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Abstract: Model checking for parametric ordinary differential equations is a neces-

sary step when checking whether the assumed models are plausible. In this paper,

we first introduce a trajectory matching-based test for the whole model, which can

also easily be applied to check partially observed systems. Then, we provide two

tests to identify which component function is modeled incorrectly. The first is based

on integral matching, and the second is based on gradient matching, with bias cor-

rection achieved using data splitting. We investigate their asymptotic properties

under the null, global, and local alternative hypotheses. Because there are no re-

sults for relevant parameter estimations for alternative models in the literature, we

also investigate the asymptotic properties of the nonlinear least squares estimation

and the two-step estimation under both the null and the alternatives. To examine

the performance of the tests, we conduct several numerical simulations and an anal-

ysis using a real-data example on immune cell kinetics and trafficking for influenza

infection.

Key words and phrases: Local smoothing test, model checking, ordinary differential

equations.

1. Introduction

To model how systems evolve over time, ordinary differential equations

(ODEs) are widely applied in scientific fields such as physics, ecology (Goel,

Maitra and Montroll (1971)), and neuroscience (FitzHugh (1961); Nagumo, Ari-

moto and Yoshizawa (1962)). A system of ODEs can be written as

X ′(t) =


dX1(t)
dt
...

dXp(t)
dt

 =

f1(t,X(t); θ)
...

fp(t,X(t); θ)

 = f(t,X(t); θ), t ∈ [t0, T ], (1.1)
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with an initial condition X(t0) = x0. Here, X(t) = (X1(t), . . . , Xp(t))
> is a

p-dimensional state vector, and f(t,X(t); θ) is supposed to belong to a given

parametric family of functions F = {f(·, θ) : θ ∈ Θ ⊂ Rq}. Frequently, this

system is measured on discrete time points with noise, say,

Yi = X (ti) + εi, i = 1, . . . , n, (1.2)

where the measurement error εi satisfying E(εi | ti) = 0 has a nonsingular

variance-covariance matrix Σεi , and is independent of εj , for every j 6= i. The ob-

servation process may be more complicated in real-life applications. For example,

the observable variable might be a combination or a functional of state variables.

In this study, we focus on the simple observation process case represented by

(1.2).

Here, we want to check

H0 : X ′(t) = f(t,X(t); θ0) ∈ F versus H1 : X ′(t) /∈ F , (1.3)

where θ0 is an unknown parameter vector. If we reject H0, we may further wish

to identify the component(s) that are modeled incorrectly. In this situation, for

the kth component function, the hypotheses are as follows:

H0k : X ′k(t) = fk(t,X(t); θ0k) ∈ Fk versus H1k : X ′k(t) /∈ Fk, (1.4)

with Fk = {fk(·, θk) : θk ∈ Θk ⊂ Rqk}. Here, we construct omnibus tests to check

the whole parametric ODE system (1.3) and the individual components (1.4).

To this end, we first review relevant model checking methodologies for clas-

sical regressions in the literature, which motivate the new test constructions we

need. For univariate response cases, there exist two broad classes of tests. First,

the so-called local smoothing tests are constructed by using nonparametric es-

timations; see, for example, Härdle and Mammen (1993), Zheng (1996), Dette

(1999), and Lavergne and Patilea (2012). Empirically, tests in this class are sen-

sitive to alternative models that are oscillating/highly frequent, in general. Tests

in the second class are based on residual-marked empirical processes, and take

averages over an index set. Because averaging is a global smoothing step, these

are called global smoothing tests; see, for example, Stute (1997), Stute, Thies and

Zhu (1998), Zhu (2003), and Khmaladze and Koul (2004). Such tests have better

asymptotic properties, but are less sensitive to oscillating alternative models; see

González-Manteiga and Crujeiras (2013) for a comprehensive review. For multi-

response regressions, Chen and van Keilegom (2009) constructed an empirical
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likelihood ratio test based on local smoothing.

However, the testing problems investigated here are rather different from

those for classical parametric regression models. This is because the model struc-

ture is not directly assumed on the unknown function X(·), but on its derivative

X ′(·), and only part of the whole ODE system may be observed. Furthermore,

any component of X ′(·) is related to the whole original function X(·), rather

than to any single corresponding component of X(·). This structure makes the

testing problems complicated. We discuss these issues in the following sections.

In the literature, to the best of our knowledge, there are only two relevant works

on the ODE model checking problem. Hooker (2009) proposed a goodness-of-fit

test based on estimated forcing functions for the whole ODE system. The ODE

system is transferred to a multivariate linear model under the null hypothesis

against this model, adding an empirical forcing function represented as a basis

expansion under the alternative hypothesis. Then, a likelihood-ratio test is used

to check the whole ODE system. Under normality, independent components,

and homoscedasticity assumptions on the error terms when the transferred semi-

parametric model can be viewed as a mixed-effects model, its null distribution

is tractable. The asymptotic properties under the global and local alternatives

remain unknown. For nonlinear null ODE models, the author discusses an ex-

tension in the sense that the test is based on a linear approximation that distorts

the null distribution of the test. This test cannot identify which individual com-

ponents are incorrectly modeled. Without the regularity assumptions mentioned

above, the asymptotic properties are not investigated. Hooker and Ellner (2015)

discuss this further.

In this study, we construct three tests. The first checks the whole ODE

system (1.3). It is based on a trajectory representation of the ODEs that solves

(1.1), and represents the ODE system as a multi-response function of time:

X(t) = F (t; θ), (1.5)

where F (t; θ) denotes the trajectory solution of (1.1). This test is constructed by

matching approximations of the two sides of (1.5), and thus is called a trajectory

matching-based test (TMn). It is also feasible for partially observed ODE systems

(Dattner (2015)), of which some components are not measured. However, we show

that the trajectory matching-based test fails to check each individual component

(1.4), owing to mixed component and parameter effects. Thus, we consider two

other tests for testing the components (1.4). We construct an integral matching-

based test (IMn) based on the integration representation of the ODEs: on the
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definite integral over the interval (t0, t) for both sides of (1.1),

X(t)−X(t0) =

∫ t

t0

f (s,X (s) ; θ) ds. (1.6)

Although this integral matching-based test demonstrates consistency in theory,

its empirical performance is not encouraging, owing to the cumulative error in

the integral and the estimation error in the nonparametric estimation. Therefore,

we also construct a gradient matching-based test (GMn) that is based directly

on a gradient representation of the ODEs (1.1), but with a data splitting tech-

nique to eliminate the bias. We refer to this test as the bias-corrected gradient

matching-based test. The new tests are all local smoothing-type tests, and be-

cause some useful ODE models are highly oscillating, may better detect possible

model departures from the null model.

