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This Supplement gives proofs of theorems in the paper and other related

results. Subsection 0.1 includes a brief introduction to the key concept

of high-dimensional central limit theorem and some propositions used in

the proofs. Subsection 0.2-0.5 contain proofs for Theorems 1, 2, 3 and 4

respectively. Subsection 0.6 contains some additional results for the analysis

of the WTCCC dataset.

0.1. High dimensional CLT and other prerequisites

Let Are be the collection of all hyperrectangles in Rp:

{w ∈ Rp : aj ≤ wj ≤ bj, j = 1, · · · , p}.

Suppose X1, · · · , Xm are independent random vectors in Rp, each with zero

mean and finite variances. Write ΣX
m = m−1

∑
iCov(Xi). Then under
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certain regularity conditions

rm = sup
A∈Are

|Pr(m1/2X̄m ∈ A)− Pr(N(0,ΣX
m) ∈ A)| → 0, m→∞, (1)

where N(., .) stands for the p−variate Gaussian; see Proposition 2.1 of

Chernozhukov et al. (2017). For ease of exposition, write this as X̄m
d→

N(0,ΣX
m). Similarly for Y1, · · · , Yn, each with mean zero and finite variance,

sn = sup
A∈Are

|Pr(n1/2Ȳn ∈ A)− Pr(N(0,ΣY
n ) ∈ A)| → 0, n→∞. (2)

Chernozhukov et al. (2017) also gave upper bounds concerning other classes

of sets in Rp, e.g., the simple convex sets and the sparse convex set. These

results are also referred to as normal approximations in high dimension

settings, and are crucial to the asymptotic study concerning both the null

distribution and the permutation distribution. Also because this paper

deals with a two-sample problem, these results need to be adapted to fit

our purposes. More details could be found in the proof of the Lemmas in

the next section.

The following three lemmas are used in the proofs of the theorems.

Proposition 1. Let (g1, · · · , gp) be centered Gaussian random vectors in

Rp, with covariance matrix Σ and λmin(Σ−1) ≥ c0 for some constant c0.

Then there exists some constant C > 0 such that

sup
t
P
(
|p−1

p∑
i=1

|gi| − t| ≤ δ
)
≤ Cδ
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where C > 0 depends only on c0.

Proof of Proposition 1. Without loss of generality, suppose δ < 1, for

otherwise just take C = 1. Write S = {(s1, s2, · · · , sp) : si = 1 or − 1, i =

1, · · · , p}. For any s = s1, s2, · · · , sp) ∈ S, let Rs be the subset of Rp defined

as

Rs = {(x1, · · · , xp) :
∑
i

xisi ∈ [pt, p(t+ δ)], xisi ≥ 0, i = 1, · · · , p}.

Therefore Rs : s ∈ S are disjoint and

∪s∈SRs = {(x1, · · · , xp) :

p∑
i=1

|xi| ∈ [pt, p(t+ δ)]} def= At,δ.

Let |Σ| denote the determinant of Σ, and Cp = (2π)−p/2|Σ|−1/2 ≤ (2πc0)
−p/2.

Since Z>Σ−1Z ≥ c0Z
>Z ≥ c0p|Z|21, we have

P (Z ∈ At,δ) = Cp

∫
At,δ

exp
{
− Z>Σ−1Z

2

}
dZ = Cp

∑
s∈S

∫
Rs

exp
{
− Z>Σ−1Z

2

}
dZ,

≤ Cp exp(−c0pt2/2)
∑
s∈S

∫
Rs

dZ = exp(−pt2/2){(t+ δ)p+1 − tp+1}Cp2p/p!, (3)

where the last inequality follows from the fact that the ‘volume’ of each of

Rs is {(t+δ)p+1−tp+1}/p!. Write h(t|p, δ) = exp(−pt2/2){(t+δ)p+1−tp+1}.

With p and δ fixed, we have

lim
t→0

h(t|p, δ) = δp+1; lim
t→∞

h(t|p, δ) ≈ δtp exp(−pt2/2) = o(δ);

h′(t|p, δ) = exp(−pt2/2)
[
(p+ 1){(t+ δ)p − tp} − pt{(t+ δ)p+1 − tp+1}

]
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with h′(t|p, δ) = 0 at some t∗ < 1. Thus we could confine t in (0, 1). Since

Cp2
p/p! is bounded,

P (Z ∈ At,δ) ≤ δ(πc0/8)−p/2 exp(−pt2/2)(p+ 1)/p! = O(δ),

where the last inequality follows from Sterling’s Approximation. �

Proposition 2. Consider p centred normal random variables gi, 1 ≤ i ≤ p,

not necessarily independent. Suppose Eg2i = σ2
i ≤ σ2, 1 ≤ i ≤ p. Then

E(

p∑
i=1

|gi|) =
√

2/π
∑
i

σi, E max
1≤i≤p

|gi| ≤ σ
√

2 log(2p).

Proof of Proposition 2. The first equation is trivial. The proof of the second

is similar to that of Proposition 1.1.3 of Talagrand (2003). Note that for a

centered normal random variable g, and any β,

E(exp β |g|) = 2Φ(σβ) exp{E(g2)β2/2} ≤ 2 exp{E(g2)β2/2}. (4)

Using Jensen’s inequality and the concavity of the logarithm, we have

βE max
1≤i≤p

|gi| ≤ E log(

p∑
i=1

exp(β |gi|)) ≤
β2σ2

2
+ log(2p).

