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Abstract: Testing the equality of two covariance matrices is a fundamental prob-

lem in statistics, and especially challenging when the data are high dimensional. By

means of a novel use of random integration, we test the equality of high-dimensional

covariance matrices without assuming parametric distributions for the two under-

lying populations, even if the dimension is much larger than the sample size. The

asymptotic properties of our test for an arbitrary number of covariates and sample

size are studied in depth under a general multivariate model. The finite-sample

performance of our test is evaluated using numerical studies. The empirical results

demonstrate that the proposed test is highly competitive with existing tests in a

wide range of settings, and particularly powerful when there exist a few large or

many small diagonal disturbances between the two covariance matrices.

Key words and phrases: Covariance matrix, high-dimensional data, random inte-

gration.

1. Introduction

The need to test the equality of two covariance matrices arises in many im-

portant problems, including both classic experimental designs and analyses of

high throughout omic data. For example, gene expression data are often used

to classify disease types. Here, Igolkina et al. (2018) points out that variance in

gene expression is an important characteristic of schizophrenia. Roberts, Catch-

poole and Kennedy (2018) shows that many genes differ in the variances of their

gene expressions between disease states. Comparing two covariance matrices is

therefore essential when analyzing gene expression microarray data of two differ-

ent groups. This comparison becomes difficult, because the number of samples

is usually much smaller than the number of genes. Although, many methods

have been proposed to test the equality of two covariance matrices, they tend to
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perform poorly in practice, especially when there are a few large or many small

diagonal disturbances between the two covariance matrices.

Let X and Y be p-dimensional random variables with covariance matrices

Σ1 and Σ2, respectively. Given independent samples Xm = {X1, . . . ,Xm} from

X and Yn = {Y1, . . . ,Yn} from Y, we want to test

H0 : Σ1 = Σ2 vs. H1 : Σ1 6= Σ2. (1.1)

In the classic low-dimensional setting, Anderson (2003) proposes a likelihood ratio

test (LRT) statistic, showing that it asymptotically follows a χ2-distribution with

degrees of freedom p(p+ 1)/2 under the multivariate normality assumption and

H0 when p is fixed.

In recent applications in the fields of gene expression (Pan et al. (2018)),

neuroimaging (Le Bihan et al. (2001)), and risk management (Bollerslev, Meddahi

and Nyawa (2019)), the dimension p can be much larger than the sample size n,

that is, “large p small n” or “large p large n.” In this setting, the sample covariance

matrix does not converge to its population counterpart (Bai et al. (2009)), and

the aforementioned classical methods for the low-dimensional case either are not

applicable or perform poorly. As well summarized by Cai (2017), this problem

is so important and difficult that it has attracted a great deal of attention. We

briefly review some of the methods below.

Modified LRT-based methods have been considered by Bai et al. (2009), Jiang

and Yang (2013), and Jiang and Qi (2015). Because Σ1 = Σ2 is equivalent to

the Frobenius norm tr(Σ1−Σ2)
2 = 0, Frobenius norm-based tests have also been

proposed (Schott (2007); Srivastava and Yanagihara (2010)). However, both sets

of methods assume multivariate normality. Li and Chen (2012) remove the nor-

mality assumption by using a linear combination of three one-sample U -statistics.

The test proposed by Li and Chen (2012) can be applied without assuming para-

metric distributions for the two populations, and is very powerful when there

are many small differences between two population covariance matrices. How-

ever, this test is found to lack power against sparse alternatives (Yang and Pan

(2017)) or when the two covariance matrices differ slightly only in the diagonal

(Wu and Li (2015)). Using random projection, Wu and Li (2015) construct a test

statistic to improve the power when there are many small diagonal disturbances

between the two covariance matrices, but again assumed normality. He et al.

(2021) introduce adaptive testing to combine the finite-order U-statistics, which

include the variants of Frobenius norm-based statistics.
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Assuming sparsity for Σ1 − Σ2 under the alternative hypothesis, Cai, Liu

and Xia (2013) introduce an extreme statistic that is robust with respect to the

population distributions and is very powerful when there are only several large

disturbances between the two population covariance matrices, and Chang et al.

(2017) propose a computationally fast procedure. Zhu et al. (2017) construct a

sparse-leading-eigenvalue-driven (sLED) test for when the signals are both sparse

and weak, and prove that the sLED test achieves full power asymptotically when

the sparse signal is sufficiently strong. However, these tests are either not powerful

when there are many small disturbances between Σ1 and Σ2, or the theoretical

properties require an explicit relationship between n and p or are too complicated

for practical use.

The aforementioned tests often focus on specific situations. To accommodate

more varied situations, several weighted combination tests have been proposed.

For example, Yang and Pan (2017) propose a weighted test statistic based on

random matrix theory. Zheng et al. (2020) introduce a power enhancement high-

dimensional test. These tests can handle both sparse and nonsparse structures.

