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Abstract: Permutation tests are widely used in practice. However, these tests either

need restrictive assumptions for validity, or are not applicable to high-dimensional

data. This study considers permutation tests for high-dimensional mean compar-

isons. Here, in order to get around these restrictions, the test statistics are calcu-

lated based on pseudo samples generated using a “binning” procedure. The cor-

responding permutation tests are proved to be asymptotically consistent. We also

consider a related problem for signal identification and establish the asymptotic

properties of the tests. Simulation studies demonstrate the favorable performance

of our methods compared with that of existing tests. Finally, the proposed method

is applied to a genome-wide association study for seven complex human diseases to

identify possible single nucleotide polymorphisms associated with the diseases.
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1. Introduction

Testing the equality of the means of two random vectors based on random

samples is a long-standing issue in multivariate analysis. The past two decades

have witnessed increasing interest in this problem for high-dimensional settings.

Existing methods are divided into two categories. The first group are based on

the sum-of-squares of the sample mean differences; see, for example, Bai and

Saranadasa (1996) and Chen and Qin (2010). These methods are generally more

powerful against dense alternatives, in the sense that there is a large proportion

of small to moderate component-wise differences. Those in the second group are

based on the infinity norm of the mean differences; see, for example, Cai, Liu

and Xia (2014), Xu et al. (2016), Chang et al. (2017), and Xue and Yao (2018).

These methods are better suited to testing against sparse alternatives, that is,

when there are only a few, but significant component-wise differences.
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This study focuses on permutation methods, which have served as a use-

ful alternative to traditional methods for hypothesis testing; see Good (2005)

and Ernest (2004) for a comprehensive review. The basic idea is to generate a

reference distribution by recalculating a statistic for many permutations of the

data. To illustrate, suppose the p-dimensional random vectors X1, . . . , Xm are
i.i.d.∼ P1(·) with mean µX and variance ΣX , and Y1, . . . , Yn are

i.i.d.∼ P2(·) with

mean µY and variance ΣY . Write N = m + n, and suppose that m/N → c, for

some constant c ∈ (0, 1). Our interest is to test the null hypothesis

H0 : µX = µY .

Chung and Romano (2013) test H0 using permutation methods for p = 1. The

procedure is as follows. Write ZN = {Z1, . . . , ZN}, with Zi = Xi, for 1 ≤ i ≤ m,

and Zm+j = Yj , for 1 ≤ j ≤ n. Consider the standardized statistic

SN (ZN ) =
N1/2(X̄m − Ȳn)√

(N/m)σ̂2m(ZN ) + (N/n)ŝ2n(ZN )
, (1.1)

where X̄m and Ȳn are the sample means of {Z1, . . . , Zm} and {Zm+1, . . . , ZN},
respectively, and σ̂2m(ZN ) and ŝ2n(ZN ) are the corresponding sample variances.

Let GN be the set of all permutations of {1, . . . , N}. For any π ∈ GN , let ZNπ
denote the rearranged ZN through permutation π, and ZNπ(i), for i = 1, . . . , N , be

the ith entry of ZNπ . Recompute SN (ZNπ ) ≡ SN (ZNπ(1), . . . , Z
N
π(N)), and let R̂SN (·)

denote the empirical distribution of SN (ZNπ ) evaluated at all N ! permutations of

ZN ; that is,

R̂SN (t) =
1

N !

∑
π∈GN

I{SN (ZNπ ) ≤ t}.

This empirical distribution R̂SN (·), also referred to as the permutation distribu-

tion, is used as an approximation of the null (limiting) distribution of statistic

(1.1), which in this case is given by Φ(·), the distribution function of the stan-

dard normal N(0, 1). We reject H0 if R̂SN (SN (ZN )) ≥ 1−α. Chung and Romano

(2013) proved that

sup
t∈R
|R̂SN (t)− Φ(t)| → 0 in probability,

and in this sense, the permutation procedure based on statistic (1.1) is considered

to be consistent (valid). In general, however, the consistency of permutation tests

should not be taken for granted. Indeed, Chung and Romano (2013) showed

that the permutation test based on SN (ZN ) = X̄m − Ȳn, that is (1.1) without
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standardization, is inconsistent unless c = 1/2 or ΣX = ΣY .

Clearly, in high-dimensional cases, in which the dimension p could far exceed

the sample size, permutation tests based on the standardized statistic (1.1) are

no longer applicable. In addition, the pre-pivoting method of Chung and Romano

(2016), proposed for a multivariate setting, is not computationally feasible. This

study intends to fill this gap by proposing a permutation procedure that is both

asymptotically consistent and easy to implement, even for ultrahigh-dimensional

data.