Taking β =
√

2 log 2p/σ, and the proof is complete. �

Proposition 3 (Theorem 1 (c) of Cai et al. (2014)). Consider p normal

random variables gi, 1 ≤ i ≤ p, with zero mean and a covariance matrix Σ,

such that c0 ≤ λmin(Σ) ≤ λmax(Σ) ≤ c1 for some constants c0 > 0, c1 > 0.
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Let σk,k be the diagonal entries of Σ. We have, for any x ∈ R,

P
(

max
1≤k≤p

g2k/σk,k − 2 log p+ log{log p} ≤ x
)
→ exp

(
− π−1/2 exp(−x/2)

)
, p→∞.

Proposition 4. Consider p centered normal random variables gi, 1 ≤ i ≤

p, not necessarily independent with Eg2i = σ2
i > 0. Let σ = mini σi, σ̄ =

maxi σi. We have, for any ε > 0,

sup
t
P
(
|max

i
|gi| − t| ≤ ε

)
≤ Cε

√
1 ∨ log(2p/ε),

where C > 0 depends only on σ and σ̄.

Proposition 4 is a direct consequence of Corollary 1 of Chernozhukov

et al. (2015).

0.2. Proof of Theorem 1

Proof of Theorem 1 is based on the following two lemmas: the first concerns

the null distribution of the two statistics, while the second lemma concerns

their permutation distributions. As these two distributions are the same,

thus the theorem follows.

Lemma 1. Suppose H0 is true. Then under conditions (C1)-(C5) of Sec-

tion 6,

sup
t∈R

∣∣∣P(H∞(ZN) ≤ t
)
− P

(
|N(0, Ip)|∞ ≤ t

)∣∣∣→ 0; (5)



Efang Kong, Lengyang Wang, Yingcun Xia AND Jin Liu

while under conditions (C1)-(C2),(C3′),(C4)-(C5) of Section 6,

sup
t∈R

∣∣∣P(H1(ZN) ≤ t
)
− P

(
|N(0, Ip)|1 ≤ t

)∣∣∣→ 0. (6)

Lemma 2. Under conditions (C1)-(C5) of Section 6, we have

sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{H∞(ZN
π ) < t} − P

(
|N(0, Ip)|∞ < t

)∣∣∣ p→ 0. (7)

Under conditions (C1)-(C2),(C3′),(C4), and (C5) of Section 6,

sup
t∈R

∣∣∣ 1

N !

∑
π∈GN

I{H1(ZN
π ) < t} − P

(
|N(0, Ip)|1 < t

)∣∣∣ p→ 0. (8)

Lemma 1 could been seen as an adaptation of results on high-dimension

normal approximation of Chernozhukov et al. (2017) to the current two-

sample problem.

Proof of Lemma 1. The proof is a combination of high-dimension normal

approximation with the coupling procedure similar to that devised in Chung

and Romano (2013). We begin with the normal approximation to δN =

N1/2(X̄m − Ȳn). Note that δN = N1/2{X̄m − µX − (Ȳn − µY )}, so under

H0, we may take Xi and Yj as already centered. Let si, i = 1, · · · , N be

independent random variables such that si = 1 with probability c, si = −1

with probability 1− c. If si = 1, Zi ∼ Xi/c, and Zi ∼ Yi/(1− c) otherwise.

Let m =
∑

i I(si = 1), then cN = m/N − c = Op(N
−1/2) and

1

N

N∑
i=1

Zisi =
m

N

X̄m

c
− n

N

Ȳn
1− c

, (X̄m − Ȳn) =
1

N

N∑
i=1

Zisi + cN(
X̄m

c
− Ȳn

1− c
).
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The proof of (5) consists of three steps.

Step 1. We first show that

sup
t∈R

∣∣∣P(|δN |∞ < t
)
− P

(
|N(0, Σ̃)|∞ < t

)∣∣∣→ 0. (9)

It is easy to see that for any ε > 0,

P
(
|δN |∞ < t

)
≤ P

(
N1/2|X̄m/c− Ȳn/(1− c)|∞ > ε/cN

)
+

P
(
N−1/2|

N∑
i=1

Zisi|∞ < t+ ε
)

= I + II,(10)

P
(
|δN |∞ < t

)
≥ −P

(
N1/2|X̄m/c− Ȳn/(1− c)|∞ > ε/cN

)
+

P
(
N−1/2|

N∑
i=1

Zisi|∞ < t− ε
)

= −I + III.(11)

For I, due to (1) and (2), it is easy to see that

I ≤ P
(
|N1/2X̄m|∞ > ε/(2cN)

)
+ P

(
|N1/2Ȳn|∞ > ε/(2cN)

)
≤ rm + sn + P

(
|N(0,ΣX)|∞ >

√
cε/(2cN)

)
+ P

(
|N(0,ΣY )|∞ > ε

√
1− c/(2cN)

)
.

