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Abstract: We consider inference for a collection of partially observed stochastic
interacting nonlinear dynamic processes. Each process is identified with a label,
called its unit. Here, our primary motivation arises in biological metapopula-
tion systems, in which a unit corresponds to a spatially distinct sub-population.
Metapopulation systems are characterized by strong dependence over time within a
single unit, and relatively weak interactions between units. These properties make
block particle filters effective for simulation-based likelihood evaluation. Iterated
filtering algorithms can facilitate likelihood maximization for simulation-based
filters. Here, we introduce an iterated block particle filter that can be applied
when parameters are unit-specific or shared between units. We demonstrate the
proposed algorithm by performing inference on a coupled epidemiological model
describing spatiotemporal measles case report data for 20 towns.

Key words and phrases: Maximum likelihood estimation, metapopulation, partially
observed Markov process, sequential Monte Carlo, spatiotemporal.

1. Introduction

Statistical inference for high-dimensional partially observed nonlinear dy-
namic systems arises in various scientific contexts. Massive models and data sets
are considered in the geophysical sciences, carried out under the name of data
assimilation (Evensen (2009)). Population models in ecology and epidemiology
can be characterized by high levels of stochasticity, nonlinearity, measurement
error, and model uncertainty, leading to challenges of a somewhat different nature
to those of geophysical models. In addition, biological population systems may
have a low population count, owing to a local introduction or fade-out of one
or more constituent species. Such situations may require models with integer-
valued counts, rather than continuous population approximations. Collections of
biological populations measured at different spatial locations may have spatial
interactions in addition to local population dynamics; such collections are
called a metapopulation. The study of spatiotemporal disease dynamics has
motivated research into inference for metapopulation systems (Xia, Bjornstad and
Grenfell (2004); Li et al. (2020)); Park and Ionides| (2020); lonides et al.| (2021);
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Cauchemez et al. (2008); Bjornstad et al. (2019)).

Until recently, statistical inference for partially observed nonlinear biological
systems was an open methodological challenge, even in the time series case
(Bjornstad and Grenfell (2001)). Advances in Monte Carlo methods based on
particle filters have made inference accessible in many low-dimensional problems
(Doucet and Johansen| (2011); [Kantas et al. (2015)); King, Nguyen and lonides
(2016)). However, the curse of dimensionality (Bengtsson, Bickel and Li (2008)))
prevents application of the basic particle filter on metapopulations with more
than a few units. Methods based on improving the proposal distribution for the
particle filter may not fully resolve the curse of dimensionality (Snyder, Bengtsson
and Morzfeld| (2015)). Previous Monte Carlo methods which can provably beat
the curse of dimensionality may have limited applicability (Beskos et al. (2017));
Park and Ionides (2020)); [Ionides et al.| (2021)). Consequently, state-of-the-art
scientific analysis for metapopulation dynamics depends on ensemble Kalman
filter (EnKF) methods (Li et al. (2020). EnKF algorithms scale well, but are
founded on an approximation that can be unsuitable for discrete populations with
fade-out and re-introduction dynamics and other highly non-Gaussian features
(Ionides et al. (2021))).

In Section 2, we propose an algorithm for inference on metapopulation
dynamics, which we call an iterated block particle filter (IBPF). IBPF algorithms
combine an iterated filtering likelihood maximization technique (lonides et al.
(2015)) with a block particle filter (BPF) (Rebeschini and Van Handel (2015)).
Iterated filtering algorithms use parameter perturbations to coerce a filtering
algorithm into exploring the parameter space. BPF algorithms address the
curse of dimensionality by modifying the resampling step of a particle filter
to resample independently on blocks that form a partition of the collection of
units. A previous IBPF algorithm was developed by Ning and lonides (2023)
for the particular case in which all estimated parameters are unit-specific, that
is, the dynamics and measurement process for a unit u are determined by a
vector of parameters 1, specific to unit u. In Section 2, we provide a formal
meaning of this assertion, together with the pseudocode for our algorithm. We
propose an extension of the aforementioned IBPF which additionally allows us
to estimate a vector of shared parameters, ¢. In this case, the full parameter
vector is 6 = (¢, 1,.17), where the U units are named {1, ..., U}, which we denote
by 1:U. Ning and Ionides (2023)) develop a theoretical justification for their
algorithm; however, our new IBPF currently relies on empirical support only.