The rest of this paper is organized as follows. Section 2 begins with a ba-

sic formulation of the problem, and then presents results for the consistency of

the permutation tests based on Hotelling’s T 2-type statistics. These statistics

require estimating the inverse of a covariance matrix, which renders their use

impractical in a high-dimensional setting. Therefore, we describe alternative in

Section 2.2, where we propose a “binning” procedure to produce pseudo samples,

from which the test statistics are then derived. Section 3 applies the proposed

tests to identify those variables that are the source of the difference between two

high-dimensional means, which we refer to as signal identification. Some related

theoretical results are also given. The numerical performance of the proposed

methods and other existing methods are examined in Section 5 using simulation

studies. Section 6 contains an empirical study of the genome-wide association for

seven complex diseases using data from the Wellcome Trust Case Control Consor-

tium (WTCCC). The assumptions needed for the asymptotic studies are given in

the Appendix, and all technical proofs are relegated to the online Supplementary

Material.

2. Permutation Tests for High-Dimensional Mean Comparison

We first introduce some notation. For any v = (v1, . . . , vp)
> ∈ Rp, let |v|γ =

{(|v1|γ + · · ·+ |vp|γ)/p}1/γ , for any γ > 0. In particular, |v|1 = (|v1|+ · · ·+ |vp|)/p
stands for the L1-norm, and |v|∞ = maxk=1,...,p |vk| is the L∞-norm. Write

X̄m = m−1
∑

iXi, Ȳn = n−1
∑

j Yj , δN = (δN,1, . . . , δN,p)
> = N1/2(X̄m − Ȳn),

and

Σ̂X
m =

1

m

∑
i

(Xi − X̄m)(Xi − X̄m)>, Σ̂Y
n =

1

n

∑
j

(Yj − Ȳn)(Yj − Ȳn)>. (2.1)

Denote by σ̂2m,k(X1, . . . , Xm) and ŝ2n,k(Y1, . . . , Yn), for k = 1, . . . , p, the diagonal

elements of Σ̂X
m and Σ̂Y

n , respectively. Write Σ(P̄ ) = cΣX + (1− c)ΣY .
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2.1. Permutation tests based on Hotelling’s T2-type statistics

Write Σ̃ = c−1ΣX + (1 − c)−1ΣY , the variance of δN , and suppose Ω̃N =

Ω̃N (ZN ) is an estimator of Ω̃ = Σ̃−1. Then, in a manner similar to (1.1), define

eN (ZN ) = {Ω̃N}1/2δN and

Hγ(ZN ) ≡ |eN (ZN )|γ , γ = 1 or ∞. (2.2)

Xu et al. (2016) considered using other values for γ, but in this study on permu-

tation tests for high dimensions, we focus only on the cases where γ = 1 or ∞.
In practice, these two choices should serve the purposes, because using H1(·) is

expected to be more powerful against dense alternatives, whereas H∞(·) works

better against sparse alternatives. The latter also finds important applications

in signal identification; see, for example, Benjamini and Hochberg (1995) and Jin

and Cai (2007). For the permutation tests based on test statistics (2.2), we have

the following result.

Theorem 1. Suppose conditions (C1)–(C5) of Section 4 hold. Then,

under H0, sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{H∞(ZNπ ) < t} − Pr
(
H∞(ZN ) ≤ t

)∣∣∣ p→ 0, (2.3)

where
p→ stands for convergence in probability. Parallel results hold for H1(·) if

conditions (C1)–(C2), (C3′) and (C4)–(C5) of Section 4 hold.

In other words, the permutation tests based on (2.2) with γ = 1 and γ =∞ are

both consistent. However, in high-dimensional settings, these tests are difficult

to implement, owing to challenges with estimating the high-dimensional precision

matrix Ω̃, if at all possible. A naive solution is to standardize (divide) the entries

of δN by their marginal standard error. That is, with

v2N,k =
N

m
σ̂2m,k(X1, . . . , Xm) +

N

n
ŝ2n,k(Y1, . . . , Yn), (2.4)

consider the following test statistics:

S1(Zn) = p−1
p∑

k=1

∣∣∣δN,k
vN,k

∣∣∣, S∞(Zn) = max
1≤k≤p

∣∣∣δN,k
vN,k

∣∣∣. (2.5)

Theorem 2. If conditions (C1)–(C3) and (C6) of Section 4 hold, then

sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{S∞(ZNπ ) < t} − Pr(|Ξ|∞ < t)
∣∣∣ p→ 0, (2.6)
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where Ξ is a p-dimensional Gaussian, with covariance matrix given by [diag(Σ(

P̄ ))]−1/2Σ(P̄ )[diag(Σ(P̄ ))]−1/2, the correlation matrix associated with Σ(P̄ ); on

the other hand,

under H0, sup
t∈R

∣∣∣P(S∞(ZN ) ≤ t
)
− Pr(|Ξ̃|∞ < t)

∣∣∣→ 0, (2.7)

where Ξ̃ is also a p-dimensional Gaussian, with covariance matrix given by [diag(

Σ̃)]−1/2Σ̃[diag(Σ̃)]−1/2, the correlation matrix given by that of Σ̃. Parallel results

hold for S1(·) under conditions (C1)–(C2), (C3′), and (C6).

