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Abstract: We consider inference for a collection of partially observed stochastic

interacting nonlinear dynamic processes. Each process is identified with a label,

called its unit. Here, our primary motivation arises in biological metapopula-

tion systems, in which a unit corresponds to a spatially distinct sub-population.

Metapopulation systems are characterized by strong dependence over time within a

single unit, and relatively weak interactions between units. These properties make

block particle filters effective for simulation-based likelihood evaluation. Iterated

filtering algorithms can facilitate likelihood maximization for simulation-based

filters. Here, we introduce an iterated block particle filter that can be applied

when parameters are unit-specific or shared between units. We demonstrate the

proposed algorithm by performing inference on a coupled epidemiological model

describing spatiotemporal measles case report data for 20 towns.

Key words and phrases: Maximum likelihood estimation, metapopulation, partially

observed Markov process, sequential Monte Carlo, spatiotemporal.

1. Introduction

Statistical inference for high-dimensional partially observed nonlinear dy-

namic systems arises in various scientific contexts. Massive models and data sets

are considered in the geophysical sciences, carried out under the name of data

assimilation (Evensen (2009)). Population models in ecology and epidemiology

can be characterized by high levels of stochasticity, nonlinearity, measurement

error, and model uncertainty, leading to challenges of a somewhat different nature

to those of geophysical models. In addition, biological population systems may

have a low population count, owing to a local introduction or fade-out of one

or more constituent species. Such situations may require models with integer-

valued counts, rather than continuous population approximations. Collections of

biological populations measured at different spatial locations may have spatial

interactions in addition to local population dynamics; such collections are

called a metapopulation. The study of spatiotemporal disease dynamics has

motivated research into inference for metapopulation systems (Xia, Bjørnstad and

Grenfell (2004); Li et al. (2020); Park and Ionides (2020); Ionides et al. (2021);
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Cauchemez et al. (2008); Bjørnstad et al. (2019)).

Until recently, statistical inference for partially observed nonlinear biological

systems was an open methodological challenge, even in the time series case

(Bjørnstad and Grenfell (2001)). Advances in Monte Carlo methods based on

particle filters have made inference accessible in many low-dimensional problems

(Doucet and Johansen (2011); Kantas et al. (2015); King, Nguyen and Ionides

(2016)). However, the curse of dimensionality (Bengtsson, Bickel and Li (2008))

prevents application of the basic particle filter on metapopulations with more

than a few units. Methods based on improving the proposal distribution for the

particle filter may not fully resolve the curse of dimensionality (Snyder, Bengtsson

and Morzfeld (2015)). Previous Monte Carlo methods which can provably beat

the curse of dimensionality may have limited applicability (Beskos et al. (2017);

Park and Ionides (2020); Ionides et al. (2021)). Consequently, state-of-the-art

scientific analysis for metapopulation dynamics depends on ensemble Kalman

filter (EnKF) methods (Li et al. (2020). EnKF algorithms scale well, but are

founded on an approximation that can be unsuitable for discrete populations with

fade-out and re-introduction dynamics and other highly non-Gaussian features

(Ionides et al. (2021)).

In Section 2, we propose an algorithm for inference on metapopulation

dynamics, which we call an iterated block particle filter (IBPF). IBPF algorithms

combine an iterated filtering likelihood maximization technique (Ionides et al.

(2015)) with a block particle filter (BPF) (Rebeschini and Van Handel (2015)).

Iterated filtering algorithms use parameter perturbations to coerce a filtering

algorithm into exploring the parameter space. BPF algorithms address the

curse of dimensionality by modifying the resampling step of a particle filter

to resample independently on blocks that form a partition of the collection of

units. A previous IBPF algorithm was developed by Ning and Ionides (2023)

for the particular case in which all estimated parameters are unit-specific, that

is, the dynamics and measurement process for a unit u are determined by a

vector of parameters ψu specific to unit u. In Section 2, we provide a formal

meaning of this assertion, together with the pseudocode for our algorithm. We

propose an extension of the aforementioned IBPF which additionally allows us

to estimate a vector of shared parameters, ϕ. In this case, the full parameter

vector is θ = (ϕ, ψ1:U), where the U units are named {1, . . . , U}, which we denote

by 1 :U . Ning and Ionides (2023) develop a theoretical justification for their

algorithm; however, our new IBPF currently relies on empirical support only.