There may be scientific interest in which parameters in a metapopulation
system are best understood as being unit-specific, and which can reasonably
be modeled as being shared between units. Another relevant possibility is
that a parameter may differ between units as a shared function of unit-specific
covariates. Formally, this is a special case of a shared parameter. Addressing
these issues is also a prerequisite for studying questions about the coupling
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of metapopulation systems using model-based inference from spatiotemporal
data. In Section 3.3, we will show empirically that our IBPF algorithm is
applicable to an inference challenge in epidemiological metapopulation dynamics.
Our demonstration focuses on a data set of weekly measles incidence in 20
towns in the United Kingdom (UK) during the pre-vaccination era (He, Ionides
and King (2010)), modeled using a previously studied metapopulation model
(Park and Ionides| (2020)); [Ionides et al.| (2021)). Measles case reports are a
longstanding benchmark problem for inference on biological dynamics, motivating
the development of time series methodologies and, more recently, the progression
from single populations to metapopulation systems. Unlike previous attempts
on sequential Monte Carlo inference for metapopulation models, we show that
our algorithm can provide practical plug-and-play, likelihood-based inference
when the parameters are either shared between units or differ between units.
Demonstrating a solution to this open problem provides numerical evidence
substituting for numerical comparisons with alternative methods.

Our data analysis results do not fully resolve open questions about what
models for coupling between towns are supported by the data, and which
parameters should be modeled as unit-specific. Rather, we demonstrate steps
toward this research goal. We use a simulation study, discussed in Section 3.2, to
show that our methodology can deliver a good approximation to the maximum
likelihood estimate (MLE) when fitting the model used to simulate the data.
This allows us to interpret our data analysis results as evidence of model
misspecification, providing a guide for future investigations of these data, as well
as validation of tools to carry out such investigations.

Optimization of high-dimensional, non-convex and potentially multi-modal
functions, evaluated using stochastic methods, is not straightforward, even
when it is possible to evaluate the function within an acceptable level of error.
Therefore, we discuss approaches that assist noisy likelihood searches, and suggest
diagnostic plots to assess their success.

2. An IBPF Algorithm for Likelihood Maximization

A latent Markov process is denoted by {X, : n = 0,..., N}, with X,, =
X1.un taking values in a product space XY. We define set-valued subscripts by
Xa={X,,a € A} and X4 p = {Xup,a € A,b € B}. The discrete time process
Xo.n may arise from a continuous-time Markov process {X(t),tp < ¢t < tn}
observed at times t;.y, in which case, we set X,, = X (¢,,). The initial value X
may be stochastic or deterministic. Observations are made on each unit, modeled
by an observable process Yi.y = Yi.p1.n that takes values at each time n in a
product space Y. Observations are modeled as conditionally independent, given
the latent process. The conditional independence of measurements applies over
both time and the unit structure; thus, the collection {Y, , : u =1,...,U,n =
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1,..., N} is conditionally independent, given {X, , :u=1,...,Un=1,...,N}.
We suppose the existence of a joint density fx,. . vi.y for Xi1.v,0.n and Y1.p 1.5 with
respect to some appropriate measure, following a notational convention that the
subscripts of f denote the joint or conditional density under consideration. We
suppose that f depends on a real-valued parameter vector 0 = (¢, ;.7), which
we write as 8 = 6,.p when we wish to concatenate the shared and unit-specific
parameters into a single vector of length D. The data are y;,, for unit u at
time n. This model is a special case of a partially observed Markov process
(POMP), also known as a state-space model or hidden Markov model. The
additional unit structure, not generally required for a POMP, is appropriate for
modeling interactions between units characterized by a spatial location; thus, we
call the model a SpatPOMP. For metapopulation models, the units are not, in
general, arranged on a spatial grid, but instead comprise a collection of spatially
distributed population centers.

A numerical challenge of fundamental statistical relevance is maximizing the
log-likelihood function of the data, given the model, ¢(0) = log fy, » (Yi.n;0)-
Numerical evaluation of the likelihood function is closely related to the filtering
problem of evaluating fx, vi..(Zn|Y7.,:0). If the dynamic model is extended
to include the parameters as latent variables, the filtering problem leads to the
Bayesian posterior distribution, though regularization is required to make the
calculation numerically tractable using Monte Carlo methods (Kitagawa| (1998));
Liu and West, (2001))). Iterating this Bayesian calculation recursively targets an
MLE, a strategy known as data cloning (Lele, Dennis and Lutscher| (2007)); Lele,
Nadeem and Schmuland| (2010)). Adding noise to perturb the parameters in the
extended model at each time point can stabilize the numerics, while still being
able to approximate the MLE (lonides, Bret6 and King (2006); [Ionides et al.
(2011} 2015)). Many variations on this idea have been developed using different
filter methods (Park and lonides| (2020); [Li et al.| (2020); lonides et al.| (2021);
Manoli et al.[(2015)) or employing different perturbation systems (Doucet, Jacob
and Rubenthaler (2013); Nguyen and Ionides| (2015))).