Because Σ(P̄ ) = cΣX + (1 − c)ΣY , permutation tests based on Sγ(·) are, in

general, inconsistent, except when ΣX = ΣY or c = 1/2; this is also noted in

Chung and Romano (2016) for the finite-dimension case. To correct the incon-

sistency associated with statistic (2.5), S∞(·), the permutation tests in Chung

and Romano (2016) are coupled with a pre-pivoting procedure: for each per-

mutation, bootstrapping is implemented to get an estimate of a “pre-pivoted”

statistic. However, the significant computation required means this approach is

not practically feasible. Moreover, their theoretical results were established only

for the fixed-dimensional setting. Our solution is described in the next section.

2.2. A “binning” procedure and pseudo samples

The purpose of this procedure is to produce two pseudo samples of equal

size. Without loss of generality, suppose m > n, such that m = K × n + k, for

some nonnegative integers K and k, with 0 ≤ k < n. Thus, K = [c/(1− c)], the

integer part of c/(1− c), and k/n→ c/(1− c)−K. Define

X ′i = Xi − µX , Y ′j = Yj − µX , i = 1, . . . ,m, j = 1, . . . , n; (2.8)

in practice, X̄m can be used as a substitute for µX . The pseudo observations are

then constructed as follows. If k = 0, define

X∗i =
n

m

i×K∑
j=(i−1)K+1

X ′j , i = 1, . . . , n.

If k > 0, first randomly select k from {X∗i , i = 1, . . . , n} , defined above, and

assign each to one of the leftover X ′K×n+i, for i = 1, . . . , k. Specifically, and

without loss of generality, define

X∗i := X∗i +
n

m
X ′K×n+i, i = 1, . . . , k. (2.9)
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We call {X∗1 , . . . , X∗n} and {Y ′1 , . . . , Y ′n} the pseudo samples. Note that although

some of the pseudo observations X∗i are derived from K original Xi, while others

are derived from K + 1 original Xi, these X∗i are nevertheless identically dis-

tributed (see the proof of Theorem 3). More importantly, if the null hypothesis

H0 holds for the original observations Xi and Yj , then it also holds for the pseudo

samples, and vice versa. From now on, all steps involved in the permutation test

are applied to these pseudo samples instead of the original Xi and Yj .

Write Zn = {Z1, . . . , Z2n}, such that Zi = X∗i , Zn+j = Y ′j , for i, j = 1, . . . , n.

Recall that X∗1 , . . . , X
∗
n denote the first n elements of Zn, and Y ′1 , . . . , Y

′
n denote

the remaining ones. Let X̄∗ = n−1
∑n

i=1X
∗
i and Ȳ ∗ = n−1

∑n
j=1 Y

′
j be the two

sample means. Write δ∗n = (δ∗n,1, . . . , δ
∗
n,p)
> = n1/2(X̄∗ − Ȳ ∗), and consider the

following simple test statistics:

S1
0(Zn) = |δ∗n|1, S∞0 (Zn) = |δ∗n|∞. (2.10)

Apparently, these statistics do not take into account the differences in the varia-

tions of the variables. Thus, an arguably improved alternative is such that

S1
1(Zn) = p−1

p∑
k=1

∣∣∣δ∗n,k
v∗n,k

∣∣∣, S∞1 (Zn) = max
k=1,...,p

∣∣∣δ∗n,k
v∗n,k

∣∣∣, (2.11)

where v∗n,k = {σ̂2n,k(X∗1 , . . . , X∗n) + ŝ2n,k(Y
′
1 , . . . , Y

′
n)}1/2 is the estimator of the

variance of δ∗n,k. Denote by Znπ the rearranged Zn through any given permutation

π ∈ G2n, and Sγ1 (Znπ ) ≡ S(Znπ(1), . . . , Z
N
π(2n)). The distribution of Sγ1 (Zn) is then

given by the empirical distribution of Sγ1 (Znπ ), evaluated at all (2n)! permutations

of Zn.

Theorem 3. The permutation tests based on S∞0 (·) of (2.10) are consistent under

conditions (C1)–(C3) of Section 4. Similarly, the permutation test based on S1
0(·)

is consistent under conditions (C1)–(C2), and (C3′). The same conclusions hold

for the permutation tests based on S∞1 (·) or S1
1(·) if condition (C6) of Section 4

also holds.