There may be scientific interest in which parameters in a metapopulation

system are best understood as being unit-specific, and which can reasonably

be modeled as being shared between units. Another relevant possibility is

that a parameter may differ between units as a shared function of unit-specific

covariates. Formally, this is a special case of a shared parameter. Addressing

these issues is also a prerequisite for studying questions about the coupling
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of metapopulation systems using model-based inference from spatiotemporal

data. In Section 3.3, we will show empirically that our IBPF algorithm is

applicable to an inference challenge in epidemiological metapopulation dynamics.

Our demonstration focuses on a data set of weekly measles incidence in 20

towns in the United Kingdom (UK) during the pre-vaccination era (He, Ionides

and King (2010)), modeled using a previously studied metapopulation model

(Park and Ionides (2020); Ionides et al. (2021)). Measles case reports are a

longstanding benchmark problem for inference on biological dynamics, motivating

the development of time series methodologies and, more recently, the progression

from single populations to metapopulation systems. Unlike previous attempts

on sequential Monte Carlo inference for metapopulation models, we show that

our algorithm can provide practical plug-and-play, likelihood-based inference

when the parameters are either shared between units or differ between units.

Demonstrating a solution to this open problem provides numerical evidence

substituting for numerical comparisons with alternative methods.

Our data analysis results do not fully resolve open questions about what

models for coupling between towns are supported by the data, and which

parameters should be modeled as unit-specific. Rather, we demonstrate steps

toward this research goal. We use a simulation study, discussed in Section 3.2, to

show that our methodology can deliver a good approximation to the maximum

likelihood estimate (MLE) when fitting the model used to simulate the data.

This allows us to interpret our data analysis results as evidence of model

misspecification, providing a guide for future investigations of these data, as well

as validation of tools to carry out such investigations.

Optimization of high-dimensional, non-convex and potentially multi-modal

functions, evaluated using stochastic methods, is not straightforward, even

when it is possible to evaluate the function within an acceptable level of error.

Therefore, we discuss approaches that assist noisy likelihood searches, and suggest

diagnostic plots to assess their success.

2. An IBPF Algorithm for Likelihood Maximization

A latent Markov process is denoted by {Xn : n = 0, . . . , N}, with Xn =

X1:U,n taking values in a product space XU . We define set-valued subscripts by

XA = {Xa, a ∈ A} and XA,B = {Xa,b, a ∈ A, b ∈ B}. The discrete time process

X0:N may arise from a continuous-time Markov process {X(t), t0 ≤ t ≤ tN}
observed at times t1:N , in which case, we set Xn = X(tn). The initial value X0

may be stochastic or deterministic. Observations are made on each unit, modeled

by an observable process Y1:N = Y1:U,1:N that takes values at each time n in a

product space YU . Observations are modeled as conditionally independent, given

the latent process. The conditional independence of measurements applies over

both time and the unit structure; thus, the collection {Yu,n : u = 1, . . . , U, n =
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1, . . . , N} is conditionally independent, given {Xu,n : u = 1, . . . , U, n = 1, . . . , N}.
We suppose the existence of a joint density fX0:N ,Y1:N

forX1:U,0:N and Y1:U,1:N with

respect to some appropriate measure, following a notational convention that the

subscripts of f denote the joint or conditional density under consideration. We

suppose that f depends on a real-valued parameter vector θ = (ϕ, ψ1:U), which

we write as θ = θ1:D when we wish to concatenate the shared and unit-specific

parameters into a single vector of length D. The data are y∗u,n, for unit u at

time n. This model is a special case of a partially observed Markov process

(POMP), also known as a state-space model or hidden Markov model. The

additional unit structure, not generally required for a POMP, is appropriate for

modeling interactions between units characterized by a spatial location; thus, we

call the model a SpatPOMP. For metapopulation models, the units are not, in

general, arranged on a spatial grid, but instead comprise a collection of spatially

distributed population centers.