To estimate parameters, we use the nonlinear least squares method based on

the trajectory representation (1.5) for TMn; see Xue, Miao and Wu (2010) and

Ramsay and Hooker (2017) for details. However, when checking each component

function, this estimation fails to work, because it involves all components of the

system. Thus, two-step estimation methods are considered. They first replace

the unknown functions in the integral representation (1.6) or the gradient repre-

sentation (1.1) with their nonparametric estimators, and then construct pseudo

least squares estimators; see Brunel (2008), Liang and Wu (2008), and Dattner

and Klaassen (2015). We use a gradient matching two-step estimation method

for IMn and GMn. Note that the estimation methods based on three model

representations actually pair with the three proposed tests.

In the rest of this paper, we provide detailed constructions for the three

tests, and study their asymptotic properties under the null, global, and local

alternatives. We also investigate the properties of the corresponding estimators

under both the null and alternative hypotheses, which is new, to the best of

our knowledge. All technical proofs are provided in the online Supplementary

Material. In this paper, the measurement time ti is considered random, with the

sampling probability density function p(t), which is a convenient mathematical

device used in some studies on ODE models, such as Liang and Wu (2008) and

Ding and Wu (2014).

2. Trajectory Matching-Based Test

2.1. Test statistic construction

Recall the hypotheses in (1.3) for the whole ODE system. According to the
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trajectory representation (1.5), the checking problem can be converted to testing

whether the vector function X(t) = F (t; θ0), for some θ0 ∈ Θ ⊂ Rq.
Consider the p = 1 case to motivate our construction. Recall p(t) denotes the

sampling density of the measurement time ti. Denote ‖·‖ as the Frobenius norm.

Let εi = Yi − F (ti; θ
∗
NLS), with θ∗NLS = argminθE{‖Yi − F (ti; θ)‖2}. Under H0,

εi = εi and E(εi | ti) = 0 leads to E {εiE(εi | ti)p(ti)} = 0, whereas under

H1, E(εi | ti) = X(ti) − F (ti; θ
∗
NLS) 6= 0 and E{εiE(εi|ti)p(ti)} = E[{E(εi |

ti)}2p(ti)] > 0. With the nonlinear least squares estimator θ̂NLS = argminθ∑n
i=1 ‖Yi − F (ti; θ)‖2, ei = Yi − F (ti; θ̂NLS) is the residual. Thus, we use the

sample analogue of E{εiE(εi | ti)p(ti)} to build the statistic

V Zh
n =

1

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

1

h
K

(
ti − tj
h

)
eiej ,

where K is a kernel function and h is a bandwidth parameter. This is, in spirit,

similar to the test suggested by Zheng (1996). A standardized test statistic TZhn
can be obtained easily by using V Zh

n and its variance. In the multi-response case,

we can obtain a vector version of V Zh
n as V F

n =
(
V Zh
n1 , . . . , V

Zh
np

)>
. To summarize

the information contained in V F
n , we aggregate V F

n to construct the test statistic

TMn:

TMn = n2hV F>
n (Σ̂F )−1V F

n .

Here, Σ̂F is a symmetric matrix used to normalize the test statistic:

Σ̂F =
2

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

1

h
K2

(
ti − tj
h

)
(ei � ej)(ei � ej)>,

where � denotes the element-wise product of two vectors, and ei is the residual

vector at the time point ti. By using the quadratic form and taking (Σ̂F )−1

for the normalization, we eliminate the correlation between components, placing

equal weight on each.

In practice, data are often only available for a subset of the components of the

ODE system (Dattner (2015)). For instance, we cannot observe the susceptible

population in the classical SIR model for infectious diseases. The proposed test

TMn can be extended easily to a modified test TMo
n to handle this case by

replacing the statistics of all components with their corresponding statistics of

those observed components. See the Supplementary Material for details.
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2.2. Asymptotic properties

To derive the asymptotic properties of TMn, we suppose sets A and B of the

assumptions in the Supplementary Material hold. The assumptions in set A give

the basic setting of (t, Y ) and the conditions on the kernel function and X ′(t).

The assumptions in set B place restrictions on the primitive function F (t; θ), and

have to do with the model identifiability in the nonlinear least squares estimation

(see, e.g. White (1981)).

To investigate the power of a test, we consider two kinds of local alternatives

for the ODE models. The first adds a local misspecification to the trajectory of

the ODEs:

HF
1n : X(t) = F (t; θ0) + δnL (t) , (2.1)

where L(t) = (L1(t), . . . , Lp(t))
> is a bounded multiple response function such

that X(t) 6= F (t; θ), for every θ ∈ Θ, and δn → 0 as n → ∞. Here, HF
1n in

(2.1) is similar to that in the classical regression settings. However, things are

more complicated for the ODE models, because another type of local disturbance

directly affects the derivative function X ′(·). That is, we consider the following

sequence of local alternatives:

Hf
1n : X ′(t) = f (t,X(t); θ0) + δnl (t) , (2.2)

where l(t) = (l1(t), . . . , lp(t))
> is a bounded multiple response function and

X ′(t) /∈ F . Hooker (2009) considered global alternatives in a similar manner

using empirical forcing functions. We now state the relationship between Hf
1n

and HF
1n.

Proposition 1. Given the set A of assumptions in the Supplementary Material,

then, under HF
1n in (2.1), the derivative has the form

X ′(t) = f (t,X(t); θ0) + δnv1 (t) + o(δn),

where v1 (t) = L′ (t)− (∂f (t,X(t); θ0)/∂X
>)L (t). Under Hf

1n in (2.2), the orig-

inal function can be expressed as

X(t) = F (t; θ0) + δnv2 (t) + o(δn),

where v2(t) is the solution of v′2 (t) = (∂f (t,X(t); θ0)/∂X
>)v2 (t) + l(t), with

v2(0) = 0.

Because any higher order small o term does not influence the asymptotic
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properties of the test under the local alternatives, HF
1n is asymptotically equiv-

alent to Hf
1n in this sense. However, in finite-sample cases, they may still affect

the performance of the tests. In the following, we define l(t) = v1 (t) under HF
1n,

and L(t) = v2 (t) under Hf
1n. Then, we uniformly handle these two kinds of local

alternatives.