Since cN = Op(N
−1/2), so for any δ > 0, there exists a C > 0 such that

P (cN ≤ Cn−1/2) ≥ 1− δ. Thus

P
(
|N(0,ΣX)|∞ >

√
cε/(2cN)

)
≤ P

(
|N(0,ΣX)|∞ >

√
cC−1N1/2ε/2

)
+ δ

≤ E(|N(0,ΣX)|∞)Cc−1N−1/2ε−1 + δ ≤ C(log p/N)1/2ε−1 + δ, (12)

where the first inequality follows from Chebyshev inequality, while the sec-

ond is due to Proposition 2. Since log p = O(nα), 0 < α < 1/7, let
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δ → 0 and ε → 0 (e.g. ε = CN (α−1)/2) be properly chosen. It follows

that I ≤ rm + sn + o(1).

Now, consider II. As V ar(Zisi) = Σ̃, apply Proposition 2.1 of Cher-

nozhukov et al. (2017) we get

bN
def
= sup

t

∣∣∣P(∣∣∣N−1/2 N∑
i=1

Zisi

∣∣∣
∞
< t
)
− P

(
|N(0, Σ̃)|∞ < t

)∣∣∣→ 0. (13)

On the other hand, for any real zi, i = 1, · · · , and t, ε > 0, t− ε > 0,

{t− ε < max
i
|zi| < t+ ε} ⊂ {t− ε < max

i
zi < t+ ε} ∪ {t− ε < max

i
(−zi) < t+ ε}.

Therefore, with ε chosen as above, applying Proposition 4 we have

sup
t
P
(∣∣∣|N(0, Σ̃)|∞ − t

∣∣∣ ≤ ε
)
≤ 2Cε

√
1 ∨ log(2p/ε) = O(Nα/2−1/4). (14)

This together with (13) suggest that for all t ∈ R,

P
(
|δN |∞ < t

)
− P

(
|N(0, Σ̃)|∞ < t

)
≤ bN + rm + sn +O(Nα/2−1/4). (15)

In a similar manner we could obtain, based on (11), an analogue of (15)

but in the opposite direction, i.e., for for all t ∈ R,

P
(
|δN |∞ < t

)
− P

(
|N(0, Σ̃)|∞ < t

)
≥ −bN − rm − sn +O(Nα/2−1/4).

As rm, sn and bN tend to zero as N → ∞, these two inequalities together

yield (9).

Step 2. As in Step 1, but with Xi replaced with Ω̃1/2Xi and Yi replaced
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with Ω̃1/2Yi. We have

sup
t∈R

∣∣∣P(|Ω̃1/2δN |∞ < t
)
− P

(
|N(0, Ip)|∞ < t

)∣∣∣→ 0. (16)

Step 3. We show that

sup
t∈R

∣∣∣P(|Ω̃1/2
N δN |∞ ≤ t

)
− P

(
|Ω̃1/2δN |∞ ≤ t

)∣∣∣→ 0. (17)

Note that for any ε > 0

P
(
|Ω̃1/2

N δN |∞ ≤ t
)
≤ P

(
|{Ω̃1/2

N − Ω̃1/2}δN |∞ ≥ ε
)

+ P
(
|Ω̃1/2δN |∞ ≤ t+ ε

)
= I + II. (18)

To obtain an upper bound of I, note that

I ≤ P
(
|N1/2{Ω̃−1/2N − Ω̃−1/2}X̄m|∞ ≥ ε/2

)
+ P

(
|N1/2{Ω̃−1/2N − Ω̃−1/2}Ȳn|∞ ≥ ε/2

)
P
(
|N1/2{Ω̃1/2

N − Ω̃1/2}X̄m|∞ ≥ ε/2
)
≤ P

(
sup

v∈Rp:|v|1≤Can
|N1/2v>X̄m|∞ ≥ ε/2

)
= P

(
Can|N1/2X̄m|∞ ≥ ε/2

)
≤ P

(
Can(N/m)1/2|N(0,ΣX)|∞ ≥ ε/2

)
+ rm, (19)

= P
(
|m1/2N(0,ΣX)|∞ ≥ (m/N)1/2ε/(2Can)

)
+ rm ≤ C(log p)1/2an/ε+ rm, (20)

where an = ‖Ω̃1/2
N − Ω̃1/2‖(1,1). Here, (19) is a result of (1), and (20) is due

to Chebyshev inequality and Proposition 2.

Regarding II, similar to (14), we have

sup
t

∣∣∣P(|N(0, Ip)|∞ ≤ t+ ε
)
− P

(
|N(0, Ip)|∞ ≤ t

)∣∣∣ ≤ Cε(log p)1/2.
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Thus, (20) and (a.1) of condition (C5) of Section 6, will both tend to zero

with ε = a
1/2
n . These together with (16) and (18) suggest that

P
(
|Ω̃1/2

N δN |∞ ≤ t
)
− P

(
|N(0, Ip)|∞ ≤ t

)
≤ rm + sn + o(1).

In a similar manner we could establish an analogue of the opposite direction.

This completes the proof of (5) for γ =∞.

Next, we consider (6). The proof also consists of three steps.

Step 1. We first show that

sup
t∈R

∣∣∣P(|N1/2(X̄m − Ȳn)|1 < t
)
− P

(
|N(0, Σ̃)|1 < t

)∣∣∣→ 0. (21)

Again it is easy to see that for any δ > 0,

P
(
|δN |1 < t

)
≤ P

(
N1/2|X̄m/c− Ȳn/(1− c)|∞ > ε/cN

)
+P
(
N−1/2|

N∑
i=1

Zisi|1 < t+ ε
)

= I + II, (22)

P
(
|δN |1 < t

)
≥ −P

(
N1/2|X̄m/c− Ȳn/(1− c)|∞ > ε/cN

)
+P
(
N−1/2|

N∑
i=1

Zisi|1 < t− ε
)

= −I + III. (23)

It has already been shown in (12) that I ≤ rm+sn+C(log p/N)1/2ε−1+o(1).