A numerical challenge of fundamental statistical relevance is maximizing the

log-likelihood function of the data, given the model, ℓ(θ) = log fY1:N
(y∗

1:N ;θ).

Numerical evaluation of the likelihood function is closely related to the filtering

problem of evaluating fXn|Y1:n
(xn |y∗

1:n ;θ). If the dynamic model is extended

to include the parameters as latent variables, the filtering problem leads to the

Bayesian posterior distribution, though regularization is required to make the

calculation numerically tractable using Monte Carlo methods (Kitagawa (1998);

Liu and West (2001)). Iterating this Bayesian calculation recursively targets an

MLE, a strategy known as data cloning (Lele, Dennis and Lutscher (2007); Lele,

Nadeem and Schmuland (2010)). Adding noise to perturb the parameters in the

extended model at each time point can stabilize the numerics, while still being

able to approximate the MLE (Ionides, Bretó and King (2006); Ionides et al.

(2011, 2015)). Many variations on this idea have been developed using different

filter methods (Park and Ionides (2020); Li et al. (2020); Ionides et al. (2021);

Manoli et al. (2015)) or employing different perturbation systems (Doucet, Jacob

and Rubenthaler (2013); Nguyen and Ionides (2015)).

A direct approach to iterating a BPF for parameter estimation is to resample

the extended model independently on each block, yielding separate collections

of parameters for each block. Ning and Ionides (2023) prove that this IBPF

algorithm targets the MLE for the special case where each parameter is localized

to an individual unit, that is, when all parameters are unit-specific. Formally, we

say that a parameter for a discrete-time SpatPOMP is specific to a unit u if it is

involved in specifying the measurement density fYu,n|Xu,n
or the transition density

fXu,n+1|Xn
, for some n, and it is not involved in fYv,m|Xv,m

or fXv,m+1|Xm
, for any

v ̸= u and any m. For a continuous-time SpatPOMP, we replace the requirement

on fXu,n+1|Xn
with an equivalent requirement on a numerical solution over a small

time increment δ, as in equation (2.1). A parameter that is not unit-specific is

said to be shared between units. There are intermediate possibilities, where a
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parameter is shared for only a subset of all units, but such a parameter is formally

classified as shared. The special case in which all parameters are unit-specific may

occur, but models typically have some shared parameters that arise in transition

densities and/or measurement densities for multiple units.

In our approach to iterated filtering for shared parameters, we construct an

extended model, within which, the shared parameters are represented as a unit-

specific parameter that happens to be constant across units. We construct a

spatiotemporally extended model by supposing that a numerical solution for the

transition from time t to time t+ δ for each unit u has the functional form

Xu(t+ δ) = Xu(t) +Qu

{
X(t),ηt, ϕ, ψu, t, δ

}
, (2.1)

where the random vector ηt = η1:U,t is shared, for all u ∈ 1 :U , and does not

depend on θ. If a representation (2.1) exists, an extended model is defined by

replacing ϕ with ϕu(t) and ψu with ψu(t). Equation (2.1) implicitly defines a

continuous-time extended model by the limit as δ → 0, when that limit exists, but

for simulation-based methods, a numerical solution is of more immediate concern

than this limit. Admitting a minor abuse of notation, we subsequently use the

density f to denote both the original model and its extension for spatiotemporally

varying parameters, with the context determining which one is intended.

In some situations, the extended model may be problematic; for example, it

could break conservation laws obeyed by the original system. In other situations,

the extended model may make scientific sense in its own right; for example,

in biological metapopulation systems, it might be scientifically meaningful to

consider a model in which there is variation over space and time in the parameters

that describe the local dynamics. Here, we focus on the hypothesis that some

parameters are fixed across space and time, but the specification in (2.1) requires

that this hypothesis be nested within a more flexible alternative.

The IBPF algorithm described in Algorithm 1 carries out a BPF on this

extended model. The extended parameters are given independent perturbations,

but a spatial autoregressive step pulls the values of the shared parameters toward

their mean over the units. Indeed, this autoregressive step is the only difference

between Algorithm 1 and the algorithm for unit-specific parameters proposed

by Ning and Ionides (2023). This algorithm, in turn, is essentially the IF2

algorithm of Ionides et al. (2015), with the particle filter replaced with the BPF

of Rebeschini and Van Handel (2015).