Before exploring the limiting results of TMn, we first study the asymptotic

properties of the nonlinear least squares estimator. Recall θ∗NLS = argminθ
E{‖Yi − F (ti; θ)‖2}. We give the following proposition.

Proposition 2. Given sets A and B of the assumptions in the Supplementary

Material, and supposing the numerical error of the numerical solution is negligi-

ble, then θ̂NLS − θ∗NLS = oP (1). In addition, we have the following:

1. Under the null hypothesis θ∗NLS = θ0 and with

HḞ = E

{
p∑

k=1

∂Fk (t; θ0)

∂θ

∂Fk (t; θ0)

∂θ>

}
,

then

√
n(θ̂NLS − θ0) = H−1

Ḟ

1√
n

n∑
i=1

p∑
k=1

{
εik
∂Fk (ti; θ0)

∂θ

}
+ oP (1).

2. Under the global alternative hypothesis H1, writing θ∗NLS = θ∗1,

√
n(θ̂NLS − θ∗1) = G−1

Ḟ

1√
n

n∑
i=1

p∑
k=1

[
{Yik − Fk (ti; θ

∗
1)} ∂Fk (ti; θ

∗
1)

∂θ

]
+ oP (1),

where

GḞ = E

{
p∑

k=1

∂Fk (t; θ∗1)

∂θ

∂Fk (t; θ∗1)

∂θ>

}

−E

[
p∑

k=1

{Xk(t)− Fk (t; θ∗1)} ∂
2Fk (t; θ∗1)

∂θ∂θ>

]
.

3. Under the local alternative hypothesis HF
1n in (2.1) or Hf

1n in (2.2), we have

θ∗NLS = θ0 and

√
n(θ̂NLS − θ0) = H−1

Ḟ

1√
n

n∑
i=1

p∑
k=1

{
εik
∂Fk (ti; θ0)

∂θ

}
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+
√
nδnH

−1
Ḟ
E

{
p∑

k=1

Lk(t)
∂Fk (t; θ0)

∂θ

}
+ oP (1).

This proposition is essentially a multivariate extension of the nonlinear least

squares estimation in the literature (see, e.g., Jennrich (1969); White (1981); Li,

Chiu and Zhu (2019)).

Using the theory of U-statistics, we obtain the following asymptotic proper-

ties of TMn under the null and global alternative hypotheses.

Theorem 1. Given sets A and B of the assumptions in the Supplementary Ma-

terial, if h→ 0 and nh→∞, then we have the following:

1. Under the null hypothesis,

TMn → χ2
p, in distribution,

where χ2
p is the chi-square distribution with p degrees of freedom.

2. Under the global alternative H1,

TMn

n2h
→ V ′>ΣF ′−1V ′, in probability,

where V ′ = E[{X (t)− F (t; θ∗1)}2 � p (t)] and ΣF ′ is defined as follows: for

any element (k1, k2), with 1 ≤ k1, k2 ≤ p, σk1k2(t) = E(εik1εik2 | t),

ΣF ′
k1k2 = 2

∫
K2(u)du∫

[σk1k2(t) + {Xk1 (t)− Fk1 (t, θ∗1)} {Xk2 (t)− Fk2 (t, θ∗1)}]2 p2(t)dt.

We see that TMn under H1 diverges to infinity at a fast rate of order n2h.

We also study the asymptotic property of TMn under the local alternatives.

Theorem 2. Given sets A and B of the assumptions in the Supplementary Ma-

terial, if h → 0 and nh → ∞, then under HF
1n in (2.1) or Hf

1n in (2.2), with

n1/2h1/4δn →∞,
TMn

n2hδ4n
→ µ>ΣF−1µ, in probability,

where µ is a p-dimensional vector with the ith component

µi = E

[Li (t)− ∂Fi (t; θ0)

∂θ>
H−1
Ḟ
E

{
p∑

k=1

Lk (t)
∂Fk (t; θ0)

∂θ

}]2
p(t)

 .



MODEL CHECKING FOR ODES 1861

In particular, if δn = n−1/2h−1/4, then

TMn → χ2
p(λ), in distribution,

where χ2
p(λ) is noncentral chi-squared distribution, where the noncentrality pa-

rameter λ = µ>ΣF−1µ, with ΣF
k1k2

= 2
∫
K2(u)du×

∫
{σk1k2(t)}2 p2(t)dt.

This result shows that the test can detect the local alternatives distinct from

the null at a rate of order n−1/2h−1/4, which is the typical rate local smoothing

tests can achieve.

3. Checking the ODE Models

In the next three sections, we consider the hypotheses in (1.4) for each com-

ponent. As mentioned before, we cannot use the trajectory matching-based test

for each ODE component. We now give a detailed discussion with three aspects

on checking the ODE models.

1. Mixed components effect. We use a toy example to explain why TMn can-

not identify the incorrectly modeled component(s). Let the hypothetical

model be (X ′1(t), X
′
2(t)) = (X1(t), X1(t) + X2(t)). The true ODE sys-

tem is (X ′1(t), X
′
2(t)) = (2X1(t), X1(t) + X2(t)), with the initial values

(X1(0), X2(0)) = (1, 1). Here, only the first component is modeled incor-

rectly. However, because the second component of X ′(t) involves both com-

ponents of X(t), the trajectory of the second component in the hypothetical

model is (1+t) exp(t), whereas in the true system, it is exp(2t). Therefore, if

we use a test based on the trajectory of the ODE for the second component,

the decision of TMn based on the second component is strongly disturbed

by the model correctness of the first component, and the correctly modeled

second component is rejected. Thus, to construct the tests, we should de-

couple the relationships between the components. We do so by applying the

model-free nonparametric estimators X̂(t) and X̂ ′(t).

2. Mixed parameters effect. If different components share some of the same

parameters, the incorrectly modeled component(s) may also make the es-

timators deviate from the underlying values, causing inconsistency. Thus,

any test relying on these estimators is ineffective. To avoid this problem, we

need only use the equation of the tested component to build an objective

function for the estimation. This can be achieved using two-step methods.

To estimate θ0k, which consists of the parameters in the kth component, we
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use the following gradient matching two-step method:

θ̂kTS = argmin
θk

m∑
j=1

{
X̂ ′k
(
t∗j
)
− fk

(
t∗j , X̂

(
t∗j
)

; θk

)}2
ωk
(
t∗j
)
, (3.1)

with ωk (t) being a selected weight function, and t∗j being the selected fitted

time grid set by the user (Ding and Wu (2014)). Because only the modeled

form of the kth component is used in the objective function, this method

avoids the problem of parameters being shared by different components.