On the other hand, similar to (13) we have

bN
def
= sup

t

∣∣∣P(∣∣∣N−1/2 N∑
i=1

Zisi

∣∣∣
1
< t
)
− P

(
|N(0, Σ̃)|1 < t

)∣∣∣→ 0,(24)

which follows from Proposition 3.1 of Chernozhukov et al. (2017), as ν

in condition (C3′) is the set of unit vectors that are outward normal to
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the facets of {w ∈ Rp :
∑
|wj| ≤ t}, a convex polytope with 2p facets.

According to Proposition 1, there exists some C > 0, such that

sup
t
P
(∣∣∣|N(0, Σ̃)|1 − t

∣∣∣ ≤ ε
)
≤ Cε. (25)

With ε = (log p/N)1/4, (22), (24) and (25) together imply that for all t ∈ R,

P
(
|δN |1 < t

)
− P

(
|N(0, Σ̃)|1 < t

)
≤ rm + sn + bN + o(N (α−1)/4). (26)

In a similar manner based on (23) we could obtain an analogue of (26) in

the opposite direction, i.e., for for all t ∈ R,

P
(
|δN |1 < t

)
− P

(
|N(0, Σ̃)|1 < t

)
≥ −rm − sn − bN +O(N (α−1)/4).

These two inequalities together yield (21).

Step 2. As in Step 1, but with Xi replaced with Ω̃−1/2Xi and Yi replaced

with Ω̃−1/2Yi, we could obtain

sup
t∈R

∣∣∣P(|Ω̃1/2δN |1 < t
)
− P

(
|N(0, Ip)|1 < t

)∣∣∣→ 0.

Step 3. We show that

sup
t∈R

∣∣∣P(|Ω̃1/2
N δN |1 ≤ t

)
− P

(
|Ω̃−1/2δN |1 ≤ t

)∣∣∣→ 0.

Note that for any ε > 0

P
(
|Ω̃1/2

N δN |1 ≤ t
)
≤ P

(
|{Ω̃1/2

N − Ω̃1/2}δN |∞ ≥ ε
)

+ P
(
|Ω̃1/2δN |1 ≤ t+ ε

)
= I + II.
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Recall that in (20) it has already been shown that I ≤ C(log p)1/2an/ε +

rm + sn. Meanwhile, according to Proposition 1, there exists a constant

C > 0, such that

sup
t

∣∣∣P(|Ω̃1/2δN |1 ≤ t+ ε
)
− P

(
|Ω̃1/2δN |1 ≤ t

)∣∣∣ ≤ Cε.

Taking ε = (an log p)1/2, it follows that I → 0. We have for all t ∈ R,

P
(
|Ω̃1/2δN |1 ≤ t

)
≤ P

(
|Ω̃1/2δN |1 ≤ t

)
+ o(1);

in a similar manner an analogue of this but in the opposite direction also

holds. The proof thus completes. �

Proof of Lemma 2. Derivation of the limit of the permutation distribution

is mainly based on the following fact. The permutation distribution based

on ZN = {Z1, · · · , ZN} behaves approximately like the permutation dis-

tribution based on a sample of N IID observations Z̃N = {Z̃1, · · · , Z̃N},

generated from the mixture distribution P̄ = cP1(.) + (1− c)P2(.).

Let us first introduce a layered coupling construction. Mimicking the

coupling procedure in Chung and Romano (2013), we can, except for order-

ing, construct Z̃N too via a two-stage process, so that as many as possible

of the original observations are used to make up the Zis. First draw an in-

dex i1 from {0, 1} at random with probabilities of c and 1− c, respectively;

if i1 = 0, then Z̃1 = Z1, otherwise Z̃1 = Zm+1. Next, a second index i2 is



0.2. PROOF OF THEOREM 1

randomly selected from {0, 1} (again with probabilities of c and 1 − c, re-

spectively), then Z̃2 = Z2 if i1 = i2 = 0, Z̃2 = Zm+2 if i1 = i2 = 1, Z̃2 = Z1

if i2 = 0, i1 = 1, and finally Z̃2 = Zm+1 if i1 = 0, i2 = 1. We continue

in this manner to use the Zi to fill in the observations Z̃i until we reach a

point where we have used up all the observations from either ‘population’.

Suppose this happens with the Xi’s group when we are about to fill in the

ith coordinate of Z̃; if the newly drawn index is again 0, we simply draw a

random Z̃i ∼ P1(.). A similar procedure applies if we have used up all the

observation from the Yj’s group and an index of 1 is selected. Continue in

this manner so that as many as possible of the original Zi observations are

used in the construction of Z̃N . At the end, ZN and Z̃N have many of the

observations in common, and we use D to denote the (random) number of

extra observations required to fill up Z̃N .

Next, we reorder the observations in Z̃N by a permutation π0, so that Zi

and Z̃π0(i) agree for all i except for the aforementioned random number D.