However, the tests depend on a proper choice of weights, which is a challenging

task. Furthermore, these procedures require an explicit relationship between n

and p. Yu, Li and Xue, (2022) consider a scale-invariant power enhancement test

based on Fisher’s method, but again assumed normality.

In summary, although many methods exist, they have various limitations. By

means of a novel use of random integration, we propose a method that tests the

equality of two high-dimensional covariance matrices. Specifically, the proposed

test possesses the following three merits:

1. It does not require a distributional assumption.

2. It works well for the paradigm of “large p”, even when there are a few large

or many small diagonal disturbances between the two covariance matrices.

3. The asymptotic theory is established under a general multivariate model

with certain moment conditions, but without requiring an explicit relation-

ship between p and n.

The rest of the paper is organized as follows. In Section 2, we introduce our

test statistic using the random integration technique, and establish its asymptotic

properties. In Section 3, we present simulation studies that evaluate the finite-

sample performance of the proposed test. In Section 4, a real data set is analyzed

to compare the proposed test with several existing methods. Section 5 concludes

the paper. All technical proofs are presented in the Supplementary Material.
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2. Methodology and Main Results

To introduce a proper statistic to test (1.1), especially when there are many

small diagonal disturbances between the two covariance matrices, it would be

helpful if we can strengthen the information of diagonal disturbances for Σ1−Σ2.

Unlike the random matrix projection method, which needs the normality assump-

tion to strengthen the information on a line, we develop a random integration

technique to strengthen this information using integrations. To this end, we first

denote Xc = X − µ1 and Yc = Y − µ2, where µ1 = EX and µ2 = EY. Then,

Σ1 = EXcXc> and Σ2 = EYcYc>. Note the following equivalences:

Σ1 = Σ2 ⇔ EXcXc>= EYcYc>

⇔ α>EXcXc>α = α>EYcYc>α, for any α ∈ Rp

⇔ E
{
α>
(
XcXc>−YcYc>

)
α
}

= 0, for any α ∈ Rp.

Thus, testing whether Σ1 and Σ2 amounts to testing whether

RIw(X,Y) ,
∫
E2
{
α>
(
XcXc>−YcYc>)α}w(α)dα = 0, (2.1)

where w(α) is a positive weight function. A critical observation is that RIw(X,Y)

can be evaluated easily for a certain properly chosen w. Theorem 1 enables us

to derive an explicit form for (2.1) and obtain our difference measure of two

covariances.

Theorem 1. If w(α) is a p-dimensional standard normal density function, then

RI(X,Y) , RIw(X,Y) = {tr(Σ1 − Σ2)}2 + 2tr (Σ1 − Σ2)
2 , (2.2)

and RI(X,Y) ≥ 0 , with the equality holding if and only if Σ1 = Σ2.

Remark 1. The p-dimensional standard normal random vector can be expressed

as the independent product between a uniformly distributed random vector on

the unit sphere Sp−11 and the radial random variable. We choose the standard

normal random density function to treat every unit vector equally in the inte-

gration. Moreover, the multivariate normal distribution is a special case of a

multivariate stable distribution, and multivariate stable distributions are used as

weight functions by Chen, Meintanis and Zhu (2019). As future work, it may be

worthwhile considering other weight functions, such as the uniform distribution

(Zhu et al. (2017); Kim, Balakrishnan and Wasserman (2020)) or the Bernoulli

distribution (Qiu, Xu and Zhu (2021).

Note that the second term on the right-hand size of (2.2) is the Frobenius
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norm of the difference between the two covariance matrices. The test can be

designed to be powerful when there are many small disturbances between Σ1 and

Σ2. In contrast to Li and Chen (2012), the same test can be powerful when the

two covariance matrices differ only by a small amount in the diagonal, owing to

the first term on the right-hand side of (2.2), which represents the square of the

difference between the diagonal elements of the two covariance matrices. If the

nonzero signals of the difference between the diagonal elements of Σ1 and Σ2 are

weakly dense with almost the same sign, RI(X,Y) should be more powerful than

a test statistic in which [tr(Σ1 − Σ2)]
2 is replaced with

∑p
k=1 (Σ1,kk − Σ2,kk)

2. In

addition, the estimation of RI(X,Y) does not need consistent estimates of the

covariance matrices, because RI(X,Y) is based on the trace of the matrices. In

the following, we obtain an unbiased estimator of RI(X,Y), the test statistic we

need to test (1.1).

