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The following table provides a summary of notation used in the proofs.

Basic Notation

T Failure time

C Censoring time

Y = min(T,C): observed time

δ = 1(T ≤ C): censoring indicator

Fi, fi Survival distribution of i-th observation, fi = dFi

Gi Censoring distribution of i-th observation

A A node, internal or terminal

A = {Au}u∈U , the collection of all terminal nodes in a single tree

Λ(t|x) Cumulative hazard function (CHF)

Λ̂n, Λ̂A,n, Λ̂A ,n NA estimator on a set of samples, a node A, or an entire tree A

Λ∗n, Λ∗A,n, Λ∗A ,n Censoring contaminated averaged CHF on a set of samples, a node A, or

the entire tree A

Λ∗, Λ∗A, Λ∗A Population versions of Λ∗n, Λ∗A,n and Λ∗A ,n, respectively

Λ̃n, Λ̃A,n, Λ̃A ,n Biased correct NA estimator on a set of samples, a node A, or an entire

tree A

k Minimum leaf size

α Minimum proportion of observations contained in child node

B Number of trees in a forest

Vα,k(D) Set of all {α, k} valid partitions on the feature space X

Hα,k(D) Set of all {α, k} valid forests on the feature space X

R Approximation node

R The set of approximation nodes

N(t) Counting process

K(t) At-risk process

µ(R), µ(A) The expected fraction of training samples inside R,A

#R, #A The number of training samples inside R,A

MF ,MC ,MN Set of indices of failure variables, censoring variables, noise variables, re-

spectively
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Constants

d(d0, d1) Dimension of (failure, censoring) covariates

τ The positive constant as the upper bound of Y

M Lower bound of pr(Y ≥ τ |X)

ζ A constant used in Assumption 2

L Bound of the density function f(t)

L1, L2 Lipschitz constant of Λ and λ

`, `′ Minimum effect size of marginal signal of the failure distribution

γ Bound for weak dependency

S1

Algorithm 1: Pseudo algorithm for survival forest models

Input: Training set Dn, terminal node size k, number of trees B;

1 for b = 1 to B do

22 Initiate A = X , a bootstrap sample Dbn of Dn, Kb = ∅, u = 1;

33 At a node A, if
∑
Xi∈Dbn

1(Xi ∈ A) < k, proceed to Line 5. Otherwise,

construct a splitting rule such that A = Aleft ∪Aright, where

Aleft ∩Aright = ∅. ;

44 Send the two child nodes Aleft and Aright to Line 3 separately;

55 Conclude the current node A as a terminal node Abu, calculate Λ̂Abu,n using

the within-node data, and update Kb = Kb ∪ {u} and u = u+ 1;

6 end

7 return {{Abu, Λ̂Abu,n}u∈Kb}
B
b=1



Algorithm 2: A marginal splitting rule for survival forest

11 At any internal node A containing at least 2k training samples, we pick a

splitting variable j ∈ {1, . . . , d} uniformly at random;

22 We then pick the splitting point c̃ using the following rule such that both child

nodes contain at least proportion α of samples at A:

c̃ = arg max
c

∆1(c),

where ∆1(c) = maxt<τ
∣∣Λ̂A+

j (c),n(t)− Λ̂A−j (c),n(t)
∣∣, A+

j (c) = {X : X(j) ≥ c},

and A−j (c) = {X : X(j) < c}, X(j) is the j-th dimension of X;

33 If the variable j has already been used along the sequence of splitting rules

leading up to A, or the following inequality holds for some constant M3:

∆1(c̃) ≥ (γ2 − γ−2)
τL

M2
+M3

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

we split at c̃ along the j-th variable, where L and M3 can be regarded as

tuning parameters obtained by cross-validation. If not, we randomly sample

another variable out of remaining feasible variables and proceed to Step 2).

When there is no remaining variable, we randomly select an index out of d

and split at c̃.
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Proof of Lemma 1. For simplicity, we prove the results for the case when

there are no ties in the failure time. The proof follows mostly Cuzick (1985).

Let n1 > n2 > . . . > nk ≥ 1 be the sequence of counts of the at-risk sample

size, i.e., nj =
∑n

i=1 1(Yi ≥ tj), where ti is the ith ordered failure time.

Then the Kaplan–Meier estimator at any observed failure time point tj

can be expressed as ŜKM(tj) =
∏j

i=1(ni− 1)/ni, while the Nelson–Altshuler

estimator at the same time point is ŜNA(tj) = exp{−
∑j

i=1 1/ni}. We first

apply the Taylor expansion of e−ni for ni ≥ 1:

1− 1/ni < e−ni < 1− 1/ni + 1/(2n2
i ) ≤ 1− 1/(ni + 1).

Thus we can bound the Nelson–Altshuler estimator with

ŜKM(tj) < ŜNA(tj) <
∏j

i=1 ni/(ni + 1).

To bound the difference between the two estimators, note that for nj ≥ 2,

∣∣∣ŜKM(tj)− ŜNA(tj)
∣∣∣ < ∣∣∣ŜKM(tj)−

∏j
i=1 ni/(ni + 1)

∣∣∣
= ŜKM(tj)

∣∣∣1−∏j
i=1

ni/(ni+1)
(ni−1)/ni

∣∣∣
≤ ŜKM(tj)

∑j
i=1(n

2
i − 1)−1

≤ 2ŜKM(tj)
∑j

i=1 n
−2
i

≤ 4ŜKM(tj)/nj. (S2.1)



Now note that both the Kaplan–Meier and the Nelson–Altshuler estimators

stay constant within (ti, ti+1), and this bound applies to the entire interval

(0, tk) for nk ≥ 2. �

Proof of Theorem 1. Recall the counting process

N(s) =
n∑
i=1

Ni(s) =
n∑
i=1

1(Yi ≤ s, δi = 1),

and the at risk process

K(s) =
n∑
i=1

Ki(s) =
n∑
i=1

1(Yi ≥ s).