Specifically, let N1 stands for the number of observations in Z̃, which were

filled in when index 0 was drawn. If N1 is greater than or equal to m, then

Z̃π0(i) for i = 1, · · · , n1 are filled with the first m of these observations; and

put aside the remaining N1−m observations. On the other hand, if N1 < m,

then fill in all these (originally labelled as Xis) observations and leave the
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rest of m − N1 slots blank for now. Next, we move onto the observations

in Z̃N , which were filled in when index 1 is drawn, and repeat the above

procedure for m + 1, · · · , N spots. The third and also the last step is to

complete the observations in Z̃N
π0

: simply fill up the empty slots with the

remaining observations that have been put aside in the previous two steps,

and it does not matter where each of the remaining observations is placed.

This arrangement of observations in Z̃N corresponds to a permutation π0,

and satisfies Zi = Z̃π0(i) for all indices i except for D of them.

To further illustrate, we consider an example with m = n = 3, N1 = 4;

since N1 as defined above, is the number of observations in Z̃, which were

filled in when index 0 was drawn, there are in total 4 observations from

P1(·), and N2 = 2 observations from P2. In other words, besides the original

observations X1, X2, X3, an extra X4 is drawn from P1(·) to fill up Z̃N ; and

also only Y1, Y2 are used to fill up Z̃N , while Y3 is unused. ZN and Z̃N have

5 out of 6 observations in common, thus D = 1. After the reordering of Z̃N

through π0, we have Z̃N
π0

= (X1, X2, X3, Y1, Y2, X4), thus Z̃N
π0

and ZN differ

only at the 6th position.

As proved in Chung and Romano (2013), E(D/N) ≤ N−1/2 . In general,

the proof of consistency of the permutation test based on a generic statistic

TN(·) goes as follows. Let RT
N(·) denote the randomization distribution of
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TN(·), when all the observations are IID generated in the coupling proce-

dure. Suppose π and π′ are independent and uniformly distributed over

GN , and they are also independent of ZN and Z̃N . The proof begins with

showing that

(TN(Z̃N
π ), TN(Z̃N

π′ ))
d→ (T, T ′), (27)

where T and T ′ are independent random variables with common c.d.f. R0(·).

Equation (27) also implies

(TN(Z̃N
ππ0

), TN(Z̃N
π′π0))

d→ (T, T ′), (28)

where ππ0 stands for π composed with π0, with π0 applied first. With the

coupling between Z̃N and ZN and the reordering, if we could further show

that

TN(Z̃N
ππ0

)− TN(ZN
π )

p→ 0, (29)

then by the Slutsky’s theorem, it follows from (28) and (29) that

(TN(ZN
π ), TN(ZN

π′ ))
d→ (T, T ′). (30)

Equation (30) is the Hoeffding’s condition which enables us to claim that the

randomization distribution of TN(ZN) to converge in probability to R0(·).

Chung and Romano (2013) proved that this condition is also necessary.
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Write H0(Z
N) = {Σ̃/{c(1 − c)}}−1/2δN . Let π and π′ be random per-

mutations, independent and uniformly distributed over GN , and they are

also independent of ZN . The proof consists of the following steps.

• Firstly, based on (a.1) of condition (C5) of Section 6 and through

the same arguments used to prove Lemma 5.3 in Chung and Romano

(2013), we can show that

∣∣∣{Ω̃N(Zπ(1), · · · , Zπ(N))}1/2 −
√
c(1− c){Σ(P̄ )}−1/2

∣∣∣
(1,1)

= op(1/ log p).(31)

• Next, show that

(Hγ
0 (ZN

π ), Hγ
0 (ZN

π′ ))
d→ (H,H ′), (32)

whereH andH ′ are independent and identically distributed as |N(0, Ip)|γ.

If both (31) and (32) are true, then

|Hγ
0 (ZN

π )−Hγ
0 (ZN

π )| ≤
∣∣∣[{Ω̃N(Zπ(1), · · · , Zπ(N))}1/2 − {Σ(P̃ )/{c(1− c)}}−1/2

]
δN

∣∣∣
∞

≤ sup
v∈Rp:|v|1=op(1/ log p)

|v>δN | ≤ op(1/ log p)|δN |∞ = op(1),

where for the last equality we made use of (9). This together with an

application of Lemma A.2 of Chung and Romano (2013) lead to the con-

clusion that the randomization distribution of Hγ(ZN
π ) converges pointwise

(uniformly) in probability to the c.d.f. of |N(0, Ip)|γ. �
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Proof of (32). Suppose Z̃N = (Z̃1, · · · , Z̃N), such that (Z̃i, θi) i = 1, · · · , N,

are IID observations generated from the mixture distribution P̄ . Z̃N is also

independent of random permutation π ∈ GN . We first show that

(Hγ
0 (Z̃N), Hγ

0 (Z̃N
π ))

d→ (H,H ′), (33)

where H, H ′ are independent and identically distributed.