Denote

A1
m =

1

m(m− 1)

∑
i 6=j

(X>iXi)(X
>
jXj)−

2

m(m− 1)(m− 2)

?∑
i,j,k

X>iXjX
>
kXk

+
1

m(m− 1)(m− 2)(m− 3)

?∑
i,j,k,l

X>iXjX
>
kXl,

B1
n =

1

n(n− 1)

∑
i 6=j

(Y>iYi)(Y
>
jYj)−

2

n(n− 1)(n− 2)

?∑
i,j,k

Y>iYjY
>
kYk

+
1

n(n− 1)(n− 2)(n− 3)

?∑
i,j,k,l

Y>iYjY
>
kYl,

C1
m,n =

1

mn

m∑
i=1

n∑
j=1

(X>iXi)(Y
>
jYj)−

1

nm(m− 1)

?∑
i,k

n∑
j=1

Y>jYjX
>
iXk

− 1

mn(n− 1)

?∑
i,k

m∑
j=1

X>jXjY
>
iYk+

1

m(m− 1)n(n− 1)

?∑
i,k

?∑
j,l

X>iXkY
>
jYl,

A2
m =

1

m(m− 1)

∑
i 6=j

(X>iXj)
2 − 2

m(m− 1)(m− 2)

?∑
i,j,k

X>iXjX
>
jXk

+
1

m(m− 1)(m− 2)(m− 3)

?∑
i,j,k,l

X>iXjX
>
kXl,

B2
n =

1

m(m− 1)

∑
i 6=j

(Y>iYj)
2 − 2

m(m− 1)(m− 2)

?∑
i,j,k

Y>iYjY
>
jYk
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+
1

m(m− 1)(m− 2)(m− 3)

?∑
i,j,k,l

Y>iYjY
>
kYl,

C2
m,n =

1

mn

m∑
i=1

n∑
j=1

(X>iYj)
2 − 1

nm(m− 1)

?∑
i,k

n∑
j=1

X>iYjY
>
jXk

− 1

mn(n− 1)

?∑
i,k

m∑
j=1

Y>iXjX
>
jYk+

1

m(m− 1)n(n− 1)

?∑
i,k

?∑
j,l

X>iYjX
>
kYl,

where
∑? denotes a summation over mutually distinct indices. Then, the pro-

posed sample test statistic is

RIm,n = A1
m − 2C1

m,n +B1
n + 2(A2

m − 2C2
m,n +B2

n), (2.3)

which is an unbiased estimator of RI(X,Y).

Remark 2. The computation cost is of the order of max{pn4, pm4} if we compute

RIm,n directly. The computational burden comes from the last two sums in

A1
m, B

1
n, A

2
m, and B2

n and the last three sums in C1
m,n and C2

m,n. Because RIm,n
is invariant under the location shift, we can assume without loss of generality

that µ1 = µ2 = 0. Under this assumption, the last two sums in A1
m, B

1
n, A

2
m, and

B2
n and the last three sums in C1

m,n and C2
m,n are all of a smaller order than the

first. Thus, we can first transform the data Xi to Xi − X̄ and Yj to Yj − Ȳ,

and then compute only the first term in A1
m, B

1
n, A

2
m, B

2
n, C

1
m,n, and C2

m,n. This

reduces the computation cost to the order of max{pn2, pm2}, without affecting

the asymptotic properties of our proposed test. Using similar techniques to those

of Zhong Li and Santo (2019), we can reduce the computation cost for the third

terms in A1
m and B1

n, the last two sums in A2
m and B2

n, and the last three in C2
m,n

to the order of max{pn2, pm2}, and can maintain their unbiasedness. However,

the second terms in A1
m and B1

n and the second and the last three in C1
m,n cannot

reduce the order of max{pn2, pm2} to maintain their unbiasedness using this

technique.

2.1. Asymptotic properties

To establish the limiting distribution of RIm,n, we assume the following three

conditions:

E1. There exist a p×m1 matrix Γ1, a p×m2 matrix Γ2, m1-dimensional random

vectors {Z1j}mj=1, and m2-dimensional random vectors {Z2j}nj=1, such that

Xj = µ1 +Γ1Z1j for j = 1, . . . ,m, and Yj = µ2 +Γ2Z2j for j = 1, . . . , n. In

addition Γi for i = 1, 2, and Zij = (Zij1, . . . ,Zijmi
)> for i = 1, j = 1, . . . ,m
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and i = 2, j = 1, . . . , n satisfy the following:

(a) Γ1Γ
>
1 = Σ1 and Γ2Γ

>
2 = Σ2, with min{m1,m2} ≥ p.

(b) {Z1j}mj=1 and {Z2j}nj=1 are independent and identically distributed

(i.i.d.), with EZ1j = 00 and Var(Z1j) = Im1
, and EZ2j = 00 and

Var(Z2j) = Im2
, where Imi

is the mi ×mi identity matrix.

(c) supi,k E|Zijk|8 < ∞ and EZ4
ijk = 3 + ∆i, for some constant ∆i. Fur-

thermore,

E
(
Zς1ijl1 · · ·Z

ςq
ijlq

)
= E

(
Zς1ijl1

)
· · ·E

(
Z
ςq
ijlq

)
(2.4)

for any positive integers q and ςl such that
∑q

l=1 ςl ≤ 8, and l1, l2, . . . , lq
are distinct indices.

