstrate that the resized bootstrap
yields confidence intervals attaining nominal coverage regardless of the covariate
distribution. Finally, we extend our methods to other generalized linear models.

1.1. High-dimensional maximum likelihood theory

We begin by briefly reviewing recent theory about M-estimators in the high-
dimensional setting in which both the number of observations n and the number
of variables p go to oo while the ratio p/n approaches a constant £ > 0. This high-
dimensional theory (HDT) generalizes the classical asymptotic setting, and offers
a more accurate characterization of the distribution of M-estimators when both n
and p are large. In particular, a considerable amount of research has studied the
behavior of M-estimators in high-dimensional regression and penalized regression
(El Karoui et al.| [2013; |El Karoui, 2013; |Zhang and Zhang), 2014; van de Geer
et al., 2014} Donoho and Montanaril, |2016; |(Celentano, Montanari and Weil, 2023
Bellec, Shen and Zhang, [2022).

Consider a logistic model in which the covariates X € RP are mutivariate
Gaussian and P(Y = 1|X) = (X "3), where o(t) = 1/(1 + e~) is the usual
sigmoid function. Zhao, Sur and Candes| (2020) showed that if 3 denotes the
MLE, then

Vi(B; — a.f;) 4 N0, 1), (1.1)

0./

where 3, (resp. ;) is the jth (resp. estimated) model coefficient. In contrast to
classical asymptotic theory, which states that the MLE is unbiased, the MLE is
centered at o, 3;, for some o, > 1 whenever x is positive. The standard deviation
is 0, /7;; here, 7; is the conditional standard deviation of the jth variable given
all the other variables whereas the parameters a, and o, are determined by
k and the signal strength v defined as v = Var(X'f3). The parameters a,
and o, both increase as either the dimensionality x increases or the signal-to-
noise ratio v increases (Sur and Candes, 2019, Fig. 7). To be complete, we
stress that Eqn. holds with the proviso that the magnitude of 3; is not
extremely large. Zhao, Sur and Candes (2020) hypothesized that HDT holds
when 7;3; = o(1). Empirically, they observed that the theoretical inflation and
std. dev. are reasonably correct when 7;3;/v < 0.15; however, when 7;3; /v = 0.5,
the empirical std.dev. is 36% larger than the theoretical std.dev.
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The approximation happens to be very accurate for moderately large
sample sizes, e.g., when n = 4000 and p = 400 (Zhao, Sur and Candes|, |2020), and
is accurate for relatively small sample sizes, i.e., n = 200 and p = 20 (Sur and
Candes, 2019, Appendix G). Further, is expected to hold for sub-Gaussian
covariates, see Zhao, Sur and Candes (2020]) for empirical studies supporting this
claim.

Having said all of this, does not hold when the covariates follow a general
distribution. For instance, [El Karoui (2018) studied ridge regression in linear
models where the covariates follow a multivariate ¢-distribution, and proved that
the variance of the ridge estimate does depend on the geometry of the covariates.
Similarly, for a logistic regression we expect that a, and o, would also depend on
the degrees of freedom of the t¢-distribution. In Section 1 of the supplementary
material (SM), we give a conjecture about the distribution of the MLE, and
compare it with empirical observations. Aside from these two scenarios, we know
very little about the distribution of M-estimators, or the inflation and std.dev. of
the MLE when the covariates follow an arbitrary distribution.

1.2. An example with non-Gaussian covariates

Having succinctly described the high-dimensional theory, we simulate a high-
dimensional logistic regression model with 4,000 observations and 400 covariates
(n = 4000 and p = 400). We sample covariates from a multivariate ¢-distribution
and standardize each variable so that Var(X;) = 1/p. We pick 50 non-null
variables and sample their coefficients from a mixture of Gaussians N(5,1) and
N(=5,1) with equal weights.

Figure 1 presents a histogram of a coordinate of the MLE from repeated
experiments. From the bell-shaped curve, we conclude that the MLE is approxi-
mately Gaussian. Although the value of the true coefficient under study is 4.78,
the average MLE is 5.56, which shows that the MLE is biased upward and the
inflation factor is roughly equal to a; = Bj /B; = 1.16. The empirical standard
deviation (std.dev.) of the MLE is equal to 1.34; however, the classical theory
estimates that the std.dev. equals 1.15. We thus see that because of both a
poor centering and a poor assessment of variability, the classical Wald confidence
interval would significantly undercover 8;. Now HDT from Section 1.1 estimates
the bias to be a, = 1.14 and the standard deviation to be o,/7; = 1.25. This
implies that while capturing the bias, HDT slightly underestimates the std.dev.
of the MLE.