In (3.1), the number m can be larger than n. Here, X̂(t) is the local linear

estimator for X(t), and X̂ ′(t) is the local quadratic estimator for X ′(t) in the

vector version, the kth components of which, X̂k(t) and X̂ ′k(t), respectively,

are the corresponding local polynomial estimators for Xk(t) and X ′k(t) with

the bandwidth he.

3. The choice of the smoothing method. Different smoothing procedures are

employed in the following tests. Choosing a suitable smoothing method

needs careful consideration. If the purpose is to construct a test by gener-

ating a sample analogue of some quantities at the population level, a simple

method such as the Nadaraya–Watson method can be used to make the

test simpler in form. However, if the purpose is to give plug-in estimators

in the constructed test, we need to reduce the estimation error that would

affect the limiting null distribution. In the following, we choose the local

linear and quadratic methods to estimate X(t) and X ′(t), because they have

better estimation performance.

4. Integral Matching-Based Test

4.1. Test statistic construction

Hereafter, we omit the indicator k in θ0k, θk, and θ̂kTS to simplify the notation

without confusion. Similarly, as the integral matching method for the estimation,

we construct pseudo-residuals based on the integration representation (1.6):

êik = Yik −Xk(t0)−
∫ ti

t0

fk

(
t, X̂ (t) ; θ̂TS

)
dt.

Here, we use the local linear estimator X̂(t) with the bandwidth h0 and the

two-step estimator θ̂TS . Because F̂k(ti; θ̂TS) = Xk(t0) +
∫ ti
t0
fk(t, X̂ (t) ; θ̂TS)dt is

expected to converge to Fk(ti; θ0) under the null hypothesis, êik can be used as a

surrogate to replace eik = Yik−Fk(ti; θ̂NLS) in the trajectory matching-based test.
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This replacement is critical, because X̂(t) always captures the true form X(t),

which eliminates the influence of latent incorrectly modeled components. Note

that we require data on all components. Consequently, we obtain the following

integral matching-based test, IMn:

IMn =

√
n− 1

n

nh1/2V F̂
n√

Σ̂F̂
=

∑n
i=1

∑n
j=1

j 6=i

K ((ti − tj)/h) êikêjk{∑n
i=1

∑n
j=1

j 6=i

2K2 ((ti − tj)/h) ê2ikê
2
jk

}1/2

where

V F̂
n =

1

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

1

h
K

(
ti − tj
h

)
êikêjk,

Σ̂F̂ =
2

n(n− 1)

n∑
i=1

n∑
j=1

j 6=i

1

h
K2

(
ti − tj
h

)
ê2ikê

2
jk.

4.2. Asymptotic properties

As in Section 2.2, we suppose that sets A and B of the assumptions in

the Supplementary Material hold. Note that assumptions (3) and (4) in set A

ensure the uniform convergence rate for the nonparametric estimation (Hansen

(2008)). We also suppose that the assumptions in set C hold. These assumptions

are similar to those in Liang and Wu (2008), and contain the conditions on

f(t,X(t); θ) necessary for the two-step method.

In the following, we also consider two local alternatives corresponding to (2.1)

and (2.2) for any component function:

HF
1kn : Xk(t) = Fk (t; θ0) + δnLk (t) , (4.1)

with Xk(t) 6= Fk (t; θ), for every θ ∈ Θ, and

Hf
1kn : X ′k(t) = fk (t,X(t); θ0) + δnlk (t) , (4.2)

with X ′k(t) 6= fk (t,X(t); θ), for every θ ∈ Θ. Here, the subscript k represents the

kth component. Using Proposition 1, we can define the counterpart functions

lk(t) under HF
1kn and Lk(t) under Hf

1kn, and then deal with these two kinds of

local alternatives uniformly.

We first give the asymptotic properties of θ̂TS defined in (3.1) under dif-

ferent hypotheses, which are not available in the literature. Assumption (3) in

Set C ensures that there exists a unique minimizer θ∗TS = argminθEp∗ [{X ′k(t) −
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fk(t,X(t), θ)}2wk(t)], where p∗(t) is the probability density function of the se-

lected fitted time point. Denote Λ (t) = X̂(t) − X(t), ∆(t) = X̂ ′(t) − X ′(t).

Then, we have the following.

Proposition 3. Given sets A and C of the assumptions in the Supplementary

Material, log n/(nh3e) = o(1), the two-step estimator θ̂TS is consistent with θ∗TS
and has the following asymptotic representations:

1. Under the null hypothesis, we have θ∗TS = θ0, and letting

Hḟ = Ep∗

{
ωk(t)

∂fk (t,X (t) ; θ0)

∂θ

∂fk (t,X (t) ; θ0)

∂θ>

}
,

we have

θ̂TS − θ0 = H−1
ḟ

1

m

m∑
j=1

{
∆k(t

∗
j )ωk(t

∗
j )
∂fk(t

∗
j , X(t∗j ); θ0)

∂θ

− ωk(t
∗
j )
∂fk(t

∗
j , X(t∗j ); θ0)

∂θ

∂fk(t
∗
j , X(t∗j ); θ0)

∂X>
Λ
(
t∗j
)}

+ oP (n−1/2),

which is a term of order OP (n−1/2).

2. Under the global alternative hypothesis H1, we have θ∗TS = θ1 and

√
n(θ̂TS − θ1)

= G−1
√
n

m

m∑
j=1

{
∆k(t

∗
j )ωk(t

∗
j )
∂fk(t

∗
j , X(t∗j ); θ1)

∂θ

−ωk(t∗j )
∂fk(t

∗
j , X(t∗j ); θ1)

∂θ

∂fk(t
∗
j , X(t∗j ); θ1)

∂X>
Λ
(
t∗j
)}

+ oP (1),

where

G =Ep∗

{
ωk(t)

∂fk (t,X (t) ; θ1)

∂θ

∂fk (t,X (t) ; θ1)

∂θ>

}
− Ep∗

[
{Xk(t)− fk (t,X (t) ; θ1)}ωk(t)

∂2fk (t,X (t) ; θ1)

∂θ∂θ>

]
.