E2. As min{m,n} → ∞, p → ∞, and for any i, j, k, l ∈ {1, 2}, tr(ΣiΣj) → ∞
and

tr{(ΣiΣj)(ΣkΣl)} = o{tr(ΣiΣj)tr(ΣkΣl)}. (2.5)

E3. As min{m,n} → ∞, m/(m+ n)→ τ ∈ (0, 1).

Remark 3. Condition E1 yields a general multivariate model for high-dimensional

data analysis that includes commonly used distributions such as the multivariate

normal distribution (Chen, Zhang and Zhong (2010); Srivastava and Yanagihara

(2010); Li and Chen (2012)). According to Chen and Qin (2010), min{m1,m2} ≥
p means that the rank and eigenvalues of Σ1 or Σ2 are not affected by the trans-

formation. According to Chen and Qin (2010) and He and Chen (2018), (2.4)

can be viewed as a pseudo-independent condition of Zij , that is a relaxed inde-

pendence relation that allows some margin over probabilities (Kim and Lesser

(2008)). Obviously, if Zij has independent components, then (2.4) is true.

In Condition E2, we do not require a direct relationship between p and n.

We know of cases in which E2 does not imply a relation between p and n. For

example, if all the eigenvalues of Σi are bounded away from zero and infinity, E2

holds. Some of the commonly encountered covariance structures satisfy Condition

E2 (Chen, Zhang and Zhong (2010)).

Condition E3 is a standard regularity assumption in two-sample problems,

and guarantees that m and n go to infinity proportionally.

Theorem 2. Under Conditions E1−E3, as min{m,n} → ∞, we have

RIm,n − RI(X,Y)

σm,n

D−→ N (0, 1),
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where σ2m,n is defined in (A.2) in the Supplementary Material.

Under H0, we can obtain RI(X,Y) = 0 and

σ20,m,n = 24

(
1

m
+

1

n

)2

tr2(Σ2).

Therefore, we obtain the following corollary.

Corollary 1. Under Conditions E1−E3 and H0 : Σ1 = Σ2 = Σ, as min{m,n} →
∞, we have

RIm,n
σ0,m,n

D−→ N (0, 1).

To formulate a test procedure, we need to estimate σ0,m,n. Because EA2
m =

tr(Σ2
1) and EB2

n = tr(Σ2
2), the following is a consistent estimate σ̂0,m,n of σ0,m,n

under H0:

σ̂0,m,n = 2
√

6

(
1

m
A2
m +

1

n
B2
n

)
.

Furthermore, the following theorem ensures that σ̂0,m,n is ratio consistent to

σ0,m,n.

Theorem 3. Under Conditions E1−E3 and H0 : Σ1 = Σ2 = Σ, as min{m,n} →
∞, we have

RIm,n
σ̂0,m,n

D−→ N (0, 1). (2.6)

As shown in the Supplementary Material,

A2
m

tr(Σ2
1)

P−→ 1,
B2
n

tr(Σ2
2)

P−→ 1, and
σ̂0,m,n
σ0,m,n

P−→ 1.

Theorem 3 follows from Corollary 1 and Slutsky’s theorem. Therefore, the pro-

posed test with a nominal θ level of significance rejects H0 if RIm,n ≥ σ̂0,m,nzθ,

where zθ is the upper-θ quantile of N (0, 1). The approximation results in the

Supplementary Material indicate that the standard normal distribution is an ad-

equate substitute for the null distribution of RIm,n/σ̂0,m,n.

Next, we study the power of our proposed test. Let gm,n(Σ1,Σ2; θ) =

P (RIm,n ≥ σ̂0,m,nzθ|H1) be the power of the proposed test under H1 : Σ1 6= Σ2.

Let SNRm,n(Σ1,Σ2) = RI(X,Y)/σm,n and γm,n = {tr(Σ2
1)/m+tr(Σ2

2)/n}/RI(X,

Y). Then, we obtain Theorem 4.

Theorem 4. Under Conditions E1−E3 and H1 : Σ1 6= Σ2, we have

lim
m,n→∞

gm,n(Σ1,Σ2; θ) ≥ lim
m,n→∞

Φ
{
−
√

2zθ + SNRm,n(Σ1,Σ2)
}
,
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where Φ(·) is the cumulative standard normal distribution function.