We prove the theorem based on the following key results.

Lemma S1. Provided Assumption 1 holds, for arbitrary ε > 0 and n such

that 1
n
≤ ε2

2
, we have

pr(sup
t≤τ
| 1
n

n∑
i=1

{Ki(s)− E[Ki(s)]}| > ε) ≤ 8(n+ 1) exp
{−nε2

32

}
,

pr(sup
t≤τ
| 1
n

n∑
i=1

{Ni(t)− E[Ni(t)]}| > ε) ≤ 8(n+ 1) exp
{−nε2

32

}
.

Lemma S2. Provided Assumption 1 holds, for any ε > 0, we have

pr(sup
t≤τ
|
∫ t

0

(
1

K(s)
− 1

E[K(s)]
)dN(s)| > ε) ≤ 8(n+ 2) exp

{
− nmin(ε2M4,M2)

128

}
,

where n satisfies 1
n
< min( ε

2

2
, ε

2M4

4
) and M is defined in Assumption 1.

Lemma S3. Provided Assumption 1 holds, for any ε > 0, we have

pr(sup
t≤τ
|
∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

| > ε) ≤ 8(n+ 1) exp
{
− nε2M2

228

}
,

where n satisfies 1
n
≤ ε2

2
and M is defined in Assumption 1.
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The proof of Lemma S1 follows pages 14–16 in Pollard (2012). The

proofs of Lemma S2 and S3 are presented below. Now we are ready to

prove Theorem 1. Note that

pr
(

sup
t<τ
|Λ̂n(t)− Λ∗n(t)| > ε1

)
= pr

(
sup
t<τ
|Λ̂n(t)−

∫ t

0

dE[N(s)]

E[K(s)]
| > ε1

)
≤ pr

(
sup
t≤τ

∣∣∣ ∫ t

0

[ 1

K(s)
− 1

E[K(s)]

]
dN(s)

∣∣∣ > ε1
2

)
+ pr

(
sup
t≤τ

∣∣∣ ∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

∣∣∣ > ε1
2

)
.

By Lemma S2, the first term is bounded by 8(n+2) exp {−nmin(ε21M
4,4M2)

512
}.

By Lemma S3, the second term is bounded by 8(n+ 1) exp {−nε21M
2

1152
}. The

sum of these two terms is further bounded by 16(n + 2) exp {−nε21M
4

1152
} for

any ε1 ≤ 2 and n > 4
ε21M

4 . This completes the proof. �

Proof of Lemma S2. For any t ≤ τ ,

∣∣∣ ∫ t

0

(
1

K(s)
− 1

E[K(s)]
)dN(s)

∣∣∣
≤
∫ t

0

|E[K(s)]−K(s)|
K(s)E[K(s)]

dN(s)

≤
∫ t

0

sup
0<r≤τ

|E[K(r)]−K(r)|

K(s)E[K(s)]
dN(s). (S2.2)

Thanks to Hoeffding’s inequality, we have

pr
(∣∣K(τ)− E[K(τ)]

∣∣ > nM

2

)
< 2 exp

{
− nM2

2

}
.



Then (S2.2) is further bounded by

n

(nM)2/2
sup
0<t≤τ

∣∣E[K(t)]−K(t)
∣∣.

Combining with Lemma S1, we have

pr
(

sup
t≤τ

∣∣∣ ∫ t

0

(
1

K(s)
− 1

E[K(s)]
)dN(s)

∣∣∣ > ε
)

≤ pr
( 2

nM2
sup
t≤τ
|E[K(t)]−K(t)| > ε

)
≤ 8(n+ 2) exp

{
− nmin(ε2M4,M2)

128

}
,

for any n satisfying 1
n
< min( ε

2

2
, ε

2M4

4
). This completes the proof. �

Proof of Lemma S3. For any t ≤ τ , we utilize integration by parts to

obtain∣∣∣ ∫ t

0

1

EK(s)
d{N(s)− E[N(s)]}

∣∣∣
=
∣∣∣N(s)− E[N(s)]

E[K(s)]

∣∣t
0
−
∫ t

0

{N(s)− E[N(s)]}d
{ 1

E[K(s)]

}∣∣∣
≤ 2 sup

t≤τ

∣∣N(t)− E[N(t)]
∣∣ 1

E[K(τ)]
+ sup

t≤τ

∣∣N(t)− E[N(t)]
∣∣ ∫ τ

0

d
{ 1

E[K(s)]

}
≤ 3

M
sup
t≤τ

1

n

∣∣N(t)− E[N(t)]
∣∣.

Thanks to Lemma S1, we now have

pr
(

sup
t≤τ

∣∣∣ ∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

∣∣∣ > ε
)

≤ pr
( 3

nM
sup
t≤τ

∣∣N(t)− E[N(t)]
∣∣)

≤ 8(n+ 1) exp
{
− nε2M2

288

}
,
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where n satisfies 1
n
≤ ε2

2
. This completes the proof. �

S3

Preliminary. The proof of Theorem 2 uses two main mechanisms: the

concentration bound results we established in Theorem 1 to bound the

variations in each terminal node, and a construction of a parsimonious set

of rectangles, namely R, defined in Wager and Walther (2015). We first

introduce some notation. Denote the rectangles R ∈ [0, 1]d by

R =
d⊗
j=1

[r−j , r
+
j ], where 0 ≤ r−j < r+j ≤ 1 for all j = 1, · · · , d.