3. Under the local alternative hypothesis HF
1kn in (4.1) or Hf

1kn in (4.2), with
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δn → 0, we have θ∗TS = θ0 and

√
n(θ̂TS − θ0) = H−1

ḟ

√
n

m

m∑
j=1

{
∆k(t

∗
j )ωk(t

∗
j )
∂fk(t

∗
j , X(t∗j ); θ0)

∂θ

− ωk(t
∗
j )
∂fk(t

∗
j , X(t∗j ); θ0)

∂θ

∂fk(t
∗
j , X(t∗j ); θ0)

∂X>
Λ
(
t∗j
)}

+
√
nδnH

−1
ḟ
Ep∗

{
l(t)ω(t)

∂fk (t,X (t) ; θ0)

∂θ

}
+ oP (1).

Given Proposition 3, we next study the asymptotic properties of IMn. Let

εik = Yik − Xk(t0) −
∫ ti
t0
fk (t,X (t) ; θ∗TS) dt be the residual. By denoting êik =

êik+εik−εik, V F̂
n is an asymptotic U-statistic. To handle this U-statistic, we give

the following proposition about a non-degenerate U-statistic of order m∗ with a

kernel varying with n.

Proposition 4. Suppose Un is a non-degenerate U-statistic with the kernel hn(z1,

. . . , zm∗) of order m∗. If E[‖hn (z1, . . . , zm∗)‖2] = o(n), then

√
n
(
Un − Ûn

)
= oP (1),

where

Ûn = E {hn (z1, . . . , zm∗)}+
m∗

n

n∑
i=1

{E [hn (z1, . . . , zm∗) | zi]−E [hn (z1, . . . , zm∗)]}

is the projection of Un.

Applying Proposition 4, we can prove that replacing êik with eik has no

effect on the limiting null distribution of IMn. Using this property, we state

the asymptotic properties of IMn in the following theorem. Recall that X̂(t)

is the local linear estimator of X(t) with the bandwidth h0. Define an(h0) =

h20 +n−1/2h
−1/2
0 log n1/2, which is the uniform convergence rate of the local linear

estimator (Hansen (2008)).

Theorem 3. Given sets A–C of the assumptions in the Supplementary Material,

if h→ 0, nh→∞, n−1/2h−1/2 = o(h0), and a2n(h0) = o(n−1h−1/2), then we have

the following:

1. Under the null hypothesis,

IMn → N(0, 1), in distribution.
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2. Under the global alternative, IMn/(nh
1/2)→ IMH1 in probability, where

IMH1 =
E
[
{Xk (t)− F ∗k (t; θ1)}2 p (t)

]
(

2
∫
K2(u)du

∫ [
σ2k(t) +

{
Xk(t)− F ∗k (t; θ1)

}2]2
p2(t)dt

)1/2
,

with F ∗k (t; θ1) = Xk(t0) +

∫ t

t0

fk (t,X (s) ; θ1) ds and σk(t) = E(ε2ik | t).

Theorem 3 shows that this test is consistent and diverges to infinity at a rate

of order nh1/2 under H1k. The following theorem states the asymptotic property

of IMn under the local alternatives.

Theorem 4. Assume the conditions in Theorem 3, with n1/2h1/4δn →∞. Then,

under HF
1kn in (4.1) or Hf

1kn in (4.2), we have

IMn

nh1/2δ2n
→ µI

σ∗k
, in probability,

where

µI = E

([
Lk (t)− ∂Fk (t; θ0)

∂θ>
H−1
ḟ
Ep∗

{
lk (t)ωk(t)

∂fk (t,X(t); θ0)

∂θ

}]2
p(t)

)

+ 2E

([
∂Fk (t; θ0)

∂θ>
H−1
ḟ
Ep∗

{
lk (t)ωk(t)

∂fk (t,X(t); θ0)

∂θ

}
− Lk (t)

]
p (t)

×
∫ t

t0

∂fk (s,X(s); θ0)

∂XT
L (s) ds

)
+ E

[{∫ t

t0

∂fk (s,X(s); θ0)

∂XT
L(s)ds

}2

p(t)

]
,

σ∗k =

[
2

∫
K2(u)du

∫ {
σ2k(t)

}2
p2(t)dt

]1/2
.

In particular, when δn = n−1/2h−1/4,

IMn → N

(
µI
σ∗k
, 1

)
, in distribution.

5. Gradient Matching-Based Test

5.1. Test statistic construction

As noted for the integral matching-based test, the surrogate F̂k(ti; θ̂TS) =

Xk(t0) +
∫ ti
t0
fk(t, X̂ (t) ; θ̂TS)dt involves both the estimation of X(t) and the inte-
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gral over the function fk(·). In other words, the cumulative estimation error could

be large in finite-sample scenarios. Our numerical studies confirm this problem.

Thus, in this section, we consider a test that is based directly on the gradient

representation (1.1). With n∗ ≤ n observations, we give the Nadaraya–Watson

kernel estimator of X ′(t) as

X̃ ′(t) =
ψ̂′(t)p̂(t)− ψ̂(t)p̂′(t)

p̂2 (t)
,

where

ψ̂(t) =
1

n∗

n∗∑
i=1

1

h
K

(
t− ti
h

)
Yi, ψ̂′(t) =

1

n∗

n∗∑
i=1

1

h2
K ′
(
t− ti
h

)
Yi,

p̂(t) =
1

n∗

n∗∑
i=1

1

h
K

(
t− ti
h

)
, p̂′(t) =

1

n∗

n∗∑
i=1

1

h2
K ′
(
t− ti
h

)
.

Note that ef (t) = X ′k(t)− fk(t,X(t); θ0) = 0 corresponds to the null hypothesis,

otherwise to the alternative hypothesis. Thus, if we replace X ′k(t) with X̃ ′k(t) and

fk(t,X(t); θ0) by fk(t, X̂(t); θ̂TS) with θ̂TS defined in (3.1), the pseudo-residual

êf (t) = X̃ ′k(t) − fk(t, X̂(t); θ̂TS) is expected to converge to zero in probability.

Then, E{ê2f (ti)p̂
4 (ti)} is expected to converge to zero under the null, and to a

positive constant under the alternatives, where p̂4(ti) is used to eliminate the

denominator in the nonparametric estimation. Therefore, its empirical version

seems reasonably to be a test statistic:

V f
n∗ =

1

n∗h2

n∗∑
d=1

{
X̃ ′k(td)− fk(t, X̂(td); θ̂TS)

}2
p̂4 (td)

=
1

n∗h2

n∗∑
d=1

[
1

n2

n∗∑
i=1

n∗∑
j=1

{
1

h3
K ′
(
td − ti
h

)
K

(
td − tj
h

)
(Yik − Yjk)

− 1

h2
K

(
td − ti
h

)
K

(
td − tj
h

)
fk(t, X̂(td); θ̂TS)

}]2
.