Next, we apply the parametric bootstrap and pairs bootstrap and display in
Figure 1 the density curves of the bootstrap MLEs from one experiment.

e For the parametric bootstrap, we generate samples by fixing the covariates
at the observed values and sample responses from a logistic model whose
coefficients equal the MLE; put another way, we choose F' = Fj;. The para-
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Figure 1. Histogram of the logistic MLE of a randomly chosen coefficient in 10,000
repeated experiments. Here, the covariates are sampled from a multivariate t-distribution
with 8 degrees of freedom. The bootstrap MLE densities are displayed for the parametric
bootstrap (dashed), the pairs bootstrap (solid) and the proposed resized bootstrap
(longdash). The triangle indicates the true coefficient and the dashed line indicates
the average MLE.

metric bootstrap (dashed) does not begin to describe the MLE distribution
since the average value is 8.68, about twice that of the true coefficient, and
the std.dev. is 1.55.

e The pairs bootstrap generates bootstrap samples by sampling with re-
placement from the observed data, i.e., we choose F to be the empirical
distribution. The pairs bootstrap also fails to approximate the MLE
distribution since the solid curve shifts to the right and is much wider than
the histogram (mean is 8.63 and std.dev. is 1.71).

Finally, the longdashed curve in Figure 1 shows the accuracy of the proposed
resized bootstrap. We can see that this best describes the MLE distribution; for
instance, both the mean (5.54) and standard deviation (1.39) are close to the

true values.

2. Why Does the Bootstrap Fail?

The pairs bootstrap fails in the high-dimensional setting because it effectively
inflates the dimensionality ratio k = p/n. In particular, when n is large, the
number of unique pairs (X, Y;*) in a bootstrap sample is approximately (1—1/e)n
on average (Mendelson et al., 2016)). Consequently, the effective dimensionality
ratio ke/(e — 1) in the bootstrap sample is larger than k. Because the bias and
variance of the MLE increase as k increases (Sur and Candes, 2019, Fig. 7), the
pairs bootstrap tends to over-estimate both the bias and standard error.

While the pairs bootstrap over-estimates x, the parametric bootstrap fails
because the signal strength v is inflated in the bootstrap samples. Suppose for
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Figure 2. According to the high-dimensional theory (Sec. 1.1), the asymptotic
distribution of the MLE depends on the problem dimension x and the signal strength ~.
The pairs bootstrap over-estimates x whereas the parametric bootstrap over-estimates
~. Therefore, both methods lead to incorrect estimates of the MLE distribution. The
blue region shows pairs of values of (k,~) where the MLE exists when §y = 0.

simplicity that the covariates are independent N'(0,1). Then (Sur and Candes),
2019, Thm. 2) shows that

Jim Var(X[,,8) % 02y? + ko > 7, (2.1)
whereas Var(X T3) = 42. Here, X, is a new random sample independent from
the training set. Because a higher 7 leads to higher bias and variance (Sur and
Candes, 2019} Fig. 7), the parametric bootstrap also tends to over-estimate the
bias and standard error of the MLE.

In addition to over-estimating the bias and standard error, another problem
of using the bootstrap is that when working with bootstrap samples, the MLE
may cease to exist. We can explain this issue via the phase transition: for every
ratio x and intercept [y, there exists an asymptotic threshold ~(k, 5y) such that
the MLE does not exist once the signal strength v > ~(k, ). Similarly, for every
~ and Sy, there exists a threshold (7, fy) such that the MLE does not exist once
k > Kk(7, fy). Because the pairs bootstrap over-estimates x while the parametric
bootstrap over-estimates -, the bootstrap MLE may not exist if either x or
exceeds the phase transition threshold. Figure 2 provides a visual illustration of
these points.