Numerical evidence suggests that in terms of type-I error control, the tests based

on Sγ0 (·) are more stable than those based on Sγ1 (·), especially when p is large.

However, note that, in general, the latter possess better power, because they take

into account the possibility of different marginal standard errors.
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3. Signal Identification

Write δ0 = (δ01, . . . , δ0p)
> = µX − µY . Denote by I0 ⊆ {1, . . . , p}, such that

|δ0k| > 0, ∀k ∈ I0; |δ0k| = 0, ∀k /∈ I0.

This is referred to as the set of signals. The number of signals, that is, the

cardinality of I0, can increase with p.

Let t̃n,p(·) stand for the permutation distribution function of S∞1 = max1≤k≤p
|δ∗n,k/v∗n,k|, and t̃−1n,p(·), its inverse. The significance level αn is chosen such that

qαn
/(2 ln p)1/2 → 1 where qα = − ln(π)− 2 ln(− ln(1− α)) is the (1− α) quantile

of the type-I extreme value distribution F (x) = exp(− exp{−(lnπ + x)/2}). In

other words, αn is such that

ln{− ln(1− αn)}
(ln p)1/2

→ −
√

2

2
. (3.1)

Consequently, the estimated set of signals is defined as

În =

{
k :

∣∣∣∣δ∗n,kv∗n,k

∣∣∣∣ > t̃−1n,p(1− αn), k = 1, . . . , p

}
.

Theorem 4. Suppose conditions (C1)–(C3) and (C6) in Section 4 hold. If

lim inf
n,p→∞

(
c

s1

)1/2

n1/2(ln p)−1/2 min
k∈I0
|δ0k| ≥ 2

√
2, (3.2)

where s1 is as given in (C2) and αn satisfies (3.1), then as n, p→∞,

P r(În = I0)→ 1.

In other words, if the strength of the signals, measured using mink∈I0 |δ0k|, is

sufficiently strong enough, the set of signals can be correctly identified in proba-

bility.

4. Notation and Assumptions

For any square matrix M = [mij ], ‖M‖(1,1) = maxj
∑

i |mij |, where λmax(M)

and λmin(M) denote the largest and smallest absolute eigenvalues, respectively

of M . We assume the following conditions:

(C1) limm→∞m/N = c ∈ (0, 1) and c−m/N = O(N−1/2).

(C2) There exist constant s1 > s0 > 0, such that s0 ≤ σ2kk, s2kk ≤ s1.
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(C3) ln(p) = O(nα), α < 1/7; there exist finite constants c1, c2 > 0, such that

E[|Xi,k|2+l)] ≤ cl1, E[|Yj,k|2+l)] ≤ cl2, k = 1, . . . , p, l = 1, 2;

E

{
exp

(
Xi,k

c1

)}
≤ 2, E

{
exp

(
Yj,k
c2

)}
≤ 2, k = 1, . . . , p.

(C3′) p = O(nα), α < 1/7; for ν = {p−1/2(v1, v2, . . . , vp)> : vj = 1 or − 1},
X̃i = (v>Xi)v∈ν , and Ỹj = (v>Yj)v∈ν , for i = 1, . . . ,m, and j = 1, . . . , n,

there exist finite constants c̃1 > 0, c̃2 > 0, such that

E[|X̃i,k|2+l)] ≤ c̃l1, E[|Ỹj,k|2+l)] ≤ c̃l2, k = 1, . . . , 2p−1, l = 1, 2;

E

{
exp

(
X̃i,k

c̃1

)}
≤ 2, E

{
exp

(
Ỹj,k
c̃2

)}
≤ 2, k = 1, . . . , 2p−1.

(C4) The eigenvalues of ΣX and ΣY are bounded from both below and above

by some constants 0 < c3 < c4.

(C5) Ω̃N is an estimate of Ω̃ = Σ̃−1 that satisfies the following condition:

‖{Ω̃N}1/2 − {Ω̃}1/2‖(1,1) = op({ln p}−1); (4.1)

similarly, for Ω̃N = Ω̃N (Z1, . . . , ZN ), with Z1, . . . , ZN
i.i.d.∼ P̄ = cP1(·) + (1−

c)P2(·) (the mixture distribution), we have∥∥∥∥{Ω̃N}1/2 −
{

Σ(P̄ )

c(1− c)

}−1/2∥∥∥∥
(1,1)

= op({ln p}−1). (4.2)

(C6) σ̂2m,k and ŝ2n,k, for k = 1, . . . , p, defined in (2.1), are consistent, and

max
1≤k≤p

∣∣∣∣ σ̂2m,kσ2kk
− 1

∣∣∣∣ = op

(
1

ln p

)
, max

1≤k≤p

∣∣∣∣ ŝ2n,ks2kk
− 1

∣∣∣∣ = op

(
1

ln p

)
; (4.3)

in a sense similar to (4.2), (4.3) also holds for the same statistic based

on independent and identically distributed (i.i.d.) observations from the

mixture distribution P̄ = cP1(·) + (1− c)P2(·).