The Lebesgue measure of rectangle R is λ(R) =
∏d

j=1(r
+
j − r−j ). Here we

define the expected fraction of training samples and the number of training

samples inside R, respectively, as follows:

µ(R) =

∫
R
f(x)dx,#R = |{i : Xi ∈ R}|.

We define the support of rectangle R as S(R) = {j ∈ 1, . . . , d : r−j 6=

0 or r+j 6= 1}.

Lemma S4 below shows that with high probability there are enough

observations larger than or equal to τ on the rectangle R.

Lemma S4. Provided Assumption 1 holds, the number of observations

larger than or equal to τ on all R ∈ R is larger than
(

1−
√

4 log(|R|
√
n)

kM

)
kM



with probability larger than 1− 1/
√
n.

Proof. For one R ∈ R, by the Chernoff bound, with probability larger

than 1−exp
{
− c2#RM

2
)
}
≥ 1−exp

{
− c2kM

4
)
}

, the number of observations

larger than or equal to τ on R is larger than (1 − c)kM , where 0 < c < 1

is a constant. Thus with probability larger than 1 − 1/
√
n, the number

of observations larger than or equal to τ on every R ∈ R is larger than(
1−

√
4 log(|R|

√
n)

kM

)
kM .

Proof of Theorem 2. We first establish a triangle inequality by picking

some element R in the set R such that it is a close approximation of A

and R ⊆ A.

sup
t<τ,A∈A ,A ∈V

∣∣Λ̂A,n(t)− Λ∗A,n(t)
∣∣

≤ sup
t<τ,A∈A ,A ∈V

inf
R∈R

∣∣Λ̂A,n(t)− Λ̂R(t)
∣∣

+ sup
t<τ,R∈R,#R≥k/2

∣∣Λ̂R,n(t)− Λ∗R,n(t)
∣∣

+ sup
t<τ,A∈A ,A ∈V

inf
R∈R

∣∣Λ∗R,n(t)− Λ∗A,n(t)
∣∣. (S3.1)

Here, we have #R ≥ k/2 in the sub-index of the second term because

#A ≥ k and from Theorem 10 in Wager and Walther (2015), #A−#R ≤

3ζ2#A/
√
k + 2

√
3 log(|R|)#A + O(log(|R|)) = o(k) for any possible A

with probability larger than 1− 1/
√
n.

We now bound each part of the right hand side of the above inequality.

Note that we always select a close approximation of A from the set R.
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With a slight abuse of notation, we let the subject index i first run through

the observations within R and then through the observations in A but not

in R. This can always be done since R ⊆ A. Thus we have

sup
t<τ,A∈A ,A ∈V

∣∣Λ̂R,n(t)− Λ̂A,n(t)
∣∣

≤ sup
t<τ,A∈A ,A ∈V

∣∣∣∑
s≤t

[∆N(s)]R∑#R
i=1 1(Yi ≥ s)

−
∑
s≤t

[∆N(s)]R + [∆N(s)]A\R∑#A
i=1 1(Yi ≥ s)

∣∣∣
= sup

t<τ,A∈A ,A ∈V

∣∣∣∑
s≤t

[∆N(s)]R∑#R
i=1 1(Yi ≥ s)

−
∑
s≤t

[∆N(s)]R + [∆N(s)]A\R∑#R
i=1 1(Yi ≥ s) +

∑#A
i=#R+1 1(Yi ≥ s)

∣∣∣
≤ sup

t<τ,A∈A ,A ∈V

{ #A∑
j=#R+1

∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

+

#R∑
j=1

[ ∆N(sj)∑#R
i=1 1(Yi ≥ sj)

− ∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]}
,

where N(s) =
∑n

i=1Ni(s) =
∑n

i=1 1(Yi ≤ s, δi = 1). By Lemma S4 the first

term is bounded by

#A −#R(
1−

√
4 log(|R|

√
n)

kM

)
kM

≤ 1(
1−

√
4 log(|R|

√
n)

kM

)
M

[6ζ2√
k

+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
,



and the second term is bounded by

#R∑
j=1

[ ∆N(sj)∑#R
i=1 1(Yi ≥ sj)

− ∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]

≤
#R∑
j=1

∆N(sj)
∑#A

i=#R+1 1(Zi ≥ sj)[∑#R
i=1 1(Yi ≥ sj)

][∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]
≤

#R∑
j=1

∆N(sj)(#A −#R)[∑#R
i=1 1(Yi ≥ sj)

][∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]
≤ #R(#A −#R)(

1−
√

4 log(|R|
√
n)

kM

)2
k2M2

≤ 2(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[6ζ2√
k

+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
.