3. A Resized Bootstrap Method

We propose to construct parametric bootstrap samples from Fj,, where §3,
is obtained by shrinking the MLE towards zero. We would like 8, to obey
Var(X/! B,) = v = Var(X'f) as to preserve the signal-to-noise ratio. We
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set out to estimate ~ in Section 3.1 since « is unobserved. Upon obtaining S,
we follow the standard parametric bootstrap procedure to generate bootstrap
samples. That is to say, the bth bootstrap sample consists of (z;, V), i =1,...,n,
where z; is the vector of features for the ith sample and Y}’ is sampled from our
GLM with features z; and coefficients 3,. We then compute the bootstrap MLE
" € R? by fitting the GLM using pairs (7;,Y?). Repeating this process B times
yields B bootstrap MLEs. We then infer the inflation and std.dev. of the MLE
from the bootstrap MLE.

We summarize the procedure in Algorithm 1 and discuss how to compute
confidence intervals using the bootstrap MLE in Section 3.2. We evaluate our
method through simulated examples in Section 4.

Algorithm 1: Resized bootstrap procedure.

Input: Observed data (x;,y;), 1 <i < n, and a GLM formula.
Compute resized coefficients (y;
forb=1,...,B do
Simulate Y;* given z; using 3, as model coefficients;
Fit a GLM for (=;,Y;?) to obtain the bootstrap MLE Jeid
end
Estimate the standard deviation of the MLE 6 (See Eqn. (3.7));
Estimate a common factor & by regressing 3 onto 3, with weights proportional
to 1/67%;
Output: & and 6;

o = T SL B N /U R VI

3.1. Estimating the signal strength

Since we would like to have Var(XnCWTB*) = ~2, we discuss how to estimate
v from observed data (see Alg. 2 for a summary). We begin by reviewing the
existing ProbeFrontier method, which applies to Gaussian covariates, and then
introduce a new approach applicable to general covariate distributions.

The ProbeFrontier method (Sur and Candes| [2019) estimates v by using
the phase transition curve k(fy,v): if the intercept equals 3, and the signal
strength equals 7, then the MLE does not exist almost surely (asymptotically)
if kK > k(Bo,7); that is, the cases and controls can be perfectly separated by a
hyperplane (see Sec. 2). The ProbeFrontier method identifies the threshold &, at
which the MLE ceases to exist by subsampling observations. It then estimates 7 in
such a way that x(fy,%) = &, holds. While the ProbeFrontier method accurately
estimates v when the covariates are Gaussian, it does not apply here because
the phase transition curve actually depends on the covariate distribution. For
example, if the covariates are from a multivariate t-distribution, then the phase
transition curve depends on the degrees of freedom of the t¢-distribution (Tang
and Ye, 2020).
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Figure 3. An illustration of using n = sd(XneWTB) to estimate the signal strength
v = Sd(XneWT B). The dashed curve shows 7 versus 7. This is obtained by generating
100 random samples for each v, the dashed curve being the smoothed LOESS fit. The
solid curve shows an estimated curve using one dataset only; it is a smoothed version of
7(y) (black points). The dotted line shows 7, and the estimated 4 = 1.92 approximates
v = 2 well. Here, we sample covariates from a multivariate ¢-distribution and responses
from a logistic model. The coefficients § are sampled once and then re-scaled to achieve
a value of v shown on the z-axis.

As an alternative, we estimate v by using a one-to-one relation between
~% =Var(X] B) and 5?=Var(X|_f). (3.1)

The dashed curve in Figure 3 plots n as v varies, and we observe that n(vy)
increases monotonically when 7 increases. (Once again, this is because both the
bias and the variance of the MLE increase as v increases (Sur and Candes, 2019,
Fig. 7).) Since the MLE does not exist when v exceeds the phase transition
threshold ~y,, which satisfies k(f8y,7s) = K, we expect that 7 would increase to
infinity as « approaches the threshold.

The one-to-one relation between v and n(v) suggests that, if Var(X ' 3,) =
Var(XTf3), then Var(XTS,) = Var(XT3), where 3, denotes the MLE when the
true coefficient is (,. Thus, we estimate v by Var(X ' 3,), where 3, obeys

Var(X,L, B.) = n*. (3.2)

new

In this paper, we set 8, to be a rescaled version of the MLE, i.e., 5, = s X ﬁ
Because the MLE is biased upwards in absolute magnitude, the rescaling factor
s is less than one and shrinks the MLE towards zero.