Theorem 4 indicates that the power of our proposed test is bounded from

below. The power is determined mainly by SNRm,n(Σ1,Σ2). From (A.2) in the

Supplementary Material, we have

σ2m,n ≤ 24

{
tr(Σ2

1)

m
+
tr(Σ2

2)

n

}2

+20 max{2 + ∆1, 2 + ∆2}
{
tr(Σ2

1)

m
+
tr(Σ2

2)

n

}
RI(X,Y),

that is,

SNRm,n(Σ1,Σ2) ≥
(
24γ2m,n + 20 max{2 + ∆1, 2 + ∆2}γm,n

)−1/2
.

Therefore, when γm,n → 0 as min{m,n} → ∞, we have SNRm,n(Σ1,Σ2) → ∞.

Thus, we have

lim
m,n→∞

gm,n(Σ1,Σ2; θ) = 1.

We consider the following three cases.

Case I: Let Σ1 = rIp + AR(0.1) and Σ2 = AR(0.1), where AR(ρ) = (aij)p×p
is a covariance matrix with aij = ρ|i−j|, for i, j = 1, . . . , p. Then, we have

Corollary 2.

Corollary 2. Under Conditions E1−E3 and limm,n,p→∞
√
p(m+n)r2 = c, where

0 < c <∞, we have

lim
m,n→∞

gm,n(Σ1,Σ2; θ) = 1.

Corollary 2 shows that our proposed test is very powerful when there are

many small diagonal disturbances between the two covariance matrices. In addi-

tion, under the conditions in Corollary 2, the signal-to-noise ratio of the method

proposed by Li and Chen (2012) diminishes to zero. Therefore, the power of their

test has a low bounded from below.

Case II: Let Σ1 = Ip and Σ2 = Ip + H($0, $1, p0), where H($0, $1, p0) =

(hij)p×p with hij = 0, except hii = $0 for i = 1, . . . , p0, and hi,i+1 =

hi+1,i = $1 for i = 1, . . . , p0 − 1. Then, we have Corollary 3.

Corollary 3. Under Conditions E1−E3, p/{(m+ n)p20$
2
0} = o(1) and np0$0 →

∞, we have

lim
m,n→∞

gm,n(Σ1,Σ2; θ) = 1.
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Following Cai, Liu and Xia (2013), we take $0 = O(
√
p/(m+ n)) and p0 =

p1/4. Corollary 3 shows that the proposed test is powerful. The method proposed

by Cai, Liu and Xia (2013) is also powerful under this case.

Case III: Let Σ1 = Ip and Σ2 = Ip+M , where M is a p×p matrix with Mii = 0

and Mij = ω1, for i 6= j. Then, we have Corollary 4.

Corollary 4. Under Conditions E1−E3, (m + n)pω2
1 → ∞ as m,n, p → ∞.

Then, we have

lim
m,n→∞

gm,n(Σ1,Σ2; θ) = 1.

Corollary 4 indicates that our proposed test is also very powerful under

some conditions when the diagonals are the same and there are many small

non-diagonal disturbances between the two covariance matrices.

3. Simulation Studies

We carry out numerical simulations to investigate the finite-sample perfor-

mance of our proposed method. We also consider the methods proposed by Li and

Chen (2012) (LC), Cai, Liu and Xia (2013) (Cai), Zhu et al. (2017) (sLED), and

Chang et al. (2017) (ΨB,α), the T2 method proposed by Zheng et al. (2020), and

a scale-invariant power enhancement test based on Fisher’s method (Yu, Li and

Xue, (2022)) (Fm,n). We set the nominal level of significance at 0.05. We choose

the sample sizes m = n = 60, 100 and m = 200, n = 60, and the dimension is

p = 300, 500, 800, 1000, 1200, 1500. All empirical sizes and powers are calculated

from 1,000 replications. For Σ1 and Σ2, we consider the following six scenarios:

Scenario 1: Σ
(1)
1 = Ip, the identity matrix, Σ

(1)
2 = Ip + H(0.04, 0.2, b0.3pc),

where H($0, $1, k) = (hij)p×p with hij = 0, except hii = $0 for i = 1, . . . , k

and hi,i+1 = hi+1,i = $1 for i = 1, . . . , k − 1;

Scenario 2: Σ
(2)
1 = Ip, Σ

(2)
2 = Ip +H(0.04, 0.2, p);

Scenario 3: Σ
(3)
1 = Ip, Σ

(3)
2 = Ip + Σ

(3)
∗ , where Σ

(3)
∗ =

(
σ
(3)
ij,∗
)

is a p × p matrix

with σ
(3)
ii,∗ = 0 for i = 1, . . . , p, and σ

(3)
ij,∗ = 1/

√
p for i 6= j.