Combining these two terms, the first part of Equation (S3.1) is bounded

by

3(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[6ζ2√
k

+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
, (S3.2)

with probability larger than 1− 1/
√
n. For the second part, by Theorem 1,

sup
t<τ,R∈R,#R≥k/2

∣∣Λ̂R,n(t)− Λ∗R,n(t)
∣∣ ≤ {1728 log(n)}1/2

k1/2M2
, (S3.3)

with probability larger than 1 − 1/
√
n. The third part of Equation (S3.1)
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is bounded by

sup
t<τ,A∈A ,A ∈V

∣∣Λ∗A,n(t)− Λ∗R,n(t)
∣∣

≤ sup
t<τ,A∈A ,A ∈V

∣∣∣ ∫ t

0

∑#A
i=1{1−Gi(s)}dFi(s)∑#A

i=1{1−Gi(s)}{1− Fi(s)}
−
∫ t

0

∑#R
i=1{1−Gi(s)}dFi(s)∑#R

i=1{1−Gi(s)}{1− Fi(s)}

∣∣∣
≤ sup

t<τ,A∈A ,A ∈V

∫ t

0

∣∣∣∣
[∑#R

i=1{1−Gi(s)}dFi(s)
][∑#A

i=#R+1{1−Gi(s)}{1− Fi(s)}
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#A

i=1{1−Gi(s)}{1− Fi(s)}
]

−
[∑#A

i=#R+1{1−Gi(s)}dFi(s)
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#A

i=1{1−Gi(s)}{1− Fi(s)}
]∣∣∣∣

≤ sup
t<τ,A∈A ,A ∈V

τ
#A(#A −#R)

#R#AM4

≤ 2τ

M4
{3ζ2√

k
+ 2

√
3 log(|R|)

k
+O(

log(|R|)
k

)}. (S3.4)

Combining inequalities (S3.2), (S3.3) and (S3.4) and Corollary 8 in

Wager and Walther (2015), we obtain the desired adaptive concentration

bound. With probability larger than 1− 2/
√
n, we have

sup
t<τ,A∈A ,A ∈V

|Λ̂A,n(t)− Λ∗A,n(t)|

≤ 3(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[6ζ2√
k

+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]

+
(1728 log n)1/2

k1/2M2
+

2τ

M4

{3ζ2√
k

+ 2

√
3 log(|R|)

k
+O

( log(|R|)
k

)}
≤ M1

[√ log(|R|)
k

+

√
log(n)

k

]
≤M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

where M1 is an universal constant. This completes the proof of Theorem

2. �



Corollary S1. Suppose Assumptions 1-3 hold. Then all valid forests con-

centrate on the censoring contaminated forest with probability larger than

1− 2/
√
n,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1 ,n(t | x)− Λ∗{A(b)}B1 , n
(t | x)

∣∣∣
≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for some universal constant M1.

Proof of Corollary S1. Since for any A ∈ Vα,k(Dn) we have

sup
t<τ, x∈[0,1]d

∣∣∣Λ̂A ,n(t | x)− Λ∗A ,n(t | x)
∣∣∣ ≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

and furthermore if lim inf
n→∞

(d/n)→∞, for any A ∈ Vα,k(Dn),

sup
t<τ, x∈[0,1]d

∣∣∣Λ̂A ,n(t | x)− Λ∗A ,n(t | x)
∣∣∣ ≤ M1

√
log(n) log(d)

k log((1− α)−1)
.

By the definition of Hα,k(Dn), any {A(b)}B1 belonging to Hα,k(Dn) is

an element of Vα,k(Dn). Hence we have,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1 ,n(t | x)− Λ∗{A(b)}B1 , n
(t | x)

∣∣∣
≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for some universal constant M1. �
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Proof of Theorem 3. In order to show consistency, we first show that

each terminal node is small enough in all d dimensions. Let m be the lower

bound of the number of splits on the terminal node A containing x, and

mi be the number of splits on the i-th dimension. Then we have

nαm = k, m = log1/α(n/k) =
log n− log k

log(1/α)
and

d∑
i=1

mi = m.

The lower bound of the number of splits on the i-th dimension mi has

distribution Binomial(m, 1
d
). By the Chernoff bound on each dimension,

pr
(
mi >

(1− c2)m
d

)
> 1− exp

{
− c22m

2d

}
with any 0 < c2 < 1. Then, by Bonferroni,

pr
(

minmi >
(1− c2)m

d

)
> 1− d exp

{
− c22m

2d

}
.

Suppose we are splitting at the i-th dimension on a specific internal node

with ν observations. Recall the splitting rule is choosing the splitting point

randomly between the max((k + 1), dανe)-th, and min((n − k − 1), b(1 −

α)νc)-th observations. Without loss of generality, we consider splitting

between the dανe-th and b(1 − α)νc-th observations. The event that the

splitting point is between qα and q1−α happens with probability larger than

c3, where qα is the α-th quantile of the i-th component of X conditional on

the current internal node and previous splits. Here c3 = (1− 2α)/8 and is



just a lower bound. Since with probability larger than 1/4, the bα+0.5
2
νc-

th order statistic is larger than α and the d1.5−α
2
νe-th order statistic is

less than 1 − α for large enough ν, where ν is known to be larger than

2k. So with probability larger than c3, the splitting point is between qα

and q1−α. Thanks to Assumption 2, conditioning on the current internal

node and previous splits, maxx(j) p(x
(j))/minx(j) p(x

(j)) < ζ2, where p(x(j))

is the marginal distribution of x(j). So with probability larger than c3, the

splitting point falls into the interval [α/ζ2, 1− α/ζ2].

The number of splits which partition the parent node to two child nodes

with proportion of length between both α and 1− α on the i-th dimension

of the terminal node A is denoted by m∗ and is Binomial(mi, c3). By the

Chernoff bound, for any 0 < c4 < 1,

pr
(
m∗ ≥ (1− c4)c3mi

)
≥ 1− exp

{
− c24c3mi

2

}
.