Remarks. (C1) is taken from Chung and Romano (2013). (C2) and (C3) are

found in Chernozhukov, Chetverikov and Kato (2017) to obtain a uniform bound

over probabilities for hyperrectangles (see Proposition 2.1 therein); assumption

(C3′) corresponds to those conditions in their Proposition 3.1, which concerns

a uniform bound for probabilities over simple convex sets. Note that the latter
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case requires a stricter rate on how large p can be relative to n. For simplicity,

c1 and c2 are taken as finite here. It is possible to allow for infinite c1 and

c2, but then a compromise must be made on how large ln p can be relative to

n; refer to equation (9) of Chernozhukov, Chetverikov and Kato (2017) for an

explicit expression that relates these two cases. (C4) is necessary for the anti-

concentration inequality; see, for example, Proposition 4. Conditions (4.1) and

(4.3) are adopted in Cai, Liu and Xia (2014) to derive the asymptotic power of

the data-driven statistics, including H∞(·) of (2.2) and S∞(·) of (2.10) for two

Gaussian populations. Kosorok and Ma (2007) give sufficient conditions for (4.3)

to hold, one of which is that ln(p) = o(nα), with α ∈ (0, 1/3].

5. Simulation Study

We choose to exclude those permutation tests based on Hotelling’s T 2-type

statistics of (2.2) from our numerical studies, owing to the heavy computational

burden. The method of Chung and Romano (2016) is also excluded for the same

reason. Instead, we focus on permutation tests based on statistics calculated for

pseudo samples generated using the binning procedures Sγ1 (·) and Sγ0 (·) in (2.11)

and (2.10), respectively. Other methods included in our comparison studies are

those of Chen and Qin (2010) (CQ), Cai, Liu and Xia (2014)(CAI), Xu et al.

(2016) (XLWP), and Xue and Yao (2018) (XY). The R package “highmean” is

used for computations related to CQ, CAI, XLWP, and XY. Note that CQ uses

only the L2-norm, and CAI uses only the L∞-norm. For signal identification,

our method based on S∞1 is also compared with that of Benjamini and Yekutieli

(2001).

The sample sizes range from relatively small (m = 75, n = 50) to medium

(m = 300, n = 200) to large (m = 600, n = 400); for the dimensionality, p =

10, 100, or 1,000. Because it is computationally infeasible to evaluate all possible

permutations, random permutations are usually used in practice, as first proposed

by Dwass (1957). In our case, the permutation distribution is evaluated based

on 2,500 (random) permutations. In addition, the empirical sizes of the tests are

calculated based on 10,000 replications, and the empirical powers of each test is

based on 2,000 replications.

The simulated data are generated according to the following model:

Xi = (xi,1, . . . , xip)
> + µX , and Yj = (yi,1, . . . , yip)

> + µY , (5.1)

where µX and µY are two constant vectors and, for any given i = 1, . . . ,m, and

j = 1, . . . , n, {xi,k, k = 1, 2, . . .} and {yj,k, k = 1, 2, . . .} are stationary times series
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such that

xi,k+1 = aixi,k + ξk, yj,k+1 = bjyj,k + ηk, k = 1, 2, . . . , (5.2)

where ξk, ηk are independent random errors, and {ai}mi=1, {bj}nj=1 are hyper-

parameters either fixed or random. This is implemented independently for all

i = 1, . . . ,m, and j = 1, . . . , n. Using different specifications for ai, bj and ξk, ηk,

we derive the following three models:

Model 1. ai, bk, for i = 1, . . . ,m, and k = 1, . . . , n are i.i.d., following a uniform

distribution on [0, 0.95]; ξk
i.i.d.∼ N(0, 1) and ηk

i.i.d.∼ N(0, 4). In this model,

the Xi are distinctly distributed, as are the Yi. However, the elements in

both still have the same variance.

Model 2. The same as Model 1, but the even-indexed elements of Xi and Yi are

multiplied by two. Thus, elements in Xi and Yi have different variances.

Model 3. ai ≡ −0.2, bj ≡ 0.7, and ξk ∼ t(3), ηk ∼ 2t(3), where t(3) is the

t-distribution. Thus, the generated data are heavy-tailed.

In the study on empirical sizes, µX = µY = 0; when comparing the empirical

power of various tests, we keep µY = 0, and consider two designs for µX =

(µX1 , . . . , µ
X
p )>.

(i) Dense alternatives: µX1 , . . . , µ
X
p

i.i.d.∼ uniform [0, cn,p], with cn,p = s/(p0.25 ×
min(m,n)0.5), and s = 6, 9, 11, 14, which specifies the overall signal-to-noise

ratio.