Here, 1/h2 is added to obtain a non-degenerate limit, êf (t) converges to zero

rather than a zero mean random variable in probability under the null.

However, because the nonparametric kernel estimation is biased, when we

choose n∗ = n, V f
n has a non-negligible bias, even under H0. This bias is dif-

ficult to estimate, which, in turn, makes it difficult to analyze the limiting null

distribution. Thus, we suggest using a data-splitting method to build a new test.
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To this end, we randomly partition the original sample into two subsam-

ples, n∗ = ñ and n∗ = n − ñ, where ñ = bn/2c. Using these two subsamples,

we construct two statistics V f
ñ1 and V f

(n−ñ)2. Because n − 2ñ ≤ 1, the asymp-

totic properties of V f
(n−ñ)2 should be the same as those of V f

ñ2. Thus, we as-

sume that, without loss of generality, n = 2ñ is even. Therefore, the difference

V f
ñ1 − V f

ñ2 can serve as a statistic that is symmetric about zero to determine

the limiting null distribution. To increase the power of the test, we use an-

other statistic Ŝ = 1/h2
∫
{fk(t, X̂(t); θ̂TS)− X̂ ′k(t)}2dt, which is an estimator of

S = 1/h2
∫
{fk(t,X(t); θ) − X ′k(t)}2dt that is equal to zero under the null, and

is larger than zero under the alternatives. The new test statistic is their convex

combination, V f
ñ1 − V

f
ñ2 + cŜ. The key point is that, using a proper choice of

the bandwidth parameters, Ŝ has a faster rate of convergence to zero than does

V f
ñ1 − V

f
ñ2 under the null hypothesis. Thus, it does not change the limiting dis-

tribution under the null hypothesis, but provides power under the alternatives.

The constant c is a tuning parameter set by user.

By dividing by the estimator of its variance, the final test statistic is

GMn =

√
ñ(V f

ñ1 − V
f
ñ2 + cŜ)√

2Σ̂f
,

where

Σ̂f =
1

n− 1

n∑
s=1

{
ŵn(zs)−

1

n

n∑
i=1

ŵn(zi)

}2

,

ŵn(zs) =
1

b(n− 1)/4c

b(n−1)/4c∑
i=1

Wn(zi1 , zi2 , zi3 , zi4 , zs),

Wn(za, zb, zc, zd, zs) =
1

5!

∑
P

W ′n(zi1 , zi2 , zi3 , zi4 , zi5),

W ′n(za, zb, zc, zd, zs) =
1

h2
K

(
ts − ta
h

)
K

(
ts − tb
h

)
×
{

1

h3
K ′
(
ts − tc
h

)
(Yck − Yak)−

1

h2
K

(
ts − tc
h

)
fk(ts, X̂(ts); θ̂TS)

}
×
{

1

h3
K ′
(
ts − td
h

)
(Ydk − Ybk)−

1

h2
K

(
ts − td
h

)
fk(ts, X̂(ts); θ̂TS)

}
.

Here, Wn(·) is the symmetric version of W ′n(·), and
∑

P means that the sum

is taken over all permutations (i1, i2, i3, i4, i5) of {a, b, c, d, s}. Local linear and

quadratic smoothers are used to obtain X̂(t) and X̂ ′(t), respectively, with the
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corresponding bandwidths h0 and h1.

5.2. Asymptotic properties

To derive the properties, we first state sets A and C of the assumptions in the

Supplementary Material. Let bn(h) = h2 +n−1/2h−3/2 log n, which is the uniform

convergence rate of X ′(t) (Liang and Wu (2008)). Next, we state the asymptotic

properties of GMn under the null and global alternative hypotheses.

Theorem 5. Given sets A and C of the assumptions in the Supplementary Ma-

terial, if h−12 = o(n), a2n(h0)h
−2 = o(n−1/2) and b2n(h1)h

−2 = o(n−1/2), recalling

that ñ = bn/2c, we have the following:

1. Under the null hypothesis,

GMn → N(0, 1), in distribution.

2. Under the global alternative,

GMn√
ñ
→

c
∫

[fk(t,X(t); θ1)−X ′k(t)]
2 dt√

2Σf ′
> 0, in probability,

where

Σf ′ =

∫ [
25
{
fk(t,X(t); θ1)−X ′k(t)

}4
p8(t)

+ 4
{
f ′k(t,X(t); θ1)−X(2)

k (t)
}2
σ2k(t)p

8(t)

]
dt

− 25

[∫ {
fk(t,X(t); θ1)−X ′k(t)

}2
p4(t)dt

]2
.

Theorem 5 shows that the test is consistent and diverges to infinity at a rate

of
√
n under the global alternatives, although, as in the local smoothing tests,

we use a nonparametric technique. The following theorem states the asymptotic

power of GMn under HF
1kn and Hf

1kn.

Theorem 6. Assume the conditions in Theorem 5 hold. Then, under HF
1kn in

(4.1) or Hf
1kn in (4.2), with ñ1/4h−1δn →∞ and δnh

−1 = o(1),

GMn

ñ1/2h−2δ2n
→ cµG√

2Σf
, in probability,
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where

µG =

[
H−1
ḟ
Ep∗

{
lk (t)ωk (t)

∂fk (t,X (t) ; θ0)

∂θ

}]>
×
{∫

∂fk(t,X(t); θ0)

∂θ

∂fk(t,X(t); θ0)

∂θ>
dt

}
×
[
H−1
ḟ
Ep∗

{
lk (t)ωk (t)

∂fk (t,X (t) ; θ0)

∂θ

}]
+

∫
l2k(t)dt

− 2

{∫
lk(t)

∂fk(t,X(t); θ0)

∂θ>
dt

}
H−1
ḟ
Ep∗

{
lk (t)ωk (t)

∂fk (t,X (t) ; θ0)

∂θ

}
,

Σf =
1

9

{∫
u3K ′(u)du

}2 ∫ {
X

(4)
k (t)

}2
σ2k(t)p

8(t)dt.

In particular, if δn = ñ−1/4h,

GMn → N

(
cµG√
2Σf

, 1

)
, in distribution.