Algorithm 1 assumes implicit loops over j in 1 :J and u in 1 :U , N (µ,Σ)

denotes the normal distribution with mean µ and variance matrix Σ, and σn is a

D×D diagonal matrix with entries σd,n. The blocks B1:K are a partition of 1 :U .

The pseudocode in Algorithm 1 represents our implementation of an

IBPF as the R function ibpf, which we have contributed to the open-source

package spatPomp (Asfaw, Ionides and King (2021); Asfaw et al. (2023)).
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Algorithm 1 IBPF.

Input: Simulator for the extended model, fXn|Xn−1
(xn |xn−1 ;θ), and initialization,

fX0
(x0 ;θ); evaluator for fYu,n|Xu,n

(yu,n |xu,n ; θ); data, y∗
1:N ; number of particles,

J ; blocks, B1:K ; initial parameter swarm with decomposition into shared and unit-
specific parameters, Θ0,j

u = (Φ0,j
u ,Ψ0,j

u ); random walk perturbation, σd,n; cooling
rate, a; number of iterations, M ; spatial autoregression, r.

1: for m in 1 :M do
2: Perturb parameters: ΘF,m,j

u,0 ∼ N (Θm−1,j
u ;σ2

0a
2m/50)

3: Initialization: simulate XF,j
0 ∼ fX0

( · ;ΘF,m,j
1:U,0 )

4: for n in 1 :N do
5: Perturb parameters: ΘP,m,j

u,n ∼ N (ΘF,m,j
u,n−1, σ

2
na

2m/50)

6: Prediction simulation: XP,j
n ∼ fXn|Xn−1

(
· |XF,j

n−1; Θ
P,m,j
1:U,n

)
7: for k in 1 :K do
8: Block prediction weights: wP

n,j,k =
∏

u∈Bk
fYu,n|Xu,n

(
y∗u,n |XP,j

u,n ;Θ
P,m,j
u,n

)
9: Normalize weights: w̃n,j,k = wP

n,j,k/
∑J

i=1 w
P
n,i,k

10: Select resample indices: i1:J,k with P [ij,k = k] = w̃n,j,k

11: XF,j
Bk,n

= X
P,ij,k
Bk,n

, ΘF,j
Bk,n

= Θ
P,ij,k
Bk,n

=
(
Φ

P,ij,k
Bk,n

,Ψ
P,ij,k
Bk,n

)
12: block mean of shared parameters: µk,n = J−1

∑J
j=1 Φ

F,j
Bk,n

13: end for
14: overall mean of shared parameters: µn = K−1

∑K
k=1 µk,n

15: autoregressive correction: ΦF,j
Bk,n

= ΦF,j
Bk,n

+ r
(
µn − µk,n

)
16: end for
17: Θm,j

u = ΘF,m,j
u,N

18: end for
Output: IBPF parameter swarm, ΘM,j

u

Additionally, the source code for all results presented here is available at

https://github.com/ionides/ibpf_article. Various generalizations of this

implementation are possible. For example, iterated filtering theory does not rely

on parameter perturbations following the normal distribution (Ionides et al.

(2015)), though, in practice, we transform the parameters to facilitate this

convenient choice (see Section S2).

2.1. Algorithmic parameters

The model parameters are optimized on a transformed scale for which unit

variation is scientifically meaningful. In practice, this means working with

positive parameters on a log scale, and with (0, 1) interval-valued parameters on a

logistic scale. We follow standard iterated filtering practice by using independent

random walks for each parameter on this transformed scale (King, Nguyen and

Ionides (2016)). We find that the large number of parameters following a random

walk, in the presence of unit-specific parameters, can require considerably smaller

random walk standard deviations than the values around σd,n = 0.02 (i.e., 2%

perturbation per time point) that have been employed for iterated filtering of

https://github.com/ionides/ibpf_article
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time series models. After experimentation, we used σd,n = 0.005 for the initial

search, and σd,n = 0.00125 for subsequent refinements. Occasionally, a parameter

that can be estimated precisely from the data can benefit substantially from a

smaller perturbation. This is the case for one parameter in our measles analysis,

an exponent α, for which the scale of uncertainty is an order of magnitude smaller

than that of the other parameters; therefore, we scaled σd,n for this parameter

accordingly. In principle, σd,n can be a function of n and the parameter, d. The

most common reason for using this flexibility is to avoid perturbing parameters

during time intervals in which we have no information about these parameters.