A direct approach to iterating a BPF for parameter estimation is to resample
the extended model independently on each block, yielding separate collections
of parameters for each block. |Ning and lonides (2023) prove that this IBPF
algorithm targets the MLE for the special case where each parameter is localized
to an individual unit, that is, when all parameters are unit-specific. Formally, we
say that a parameter for a discrete-time SpatPOMP is specific to a unit w if it is
involved in specifying the measurement density fy, ,|x,, or the transition density
JXuni1lX,» for some n, and it is not involved in fy, , |x,.,. or fx, ... |x,., for any
v # u and any m. For a continuous-time SpatPOMP, we replace the requirement
on fx,,.,x, With an equivalent requirement on a numerical solution over a small
time increment J, as in equation . A parameter that is not unit-specific is
said to be shared between units. There are intermediate possibilities, where a
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parameter is shared for only a subset of all units, but such a parameter is formally
classified as shared. The special case in which all parameters are unit-specific may
occur, but models typically have some shared parameters that arise in transition
densities and/or measurement densities for multiple units.

In our approach to iterated filtering for shared parameters, we construct an
extended model, within which, the shared parameters are represented as a unit-
specific parameter that happens to be constant across units. We construct a
spatiotemporally extended model by supposing that a numerical solution for the
transition from time ¢ to time t 4+  for each unit w has the functional form

X, (t+06) = Xu(t) + Qu{X (), ms, b, b, t, 6}, (2.1)

where the random vector 71, = 1.y is shared, for all v € 1:U, and does not
depend on 6. If a representation exists, an extended model is defined by
replacing ¢ with ¢,(t) and 4, with ,(¢t). Equation implicitly defines a
continuous-time extended model by the limit as 6 — 0, when that limit exists, but
for simulation-based methods, a numerical solution is of more immediate concern
than this limit. Admitting a minor abuse of notation, we subsequently use the
density f to denote both the original model and its extension for spatiotemporally
varying parameters, with the context determining which one is intended.

In some situations, the extended model may be problematic; for example, it
could break conservation laws obeyed by the original system. In other situations,
the extended model may make scientific sense in its own right; for example,
in biological metapopulation systems, it might be scientifically meaningful to
consider a model in which there is variation over space and time in the parameters
that describe the local dynamics. Here, we focus on the hypothesis that some
parameters are fixed across space and time, but the specification in requires
that this hypothesis be nested within a more flexible alternative.

The IBPF algorithm described in Algorithm 1 carries out a BPF on this
extended model. The extended parameters are given independent perturbations,
but a spatial autoregressive step pulls the values of the shared parameters toward
their mean over the units. Indeed, this autoregressive step is the only difference
between Algorithm 1 and the algorithm for unit-specific parameters proposed
by Ning and Ionides| (2023). This algorithm, in turn, is essentially the IF2
algorithm of Tonides et al.| (2015)), with the particle filter replaced with the BPF
of |Rebeschini and Van Handel| (2015).

Algorithm 1 assumes implicit loops over j in 1:J and u in 1:U, N(u,X)
denotes the normal distribution with mean p and variance matrix 3, and o, is a
D x D diagonal matrix with entries o4,. The blocks B;.x are a partition of 1:U.

The pseudocode in Algorithm 1 represents our implementation of an
IBPF as the R function ibpf, which we have contributed to the open-source
package spatPomp (Asfaw, Ionides and King| (2021); Asfaw et al. (2023))).
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Algorithm 1 IBPF.

Input: Simulator for the extended model, fx | x,_,(®n|®,—1;6), and initialization,
Ix,(20;0); evaluator for fy, . x, . (Yun|Tun;0); data, yf y; number of particles,
J; blocks, Bi.k; initial parameter swarm with decomposition into shared and unit-
specific parameters, ©% = (®%J ¥%J); random walk perturbation, ¢4.,; cooling
rate, a; number of iterations, M; spatial autoregression, r.
1: for min 1: M do

2 Perturb parameters: © 0"/ ~ N (0717 ; g3q?m/%)

3 Initialization: simulate Xg’] ~ fx,( ;@i’{%])

4 for nin 1: N do ‘

5 Perturb parameters: ©mJ ~ N(@fj}[‘;ﬂl, o2a?m/50)

6: Prediction simulation: X7 ~ X0 Xn s ( |X5’_]1; @i’&nr’f)

7 for kin 1: K do

8 Block prediction weights: wij)k = HueBk Yl Xum (y;n | XTIZ*,]L ; @5*;”’1)
: Tt 4 o P 7P

9: Normalize weights: Wy, j 5 = w,, ; 1/ D ic Wy, ik

10: Select resample indices: 41.75 with P[i; ;= k] = Wy, 5k

) Fj _ vPijk Fj _ APk Pij ok Pij g
1 XBkyn - XBk,n ’ 931‘:»” - @Blmn - ((I)Bk,n "IlBk:,n )

. . — 715 Fj
12: block mean of shared parameters: i ,, = J ijl Prr
13: end for
14: overall mean of shared parameters: p, = K ! Zle i
15: autoregressive correction: @g;j = q)g;j (= B )

16: end for _
17: omi =@k
18: end for

Output: IBPF parameter swarm, ©M:J

Additionally, the source code for all results presented here is available at
https://github.com/ionides/ibpf_article. Various generalizations of this
implementation are possible. For example, iterated filtering theory does not rely
on parameter perturbations following the normal distribution (lonides et al.
(2015)), though, in practice, we transform the parameters to facilitate this
convenient choice (see Section S2).