To this aim, write Z̃l = (Z̃l,1, · · · , Z̃l,p)>, l = 1, · · · , N, and Cov(Z̃i) =

Σ(P̄ ). Let I1 = {1, · · · ,m} and I2 = {m + 1, · · · , N}. Write µ(P̄ ) =

cµX + (1− c)µY , and

V N
1 = 1

m1/2

N∑
l=1

(Z̃l − µ(P̄ ))I(l ∈ I1), V N
2 = 1

n1/2

N∑
l=1

(Z̃l − µ(P̄ ))I(l ∈ I2),

Ṽ1 = 1
m1/2

N∑
l=1

(Z̃l − µ(P̄ ))I(π(l) ∈ I1), Ṽ2 = 1
n1/2

N∑
l=1

(Z̃l − µ(P̄ ))I(π(l) ∈ I2).

For these random vectors, the corresponding central limit theorem in the

sense of (1) is such that

(V N
1 , V N

2 , Ṽ N
1 , Ṽ N

2 )
d→ (V1, V2, Ṽ1, Ṽ2), m, n→∞, (34)

where V1, V2, Ṽ1, Ṽ2 are all p−dimensional normal random vectors, with

block-wise covariance matrix given as

Cov(V1) = Cov(V2) = Cov(Ṽ1) = Cov(Ṽ2) = Σ(P̄ ), (35)

Cov(V1, V2) = Cov(Ṽ1, Ṽ2) = 0, Cov(V1, Ṽ1) = cΣ(P̄ ),

Cov(V1, Ṽ2) = Cov(Ṽ1, V2) = {(1− c)c}1/2Σ(P̄ ), Cov(V2, Ṽ2) = (1− c) Σ(P̄ ),
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which are deduced based on the simple facts that for i, j = 1, 2,

N∑
l=1

I(l ∈ Ii, π(l) ∈ Ij)/ni
P→ pj, n1 = m, n2 = n, p1 = c, p2 = 1− c.

Now consider the following linear combinations of V N
1 , V N

2 , Ṽ N
1 and Ṽ N

2 :

WN
i = V N

i − (ni/N)1/2{c1/2V N
1 + (1− c)1/2V N

2 }, (36)

W̃N
i = Ṽ N

i − (ni/N)1/2{c1/2Ṽ N
1 + (1− c)1/2Ṽ N

2 }, i = 1, 2, n1 = m, n2 = n.

In view of (34), (WN
1 ,W

N
2 , W̃

N
1 , W̃

N
2 ) is also asymptotically normal

(WN
1 ,W

N
2 , W̃

N
1 , W̃

N
2 )

d→ (W1,W2, W̃1, W̃2), m, n→∞;

as Cov(W1, W̃1) = Cov(W1, W̃2) = Cov(W2, W̃1) = Cov(W2, W̃2) = 0,

(WN
1 ,W

N
2 ) and (W̃N

1 , W̃
N
2 ) are also asymptotically independent. AsHγ

0 (Z̃N)

only depends on WN
1 and WN

2 , Hγ
0 (Z̃N

π ) only depends on W̃N
1 and W̃N

2 ,

Hγ
0 (Z̃N) and Hγ

0 (Z̃N
π ) are also asymptotically independent. Moreover, as

(V N
1 , V N

2 ) and (Ṽ N
1 , Ṽ N

2 ) are identically distributed, so are Hγ
0 (Z̃N) and

Hγ
0 (Z̃N

π ). In particular, since

WN
1 = (1− c)V N

1 − {c(1− c)}1/2V N
2 = m1/2n/N(X̄m − Ȳn) = (m/N)1/2n/NδN ,

and Cov(WN
1 ) = (1 − c)Σ(P̄ ), according to Proposition 2.1 (for γ = ∞)

and Propostion 3.2 (for γ = 1) of Chernozhukov et al. (2017),

sup
t∈R

∣∣∣P (Hγ
0 (Z̃N) ≤ t)− P (|N(0, Ip)|γ ≤ t)

∣∣∣→ 0.
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Next we show that with a random permutation π ∈ GN independent of ZN ,

Hγ
0 (ZN

π )−Hγ
0 (Z̃N

ππ0
)

p→ 0. (37)

Let I1 ⊂ {1, · · · ,m} and I2 ⊂ {m+ 1, · · · , N} are two collection of indices

such that I1 ∪ I2 stand for the set of indices where ZN
π and Z̃N

ππ0
differ.

Therefore, D = #(I1) + #(I2) = Op(N
1/2) as we have seen in the proof

of Lemma 2.For any i ∈ I1 ∪ I2, write Z̃N
ππ0(i)

= (Z̃i1, · · · , Z̃ip) and ZN
π(i) =

(Zi1, · · · , Zip). Thus for γ = 1 or γ =∞

|Hγ
0 (ZN

π )−Hγ
0 (Z̃N

ππ0
)| ≤ N1/2m+ n

mn

∣∣∣Σ̃−1/2{∑
i∈I1

(Z̃i − Zi)−
∑
i∈I2

(Z̃i − Zi)}
∣∣∣
γ

≤ N1/2 |m− n|
mn

|Σ̃−1/2|(1,1)|
∑
i∈I1

(Z̃i − Zi)−
∑
i∈I2

(Z̃i − Zi)
∣∣∣
∞
. (38)

As |Σ̃−1/2|(1,1) is finite, there exists some constant C > 0, that for any ε > 0,

P
(
|Hγ

0 (ZN
π )−Hγ

0 (Z̃N
ππ0

)| > ε
)
≤ P

(
|
∑
i∈I1

(Z̃i − Zi)|∞ > CN1/2ε
)