Following an evolutionary analogy, evolution cannot operate effectively if there

is mutation, but no selection. For an initial value parameter, that specifies only

the latent process value at the initial time t0, we use σd,n = 0 for n ≥ 1, and we

double the value of σd,n, for n = 0.

We use J = 4,000 particles, and set the cooling rate parameter to a = 0.5,

corresponding to a 1% reduction in the random walk standard deviation at each

iteration. We set M = 100 optimization iterations, chosen as an empirically

assessed compromise between the effort spent on each search and the number of

searches conducted. An additional discussion of algorithmic parameters is given

in Section S2. The only additional algorithmic parameter over previous iterated

filtering algorithms is the spatial autoregressive parameter, r. The results of our

numerical experiments suggest that the performance is not sensitive to the choice

of r > 0 (see the Supplementary Material, Figure S1). Consequently, here we use

r = 0.1.

Applying an IBPF to real data forces us to address problems related to

model development, model misspecification, and performance in the presence of

outliers. Before doing so, we use simulated data to demonstrate the capabilities

of the methodology on a correctly specified model.

3. Testing an IBPF on a Measles Transmission Model

Measles transmission is a useful example of epidemiological dynamics (and

therefore also ecological dynamics, for a host-pathogen ecosystem), with plentiful

case report data and relatively simple biology. Model-based analyses of measles

time series data have led to a better understanding of the seasonality of infectious

diseases (Fine and Clarkson (1982)), critical community size (Bartlett (1957)), the

recognition that relatively simple mechanistic models can provide a remarkably

good description of the dynamics (Earn et al. (2000)), and other foundational

research on disease dynamics. Some progress has been made on building and

fitting spatiotemporal models for measles; see, for example, Xia, Bjørnstad

and Grenfell (2004), Eggo, Cauchemez and Ferguson (2011), Bjørnstad et al.

(2019), and Becker et al. (2020). However, the lack of suitable methodology

to fit and assess a flexible class of coupled models is an obstacle to further
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Figure 1. Weekly measles case reports for 20 UK towns.

progress (Becker et al. (2020)). Previous methodological research has used

spatiotemporal measles models as a test problem (Park and Ionides (2020);

Ionides et al. (2021)). However, these methods have fallen short as tools for data

analysis, owing to numerical considerations. Bearing all this in mind, measles

provides a natural testing ground for our new methodologies. We demonstrate

that we now have the tools to carry out likelihood maximization (and therefore,

in principle, profile likelihood confidence interval construction and likelihood-

based model selection) on mechanistic statistical models that are appropriate for

spatiotemporal metapopulation disease data.
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3.1. The measles data, a model, and three submodels

We set ourselves the task of fitting a spatiotemporal model to the case reports

for 20 towns studied by He, Ionides and King (2010). We need to be able to handle

discrete case counts, which vary from zero to thousands of cases per week. We

consider a model with the same structure as that of He, Ionides and King (2010),

namely, a Markov chain with gamma noise on the infection rate, but with an

additional term for the transmission between cities. This requirement limits us

to plug-and-play methodologies, which are those that require simulation from the

latent process model, but not the ability to evaluate transition densities (Bretó

et al. (2009); He, Ionides and King (2010)).

Some previous analyses have used counts aggregated over two-week intervals

(Park and Ionides (2020); Ionides et al. (2021)), because these were available

for more cities, but our goal here is to extend the analysis of He, Ionides and

King (2010). Apart from this, our model matches that of Ionides et al. (2021)

and, for completeness, we repeat the description here. We compartmentalize

the population of each town into susceptible (S), exposed (E), infectious (I),

and recovered/removed (R) categories. The numbers of individuals in each

compartment for town u at time t are denoted by integer-valued random

variables Su(t), Eu(t), Iu(t), and Ru(t), respectively. The population dynamics

are written in terms of the counting processes NQ1Q2,u(t) enumerating the

cumulative transitions in town u, up to time t, from compartment Q1 to Q2.