(ii) Sparse alternatives: with s = 7, 8, 9, 10, randomly select 0.2 × p0.5 elements

from {µX1 , . . . , µXp }, and assign to them the value cn,p = s/min(m,n)0.5; the

unselected entries remain zero.

Note that the strength of the signals varies with the sample sizes and the dimen-

sion; we adopt such a design in order to evaluate how the empirical power of the

various tests is affected by different sample sizes and dimensions.

The empirical sizes of the tests are summarized in Table 1 (significance level

1%). For the two columns under the label Sγ0 (·), L1 corresponds to γ = 1, and L∞
corresponds to γ =∞. The same format applies to the columns under XLWP and

Sγ1 (·). In both tables, the numbers in small bold font show empirical sizes that

deviate from the nominal level by more than 20%. First, the permutation tests

based on Sγ1 (·) and Sγ0 (·) control the type-I error better than all other methods

for nearly all models, and especially so when the sample size is small (n = 50



PERMUTATION TEST FOR TWO-SAMPLE MEANS 99

Table 1. Empirical sizes (%) of different methods (nominal size = 1%)

CQ XLWP XY Sγ
0 Sγ

1

model n p L2 L2 L∞ L∞ L1 L∞ L1 L∞

10 2.09 3.10 0.60 0.91 0.94 0.95 0.97 0.98

50 100 1.20 1.64 0.67 0.63 1.01 0.82 1.01 0.98

1,000 1.04 1.68 0.81 0.52 1.22 0.96 1.21 0.95

10 2.02 2.91 0.60 1.07 1.05 0.99 1.07 0.99

1 200 100 1.23 1.55 0.60 0.86 0.94 0.96 0.98 0.84

1,000 0.98 1.12 0.52 0.82 1.11 1.04 1.08 0.97

10 1.79 3.59 0.55 0.72 0.95 0.76 0.92 0.76

400 100 1.19 2.19 0.62 0.97 0.94 0.96 0.91 1.03

1,000 1.10 1.28 0.84 0.91 1.11 0.92 1.08 0.98

10 2.42 4.63 0.80 0.90 1.03 0.86 1.04 0.93

50 100 1.47 3.30 0.98 0.83 1.13 0.99 1.32 1.30

1,000 1.17 5.34 1.43 0.62 1.27 0.84 1.68 1.39

10 2.46 3.05 0.54 1.06 0.87 0.95 1.06 1.08

2 200 100 1.46 2.31 0.64 0.95 1.04 0.96 0.99 1.02

1,000 1.10 1.21 1.09 1.03 1.09 1.17 1.05 1.00

10 2.10 3.63 0.55 0.73 0.86 0.72 0.87 0.71

400 100 1.43 2.22 0.62 0.88 0.98 0.86 1.01 0.96

1,000 1.12 1.26 0.84 1.05 1.18 1.01 1.12 1.07

10 2.55 3.18 0.65 0.76 1.08 1.02 1.18 1.18

50 100 1.54 1.84 1.12 0.19 1.20 1.08 1.51 1.35

1,000 0.97 3.56 2.14 0.01 1.02 1.03 1.55 1.67

10 2.22 3.26 0.64 0.80 0.95 1.07 0.88 0.94

3 200 100 1.46 2.20 0.74 0.31 1.04 0.98 1.07 1.01

1,000 1.04 1.16 1.09 0.01 1.00 0.99 1.25 1.23

10 2.38 3.12 0.49 0.94 1.01 1.12 1.01 1.06

400 100 1.42 2.36 0.52 0.56 1.04 1.12 0.95 1.02

1,000 0.87 1.03 0.63 0.00 0.91 0.87 1.01 1.18

* CAI and L∞ of XLWP are almost identical, and thus are not reported. Values that deviate

more than 20% from the nominal level are highlighted in small bold font.

or n = 75). Furthermore, we observe that the performance of Sγ1 (·) is slightly

hampered by the low efficiency in the variance estimation when p is large and n

is small; this is consistent with the remarks after Theorem 3.

On the other hand, although CQ controls the type-I error quite well at the 5%

significance level (not reported here), it does so less well when the nominal level

is at 1%, unless the sample size is sufficiently large; see Table 1. As p increases

to 1,000, the performance of CQ improves, which is consistent with the fact that

its asymptotic (null) distribution is derived when p → ∞. The performance of



100 KONG ET AL.

10                100 1,000

0.4

0.6

0.8

1

model 1 with n=50

10 100 1,000

0.4

0.6

0.8

1

model 1 with n=200

10 100 1,000
p

0.4

0.6

0.8

1

model 1 with n=400

10                100 1,000
0.4

0.6

0.8

model 2 with n=50

10 100 1000

0.4

0.6

0.8

model 2 with n=200

10 100 1,000
p

0.4

0.6

0.8

model 2 with n=400

10                 100 1,000

0.6

0.7

0.8

0.9
model 3 with n=50

10 100 1,000

0.6

0.7

0.8

model 3 with n=200

10 100 1,000
p

0.5

0.6

0.7

0.8

model 3 with n=400

Figure 1. Simulation results with dense signals. In each panel, the dash-dot line with a
cross represents CQ, the dashed line with a triangle represents XLWP with the L2-norm,
the solid line with a circle represents S1

0 , and the solid line with a diamond represents
S1
1 .