If we denote the length of the i-th dimension on the terminal node A as li,

pr
(
li ≤ (1− α/ζ2)(1−c4)c3mi

)
≥ 1− exp

{
− c24c3mi

2

}
.

Furthermore, by combining the d dimensions together, we obtain

pr
(

max
i
li ≤ (1− α/ζ2)(1−c4)c3 minimi

)
≥ 1− d exp

{
− c24c3 minimi

2

}
,

and then

max
x1,x2∈A

||x1 − x2|| ≤
√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d ,
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with probability larger than 1−d exp
{
− c22m

2d

}
−d exp

{
− (1−c2)c3c24m

2d

}
. Hence,

for any observation xj inside the node A containing x, by Assumption 4,

we have

sup
t<τ
|F (t | x)− F (t | xj)| ≤ L1

√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d ,

sup
t<τ
|f(t | x)− f(t | xj)| ≤ (L2

1 + L2)
√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d ,

where f(· | x) and F (· | x) denote the true density function and distribution

function at x ∈ A, respectively. Then Λ∗A,n(t) has the upper and lower

bounds ∫ t

0

f(s | x) + b1
1− F (s | x)− b2

ds and

∫ t

0

f(s | x)− b1
1− F (s | x) + b2

ds,

respectively, where

b1 = (L2
1 + L2)

√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d , and b2 = L1

√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d .

Hence, |Λ∗A,n(t)− Λ(t | x)| has the bound∫ t

0

b1(1− F (s | x)) + b2f(s | x)

(1− F (s | x)− b2)(1− F (s | x))
ds ≤M2τ

√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d ,

for any t < τ , where M2 is some constant depending on L1 and L2. Hence,

for the terminal node A containing x, we bound the bias by

sup
t<τ
|Λ∗A,n(t)− Λ(t | x)| ≤M2τ

√
d(1− α/ζ2)

c3(1−c4)(1−c2)m
d ,

with probability larger than 1 − d exp
{
− c22m

2d

}
− d exp

{
− (1−c2)c3c24m

2d

}
.

Combining this with the adaptive concentration bound result from Theorem



2, for each x, we further have

sup
t<τ
|Λ̂A ,n(t | x)− Λ(t | x)| = O

(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

)
,

with probability larger than 1− wn, where

wn =
2√
n

+ d exp
{
−
c22 log1/α(n/k)

2d

}
+ d exp

{
−

(1− c2)c3c24 log1/α(n/k)

2d

}
,

and c1 = c3(1−c2)(1−c4)
log1−α(α)

. This completes the proof of point-wise consistency.

�

Proof of Theorem 4. From Theorem 3, we need to establish the bound of

|Λ̂A ,n(t | x)− Λ(t | x)| under an event with small probability wn. Noticing

that Λ̂A ,n(t | x) is simply the Nelson-Aalen estimator of the CHF with at

most k terms, for any t < τ , we have

Λ̂A ,n(t | x) ≤ 1

k
+ . . .+

1

1
= O(log(k)),

which implies that

|Λ̂A ,n(t | x)− Λ(t | x)| ≤ O(log(k)).

Then we have

sup
t<τ

EX
∣∣Λ̂n(t | X)− Λ(t | X)

∣∣
= O

(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d + log(k)wn

)
,
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which leads to the following bounds:

sup
t<τ

EX |Λ̂{A(b)}B1 ,n(t | X)− Λ(t | X)|

= lim
B→∞

sup
t<τ

EX |
1

B

B∑
b=1

Λ̂A(b),n(t | X)− 1

B

B∑
b=1

Λ(t | X)|

≤ lim
B→∞

1

B

B∑
b=1

sup
t<τ

EX |Λ̂A(b),n(t | X)− Λ(t | X)|

= O
(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d + log(k)wn

)
. �

S5

Lemma S5. Under Assumption 1 and assume that the density function

of the failure time fi(t) = dFi(t) is bounded above by L for each i. The

difference between Λ∗A,n(t) and Λ∗A(t) is bounded by

sup
t<τ

∣∣Λ∗A,n(t)− Λ∗A(t)
∣∣ ≤√4τ 2L2 log(4

√
n)

M2n
,

with probability larger than 1− 1/
√
n.

Proof. By Hoeffding’s inequality, we have for each s ≤ t,

pr
( ∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)]fi(s)− EX{[1−G(s | X)]f(s | X)}
∣∣∣

≥
√
L2 log(4

√
n)

2n

)
≤ 1

2
√
n
,



and

pr
( ∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)][1− Fi(s | X)]− EX{[1−G(s | X)][1− F (s | X)]}
∣∣∣

≥
√

log(4
√
n)

2n

)
≤ 1

2
√
n
.

After combining the above two inequalities, we have

sup
t<τ

∣∣Λ∗A,n(t)− Λ∗A(t)
∣∣ ≤√4τ 2L2 log(4

√
n)

M2n
,

with probability larger than 1− 1/
√
n.

Proof of Lemma 2. In a similar way as done for Lemma S5, for each

s ≤ t,

pr

(∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)]fi(s)− EX{[1−G(s | X)]f(s | X)}
∣∣∣

≥
√
L2 log(4

√
n|R|)

2n

)
≤ 1

2
√
n
,

and

pr

(∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)][1− Fi(s | X)]− EX{[1−G(s | X)][1− F (s | X)]}
∣∣∣

≥
√

log(4
√
n|R|)

2n

)
≤ 1

2
√
n
.