Although we cannot compute 7 directly because it is evaluated at a new
observation X,.,, we estimate n by using the SLOE estimator introduced in
Yadlowsky et al| (2021). We briefly describe SLOE here, and defer detailed
formulae to SM Section 2. The SLOE estimator proceeds in two steps. First, it
approximates Var(X__3) by the variance of z] By where B is the leave-ith-

new
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observation-out MLE. Second, instead of re-evaluating B(i) for each observation,
SLOE uses the first-order approximation of the score equation to approximate B(i)
from the MLE. The theory is this: [Yadlowsky et al.| (2021]) proves that the SLOE
estimator is consistent in logistic regression models with Gaussian covariates.
Furthermore, we expect that SLOE yields reliable estimates for a broad class of
covariates, for which the Euclidean norm || X|| is concentrated and the Hessian
at the MLE is positive definite.

Now that we are able to approximate 7(vy) at a given 7, we estimate n =
Var(XT3)'/2 and denote it as 7. Next, we estimate the curve n(t) at a sequence
of signal strengths ¢, from which we estimate v by setting 4 such that 7 = 7(%).
To implement this, we pick a sequence of scaling factors {0 = s1,...,s;, = 1}.
At each s;, we set the coefficients to be % = s; X B and the signal strength
corresponding to s; as y(s;) = sd(X %), where X refers to the observed covariate
matrix. We use % as the true coefficient to generate new responses (as in a
parametric bootstrap) and then use this sample to obtain one estimate of 7(y(s;)).
Repeating the process J times yields J estimates 7;(y(s;)) for every s;. We next fit
a smoothed curve 7(7y(s;)) through the points 7;(y(s;)), { =1,..., L, j =1,...,J.
Finally, we set 4 such that 7(%) = 1.

We demonstrate our method in Figure 3, which shows 7(¢) estimated from
a single dataset. The estimated curve offers an excellent fit across all values of
~v. In this example, the estimated 77 = 3.48 (dotted horizontal line), and this
corresponds to 4 = 1.92 on the solid curve. This estimate is close to the actual
signal strength set to v = 2.

Algorithm 2: Estimating signal strength
Input: Observed data (x;,¥;), 1 <i <n, and a GLM formula.

1 Estimate 7j = Var(X |, 3) via leave-one-out techniques;
2 Pick a sequence {0 = sq,...,s1 = 1};
sforl=1,...Ldo
4 Set 8% = s, x B and v, = sd(X B%);
5 for j=1,...,J do
6 Simulate YZJZ given x; using $°' as model coefficients for each
observation i = 1,...,n;
Fit a GLM for (z;, Yle) to estimate 7;(v(s1));
end

~

9 end

10 Fit a smooth curve 7(7);

11 Estimate 4 by solving #(%) = 7j;
Output: Estimated 7.
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3.2. Constructing confidence intervals

We consider two ways of computing confidence intervals (CI) from boot-
strapped MLEs: first, assuming that the MLE is approximately Gaussian, i.e.,

w ~ N(0,1), (3.3)

where «; and o; denote the bias and standard deviation, inverting Eqn. (3.3])
yields the following (1 — ¢) CI for §;:

[; R N ). (3.4)

Here, z, is the quantile of a standard Gaussian, while &; and ¢, refer to estimates
of a; and o;.
When the normal approximation is inadequate, we use the approximation

N Ab N

B — B 4 B *Ao‘jﬁw" (3.5)
gj 9j

where the right-hand side refers to the distribution of B]b conditional on the

observed covariates. We obtain a (1 —¢q) CI as

[; {ﬁ)—ti(l—g) &j},;{@—@(g) @H, (3.6)

where t? [q] denotes the quantile of the right-hand side of . We refer to the
confidence interval in as the “bootstrap-t” confidence interval, and examine
the approximation in Section 4.2.

Finally, we describe how to estimate the bias o; and the standard deviation
o;j. To estimate o;, we use the standard deviation of the bootstrap MLE, i.e.,

. 1 o 2 I A

= ———Y (B)-B;)%, where B;=—-> p. (3.7)
B-135 B

We estimate a; by weighted regression: that is, we regress 3° onto 3, by assigning

to each MLE coordinate a weight inversely proportional to its estimated variance
~2
o5

J

covariates are multivariate Gaussian. In practice, we can plot B]b versus [, ;: if
bias factors are all equal, then the points should align on a line, which we observe

We assume a common bias factor because all the «;’s are equal when the

in all our simulations (Fig. 4).
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3.3. When is the resized bootstrap adequate?