2.1. Algorithmic parameters

The model parameters are optimized on a transformed scale for which unit
variation is scientifically meaningful. In practice, this means working with
positive parameters on a log scale, and with (0, 1) interval-valued parameters on a
logistic scale. We follow standard iterated filtering practice by using independent
random walks for each parameter on this transformed scale (King, Nguyen and
Tonides (2016))). We find that the large number of parameters following a random
walk, in the presence of unit-specific parameters, can require considerably smaller
random walk standard deviations than the values around o4, = 0.02 (i.e., 2%
perturbation per time point) that have been employed for iterated filtering of
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time series models. After experimentation, we used o4, = 0.005 for the initial
search, and o4, = 0.00125 for subsequent refinements. Occasionally, a parameter
that can be estimated precisely from the data can benefit substantially from a
smaller perturbation. This is the case for one parameter in our measles analysis,
an exponent «, for which the scale of uncertainty is an order of magnitude smaller
than that of the other parameters; therefore, we scaled o4, for this parameter
accordingly. In principle, o4, can be a function of n and the parameter, d. The
most common reason for using this flexibility is to avoid perturbing parameters
during time intervals in which we have no information about these parameters.
Following an evolutionary analogy, evolution cannot operate effectively if there
is mutation, but no selection. For an initial value parameter, that specifies only
the latent process value at the initial time ¢y, we use o4, = 0 for n > 1, and we
double the value of o4, for n = 0.

We use J = 4,000 particles, and set the cooling rate parameter to a = 0.5,
corresponding to a 1% reduction in the random walk standard deviation at each
iteration. We set M = 100 optimization iterations, chosen as an empirically
assessed compromise between the effort spent on each search and the number of
searches conducted. An additional discussion of algorithmic parameters is given
in Section S2. The only additional algorithmic parameter over previous iterated
filtering algorithms is the spatial autoregressive parameter, . The results of our
numerical experiments suggest that the performance is not sensitive to the choice
of r > 0 (see the Supplementary Material, Figure S1). Consequently, here we use
r=0.1.

Applying an IBPF to real data forces us to address problems related to
model development, model misspecification, and performance in the presence of
outliers. Before doing so, we use simulated data to demonstrate the capabilities
of the methodology on a correctly specified model.

3. Testing an IBPF on a Measles Transmission Model

Measles transmission is a useful example of epidemiological dynamics (and
therefore also ecological dynamics, for a host-pathogen ecosystem), with plentiful
case report data and relatively simple biology. Model-based analyses of measles
time series data have led to a better understanding of the seasonality of infectious
diseases (Fine and Clarkson| (1982)), critical community size (Bartlett|(1957)), the
recognition that relatively simple mechanistic models can provide a remarkably
good description of the dynamics (Earn et al| (2000)), and other foundational
research on disease dynamics. Some progress has been made on building and
fitting spatiotemporal models for measles; see, for example, Xia, Bjornstad
and Grenfell (2004), Eggo, Cauchemez and Ferguson (2011]), Bjornstad et al.
(2019), and Becker et al.| (2020). However, the lack of suitable methodology
to fit and assess a flexible class of coupled models is an obstacle to further
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Figure 1. Weekly measles case reports for 20 UK towns.

progress (Becker et al.| (2020))).
spatiotemporal measles models as a test problem (Park and Ionides (2020);
lonides et al.| (2021)). However, these methods have fallen short as tools for data
analysis, owing to numerical considerations. Bearing all this in mind, measles

Year

Previous methodological research has used

provides a natural testing ground for our new methodologies. We demonstrate

that we now have the tools to carry out likelihood maximization (and therefore,

in principle, profile likelihood confidence interval construction and likelihood-

based model selection) on mechanistic statistical models that are appropriate for
spatiotemporal metapopulation disease data.
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3.1. The measles data, a model, and three submodels

We set ourselves the task of fitting a spatiotemporal model to the case reports
for 20 towns studied by He, Tonides and King| (2010). We need to be able to handle
discrete case counts, which vary from zero to thousands of cases per week. We
consider a model with the same structure as that of He, Ionides and King| (2010)),
namely, a Markov chain with gamma noise on the infection rate, but with an
additional term for the transmission between cities. This requirement limits us
to plug-and-play methodologies, which are those that require simulation from the
latent process model, but not the ability to evaluate transition densities (Bretd
et al.| (2009); He, Ionides and King| (2010)).