+P
(
|
∑
i∈I2

(Z̃i − Zi)|∞ > CN1/2ε
)
. (39)

If D is finite, then a simple application of Chebyshev inequality and Propo-

sition 2,

P
(
|
∑
i∈I1

(Z̃i − Zi)|∞ > CN1/2ε
)
≤ C(log p/N)1/2ε−1 → 0,

under condition that log p = o(nα) with α ≤ 1/6. If, #(I1) is infinite, we

could still apply Proposition 2.1 of Chernozhukov et al. (2017), to show
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that

sup
t

∣∣∣P(#(I1)
−1/2|

∑
i∈I1

(Z̃i − Zi)|∞ > t
)
− P

(
|Ξ|∞ > t

)∣∣∣→ 0, (40)

where Ξ is zero-mean p-dim normal distribution with finite variance (ma-

trix), so that E|Ξ|∞ = O((log p)1/2). Since #(I1) = Op(N
1/2),

P
(
|
∑
i∈I1

(Z̃i − Zi)|∞ > CN1/2ε
)
≤ P

(
|Ξ|∞ > CN1/4ε

)
+ o(1)

≤ C(log p/N1/2)1/2ε−1 → 0. (41)

Equation (37) thus follows from (38),(39), (40) and (41). �

0.3. Proof of Theorem 2

The proof consists of two steps in a way similar to that Theorem 1 follows

directly from Lemma 1 and Lemma 2. The only minor change is that the

condition on the consistency of Ω̃N is replaced with (a.3). The details of

proof is thus omitted. �

0.4. Proof of Theorem 3

Derivation of the (limiting) null distribution is done in exactly the same

manner as in Lemma 1. For the un-permuted observations, X̄∗−Ȳ ∗ ≡ X̄m−

Ȳn, with or without µX in (2.9) replaced with X̄m. The covariance matrix of
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δ∗n is thus given by (1− c)/cΣX + ΣY . Also simple algebra could verify that

under (a.3) of (C6) in Section 6, an analogue for {v∗n,k}2 as a consistent

estimator of V ar(δ∗n,k) also holds. Therefore, the limiting distribution of

Sγ1 (Zn) of (2.12) is the same as given in (2.8) with the covariance matrix

given by the correlation matrix associated with (1−c)/cΣX+ΣY . In the case

of Sγ1 (Zn), the corresponding covariance matrix is simply (1−c)/cΣX +ΣY .

The derivation of the permutation distribution could be done in a way

identical to how Lemma 2 is proved after we have clarified the corresponding

coupling procedure. We recycle some notations used in the proof of Lemma

2 . We only consider the case where v = c/(1−c)−K > 0, for it would only

be easier to deal with v = 0. The coupling procedure largely follows the

routine outlined in Section 0.1, only an extra layer of sampling is involved

whenever an index of zero is drawn. When this happens, if the original

pseudo observations {X∗i , i = 1, · · · , n} have not all been used up, then

set Z̃i to be the next X∗i in line; otherwise, draw a random value u from

the uniform (0, 1). If u < v, we first obtain a random sample of K + 1

observations of Xs from P1(.), their sum multiplied by (1 − c)/c gives a

new Z̃i; if u > v, then a random sample of K observations from P1(.) is

used, and a new Z̃i is then given by the sample sum multiplied by (1−c)/c.

In the end, Z̃n = (Z̃1, · · · , Z̃2n) can be seen as IID observations from the



Efang Kong, Lengyang Wang, Yingcun Xia AND Jin Liu

mixture distribution P̃ = 0.5P ∗1 (·, .) + 0.5P2(·, .) ≡ 0.5vP11(·, .) + 0.5(1 −

v)P12(·, ·) + 0.5P2(·, ·), where P11(·, ·) is the sum of K+ 1 i.i.d. observations

from P1(·, ·) multiplied by (1 − c)/c, while P11(·, ·) is the sum of K i.i.d.

observations from P1(·, ·) again multiplied by (1 − c)/c. Zn and Z̃n also

have many of the observations in common. After a reordering procedure of

Z̃n by a permutation π0 similar to that described in the proof of Lemma 2,

only now the reordering is applied to three ‘populations’, Z̃n
π0

should agree

with Zn at many places; regarding D, the number of spots where Z̃n
π0

and

Zn differ, we again have E(D) ≤ n1/2. �

0.5. Proof of Theorem 4

Denote the limit on the RHS of (3.14) by b0 which could be infinite, and

with a slight abuse of notation, write δ∗n,k = n1/2(X̄∗− Ȳ ∗− δ0) and denote

the diagonal entries of (1 − c)/cΣX + ΣY by a2k, k = 1, · · · , p. We have,

based on Theorem 3 and Proposition 3,

P
(

max
1≤k≤p

∣∣∣δ∗n,k
ak

∣∣∣ ≤√2 ln p− ln(ln p) + x
)
→ F (x) (42)

as n, p → ∞. Let A be the event that there exists some k ∈ s0, such that

|δn,k/vn,k| < qαn . Since {|δn,k/vn,k| < qαn} ⊂ {|δ∗n,k/vn,k| > n1/2|δ0k/vn,k| −

qαn} and for any ε > 0, {|δ∗n,k/vn,k| > t} ⊂ {|δ∗n,k/vn,k| > t − ε} ∪ {|(ak −
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vn,k)δ
∗
n,k/ak| > (s0/c)