Here, Q1, Q2 ∈ {S,E, I,R,B,D}, with B denoting a source compartment for

immigration or birth, and D denoting a sink compartment for emigration or

death. We enumerate the U = 20 towns studied by He, Ionides and King (2010)

in decreasing size, so that u = 1 corresponds to London. Our model is described

by the following system of stochastic differential equations, for u = 1, . . . , U :

dSu(t) = dNBS,u(t)− dNSE,u(t)− dNSD,u(t),

dEu(t) = dNSE,u(t)− dNEI,u(t)− dNED,u(t),

dIu(t) = dNEI,u(t)− dNIR,u(t)− dNID,u(t).

The total population Pu(t) = Su(t) + Eu(t) + Iu(t) + Ru(t) is calculated by

smoothing census data, and is treated as known. The number of recovered

individuals Ru(t) in town u is therefore defined implicitly. Furthermore, NSE,u(t)

is modeled as a negative binomial death process (Bretó et al. (2009); Bretó and

Ionides (2011)), defined by a rate, µSE,u(t), specified as

µSE,u = βu

[(
Iu + ιu
Pu

)αu

+
∑
ũ̸=u

vuũ
Pu

{(
Iũ
Pũ

)αu

−
(
Iu
Pu

)αu
}]

dΓSE,u

dt
.

Here, the time dependence of µSE,u, βu, Iu, and Pu is suppressed; αu is a

mixing exponent modeling inhomogeneous contact rates within a town; ιu models
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immigration of infected individuals; dΓSE,u/dt is gamma white noise, with

intensity parameter σSE.u; and βu models the seasonal transmission driven by

high contact rates between children at school,

βu(t) =

{{
1 + hu(1− s)s−1

}
βu during school term,(

1− hu

)
βu during vacation,

where s = 0.759 is the proportion of the year taken up by the school terms, βu

is the mean transmission rate, and hu measures the reduction in transmission

during school holidays.

The number of travelers from town u to ũ is denoted by vuũ. Here, vuũ is

constructed using the gravity movement model of Xia, Bjørnstad and Grenfell

(2004), given by

vuũ = Gu ·
d

pop2 · popu · popũ

duũ
,

where Gu is the gravitational constant, duũ is the distance between town u and

town ũ, popu is the average of Pu(t) over time, pop is the average of popu across

towns, and d is the average of duũ across all pairs of towns. The transition

processes NEI,u(t), NIR,u(t), and NQD,u(t), for Q ∈ {S,E, I,R}, are modeled

as conditional Poisson processes with per-capita rates µEI,u, µIR,u, and µQD,u,

respectively, and we fix µQD,u = (50 year)−1. A fraction c of births enter the

susceptible cohort on the school admission day, and hence the birth process

NBS,u(t) is an inhomogeneous Poisson process with rate µBS,u(t−∆)
[
(1−c)+cδ(t−

ta)
]
, where µBS,u(t) is specified by interpolated census data, ta = ⌊t⌋ + 252/365

is the admission date for the year containing t, δ is a Dirac delta function, and

∆ = 4 year is a fixed delay between birth and entry into a high-transmission

school community.

To describe the measurement process, let Zu,n = NIR,u(tn) − NIR,u(tn−1)

be the number of removed infected individuals in the nth reporting interval.

Suppose that cases are quarantined once they are identified, so that reported

cases comprise a fraction ρ of these removal events. The case report y∗u,n is

modeled as a realization of a discretized conditionally Gaussian random variable

Yu,n, defined for y > 0 via

P
[
Yu,n=y | Zu,n=z

]
= Φ

{
y + 0.5; ρuz, ρu(1− ρu)z + τ 2uρ

2
uz

2
}

−Φ
{
y − 0.5; ρuz, ρu(1− ρu)z + τ 2uρ

2
uz

2
}
, (3.1)

where Φ(·;µ, σ2) is the N (µ, σ2) cumulative distribution function, and τ models

overdispersion relative to the binomial distribution. For y = 0, we replace y−0.5

with −∞ in (3.1). Three data points are treated as missing by He, Ionides

and King (2010), owing to presumed recording errors. We follow this decision,

implemented by including a special value NA in Y, and setting Yu,n to NA with
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Figure 2. Simulated weekly measles case reports.

probability one when y∗u,n is missing.