Some previous analyses have used counts aggregated over two-week intervals
(Park and Ionides (2020); lonides et al.| (2021))), because these were available
for more cities, but our goal here is to extend the analysis of [He, Ionides and
King (2010). Apart from this, our model matches that of lonides et al.| (2021)
and, for completeness, we repeat the description here. We compartmentalize
the population of each town into susceptible (5), exposed (E), infectious (1),
and recovered/removed (R) categories. The numbers of individuals in each
compartment for town wu at time ¢ are denoted by integer-valued random
variables S, (t), E,(t), L.(t), and R,(t), respectively. The population dynamics
are written in terms of the counting processes Ng,g,.(t) enumerating the
cumulative transitions in town u, up to time ¢, from compartment ), to (.
Here, Q1,Q, € {S,E,I,R,B,D}, with B denoting a source compartment for
immigration or birth, and D denoting a sink compartment for emigration or
death. We enumerate the U = 20 towns studied by He, Ionides and King (2010)
in decreasing size, so that © = 1 corresponds to London. Our model is described
by the following system of stochastic differential equations, for u =1,...,U:

dS,(t) = dNps(t) — dNsg.(t) — dNsp (1),
dEu(t) == dNSE’u(t) - dNEl,u(t) - dNEpyu(t),
d_[u(t) — dNE[’u(t) - dN[R’u(t) - dN[D’u(t).

The total population P,(t) = S,(t) + E.(t) + I.(t) + R,(t) is calculated by
smoothing census data, and is treated as known. The number of recovered
individuals R, (t) in town u is therefore defined implicitly. Furthermore, Ngg . (%)
is modeled as a negative binomial death process (Breto et al. (2009); Breté and
lonides (2011])), defined by a rate, psg .(t), specified as

Iu + Ly o Vua Izl o Iu o dr u
ey () () e
P, = P, P; P, dt
Here, the time dependence of pgsg ., Bu, I., and P, is suppressed; o, is a
mixing exponent modeling inhomogeneous contact rates within a town; ¢,, models

,LLSE,u = /Bu
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immigration of infected individuals; dl'sg,/dt is gamma white noise, with
intensity parameter osg.,; and (£, models the seasonal transmission driven by
high contact rates between children at school,

Bu(t) = {14+ h,(1—5s)s7'} B, during school term,
! (1—ha) B, during vacation,

where s = 0.759 is the proportion of the year taken up by the school terms, 3,
is the mean transmission rate, and h, measures the reduction in transmission
during school holidays.

The number of travelers from town u to # is denoted by wv,;. Here, v,q is
constructed using the gravity movement model of |Xia, Bjgrnstad and Grenfell
(2004), given by

pop dua
where G, is the gravitational constant, d,; is the distance between town u and
town 1, pop, is the average of P,(t) over time, pop is the average of pop, across

towns, and d is the average of d,; across all pairs of towns. The transition
processes Ngru(t), Nigu(t), and Ngp.(t), for Q@ € {S,E,I, R}, are modeled
as conditional Poisson processes with per-capita rates pgru, firu, and pop. .,
respectively, and we fix ugp. = (50 year)~'. A fraction ¢ of births enter the
susceptible cohort on the school admission day, and hence the birth process
Nps,.(t) is an inhomogeneous Poisson process with rate ppg., (t—A) [(1—¢)+cd(t—
t.)], where pgs..(t) is specified by interpolated census data, t, = [¢| + 252/365
is the admission date for the year containing ¢, ¢ is a Dirac delta function, and
A = 4 year is a fixed delay between birth and entry into a high-transmission
school community.

To describe the measurement process, let Z,, = Nigu(tn) — Nigu(tn-1)
be the number of removed infected individuals in the nth reporting interval.
Suppose that cases are quarantined once they are identified, so that reported
cases comprise a fraction p of these removal events. The case report y; , is
modeled as a realization of a discretized conditionally Gaussian random variable
Yin, defined for y > 0 via

PlYun=y | Zun=2] = ®{y + 0.5; puz, pu(1 — pu)z + T, pi 2}

where &(+; p, 0?) is the N (i, 0?) cumulative distribution function, and 7 models
overdispersion relative to the binomial distribution. For y = 0, we replace y — 0.5
with —oo in . Three data points are treated as missing by He, Ionides
and King| (2010), owing to presumed recording errors. We follow this decision,
implemented by including a special value NA in Y, and setting Y, ,, to NA with
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Figure 2. Simulated weekly measles case reports.

probability one when y; , is missing.
We have written the model with all parameters unit-specific, so 8 = 1.y

with

Yy =

(BuaMEI,u;,uIR,u,puaTuao-SE,u7GuaLuahuaauaSO,uaEO,uaIO,u)7 fOI‘ u €

1:U. This defines an extended model for implementing an IBPF with shared
parameters, as in . It also serves another function by allowing us address a
key data analysis question of which parameters should be shared between units
and which should be unit-specific.

The data are shown in Fig 1, and simulations from the model are shown
in Fig 2. Parameters for the simulated model were based on the analysis
of individual towns by He, Ionides and King| (2010). In order to investigate
estimation of either shared or unit-specific parameters, we conduct the simulation
with all parameters being shared. To find a shared parameter vector capable
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of providing a reasonable representation of all the towns simultaneously, we
experimented to look for a visual match between the data and the simulations.
The parameters used are reported in the Supplementary Material (Section S1).