Scenario 4: Σ
(4)
1 = Ip, Σ

(4)
2 = Ip +H(4, 0.05, b0.02pc);

Scenario 5: Σ
(5)
1 = Σ

(5)
∗ +δ0Ip and Σ

(5)
2 = Σ

(5)
∗ +δ0Ip+U , where Σ

(5)
∗ =

(
σ
(5)
ij,∗
)

=

D1/2CD1/2, D = diag(d1, . . . , dp) and d1, . . . , dp
i.i.d.∼ Unif(0.5, 2.5), C =

(cij), with cii = 1 and cij = 0.5 for 5(k − 1) + 1 ≤ i 6= j ≤ 5k, where
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k = 1, . . . , [p/5], and cij = 0 otherwise. U is a p× p symmetric matrix with

four nonzero entries from Unif(0, 4)×max1≤j≤p σ
(5)
jj,∗ randomly located in the

upper triangle, and another four located in the lower triangle by symmetry.

Furthermore, δ0 = |min{λmin(Σ
(5)
∗ +U), λmin(Σ

(5)
∗ )}|+0.05, where λmin(A)

denotes the minimum eigenvalue of a symmetric matrix A.

Scenario 6: Σ
(6)
1 = 0.2×Ip+AR(0.1), Σ

(6)
2 = AR(0.1), where AR(ρ) = (aij)p×p

is a covariance matrix with aii = 1 and aij = ρ|i−j|, for i 6= j;

Scenario 7: Σ
(7)
1 = 0.1× Ip +AR(0.2), Σ

(7)
2 = AR(0.24).

Scenario 8: Σ
(8)
1 = Σ

(8)
∗ +λ0Ip, Σ

(8)
2 = Σ

(8)
∗ +Q+λ0Ip, where Σ

(8)
∗ =

(
σ
(8)
ij,∗

)
1≤i,j≤p

with i.i.d. σ
(8)
ii,∗ ∼ Unif(1, 2), and σ

(8)
ij,∗ = {(|i−j|+1)2H+(|i−j|−1)2H−2(|i−

j|)2H}/2 with H = 0.85 for i 6= j. A perturbation matrix Q has b0.05pc
random nonzero elements in the diagonal and nondiagonal. Here, b0.05pc/2
nonzero elements are randomly allocated in the upper triangle of Q, and

the others are in its lower triangle, by symmetry. The magnitudes of the

nonzero elements are randomly generated from Unif(τ/2, 3τ/2), with τ =

8 max{max1≤i≤p σ
(8)
ii,∗, (log p)1/2} and λ0 = |min{λmin(Σ

(8)
∗ +Q), λmin(Σ

(8)
∗ )}|

+ 0.05.

Finally, the data are generated using Xi = Σ
1/2
1 Zi for i = 1, . . . ,m and

Yl = Σ
1/2
2 Zm+l for l = 1, . . . , n, where {Zi : i = 1, . . . ,m + n} are independent

p-dimensional random variables with i.i.d. coordinates Zij , for j = 1, . . . , p. We

consider the following four distributions for Zij :

1. The standard normal distribution N (0, 1);

2. A t-distribution with degrees of freedom 15, that is, t(15);

3. A centralized gamma distribution with a = 16, b = 0.25, that is, Γ(16, 0.25)−
4;

4. A discrete distribution that has five possible values −2,−1, 0, 3/2, 4, with

probabilities 1/12, 4/25, 13/24, 16/75, 1/600, ,respectively; that is,

Zij ∼
1

12
δ−2 +

4

25
δ−1 +

13

24
δ0 +

16

75
δ3/2 +

1

600
δ4.

This distribution is used in Yang and Pan (2017), who show that the first

four moments of Zij are the same as those of N (0, 1).
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There are reasonably small disturbances between Σ1 and Σ2, and these two

covariance matrices are reasonably sparse in Scenario 1. This is similar to the

case considered by Yang and Pan (2017). In Scenario 2, there are many small

disturbances between Σ1 and Σ2. This case was also considered by Yang and Pan

(2017) and Li and Chen (2012). In Scenario 3, the two matrices differ only in their

off-diagonal entries and have many weakly dense signals. Scenario 4 focuses on

the sparse case, with b0.02pc features exerting larger signals. Scenario 5 examines

the extremely sparse case, with eight nonzero signals in the nondiagonal entries.

Scenario 5 was considered by Cai, Liu and Xia (2013). In Scenario 6, the two

covariance matrices differ only in the diagonal. The two covariance matrices differ

by a larger amount in Scenario 7. Scenarios 6 and 7 were also considered by Wu

and Li (2015). Scenario 8 was studied by Chang et al. (2017), except that a

perturbation matrix Q adds some nonzero elements to the diagonal.

In all scenarios, we first calculate the empirical p-values when Σ1 = Σ2 = Σ(i),

for i = 1, . . . , 8. The corresponding results are given in Tables 1−15 of the

Supplementary Material. These results show that the estimated p-values of the

proposed RI method and the other six methods are controlled fairly well around

0.05 for all cases except the method proposed by Cai, Liu and Xia (2013) for the

discrete distribution.