1/2ε/2}, we have for any M > 0, and any 0 < r < 1,

P (A) ≤ P
(

max
k∈I0
|δ∗n,k/vn,k| > n1/2 min

k∈I0
|δ0k/vn,k| − qαn

)
≤ P

(
max

k=1,··· ,p
|δ∗n,k/ak| > r(c/s1)

1/2n1/2 min
k∈I0
|δ0k| − qαn − ε

)
+P
(

sup
k
|δ∗n,k/ak| > Mε ln p

)
= I + II,

where we have used the fact that s0/c ≤ a2k ≤ s1/c and that |vn,k − ak| =

op(1/ log p) for all k = 1, · · · , p. Set ε = (ln p)−1/2, then by (42), II → 0.

With this ε,

I ≤ P
(

max
k=1,··· ,p

|δ∗n,k/ak| ≥ 2(2 ln p)1/2 − qαn − ε
)
≤ exp(−(π ln p)−1/2)→ 0;

if α is chosen so that qα/(2 ln p)1/2 → 1. On the other hand, with the same

ε above,

P
(

max
k/∈I0
|δ∗n,k/v∗n,k| ≥ qαn

)
≤ P

(
max
k/∈I0
|δ∗n,k/ak| ≥ qαn − ε

)
+P
(

sup
k
|δ∗n,k/ak| > Mε ln p

)
,

where, according to (42), both terms on the RHS are zero. This finishes

the proof. �



Efang Kong, Lengyang Wang, Yingcun Xia AND Jin Liu

0.6. More analysis results of WTCCC dataset

Using the same quality control as described in Section 6, we have 1,969

cases and 2,992 controls over 304,279 SNPs for BPD, 1,979 cases and 2,992

controls over 306,030 SNPs for HT, and 1,952 cases and 2,992 controls over

307,089 SNPs for RA. We applied the permutation test with S∞1 to the data,

and the resulting Manhattan plots are shown in Figure 3. The analysis for

each disease can be done around 16 minutes on a Windows console with

2.30GHz intel Xeron CPU E5-2697.

With significance level 0.01, we summarize our findings as follows.For

BPD, our method S∞1 identifies two SNPs from genes UBR1 and SLC35F4,

respectively, where SLC35F4 was reported to be associated with BPD pre-

viously (WTCCC, 2007). For RA, S∞1 identified 148 SNPs. Among them,

98 SNPs are within 42 gene regions, where 21 genes were reported to be

associated with rheumatoid arthritis in previous studies (Raychaudhuri et

al., 2008; Hu et al., 2008; Jiang et al., 2015). Note that we are unable to

identify significant SNPs associated with HT. The possible reason is that

the control population was not screened to remove individuals with hyper-

tension (Doris , 2011).

In the analysis of these three diseases using WTCCC data, we iden-

tified many “new” SNPs which were not reported in the original study of
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WTCCC (2007), but were detected in later studies. These SNPs and their

corresponding studies are listed in Table S1.

Table S1: SNPs identified by both the proposed permutation test and other recent

studies, but not by WTCCC (2007).

Assoc. Base pair studies that detected the same genes

trait Rs position Chrom. Gene studies sample size

CAD rs564398 22029548 9 AL359922.1 Kulminski et al. (2018) 33,431

CAD rs7865618 22031006 9 AL359922.1 Wild et al. (2011) 5,031

CDKN2B-AS1

CAD rs4977574 22098575 9 CDKN2B-AS1 C4D Genetics Consortium (2011) 30,472

CAD rs2891168 22098620 9 CDKN2B-AS1 Nelson et al. (2017) 63,731

CAD rs4977574 22098575 9 CDKN2B-AS1 van der Harst and Verweij (2018) 547,261

CAD rs1333042 22103814 9 CDKN2B-AS1 Lee et al. (2013) 5,714

CAD rs1333048 22125348 9 CDKN2B-AS1 Slavin et al. (2011) 5,000

CD rs2201841 67228519 1 C1orf141 Raelson et al. (2007) 1,146

IL23R

CD rs6752107 233252802 2 ATG16L1 de Lange et al. (2017) 40,266

CD rs3828309 233271764 2 ATG16L1 Barrett et al. (2008) 9,541

CD rs9292777 40437846 5 AC093277.1 Parkes et al. (2007) 4,686

RA rs805297 31654829 6 APOM Hu et al. (2008) 700

RA rs9268557 32421528 6 BTNL2 Jiang et al. (2015) 2,573

RA rs6457620 32696222 6 HLA-DQB1 Raychaudhuri et al. (2008) 15,853

RA rs9784858 32819398 6 AL669918.1 Jiang et al. (2015) 2,573

RA rs10484565 32827255 6 AL669918.1 Jiang et al. (2015) 2,573

T1D rs2292239 56088396 12 ERBB3 Cooper et al. (2008) 8,207

T1D rs9268645 32440750 6 HLA-DRA Barrett et al. (2009) 16,559

T1D rs9268853 32461866 6 HLA-DRB9 Kawabata et al. (2019) 676

T2D rs7901695 112994329 10 TCF7L2 Zeggini et al. (2007) 4,862

T2D rs8050136 53782363 16 FTO Zhao et al. (2017) 183,651
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