Thus, with probability larger than 1/
√
n,

|Λ∗A,n(t)− Λ∗A(t)| ≤
√

4τ 2L2 log(4
√
n|R|)

M2n

≤ M2

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for all t < τ and all A ∈ A ,A ∈ Vα,k(Dn), where M2 is some universal

constant depending on L and M . �
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Lemma S6. Under the marginal screening splitting rule given in Algorithm

2, uniformly across all internal nodes, we essentially only split on (d0 + d1)

dimensions with probability larger than 1− 3/
√
n on the entire tree.

Proof of Lemma S6. We prove the lemma in two parts. In the first part,

we show that the event that a survival tree ever splits on a noise variable

has with probability smaller than 3/
√
n. In the second part, we prove that

if a failure variable is randomly selected and has never been used in the

upper level of the tree, then the probability that the proposed survival tree

splits on this variable is at least 1− 3/
√
n.

We start with defining ∆∗(c) = maxt<τ
∣∣Λ∗A+

j (c)
(t) − Λ∗A−j (c)

(t)
∣∣. Then

for any noise variable j,

∆∗(c) = max
t<τ

∣∣Λ∗A+
j (c)

(t)− Λ∗A−j (c)
(t)
∣∣

= max
t<τ

∣∣∣∣ ∫ t

0

E
X∈A+

j (c)
[1−G(s | X)]dF (s | X)

E
X∈A+

j (c)
[1−G(s | X)][1− F (s | X)]

−
∫ t

0

E
X∈A−j (c)

[1−G(s | X)]dF (s | X)

E
X∈A−j (c)

[1−G(s | X)][1− F (s | X)]

∣∣∣∣
= max

t<τ

∣∣∣∣ ∫ t

0

∫
x(j)≥c

∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))p(x(−j)|x(j))p(x(j))dx(−j)dx(j)∫

x(j)≥c

∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]p(x(−j)|x(j))p(x(j))dx(−j)dx(j)

−
∫ t

0

∫
x(j)<c

∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))p(x(−j)|x(j))p(x(j))dx(−j)dx(j)∫

x(j)<c

∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]p(x(−j)|x(j))p(x(j))dx(−j)dx(j)

∣∣∣∣
= max

t<τ
|(I)− (II)|,

where Ad−1 refers to integrating over d dimensions except variable j on

the internal node A and x(−j) refers to d − 1 dimensions of x except the

coordinate j. Without loss of generality, we assume that (I) > (II) when

the maximum is achieved. By Assumption 5,

(I) <

∫ t

0

∫
x(j)≥c

∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))pA(x(−j))γp(x(j))dx(−j)dx(j)∫

x(j)≥c

∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]pA(x(−j))γ−1p(x(j))dx(−j)dx(j)

,



(II) >

∫ t

0

∫
x(j)<c

∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))pA(x(−j))γ−1p(x(j))dx(−j)dx(j)∫

x(j)<c

∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]pA(x(−j))γp(x(j))dx(−j)dx(j)

,

where pA(x(−j)) refers to the marginal distribution of x(−j) on the internal

node A. So ∆∗(c) is further bounded by

∫ t

0

γ
∫
x(j)≥c p(x

(j))dx(j)
∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))pA(x(−j))dx(−j)

γ−1
∫
x(j)≥c p(x

(j))dx(j)
∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]pA(x(−j))dx(−j)

−
∫ t

0

γ−1
∫
x(j)<c

p(x(j))dx(j)
∫
Ad−1 [1−G(s | x(−j))]dF (s | x(−j))pA(x(−j))dx(−j)

γ
∫
x(j)<c

p(x(j))dx(j)
∫
Ad−1 [1−G(s | x(−j))][1− F (s | x(−j))]pA(x(−j))dx(−j)

≤(γ2 − γ−2)Λ∗A(τ) ≤ (γ2 − γ−2)
τL

M2
.

From the adaptive concentration bound result and Lemma 2, we have, for

an arbitrary x ∈ [0, 1]d and a valid partition A ∈ Vα,k(Dn),

max
t<τ

∣∣Λ̂A ,n(t | x)− Λ∗A (t | x)
∣∣ ≤M3

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1− 3/
√
n, where M3 = max(M1,M2). Hence

∆1(c) ≤ (γ2 − γ−2) τL
M2

+M3

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1−3/
√
n uniformly over all possible nodes with

at least 2k observations and all noise variables. Thus only with probability

less than 3/
√
n will the proposed survival tree split on a noise variable.

To prove the second argument, suppose A is the current node and

X(j) is an important variable. Since we choose the splitting point c̃ which

maximizes ∆1(c), the empirical signal is larger than that of c0. Without loss

of generality, we consider a cutoff point of c0 and `+(j, t0, c0) ≥ `−(j, t0, c0).
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Hence we are interested in

∆∗(c0) = max
t<τ

∣∣Λ∗A+
j (c0)

(t)− Λ∗A−j (c0)
(t)
∣∣

= max
t<τ

∣∣∣∣ ∫ t

0

EA+
j (c0)

[1−G(s | X)]dF (s | X)

EA+
j (c0)

[1−G(s | X)][1− F (s | X)]

−
∫ t

0

EA−j (c0)
[1−G(s | X)]dF (s | X)

EA−j (c0)
[1−G(s | X)][1− F (s | X)]

∣∣∣∣.
Since 1−G(τ) is bounded away from 0 by our assumption with 1−G(τ) ≥

M , the above expression can be further bounded below by

∆∗(c0)

≥M
∫ t0

0

EA+
j (c0)

dF (s | X)

EA+
j (c0)

[1− F (s | X)]
−M−1

∫ t0

0

EA−j (c0)
dF (s | X)

EA−j (c0)
[1− F (s | X)]

=M`+(j, t0, c0)−M−1`−(j, t0, c0) > `.