6. Numerical Studies

6.1. Simulations

We conduct four simulation studies to show the performance of the proposed

tests in finite-sample scenarios. In Examples 1–3, we use TMn to check the whole

ODE system, and use IMn and GMn to check each component. The subscript

denotes which component the tests check. For example, GMn1 means the GMn

test for the first component. In Example 4, we reconsider the models in Examples

1–3 as partially observed ODE systems. Suppose that only data of the second

component are measured, and that we use TMo
n to check these models. As a

competitor of TMn, we also apply Hooker (2009) test TH to check the whole

ODE system.

In particular, the simulation results show that the empirical size of IMn is

often very large in the complex ODE model settings. This may be because the

nonparametric estimations X̂(t) for all time points t have estimation errors, and

the integral over the surrogate êik of eik in finite-sample scenarios could cause a

very large cumulative error of IMn. Thus, to control the empirical size of IMn,

we use an adjusted version in the simulation.

First, we restrict the integral to be in the shorter interval (0.1, 0.9), rather

than use the whole time interval (0, 1), to avoid the boundary effect. Second,

to reduce the error caused by the integration, we split the interval into nl = 8
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equidistant parts, Tl = (l/10, (l + 1)/10), for l = 1, 2, . . . , 8, and define

êlik =

8∑
l=1

{
Yik −X̂k

(
l

10

)
−
∫ ti

min((l/10),ti)
fk

(
t, X̂ (t) ; θ̂TS

)
dt

}
I(ti ∈ Tl),

IM l
n =

∑n
i=1

∑n
j=1

j 6=i

K ((ti − tj)/h) êlikê
l
jk{∑n

i=1

∑n
j=1

j 6=i

2K2 ((ti − tj)/h) êl2ikê
l2
jk

}1/2
,

where I(·) is the characteristic function. Then, we define the test statistic as

IM∗n =

∑8
l=1 IM

l
n

2
√

2νn
,

where νn = 1 + 2n−1/2 is used to further reduce the magnitude. It can be shown

this test has the same asymptotic normality as the original test under the null

by using the Cramér–Wald device and the continuous mapping theorem. See

the Supplementary Material for additional details on selecting the smoothing

parameters and other simulation settings.

Example 1. Data sets are generated from the following ODE models:

H11 : X ′(t) =

[
dX1

dt
dX2

dt

]
= τ

[
aX1 + 0.4αcos(aX1)

aX1 + bX2 + 0.4βcos(aX1 + bX2)

]
,

H12 : X ′(t) =

[
dX1

dt
dX2

dt

]
= τ

[
aX1 + 0.1α(aX1)

3

aX1 + bX2 + 0.1β(aX1 + bX2)
3

]
,

H13 : X ′(t) =

[
dX1

dt
dX2

dt

]
= τ

[
aX1 + 2αexp(aX1)

aX1 + bX2 + 5βexp(aX1 + bX2)

]
.

We consider three cases in which the linear null ODE models are added with

different disturbance terms to form alternative ODE models. The alternatives

are oscillating functions of X in H11, and are low-frequent functions of X in both

H12 and H13. In each case, α = 0 and β = 0 correspond to the null, otherwise

to the alternative hypothesis. When only one of α and β is nonzero, only one

element ODE function is different under the alternative hypothesis. When α

and β are both nonzero, both components are then changed. In addition, τ is a

timescale parameter that transforms the arbitrary length of the time interval to

one. We set the true parameter (a, b) = (−0.06,−0.24), τ = 10, and σε = 0.05,

and the sample size is 300. The empirical size and power of the tests with a 0.05

significance level are presented in Table 1.
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The results show that TMn maintains the significance level. It also has very

good power under all of the alternative models, which are significantly larger than

IMn and GMn. This is not surprising, because TM summarizes the deviation

of all the components from the trajectory of the null model. Furthermore, TH

maintains the significance level well, with good power.

Recall that the subscript represents the component to be checked. In general,

IMn1 and IMn2 maintain the significance level, although in some cases, the

empirical size of IMn1 is slightly lower than the significance level. Furthermore,

IMn1 and IMn2 have high power in most cases, and GMn1 and GMn2 tend to

maintain the significance level. In addition, GMn1 has good power in all three

cases, whereas that of GMn2 varies in different cases. In the last two cases, when

(α, β) = (1, 1), GMn2 has low power (0.600, 0.095), but when (α, β) = (0, 1), it

has higher power (0.734, 0.120). This phenomenon worth nothing, and is quite

different to the classical testing for regressions. A possible explanation is that

the extra α suppresses the influence of the β term, making the disturbance term

in X̂ ′(t) less important.

In the third case, GMn1 shows greater power than that of IMn1. However,

for GMn2 and IMn2, the situation is the opposite. Because IMn and GMn

measure different deviation indices and have diverse normalizing factors, they

are distinctly superior in terms of sensitivity in different settings.

Example 2. Data sets are generated from the following ODE models:

H2 : X ′(t) =

[
dX1

dt
dX2

dt

]
= τ

[
a(X1 +X2 − X3

1

3 ) + αX1X2

−X1+bX2−c
a + 0.4βX1X2

]
.

This is the famous FitzHugh–Nagumo ODE system, which describes the

behavior of spike potentials in the giant axon of squid neurons (FitzHugh (1961);

Nagumo, Arimoto and Yoshizawa (1962)). Following Ding and Wu (2014), we

set the true parameter (a, b, c) = (3, 0.2, 0.34), τ = 10, σε = 0.05, and the initial

values (X1(0), X2(0)) = (1,−1). The sample size is 300. The empirical size and

power of the tests with a 0.05 significance level are reported in Table 2.

Here, TMn and TH still perform very well for checking this complex nonlinear

ODE model. Furthermore, GMn1 and GMn2 also work well in most cases. Owing

to the complex interaction between the components of the ODE system, GMn1

and GMn2 when (α, β) = (0.5, 0.5) seem to perform differently to the (α, β) =

(1, 1) setting. These simulation results again show the complexity of the ODE

testing problem.

Obviously, the size of IMn1 is out of control. Unreported results show that
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Table 1. Empirical sizes and powers in Example 1.