Estimated parameter values may have scientific interest, but we focus on the
statistical task of likelihood maximization. In the presence of weak identifiability,
small differences in likelihood could lead to large differences in parameter
estimates. In such situations, a scientist may choose to investigate what
functions of the parameters can be inferred accurately without adding additional
assumptions. Alternatively, they may choose to investigate the consequences of
placing constraints on some parameters in order to improve the identifiability
of the remainder. Likelihood maximization permits such investigations, but is
beyond the scope of this study. In the Supplementary Material, we provide
the parameter values used for the simulation study and those obtained by the
likelihood maximization.

To facilitate data analysis, our methodology needs to operate across the full
spectrum of decisions on shared versus unit-specific parameter designations. We
therefore test our method on three submodels: A has mostly shared parameters,
with only the initial values and the reporting rate unit-specific; B has every
parameter unit-specific; and € has every parameter unit-specific, and the dynamic
coupling (in our context, the movement of infected individuals between towns) is
replaced with an external forcing of each unit (in our context, the immigration
rate of infected individuals from outside the study population). Section S1 defines
the submodels in further detail. Submodel € provides a useful point of reference,
because it is a special case of a PanelPOMP model (Breto, Ionides and King
(2019)), and also can be analyzed as a collection of separate POMP models. We
set up our model so that € matches the analysis of He, Ionides and King| (2010).
One may expect that methods that take advantage of the special structure of
C should outperform more general methods that permit coupling between units.
Thus, we expect the SpatPOMP methods to be less efficient numerically than
application of POMP methods separately to each unit. Here we answer the
following questions: How much less efficient are the SpatPOMP methods? Are
simulation-based SpatPOMP inference methods practical for situations such as
the measles model of He, lonides and King (2010)?

The simulated model is drawn from model A, which is nested within model B,
but not within €. For models B and €, in which all parameters are unit-specific,
we must estimate 20 x 13 = 260 parameters. This greatly exceeds the seven shared
parameters fitted by lonides et al.| (2021) for a measles metapopulation model,
which required significant computational effort. An iterated guided intermediate
resampling filter (IGIRF) algorithm was used to fit nine shared parameters and
three unit-specific initial value parameters in a measles metapopulation model
(Park and Ionides (2020)). The latter analysis uses a customized treatment for
the unit-specific initial value parameters, and does not attempt to estimate other
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unit-specific parameters. IGIRF is sensitive to the choice of guide function, and
the model-specific implementation of Park and Ionides (2020) outperforms the
current generic implementation of IGIRF in spatPomp. Thus, to the best of our
knowledge, the IBPF presented in Algorithm 1 advances the current limits on the
scalability of simulation-based maximum-likelihood inference for metapopulation
dynamics.

Before engaging in likelihood maximization, we first validate the likelihood
evaluation; see Ionides et al. (2021) for likelihood evaluation for metapopulation
models. Briefly, the basic particle filter provides a consistent evaluation of the log-
likelihood in a limit with sufficient particles to make the Monte Carlo standard
deviation small. This is practical only when U is small (say, U < 5), but this
situation can be used to calibrate the bias induced by a BPF, which turns out to
be small for our multi-town measles model when each town is its own block. It
may be surprising that resampling independently on each block (which is what a
BPF does) is able to capture the dependence. Heuristically, note that the dynamic
dependence between blocks is maintained by a BPF, which updates particles
according to the full coupled dynamics. Whether this is sufficient to obtain a
good approximation to the filter distribution depends on the situation, but for
the specific case of metapopulation models (for which the strongest coupling is
within units, rather than between units), the approximation can be empirically
successful. In principle, the approximation error can be reduced by increasing the
number of units in each block. However, in practice, the additional Monte Carlo
variance acquired by doing so is not worthwhile when the coupling is relatively
weak. The BPF log-likelihood evaluation at the true parameter value is fi.ne =
—40612.5, with a Monte Carlo standard error of 0.6.

3.2. IBPF on simulated data

One of our goals is to obtain appropriate algorithmic choices for a data
analysis. Thus, we seek to develop methodology that is demonstrably successful
when the truth is known, before applying it to data. One could revisit the simulat-
ion study based on the data analysis in Section 3.3 using MLEs of the parameters.

In Figure 3 we investigate a sequence of successive searches for the MLE
for the models A, B, and € described previously. Each search is replicated 36
times. Search 1 was started with each parameter adjusted by a uniform [—0.1,0.1]
random perturbation on an appropriate dimensionless scale (log for nonnegative
parameters, and logit for [0, 1] valued parameters; see Section S2). This is a fairly
small perturbation, but it is nevertheless sufficient to knock the likelihood of the
parameter vector around 200 log units below the MLE (shown in Figure 4). Our
goal is to show that the algorithm can succeed reliably on a relatively easy local
optimization task. Subsequent searches were started with four copies of each
parameter vector with an estimated likelihood in the top 25% for the previous
search.
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Figure 3. Fitting simulated measles data, using an initial search and four refinement
steps. (A1-A5) model A, 4 x 20 unit-specific parameters and nine shared parameters;
(B1-B5) model B, 13 x 20 unit-specific parameters and no shared parameters; (C1-
C5) model €, all unit-specific, but with immigration rather than coupling, matching He,
lonides and King| (2010). The horizontal dashed line is the log-likelihood at the true
parameters, evaluated using BPF.