When the covariates are multivariate Gaussian, Zhao, Sur and Candes| (2020)
observed that while Eqn. is accurate when ; is moderately large (assuming
the covariates X, are standardized to have zero mean and unit variance), the
std.dev. of Bj increases as the absolute magnitude of /3; increases. This result
implies that the resized coefficient 3, ; should be close to §; in order to correctly
estimate the MLE distribution. However, the resized coefficients only satisfy
Var(X ' j,) =+?, and yet §,, # 3, in general. Therefore, we expect that the CIs
to be approximately correct when (3, is moderately large, but inaccurate when /3,
is large. We explore the performance of our method when the model coefficients
are large in SM Section 5. While we expect that correct inference can be obtained
by shrinking the large and small coefficients separately, we leave this study for
future research.

4. Numerical Studies

We now study the accuracy of the proposed resized bootstrap method by
simulating GLMs with non-Gaussian covariates. In this section, we consider an
example of logistic regressions. Results in other settings (with various levels of
signal strength, problem dimensions and class imbalance) and with other types
of GLM (including Probit and Poisson regressions) are reported in Sections 3.2—
3.4 of the Supplementary Material (SM). We also consider an example where the
sample size is small (n = 400) in SM Section 4. Lastly, we study the situation
when the M-estimator is obtained by minimizing a general loss function that
may not be the negative log-likelihood in SM Section 6. R code used for these
simulations is publicly available at https://github.com/zq00/glmboot. The
R package glmhd (https://github.com/zq00/glmhd) implements the resized
bootstrap method and provides tutorials.

4.1. Simulation design

First, we set n = 4000 and p = 400 (kx = p/n = 0.1). Without specifying,
we sample covariates from a multivariate t-distribution (MVT) with v = 8
degrees of freedom whose covariance matrix Y is a circulant matrix equal to
¥,;; = 0.5mn(i=ilp=li=i) " This structure implies that the X;;"’s are all equal. (If
the covariates were Gaussian, then the variance of a predictor conditional on the
others is the same regardless of the predictor. In turn, HDT then predicts that
in this case all the MLE coefficients have equal standard deviation.)

After sampling the covariates, we sample responses from a logistic model. We
sample model coefficients by first picking 50 non-null variables; then, we sample
the magnitude of the non-null coefficients from an equal mixture of N'(5,1) and
N (=5,1). This signal strength ensures that the MLE exists. At the same time,
the magnitude of the coefficient is sufficiently large so that we can tell a large
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proportion the the non-null variables apart from the nulls. For instance, when
B; = 4.78 as in the example in Section 1.2 , over 90% of the 95% CI excludes 0,
and approximately 90% of the non-null coefficients from the mixture distribution
satisfy this property.

4.2. Results

We report below the estimated inflation and standard deviation of the MLE
as well as the coverage proportions. We also examine the MLE distribution and
the assumption that the bias factors o are all equal.

4.2.1. Estimated inflation and variance

From Section 1.1 we know that the MLE is just too sure in the sense that
the estimated magnitude is biased upwards. As an illustration, Figure 4 plots
the average MLE versus the model coefficients when the covariates are from
(modified) ARCH model (see SM Sec. 3.2). Since the scatterplot lies near a line,
we can see that the a;’s do not seem to much depend on the magnitude of the
coefficients; additionally, the plot confirms the bias of the MLE since the line
has a slope greater than 1. For information, we get a very similar plot for the
multivariate t-covariates.

We now examine the accuracy of the estimated inflation using existing high-
dimensional theory and the resized bootstrap (recall that both estimate a common
bias factor). Table 1 reports the estimated inflation and variance of a single null
and a single non-null variable. As observed in Section 1.2, HDT captures the bias,
and Table 1 shows that the resized bootstrap estimate is also reasonably accurate.
As to the standard deviation, while both methods slightly underestimate the
std.dev., the resized bootstrap is more accurate and its relative error is less
than 1%. In particular, the resized bootstrap captures the increased std.dev.
of the MLE of non-null variables in comparison to null variables. In contrast,
classical calculations based on the Fisher information significantly underestimate
the std.dev.. Since the resized bootstrap yields a more accurate std.dev., we
would expect enhanced Cls.