Then, by the adaptive concentration bound results above, ∆∗(c0) has to be

close enough to ∆1(c0). Thus we have

∆1(c̃) ≥ ∆1(c0) > `−M3

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1−3/
√
n uniformly over all possible nodes and

all signal variables. �

Proof of Theorem 5. The results follow by Lemma S6 and Theorem 3.
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Proof of Theorem 6.

The proof essentially requires that uniformly across all internal nodes,

we essentially only split on d0 dimensions with probability larger than 1−

3/
√
n on the entire tree. We first define Λ̃∗A(t) on a node A,

Λ̃∗A(t) =

∫ t

0

EX∈A[1−G(s | X)]dF (s | X)/[1− Ĝ(s | X)]

EX∈A[1−G(s | X)][1− F (s | X)]/[1− Ĝ(s | X)]
.

For any noise variables, ∆∗(c) ≤ (γ2 − γ−2)τL/M2 follows the proof of

Lemma S6. For any censoring but not failure variable j, we have that

∆∗(c) = max
t<τ

∣∣Λ̃∗A+
j (c)

(t)− Λ̃∗A−j (c)
(t)
∣∣

= max
t<τ

∣∣∣∣ ∫ t

0

EA+
j (c)

[1−G(s | X)]/[1− Ĝ(s | X)]dF (s | X)

EA+
j (c)

[1−G(s | X)]/[1− Ĝ(s | X)][1− F (s | X)]

−
∫ t

0

EA−j (c)
[1−G(s | X)]/[1− Ĝ(s | X)]dF (s | X)

EA−j (c)
[1−G(s | X)]/[1− Ĝ(s | X)][1− F (s | X)]

∣∣∣∣
= max

t<τ
|(I)− (II)|.

Without loss of generality, we assume that (I) > (II) when the maximum

is achieved. Since limn→∞ pr(supt<τ |Ĝ(t|X = x) − G(t|X = x)| > ε) = 0

for any 0 < ε < M and x, the following inequalities

1−G(t|X = x)

1− Ĝ(t|X = x)
>

1−G(t|X = x)

1− Ĝ(t|X = x) + ε
>

M

M + ε
,

1−G(t|X = x)

1− Ĝ(t|X = x)
<

1−G(t|X = x)

1− Ĝ(t|X = x)− ε
<

M

M − ε
,
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hold. Then ∆∗(c) is further bounded by

M + ε

M − ε

∫ t

0

EA+
j (c)

dF (s | x)

EA+
j (c)

[1− F (s | x)]
− M − ε
M + ε

∫ t

0

EA−j (c)
dF (s | x)

EA−j (c)
[1− F (s | x)]

≤[
M + ε

M − εγ
2 − M − ε

M + ε
γ−2]ΛA(τ) ≤ [

M + ε

M − εγ
2 − M − ε

M + ε
γ−2]

τL

M
,

where the first inequality holds from Assumption 8.

For any failure variable j,

∆∗(c0) = max
t<τ

∣∣Λ̃∗A+
j (c0)

(t)− Λ̃∗A−j (c0)
(t)
∣∣

≥
∣∣∣∣ ∫ t0

0

EA+
j (c0)

[1−G(s | X)]/[1− Ĝ(s | X)]dF (s | X)

EA+
j (c0)

[1−G(s | X)]/[1− Ĝ(s | X)][1− F (s | X)]

−
∫ t0

0

EA−j (c0)
[1−G(s | X)]/[1− Ĝ(s | X)]dF (s | X)

EA−j (c0)
[1−G(s | X)]/[1− Ĝ(s | X)][1− F (s | X)]

∣∣∣∣.
Without loss of generality, we assume that `+(j, t0, c0) > `−(j, t0, c0). We

have that

∆∗(c0)

≥
∫ t0

0

EA+
j (c0)

[1−G(s | X)]/[1−G(s | X) + ε]dF (s | X)

EA+
j (c0)

[1−G(s | X)]/[1−G(s | X)− ε][1− F (s | X)]

−
∫ t0

0

EA−j (c0)
[1−G(s | X)]/[1−G(s | X)− ε]dF (s | X)

EA−j (c0)
[1−G(s | X)]/[1−G(s | X) + ε][1− F (s | X)]

≥M − ε
M + ε

∫ t0

0

EA+
j (c0)

dF (s | X)

EA+
j (c0)

[1− F (s | X)]
− M + ε

M − ε

∫ t0

0

EA−j (c0)
dF (s | X)

EA−j (c0)
[1− F (s | X)]

=
M − ε
M + ε

`+(j, t0, c0)−
M + ε

M − ε
`−(j, t0, c0),

with probability going to 1. Combined with the adaptive concentration



bound results,

max
t<τ

∣∣Λ̃A ,n(t | x)− Λ̃∗A (t | x)
∣∣ ≤M3

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

we have

∆2(c̃) ≥ ∆2(c0) > `− op(1),

uniformly over all possible nodes and all signal variables. �

S7

To fully understand the impact of bias-correction, we consider a set of simu-

lation studies. There are many existing implementations of random survival

forests, including R packages randomForestSRC (Ishwaran and Kogalur,

2019), party (Hothorn et al., 2006), ranger (Wright and Ziegler, 2017),

etc. However, it is difficult to compare across different packages as they

may utilize certain tuning parameters slightly differently. It would not be

possible to investigate the sole impact of bias-correction if these subtle dif-

ferences are involved. Hence, we turn to make our own implementation of

survival forest modeling with and without the bias-correction, while ensur-

ing all other mechanisms remain the same.