The MLE is not known exactly in this case. Wilks’ theorem gives an
asymptotic expectation that the log-likelihood at the MLE should be greater
than the likelihood at the truth by approximately 1/2 the number of parameters,
which here is (4 x 20 + 9)/2 = 44.5 for A, and (13 x 20)/2 = 130 for B. The
y-axis values in Figure 3 show log-likelihoods exceeding the truth by less than
this, indicating some imperfection in the Monte Carlo maximization so far as
Wilks’” asymptotic result holds. Despite this limitation, searches that exceed the
likelihood at the truth have found inferentially plausible sets of parameters that
can be used to study the likelihood surface around the maximum. For example,
Monte Carlo profile confidence intervals can give proper coverage, even in the
presence of considerable Monte Carlo error (lonides et al.| (2017); Ning, Ionides
and Ritov| (2021)).

Figure 4 shows the convergence diagnostics corresponding to A for the
simulated data (the first column) and B for the UK measles data (the second
column). For now, we focus on the first column. The first row plots the
log-likelihood obtained after the initial search against the log-likelihood of the
randomly selected starting value. The horizontal and vertical dashed lines denote
the likelihood at the truth, and the diagonal dashed line represents equality, so
that points above the diagonal show improvement after the search. We find
that IBPF robustly and rapidly approaches a neighborhood of the MLE, as
measured by likelihood. The second row shows that further investigation of more
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Figure 4. Three steps of a likelihood search on simulated data (left panel, model A)
and UK measles data (right panel, model B). Dashed lines parallel to the axes show the
log-likelihood at the truth (left panel) and the [He, Ionides and King| (2010) value (right
panel). Points above the diagonal dashed line show improvement owing to the search
step.
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Figure 5. Fitting different models to the UK measles data using the method tested on
simulated data. (A) 4 x 20 unit-specific parameters and nine shared parameters; (B)
13 x 20 unit-specific parameters and no shared parameters; (C) all unit-specific, but with
immigration rather than coupling. The horizontal dashed line is the likelihood from [He,
lonides and King (2010).

successful searches can reliably obtain likelihood values higher than those at the
truth. However, for a Monte Carlo search based on a Monte Carlo likelihood
evaluation, it may be problematic to pinpoint the exact maximum in a high-
dimensional space. The third row shows that continued searching does not lead
to substantially better outcomes. When using these methods, we emphasize the
need to make proper inferences despite imperfect maximization (lonides et al.
(2017); Ning, Ionides and Ritov] (2021))).

The results in Figure 3 and the first column of Figure 4 show that IBPF can
be effective for simulated data, but do not guarantee comparable performance
for our data analysis. Indeed, model misspecification, which is inevitable for
data analysis, may be expected to add difficulties to filtering and therefore to
numerical methods based on filtering. Rather, we view the simulation study as
a lower bound on the effort required to perform effective inference on data, and
therefore a starting point for investigating how to proceed with a data analysis.
Before moving on to the data analysis, we briefly describe the details of the model.

3.3. IBPF applied to data

Figure 5 shows the results from fitting models A, B, and € to the UK measles
data using successive rounds of IBPF, applying the same method used for the
simulation study shown in Figure 3. The dashed lines show the sum of the
log-likelihoods obtained by |[He, Ionides and King| (2010), ¢y, = —40345.7. The
value /g, corresponds to model €. BPF with each town forming a separate



AN ITERATED BLOCK PARTICLE FILTER 1161

block, applied to an uncoupled model such as C, is equivalent to carrying out
independent particle filters for each unit. Indeed, if we assign the published
parameter values from He, Ionides and King| (2010) to the spatPomp object for
model €, and apply the bpfilter function to carry out BPF, we retrieve {y., up
to a Monte Carlo error. Models A, B, and € in Figure 5 each show a shortfall
relative to ..

The largest shortfall is for A, perhaps because A has more shared parameters
than the evidence in the data supports. The results of He, Ionides and Kingj (2010)
suggest that the data are explained better when various parameters are a function
of the town population. However, determining suitable functional forms for this
relationship, and establishing regularities across towns that can be represented
by shared parameters, remains an open problem. This may be investigated using
panel methods, such as PanelPOMP models (Bretd, Ionides and King (2019)), in
addition to consideration of SpatPOMP models.