4.2.2. Coverage proportion

Section 3.2 introduced two types of Cls, based on the assumptions that the
MLE is approximately Gaussian or that the standardized bootstrap MLE
approximates the distribution of the standardized MLE . Before evaluating
accuracy, we examine these assumptions by showing a normal Q-Q plot of the
MLE (Fig. 5(a)) and a Q-Q plot of the standardized bootstrap MLE versus the
standardized MLE (Fig. 5(b)). Here, we standardize the bootstrap MLE by the
estimated inflation and estimated std.dev. and the MLE by the correct bias and
std.dev. Along the points align on the 45 degree line in both plots, we conclude
that both assumptions are reasonable and, therefore, expect that both Cls would
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Figure 4. Average MLE versus model coefficients for the non-null variables. The z-axis
shows the magnitude of each non-null coefficient and the y-axis shows the average MLE
over 832 repetitions. The gray line has zero intercept and slope equal to 2.08. In this
example, the covariates are sampled from the modified ARCH model described in SM
Section 3.2.

Table 1. Estimated inflation and std.dev. of the MLE. The correct values (empirical bias
and std.dev.) have been obtained from 10,000 repetitions. The std.dev. from classical
theory is calculated by the glm function in R and averaged over 10,000 repetitions. The
resized bootstrap estimates are computed by taking an average over 1,000 repetitions and
uses an estimated signal strength . We highlight the number closest to the empirical
observation in bold.

Inflation Standard Deviation
High-dim  Resized  Empirical Classical High-dim  Resized  Empirical
Theory  Bootstrap Bias Theory Theory  Bootstrap  Std.dev.
B=0 - - - 1.232 1.259 1.316 1.327
B =5.519 1.151 1.159 1.160 1.244 1.259 1.327 1.337

perform well.

Denote the confidence interval for 3; in the 7th simulation as CI; ;, and define
the proportion of times a single variable 3; is covered as
N
=1
Define the coverage proportion of all of the variables in the ith experiment only
as
1 p
g = ; > 1{B; € CL;} (4.2)
j=1

We report both coverage of a single non-null coefficient ¢; and the proportion
of variables covered in a single-shot experiment q§ = Zfil gi/N in Tables 2 and
3 respectively (we report the coverage proportion g¢; for a single null variable in
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Figure 5. (a) Normal Q-Q plot of the MLE. (b) Q-Q plot of the standardized bootstrap
MLE (in one simulated example) versus the standardized MLE. In this example, the
covariates are sampled from a multivariate ¢-distribution.

Table 2. Coverage proportion of a single non-null variable (g; in Eqn. (4.1f)) with standard
deviation between parentheses. This example uses multivariate-t covariates. We highlight
the number closest to the empirical observation in bold.

Theoretical CI Standard Bootstrap Resized Bootstrap
Nominal Known Estimated ~
coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t
05 87.3 93.5 71.1 76.3 93.6 93.9 94.2 94.4
(0.3) (0.3) (1.6) (1.3) (0.7) (0.7) (0.8) (0.8)
90 79.4 87.9 61.2 66.6 88.5 88.7 88.6 89.1
(0.3) (0.3) (1.7) (14)  (1L.0) (L0) (L1)  (L.1)
80 67.4 7.2 46.8 52.7 79.5 79.6 80.8 80.0
(0.5) (0.4) (1.7) (1.5) (1.2) (1.2) (1.3) (1.4)

SM Sec. 3.1). Both the Gaussian approximation (Boot-g) and bootstrap MLE
distribution (Boot-t) are used to compute the Cls. The two Cls not only differ in
their formulae, but also in the number of bootstrap samples: we use B = 10000
bootstrap samples to compute the boot-t CI, but only B = 100 bootstrap samples
to compute the boot-g CI. This is because boot-g CI requires only estimates of the
bias and variance, while boot-t CI requires an estimate of the entire distribution.