Hypothesis α β TMn IMn1 IMn2 GMn1 GMn2 TH

H11 0 0 0.045 0.036 0.058 0.038 0.050 0.047
0.5 0 1.000 0.510 0.059 0.279 0.034 1.000
0 0.5 1.000 0.030 0.999 0.042 0.191 1.000
0.5 0.5 1.000 0.499 0.998 0.270 0.193 1.000
1 0 1.000 1.000 0.059 1.000 0.044 1.000
0 1 1.000 0.021 1.000 0.035 0.994 1.000
1 1 1.000 0.997 1.000 1.000 0.994 1.000

H12 0 0 0.043 0.023 0.047 0.035 0.048 0.049
0.5 0 1.000 1.000 0.052 0.915 0.036 1.000
0 0.5 1.000 0.026 1.000 0.039 0.661 1.000
0.5 0.5 1.000 1.000 1.000 0.919 0.606 1.000
1 0 1.000 1.000 0.051 0.998 0.045 1.000
0 1 1.000 0.026 0.998 0.031 0.734 1.000
1 1 1.000 1.000 0.993 0.997 0.600 1.000

H13 0 0 0.046 0.026 0.049 0.037 0.050 0.059
0.5 0 1.000 0.126 0.037 0.294 0.034 1.000
0 0.5 1.000 0.033 0.849 0.040 0.078 1.000
0.5 0.5 1.000 0.134 0.721 0.296 0.062 1.000
1 0 1.000 0.171 0.044 0.906 0.048 1.000
0 1 1.000 0.025 0.982 0.031 0.120 1.000
1 1 1.000 0.161 0.875 0.893 0.095 1.000

Table 2. Empirical sizes and powers in Example 2.

Hypothesis α β TMn IMn1 IMn2 GMn1 GMn2 TH

H2 0 0 0.048 0.816 0.085 0.071 0.048 0.045
0.5 0 1.000 1.000 0.070 0.131 0.048 1.000
0 0.5 1.000 0.846 1.000 0.055 0.159 1.000
0.5 0.5 1.000 1.000 1.000 0.129 0.203 1.000
1 0 1.000 1.000 0.089 0.514 0.059 1.000
0 1 1.000 0.846 1.000 0.069 0.993 1.000
1 1 1.000 1.000 0.206 0.990 0.053 1.000

even when the sample size is increased to 10,000, the empirical size can be greatly

reduced, which suggests consistency, but is still too large to make sense. This

reminds that we must be careful to use IMn to check complex nonlinear ODE

models. Here, IMn2 performs acceptably, because the hypothetical model is now

linear with (α, β) = (0, 0).

Example 3. The null ODE system is the standard Lotka–Volterra model, which

is well known for modeling the evolution of prey–predator populations (Goel,

Maitra and Montroll (1971)). Because the tests perform similarly to those in the
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last example, we present the results in the Supplementary Material.

Example 4. The hypotheses are the same as those in the previous three ex-

amples. Here, we only collect the data of the second component only: Yi2 =

X2(t) + εi2. The results show that TMo
n can be applied for partially observed

ODE systems. See the Supplementary Material for the detailed results.

We conclude that TMn and GMn can maintain the significance level with

good power in the conducted simulations. However, IMn is only usable for check-

ing linear ODEs, and TMo
n is feasible for partially observed ODEs, and Compared

with TMn, TH also performs well in these examples. Additional results provided

in the Supplementary Material show that it may fail to maintain the significance

level in cases with dependent error components or heteroscedasticity, where TMn

still works. Thus, these two tests are complementary, but our test could be more

robust in all these scenarios.

6.2. A real-data example

Here, we apply our tests to a real data set downloaded from Hulin Wu Lab

(https://sph.uth.edu/dotAsset/3ac61148-e59e-493c-bbda-0a38ffe111e5.

zip). The data set has been analyzed to show the benefits of using a differential

equation-constrained local polynomial regression for estimating the parameters

in an ODE model for influenza virus-specific effector CD8+ T cells (Ding and

Wu (2014)). Here, we employ the proposed tests to check the adequacy of this

model. See the Supplementary Material for details of the model form and the

data set.

The value of TMn is 84.10 and the corresponding p-value is about zero.

This suggests that the whole ODE model under the null is not plausible. Next,

we use IMn and GMn to check each component function. The values of IMn

for the three component functions are (3.17, 3.26, 4.46) and the p-values are

(0.00077, 0.00056, 0). However, as noted previously, this ODE model is not lin-

ear and, thus, we need to be careful when making a decision based on the re-

sult of IMn only. The values of GMn for the three component functions are

(13.44, 2.68, 25.96) and the p-values are (0, 0.0037, 0). These results again suggest

that none of the three component functions under the null are tenable. Therefore,

we consider that the models may not fit the data well. On the other hand, we also

realize that make sense statistically are only references for investigating whether

they have biological meaning. However, this is not discussed further because it

is beyond the scope of this study.

https://sph.uth.edu/dotAsset/3ac61148-e59e-493c-bbda-0a38ffe111e5.zip
https://sph.uth.edu/dotAsset/3ac61148-e59e-493c-bbda-0a38ffe111e5.zip
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Figure 1. Time course of response and residuals.

7. Conclusion

In this paper, we have investigated model checking for parametric ODE sys-

tems and have proposed three tests.

Unlike TMn, IMn and GMn cannot deal with partially observed ODE sys-

tems. If some components are unmeasured, we cannot obtain the kernel esti-

mators to decouple the relationships between the components. Furthermore, the

two-step method used to build the tests does not work, for the same reason. In the

case, existing estimation methods usually need to draw support from the model

structure (see, e.g., Dattner (2015)). However, it is difficult to use information

about the model structure while eliminating the effects of the mixed components

and mixed parameters in hypothesis testing. Thus we may need to use other

methods, such as the semiparametric approach used by Hooker (2009) or the

profiling method (Ramsay et al. (2007)). How to identify incorrectly modeled

components in partially observed systems deserves further study.

We have discussed two kinds of alternatives in which the disturbances are

represented as functions of time in the mathematical analysis. However, we have

only tried the alternatives that have disturbances on X ′(t) depending on X(t)

our simulations. In finite-sample scenarios, the power may be quite different for

alternatives with other disturbances, such as disturbances on X(t) or momentary

disturbances not depending on X(t). Trying different kinds of alternatives is left
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to further research.

Several other issues are worth investigating in future studies. First, we find

that GMn outperforms IMn, but is still not satisfactory in some cases. Solving

this problem is important . Second, as seen in the limited simulations, IMn finds

it difficult to control the significance level, owing to its sensitivity to the non-

parametric estimator. Modifing it is a nontrivial task. Third, for ODE models,

when the ODE system is large, p is large, which is a challenging problem.

Supplementary Material

The online Supplementary Material includes additional conditions, remarks

on the notation, lemmas, technical proofs, and other specific details.
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