Models B and € yield comparable likelihoods, which is in contrast to the
results shown in Figure 3. Fitting to simulated data from B (in the special
case in which all unit-specific parameters are equal across all units), the shortfall
for € in Figure 3 indicates that we obtain a substantially worse fit when we
approximate coupling using an uncoupled reservoir of infection. If the actual
data were also explained substantially better by the coupled model, we would
expect to see comparable results in the data analysis. However, because we
do not, we conclude that this coupled model does not provide a substantially
better explanation than the uncoupled model. Although various other candidate
coupling mechanisms have been proposed (Bjgrnstad et al. (2019)), they have
not yet been fitted to the full data, suggesting a lack of appropriate methodology
to do so. Instead, Bjornstad et al. (2019) consider summary statistics based on
local fade-outs and re-introductions.

Figure 5 shows that model B has a small, but distinct shortfall compared with
ly.. For the simulated data, we do not observe this shortfall, and thus we deduce
that the real data provide a more challenging optimization environment. When
performing difficult optimization problems, it may be possible to develop helpful
strategies specific to the model and data in question. For example, one could
try merging unit-specific parameters from different searches, using the likelihood
component for each unit to assess successful choices. However, optimization
heuristics such as this do not have general theoretical support; if they obtain
higher likelihoods, that is sufficient justification. For analyses of panel time series
data using PanelPOMP models, such methods have clearer theoretical support
and have been found to be useful (Breto, Ionides and King| (2019)).
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4. Discussion

Theoretical interest in BPF algorithms has been inspired by the work of
Rebeschini and Van Handel| (2015), who showed mathematically that a BPF en-
joys linear scaling properties under suitable conditions. However, they expressed
pessimism about the practical applicability of their algorithm, which may help to
explain its limited practical use. A similar algorithm was proposed independently
under the name of a factored particle filter by Ng, Peshkin and Pfeffer (2002), who
offered an empirical justification. However, the latter algorithm has also seen only
limited use. The numerical results in Figure 3 of [lonides et al. (2021) suggest that
BPF is particularly well suited to metapopulation models, in which we expect
most of the population dynamics to occur at a local level, among individuals at
one spatial unit. As a broad generalization, in ecological systems, the dispersion
of individuals between spatial units is rare but dynamically important. Therefore,
edge effects between blocks, which may be a serious problem for a BPF in a system
with stronger spatial coupling (lonides et al. (2021))) is a relatively minor concern
in metapopulation models. Blocks of size one unit are therefore a natural choice
for block filtering of metapopulation models when the constituent populations
are spatially distinct.

We have proposed a likelihood-maximization approach to inference. Much
research has been done on inference for high-dimensional partially observed
stochastic dynamic systems, and we have cited only the most directly relevant
work. A Bayesian inference approach based on the ensemble Kalman filter is
proposed by Katzfuss, Stroud and Wikle (2020). An expectation-maximization
approach based on a BPF is presented by Finke and Singh! (2017)). Spatiotemporal
models with a convenient factorization across units are studied by |Beskos et al.
(2017) and |Xu and Jasra (2019).

We have demonstrated a workflow that led to a likelihood-based assessment of
measles metapopulation models (A and B), with the possibility of finding evidence
that they outperform the uncoupled model, €. Our methodology successfully
refutes € on simulated data, when the truth is within A and B. However,
there was no evidence of an advantage for these coupled models when the same
comparison was carried out on the data. Likelihood maximization for the measles
data fits the common task framework described by Donoho| (2017, Section 6), with
the likelihood value for € obtained by |He, Ionides and King (2010) providing
a benchmark challenge. Future improvements in models, perhaps facilitated
by the open-source models and methods accompanying this article, may obtain
metapopulation models that convincingly beat model C.

The computation time for Figures 3 and 5 was approximately 24hr on a single
core of a computing node, for 4,000 particles iterated 100 times over 730 time
points (weekly data for 14 years) for 20 cities. Each box in these figures involves
36 replications, and thus took 24 hours on all cores of one node on a computing
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cluster. A measure of computational efficiency is the size of a problem that can
be solved on this timescale, as discussed further in Section S3. Tasks that are
considerably larger, perhaps 10° or more spatial units, may require additional
approximations, such as those inherent in the ensemble Kalman filter (Evensen
(2009); Katzfuss, Stroud and Wikle|(2020)) or other numerical filtering techniques
(Whitehouse, Whiteley and Rimella| (2023)). However, we anticipate that many
practical metapopulation analyses can be addressed within the scope we have
demonstrated. The majority of the computational effort lies in simulating from
the dynamic model. In the spatPomp R package, as in pomp, the user supplies
a snippet of C code to simulate a single particle between a single arbitrary
pair of times, and the package provides a vectorized form of this computation,
which is used by the inference methodologies within the package. As a result,
the computational performance is competitive even though the majority of the
package is written in R (FitzJohn et al.| (2020, Table 1)).

Supplementary Material

Supplementary text presents the following: S1, parameters for the measles
model; S2, algorithmic parameters and transformations; S3, computational
efficiency; S4, varying the spatial autoregression parameter, r. Source code is
at https://github.com/ionides/ibpf_article.
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