While the resized bootstrap slightly undercovers a single coefficient (Tbl. 2),
the relative error is within 2% in all of the levels we examined. Similarly, the
proportion of variables covered in a single-shot experiment (Tbhl. 3) is also close to
the nominal coverage and the relative error is within 1%. In addition, boot-g and
boot-t CI achieve similar accuracy at every level we examined. Since boot-g CI
uses a smaller sample size, we prefer boot-g CI when the Gaussian assumption
holds. We can verify the normality assumption by comparing the quantiles of
bootstrap MLEs with normal quantiles. Table 2 shows the coverage of a non-null
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Table 3. The proportion of covered variables in a single-shot experiment (g in Eqn. (4.2)).
The standard deviation is given between parentheses.

Theoretical CI Standard Bootstrap Resized Bootstrap

Nominal Known v Estimated ~
coverage Classical High-Dim Parametric Pairs Boot-g Boot-t Boot-g Boot-t
05 92.5 93.7 90.8 93.3 94.6 94.9 94.7 95.0
(0.02) (0.02) (0.06) (0.05) (0.04) (0.04) (0.04) (0.04)

90 86.6 88.2 84.5 87.8 89.5 89.7 89.7 89.9
(0.02) (0.02) (0.08) (0.06) (0.06) (0.06) (0.06) (0.06)

80 75.7 7.7 73.6 77.5 79.4 79.5 79.6 79.7
(0.03) (0.03) (0.09) (0.08) (0.08) (0.08) (0.08) (0.08)

variable, and we report coverage of a null variable in the supplement. Comparing
the coverage probability using the estimated signal strength 4 versus its true
value v shows that the method with estimated parameters perform as well as if
we had an oracle.

As to the other methods, the HDT ClIs slightly undercover since variability
is underestimated as seen earlier. Classical Cls significantly undercover. Neither
the parametric nor the pairs bootstrap provide the correct coverage, and this is
consistent with observations from Figure 1.

5. Application to a Real Data Set

Having observed that the resized bootstrap procedure provides more accurate
inference compared to classical and high-dimensional theory, we now analyze
a real data set. In this study by |[Lim, Jun and Lee (2019), researchers aim
to understand which factors are associated with restrictive spirometry pattern
(RSP), which is a lung condition. In particular, they hypothesize that glomerular
hyperfiltration (GHF), which assesses the kidney function, may be associated
with the risk of RSP. To evaluate their hypothesis, they collected participants
data from from the Korea National Health and Nutrition Examination Survey
(KNHANES) from 2009-2015. They performed a logistic regression, where the
response variable is RSP (defined as FVC < 80% AND FEV1/FVC > 0.7) and
the covariates include demographic variables, medical history, medications used,
and a variety of health-related variables.

For the purpose of illustrating our approach, we fit a logistic regression using
subsamples of sample size n = 200 and include p = 18 covariates including the
intercept (k = 18/200 = 0.09). We only include binary variables such that both
positive and negative classes occur in at least 5% of all the samples. We examine
whether the confidence intervals of the model coefficients, i.e., the log odds ratios,
cover the “true” coefficients, which we estimate by the logistic MLE using the
full data that contains about 22,000 observations. Figure 6 shows the CI for
each covariate using classical theory (solid line), resized bootstrap (dashed line),
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Figure 6. Confidence interval for each variable using classical theory (solid line) and
the resized bootstrap (dashed line). The black points indicate true model coefficients,
estimated using the full data set. While we include demographic variables in the logistic
model, we do not present their fitted coefficients as in Table 2 of the paper.

and the estimated coefficient using the full data (black points). Because the
estimated v is random, we repeat 10 times and use the average as the estimated
signal strength. The resized bootstrap CI is closer to zero compared to CI using
the classical theory, and is slightly more accurate. For instance, the coefficient
for waist circumference is covered by the dashed line segment, but is not covered
by the solid line segment.

Then, we generate B = 24 disjoint subsamples of sample size n = 200
and compare classical theory and the resized bootstrap based on the estimated
inflation, std.dev., and the coverage proportion of Cls. First, we examine the
bias of the MLE by plotting the average of the logistic MLE estimated using
each subsample versus the true coefficients (Fig. 7(a)). While the average MLEs
are scattered across, their absolute magnitude is slightly larger than the true
The resized bootstrap yields an estimate &, = 1.14 (dashed).
Though this is a small adjustment, it allows the resized bootstrap to produce

coefficients.

more accurate CI as observed in Figure 6.