Because the empirical power for m = n = 100 and m = 200, n = 60 are

very similar to those for m = n = 60, we present only the empirical power with

Σ1 = Σ
(i)
1 and Σ2 = Σ

(i)
2 , i = 1, . . . , 8, for m = n = 60 in Figures 1−4. The

empirical power for m = n = 100 and m = 200, n = 60 are included in the

Supplementary Material.

For Scenarios 1−2, we have the following findings:

1. Our proposed RI test is considerably more powerful than the other methods.

LC is the second most powerful, suggesting its ability to detect covariance

differences with many small disturbances, as also observed by Yang and Pan

(2017). T2 is the third most powerful because it is a weighted statistic. The

Cai, sLED, and ΨB,α methods have poor power, below 0.20 in almost all

cases.

2. The power values of the RI, LC, T2, and Fm,n methods increase from Sce-

nario 1 to Scenario 2, which is expected because we increase the small distur-

bances in the differences between the two covariance matrices. Therefore,

RI, LC, T2, and Fm,n gain power as the number of deviations increases,

even if these deviations are not large. This is expected because they are

defined from the Frobenius norm of the difference in the two covariance ma-
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trices. However, the other three methods are little affected as we increase

the differences.

3. It is not surprising, but reassuring, that the power of our proposed method

increases as the sample sizes n,m increase.

In Scenario 3, the two covariance matrices have many weakly dense signals

in the nondiagonal entries. The power values of RI, LC, sLED, T2, and Fm,n
are close to one, but those of the Cai test and ΨB,α are lower. The results are

verified by Corollary 4.

Scenario 4 contains strong sparse signals in the main diagonal of the difference

between the two covariance matrices. All seven methods perform quite well,

especially when the sample size m or n is large. The power of our proposed RI

method is close to one.

Scenario 5 contains extremely sparse strong signals in the nondiagonal dif-

ferences between the two covariance matrices. The power values of the Cai test,

T2, ΨB,α, and Fm,n are high, but those of RI, LC, and sLED are lower.

When the two covariance matrices differ in the main diagonal with sparsely

weak signals in Scenario 6, our proposed RI method still exhibits perfect power

in all cases. The power values of the other six methods are poor. The results are

verified by Corollary 2.

In Scenario 7, the two covariance matrices differ to a large degree. The power

of the RI method is close to one, whereas the other six methods are much less

powerful and not competitive with RI.

For Scenario 8, the two covariance matrices have long-range dependence,

according to Chang et al. (2017). The power of the RI method is higher than

that of the other six methods for large p.

In conclusion, the RI method has considerably higher and more stable power

than the six existing methods do in a wide range of settings. Not only can it deal

with cases with many small deviations in the difference of the covariance matrices,

but it can also handle cases with sparsely strong or sparsely weak signals. Thus,

it is applicable in a broader range of applications when testing the difference

between covariance matrices.

4. Real-Data Analysis

In this section, we apply the proposed method to analyze a gene expression

data set on breast cancer from a study reported by Schemidt et al. (2008). We

downloaded the data set from http://bioconductor.org/packages/release/

data/experiment/html/breastCancerMAINZ.html.

http://bioconductor.org/packages/release/data/experiment/html/breastCancerMAINZ.html
http://bioconductor.org/packages/release/data/experiment/html/breastCancerMAINZ.html
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Figure 1. Empirical power for Scenarios 1−8, with Zij following N (0, 1) and m = n = 60.

The data set contains gene expression patterns from 200 tumors of pa-

tients who were not treated by systemic therapy after surgery, and consists of

22,283 features. There are three groups of tumor grades: 29 well differenti-

ated tumors (group 1), 136 moderately differentiated tumors (group 2), and 35

poor/undifferentiated tumors (group 3). This data set has been analyzed in the

literature under the assumption that the two covariance matrices are equal; for

example, see Teschendorff and Caldas (2008) and Haibe-Kains et al. (2012). The

equality of the two covariance matrices is a very important assumption for the

validity of the reported findings. We test whether this assumption is valid.

Following Gentleman et al. (2016), for quality control and computational
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Figure 2. Empirical power for Scenarios 1−8, with Zij following t(15) and m = n = 60.

burden considerations, we first select the features for which more than 50% of

their intensities are greater than five and their coefficients of variation (CV) fall

within the range (0.22, 1.0). The intensities are gene expressions, as measured by

Affymetrix hgu133a technology, and the coefficient of variation is the standard

deviation divided by the absolute value of the mean. We also screen the features

using predetermined cutoffs that remove low-quality features, while retaining

high-quality features, as previously done for this data set (Sherafatian (2018);

Chong et al. (2018); Schiffman et al. (2008)). After these selection steps, 1,193

features remain in our analysis. Let Σ1, Σ2, and Σ3 be the covariance matrices of

these 1,193 features with groups 1, 2 and 3, respectively. We standardized each
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Figure 3. Empirical power for Scenarios 1−8, with Zij following Γ(16, 0.25) − 4 and
m = n = 60.

of the 1,193 features to have a mean of zero. Then, we apply the LC, Cai, sLED,

T2, ΨB,α, Fm,n, and RI methods to separately test (a) H
(1,2)
0 : Σ1 = Σ2 and (b)

H
(2,3)
0 : Σ2 = Σ3. The p-values for these methods are reported in Table 1. From

Table 1, the RI method rejects both H
(1,2)
0 and H

(2,3)
0 at the significance level of

0.05, but the LC, sLED, T2, and Fm,n methods reject H
(2,3)
0 only.