XLWP with the L2-norm is similar to that of CQ, while the performance of XLWP

with the L∞-norm is mostly too conservative. Even though XY can produce

a reasonable type-I error, it does not fare well with heavy-tailed distributions

(Model 3) and moderate dimensions. In addition, one can observe from Table 1

that the type-I error of XLWP with the L2-norm tends to be inflated when p is

small or moderate, for example, 10 or 100. Thus, it is not surprising that XLWP

possesses a higher empirical power than other methods do in these settings, as

seen in Figures 1 and 2 for Model 2.

Figure 1 shows the statistical power of the various tests against dense alter-

natives, with p varying from 10 to 1,000 at a significance level of 5%. We draw

the following conclusions. The performance of XLWP differs dramatically across

the models. Specifically, it has decent power with Models 2 and 3, but has very

low power for Model 1. Recall that XLWP incurs excessive type-I errors when

the dimension p is small (10 or 100). Therefore, we should be cautious with the

high power of XLWP with Models 2 and 3, because this very likely comes at the
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Figure 2. Simulation results with sparse signals. In each panel, the dash-dot line with a
cross represents XLWP with L∞-norm (or CLX), the dashed line with a triangle repre-
sents XY, the solid line with a circle represents S∞

0 , and the solid line with a diamond
represents S∞

1 .

price of an inflated type-I error. In contrast, the permutation test based on S1
1(·)

is always among the best performers across all of the models.

Figure 2 depicts the changes in power for all four tests against sparse alter-

natives, for which the L∞-norm is expected to fare better. Because the power of

CAI and XLWP with the L∞-norm are very similar in all settings considered, we

only report those for XLWP. For Models 1 and 2, the methods perform similarly,

except for XY, which is significantly worse than the other three when p is less

than 100. Note that the high statistical power of XLWP is the consequence of

the aforementioned unduly high type-I error. Similarly to Sγ1 (·), CAI and XLWP

take into account the possible differences across the variances. However, surpris-

ingly, their performance for Model 3 seems to contradict the conclusions drawn

about their theoretical properties, especially when compared with Sγ1 (·). CAI and

XLWP also suffer from low power for Model 3, possibly owing to the difficulty of

estimating the covariance matrices for heavy-tailed data. For Model 3, XY and

S∞1 substantially outperform XLWP and S∞0 in terms of power. However, XY
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Table 2. The average of true discoveries ( FDR in parentheses) based on 10,000 replica-
tions at a significance level of 5%.

#I0 = 0 #I0 = 8

model p n BY S∞
1 BY S∞

1

200 –(0.0097) –(0.0502) 0.8760(0.0098) 1.2690(0.0322)

100 500 –(0.0105) –(0.0486) 0.8710(0.0074) 1.2610(0.0330)

1 1,000 –(0.0104) –(0.0486) 0.8700(0.0086) 1.2220(0.0232)

(δ = 5) 200 –(0.0056) –(0.0544) 0.8070(0.0082) 1.2900(0.0320)

10,000 500 –(0.0054) –(0.0530) 0.8020(0.0080) 1.3170(0.0252)

1,000 –(0.0050) –(0.0494) 0.7810(0.0024) 1.2570(0.0239)

200 –(0.0079) –(0.0495) 1.6180(0.0081) 2.0770(0.0323)

100 500 –(0.0076) –(0.0503) 1.3880(0.0097) 1.8670(0.0311)

3 10,000 –(0.0079) –(0.0511) 1.3880(0.0088) 1.8540(0.0228)

(δ = 10) 200 –(0.0039) –(0.0596) 1.7910(0.0049) 2.5190(0.0205)

10,000 500 –(0.0044) –(0.0520) 1.5750(0.0028) 2.2860(0.0214)

1,000 –(0.0042) –(0.0505) 1.5380(0.0033) 2.2620(0.0233)

– no true signals

achieves the same statistical power as that of S∞1 , at the expense of an inflated

type-I error.

Overall, the permutation tests based on Sγ0 (·) and Sγ1 (·), with γ = 1 against

dense alternatives and γ = ∞ against sparse alternatives, deliver better results

than the other methods in terms of both empirical size and power. Between Sγ0 (·)
and Sγ1 (·), the former has better control over the type-I error, especially when

the sample size is small, but the latter usually achieves higher power.