Next, we plot the average estimated std.dev. versus the empirical std.dev.
in Figure 7(b) calculated across batches. The resized bootstrap and the classical
estimates are similar, and both methods tend to underestimate the true standard
deviation. In Table 4, we evaluate the proportion of variables covered in each
batch as well as the coverage probability of the variable “systolic blood pressure”.
Since both methods under-estimates the std.dev., we expect that the bootstrap
provides some improvement in coverage, but does not yield correct coverage
In this example, we
use the large sample coefficient as a proxy for the true model coefficients, and our

either, and this is indeed what we observe in the table.
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Table 4. Coverage probability of confidence intervals (the coverage standard deviation is
between parentheses). The first columns report the coverage proportion for the variable
“systolic blood pressure”. The next two columns compute the proportion of variables
covered in each batch and report the average over 24 batches.

Nominal I. Single variable II. Single experiment
Coverage  Classical  Resized Bootstrap  Classical  Resized Bootstrap
95 87.5 (6.9) 91.7 (6.0) 92.2 (1.3) 94.9 (1.1)
90 87.5 (6.9) 87.5 (7.2) 85.8 (1.6) 88.2 (1.4)
80 83.3 (7.8) 83.3 (8.1) 72.3 (1.9) 75.3 (1.7)
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Figure 7. Bias and std.dev. of the MLE. (a) Average MLE for the variables versus true
coefficients. The black points show the average MLE averaged over B = 24 batches.
The dashed line shows the resized bootstrap estimate of the bias factor (4, = 1.14).
(b) Average estimated standard deviation of the MLE for each variable versus standard
deviation across batches. The square and triangular points respectively use classical
theory and the resized bootstrap. In both plots, the solid line is the 45 degree line.

results suggest that when the sample size is small, while the resized bootstrap
may not yield accurate coverage, it may perform better than the classical theory.

6. Discussion

In this paper, we demonstrated that the distribution of the MLE in large
logistic regression models depends on the distribution of the covariates and that
bootrstrap methods fail to approximate this distribution. This is in line with
previous findings concerned with linear regression (El Karoui, 2018; El Karoui
and Purdom, 2018]). To fix this problem, we introduced a resized bootstrap, which
correctly adjusts inference. The key is to resample from a parametric distribution
obtained by shrinking the MLE towards zero in a data-dependent fashion, where
the amount of shrinkage is informed by insights from HDT. Resized bootstrap
CIs yield correct coverage proportions for different types of covariate distributions
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and types of GLMs. Our findings echo previous results in [El Karoui and Purdom
(2018) and [Lopes, Blandino and Aue| (2019)); combining HDT with bootstrap
resampling methods can provide improved estimates.

We conclude with several future research questions. First, while the re-
sized bootstrap procedure provides a high-quality approximation to the MLE
distribution, it slightly underestimates the standard deviation. Therefore, future
research on the theoretical accuracy of the procedure might lead to improvements
in the design of the resized MLE, for example, by adjusting the coefficients to not
only match the standard deviation of the linear predictor, but also a few higher
moments. Second, one drawback of the resized bootstrap is its relatively high
computational cost: we need to compute the MLE many times to estimate ~
and the MLE distribution. Although a few hundred bootstrap samples suffice
to yield accurate Cls when the MLE is approximately Gaussian, being able
to reduce the computational cost would make it even more suitable for larger
datasets. Third, as mentioned in Section 3.3, the resized bootstrap is expected
to accurately estimate the distribution of the MLE for coefficients with moderate
magnitudes. While the resized bootstrap is reasonably accurate for relatively
large (3; (see Supplementary Material), novel insights might further enhance it.

Supplementary Material

Additional materials contain the following: (1) a conjecture about the
MLE distribution when the covariates follow a multivariate t-distribution; (2) a
description of the SLOE estimator; (3) additional logistic regression examples; (4)
simulated examples for Probit and Poisson regressions; (5) a simulated example
when the sample size is small; (6) simulations when the coefficients are sparse;
(7) application of the resized bootstrap method to the case when the M-estimator
minimizes a general function.
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