To visualize the comparison of the different methods, we plot heat maps

of (Σ̂1 − Σ̂2) and (Σ̂2 − Σ̂3) for the top 100 features with the largest absolute

values of the two-sample t-statistics, where Σ̂1, Σ̂2, Σ̂3 are the sample covariance

matrices based on the selected 100 features. The corresponding results appear in



TEST FOR HIGH DIMENSIONAL COVARIANCE MATRICES 2375

scenario7 scenario8

scenario5 scenario6

scenario3 scenario4

scenario1 scenario2

300 500 800 1 000 1 200 1 500 300 500 800 1 000 1 200 1 500

300 500 800 1 000 1 200 1 500 300 500 800 1 000 1 200 1 500

300 500 800 1 000 1 200 1 500 300 500 800 1 000 1 200 1 500

300 500 800 1 000 1 200 1 500 300 500 800 1 000 1 200 1 500

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

p

P
o
w
er

Method LC Cai sLED T2 ΨB , α Fm , n RI

Figure 4. Empirical power for Scenarios 1−8, with Zij following the discrete distribution
(1/12)δ−2 + (4/25)δ−1 + (13/24)δ0 + (16/75)δ3/2 + (1/600)δ4 and m = n = 60.

Figure 5, which shows that (Σ̂2− Σ̂3) has stronger signals than (Σ̂1− Σ̂2). Many

moderate disturbances are present in (Σ̂2− Σ̂3). The maximum absolute value in

the elements of the estimator of (Σ̂2 − Σ̂3) for the 1193 features is 8.972, which

is larger than the maximum absolute value in (Σ̂1− Σ̂2), that is, 4.648. However,

the diagonal in (Σ̂1 − Σ̂2) has much stronger signals than those in (Σ̂2 − Σ̂3).

Both Equation (2.2) and the simulation results of Scenarios 4−5 reveal that

that the proposed method is more powerful than the other three methods when

there are more signals in the diagonal for the difference of two covariance matrices.

This explains why our proposed method rejects H
(1,2)
0 , whereas the others did
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Table 1. The p-values of the LC, Cai, sLED, T2, ΨB,α, Fm,n, and RI methods for a gene
expression data set.

Method LC Cai sLED T2 ΨB,α Fm,n RI

H
(1,2)
0 0.105 0.104 0.330 0.555 0.056 0.061 1.110×10−16

H
(2,3)
0 3.050×10−6 0.093 0.000 8.157×10−9 0.052 4.577×10−6 3.030×10−9
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Figure 5. (a) heat map of (Σ̂1 − Σ̂2) for the selected 100 features; (b) heat map of
(Σ̂2 − Σ̂3) for the selected 100 features.

not. Consequently, our method is the only one able to detect a more subtle, but

very important difference in this commonly analyzed data set.

5. Discussion

Conducting inferences using for high-dimensional covariance matrices is highly

challenging. Here, we use a random integration technique to develop a two-

covariance matrix test statistic. This test can be performed without estimat-

ing the covariance matrices, which is known to be extremely difficult in high-

dimensional data. We investigate both the theoretical properties and the numer-

ical performance of our method. Our results show that it is not only competitive,

but also often much more powerful than existing methods in both simulation

studies and a real-data analysis when there are many small diagonal disturbances

between the two covariance matrices.

There are several issues that warrant further investigation. First, a gen-

eral multivariate model is applied to obtain asymptotic results. Although it is a
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common assumption in the literature, it would be useful to investigate the asymp-

totic properties of our proposed method under weaker conditions, for example,

assumption 2.1 in Han and Wu (2020). Second, we consider a two-sample test

for high-dimensional covariance matrices. As in Zheng et al. (2020), it would be

interesting to extend our method to test the equality of more than two covariance

matrices. Third, we will extend the proposed method to test for high-dimensional

correlation matrices, which is a more difficult task than testing the covariance

matrices (Zheng et al. (2019)). Finally, we use the standard multivariate normal

density function as the weight function to construct our test statistic. This is a

common practice, but it is worth investigating other choices that may perform

better under various settings.

Supplementary Material

The online Supplementary Material includes detailed proofs of the theoretical

results and additional simulation results.
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