Next, we evaluate the performance of the permutation tests based on S∞1 in

terms of signal identification, as described in Section 3. If the set of signals is

empty, the empirical false discovery rate (FDR) should be no more than a pre-set

value, α (set to 5%, in this case). Otherwise, fix #I0 = 8 with the exact locations

of the eight signals distributed randomly among {1, . . . , p}, with the strength of

the signals given by
δ × ln(log(p))√

n
,

which changes with n and p. We compare our method S∞1 with that of Benjamini

and Yekutieli (2001), denoted as BY. When #I0 = 0 (the first two columns of

Table 2), it is obvious that our method S∞1 has very good control over the FDR,

whereas BY tends to be overly conservative. On the other hand, when #I0 = 8

(the last two columns of Table 2), our method S∞1 is able to identify more true

signals than BY does.
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6. Analysis of WTCCC Data Set

Genome-wide association studies (GWAS) are widely used to identify risk ge-

netic variants by genotyping millions of single nucleotide polymorphisms (SNPs)

in large cohorts. A traditional GWAS analysis uses a single-variant analysis that

does take into account the LD structure among the SNPs, but suffers from a

heavy burden of multiple testing. Thus, the results from such analyses are usu-

ally conservative. Because the proposed method is based on S∞1 , it can explicitly

control the FDR. We applied S∞1 to seven traits from the WTCCC, including

bipolar disorder (BPD), coronary artery disease (CAD), Crohn’s disease (CD),

hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D), and type-

2 diabetes (T2D) (Burton et al. (2007)). We performed strict quality control on

the samples from WTCCC using PLINK (Purcell et al. (2007)) and GCTA (Yang

et al. (2011)). First, we removed individuals with missing genotypes higher than

0.02. For each trait case and two shared control data sets, we removed SNPs with

minor allele frequencies less than 0.05 and SNPs with a missing rate larger than

0.01. Then, we combined cases with controls for each trait, and removed SNPs

with p-values less than 0.001 for the Hardy–Weinberg equilibrium test. Pairs of

subjects with an estimated relatedness greater than 0.025 were identified, and

one subject from these pairs was removed. After the quality control, we have

1,959 cases and 2,992 controls over 308,093 SNPs for CAD, 1,970 cases and 2,992

controls over 307,741 SNPs for CD, 1,994 cases and 2,992 controls over 307,357

SNPs for T1D, and 1,969 cases and 2,992 controls over 305,394 SNPs for T2D. We

applied the permutation test with S∞1 to the data; the resulting Manhattan plots

are shown in Figure 3. The analysis for each disease takes around 16 minutes on

a Windows console with a 2.30 GHz Intel Xeron CPU E5-2697.

For the significance level 1%, we summarize our findings as follows. For CAD,

S∞1 identified 15 SNPs, all from genes AL359922.1 and CDKN2B-AS1 within the

band 9p21.3. These two genes have previously been reported to be associated

with CAD (van der Harst and Verweij (2018); Lee et al. (2013)). For CD, S∞1
identified 39 SNPs, of which 21 SNPs are within six gene regions, where all six

genes have been reported to be associated with CD in previous studies (Julià et

al. (2013); de Lange et al. (2017); Liu et al. (2015)). For T1D, S∞1 identified

369 SNPs, and 173 SNPs were within 83 genes, among which 23 genes have been

previously reported to be associated with T1D, including ERBB3, CLEC16A,

and DDR1 (Plagnol et al. (2011); Hakonarson et al. (2007); Tomer et al. (2015)).

For T2D, S∞1 identified 13 SNPs within two gene regions, where both genes have

previously been reported, that is, TCF7L2 and FTO (Hackinger et al. (2018);
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SNPs (values bigger than 20 are censored at 20) are plotted against the position of SNPs
arranged in according to the chromosomes in black and gray.



PERMUTATION TEST FOR TWO-SAMPLE MEANS 105

Tabassum et al. (2013)).

Interestingly, in our analysis of the seven diseases using the WTCCC data,

we identified many “new” SNPs not reported in the original study of the Bur-

ton et al. (2007), but that were detected in later studies. These SNPs and their

corresponding studies are listed in Table S1 in the Supplementary Material. Sta-

tistically, it is more interesting to note that these other are based on either much

larger cohorts or other populations. This indicates clearly the efficiency of our

method in identifying weak signals (SNPs) associated with a disease.

Supplementary Material

The online Supplementary Material includes a brief introduction to the high-

dimensional central limit theorem and some propositions used in the proofs. It

also contains technical proofs for Theorems 1–4 as well as additional results for

the analysis of the WTCCC data set.
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