Furthermore, we note that there are two possible ways to make a bias-

correction based on our previous analysis. First, and most apparently, we
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can incorporate Λ̃A,n in ∆2(c) to search for a better splitting rule. Alter-

natively, we may apply a regular splitting rule and use Λ̃A,n only in the

terminal node estimation to correct the bias. Based on our analysis, the

second approach would not improve the convergence rate because the tree

structure is already built on MFC variables, while the first approach has the

potential for improvement. Hence, contrasting these two approaches would

allow us to investigate the importance of changing the entire tree structure

through bias-correction. We consider four different algorithms out of the

combination of these two choices: 1) (C-C) bias-corrected splitting rule and

terminal node estimation; 2) (C-N) bias-corrected splitting rule without

correcting the terminal node estimation; 3) (N-C) correcting only the ter-

minal node estimation; and 4) (N-N) do not perform any bias-correction.

Note again that we implement all four methods under the same algorithm

framework that assures all other tuning parameters remain the same.

We consider two data generating scenarios, each with dependent cen-

soring and independent censoring mechanisms. For the first scenario, we

consider the setting in Section 3.2. Let d = 3 and X(1), X(2) and X(3)

from a multivariate normal distribution with mean 0 and variance Σ, where

the diagonal elements of Σ are all 1, and the only nonzero off diagonal el-

ement is Σ12 = Σ21 = ρ = 0.8. T is exponential distribution with mean

exp(−1.25X(1) − X(3) + 2). For dependent censoring, the censoring time

follows an exponential distribution with mean exp(−3X(2)); For indepen-



dent censoring, the censoring time follows an exponential distribution with

mean 2. For the second scenario, we consider a setting where the covariates

are independent. we let d = 10 and draw X from a multivariate normal

distribution with mean 0. Survival times are drawn independently from an

accelerated failure time model, log(T ) = X(1) +X(2) +X(3) + ε1, where ε1 is

generated from a standard normal distribution. For dependent censoring,

the censoring time shares the variable X(3) with the failure time T , and

follows log(C) = −1 + 2X(3) +X(4) +X(5) + ε2; For marginal independent

censoring, the censoring time follows log(C) = −1+X(4)+X(5)+2X(6)+ε3,

where ε2 and ε3 are generated from a standard normal distribution which

is independent of ε1.

For each setting, we used a training dataset with sample size n = 400.

A testing dataset with size 800 was used to evaluate the mean squared error

of the estimated conditional survival functions (Zhu and Kosorok, 2012).

The censoring distributions were estimated from standard survival forests.

Each simulation was repeated 500 times. Note that since all methods were

implemented under the same code, we fixed the tuning parameters and

only investigated the influence of bias-correction. Tuning parameters in the

survival trees were chosen as follows. According to Ishwaran et al. (2008),

the number of covariates considered at each splitting was set to d
√
d e. The

minimal number of observed failures in each terminal node was set to 10

and 25, respectively. The total number of trees was set to be 100.
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The simulation results are summarized in Table 1. In both scenarios,

we clearly see that the bias-corrected splitting rule (C-C and C-N columns)

has significantly improved the performance compared with N-C and N-N.

This shows that by selecting a better variable to split, the tree structure can

be corrected to reduce the prediction accuracy. For scenario 2, which has

a more complicated censoring structure, the improvement of the proposed

bias-corrected splitting rule is more significant than Scenario 1, with the

average mean square error decreasing approximately from 47.7 to 42. Hence,

the performance of bias-correction may also depend on the complexity of

the censoring distribution and the accuracy of its estimation. The standard

error is comparable among all four methods.

Interestingly, we want to highlight that the biasedness is mainly caused

by the splitting bias rather than terminal node estimation, i.e., C-C is

similar to C-N, and N-C is similar to N-N. This is intuitive and in line

with our theory that the splitting bias-correction procedure can enjoy a

potentially faster convergence rate than the non-bias-corrected version. One

might not expect a good prediction if trees are partitioned inefficiently

regardless of what kind of terminal node estimation is used. After the tree

is constructed, there is not much room to correct the bias if previous splits

were chosen on noise or censoring variables.



Table 1: Simulation results: Mean and (standard deviation) of mean squared error

Censoring C-C C-N N-C N-N

Scenario 1
Dependent 21.62 (7.46) 21.68 (7.50) 23.32 (7.18) 23.29 (7.17)

Independent 8.42 (2.01) 8.41 (1.98) 8.42 (2.02) 8.43 (2.04)

Scenario 2
Dependent 42.02 (5.37) 41.97 (5.34) 47.76 (5.76) 47.75 (5.77)

Independent 35.18 (3.80) 35.22 (3.77) 36.11 (3.55) 36.14 (3.59)

C-C/C-N/N-C/N-N refer to the configurations of correcting or not correcting the bias,

while the first letter refers to the splitting rule correction, and the second letter refers

to the terminal node correction.
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