We have written the model with all parameters unit-specific, so θ = ψ1:U

with ψu =
(
βu, µEI,u, µIR,u, ρu, τu, σSE,u, Gu, ιu, hu, αu, S0,u, E0,u, I0,u

)
, for u ∈

1 :U . This defines an extended model for implementing an IBPF with shared

parameters, as in (2.1). It also serves another function by allowing us address a

key data analysis question of which parameters should be shared between units

and which should be unit-specific.

The data are shown in Fig 1, and simulations from the model are shown

in Fig 2. Parameters for the simulated model were based on the analysis

of individual towns by He, Ionides and King (2010). In order to investigate

estimation of either shared or unit-specific parameters, we conduct the simulation

with all parameters being shared. To find a shared parameter vector capable
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of providing a reasonable representation of all the towns simultaneously, we

experimented to look for a visual match between the data and the simulations.

The parameters used are reported in the Supplementary Material (Section S1).

Estimated parameter values may have scientific interest, but we focus on the

statistical task of likelihood maximization. In the presence of weak identifiability,

small differences in likelihood could lead to large differences in parameter

estimates. In such situations, a scientist may choose to investigate what

functions of the parameters can be inferred accurately without adding additional

assumptions. Alternatively, they may choose to investigate the consequences of

placing constraints on some parameters in order to improve the identifiability

of the remainder. Likelihood maximization permits such investigations, but is

beyond the scope of this study. In the Supplementary Material, we provide

the parameter values used for the simulation study and those obtained by the

likelihood maximization.

To facilitate data analysis, our methodology needs to operate across the full

spectrum of decisions on shared versus unit-specific parameter designations. We

therefore test our method on three submodels: A has mostly shared parameters,

with only the initial values and the reporting rate unit-specific; B has every

parameter unit-specific; and C has every parameter unit-specific, and the dynamic

coupling (in our context, the movement of infected individuals between towns) is

replaced with an external forcing of each unit (in our context, the immigration

rate of infected individuals from outside the study population). Section S1 defines

the submodels in further detail. Submodel C provides a useful point of reference,

because it is a special case of a PanelPOMP model (Bretó, Ionides and King

(2019)), and also can be analyzed as a collection of separate POMP models. We

set up our model so that C matches the analysis of He, Ionides and King (2010).

One may expect that methods that take advantage of the special structure of

C should outperform more general methods that permit coupling between units.

Thus, we expect the SpatPOMP methods to be less efficient numerically than

application of POMP methods separately to each unit. Here we answer the

following questions: How much less efficient are the SpatPOMP methods? Are

simulation-based SpatPOMP inference methods practical for situations such as

the measles model of He, Ionides and King (2010)?

The simulated model is drawn from model A, which is nested within model B,

but not within C. For models B and C, in which all parameters are unit-specific,

we must estimate 20×13 = 260 parameters. This greatly exceeds the seven shared

parameters fitted by Ionides et al. (2021) for a measles metapopulation model,

which required significant computational effort. An iterated guided intermediate

resampling filter (IGIRF) algorithm was used to fit nine shared parameters and

three unit-specific initial value parameters in a measles metapopulation model

(Park and Ionides (2020)). The latter analysis uses a customized treatment for

the unit-specific initial value parameters, and does not attempt to estimate other
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unit-specific parameters. IGIRF is sensitive to the choice of guide function, and

the model-specific implementation of Park and Ionides (2020) outperforms the

current generic implementation of IGIRF in spatPomp. Thus, to the best of our

knowledge, the IBPF presented in Algorithm 1 advances the current limits on the

scalability of simulation-based maximum-likelihood inference for metapopulation

dynamics.

Before engaging in likelihood maximization, we first validate the likelihood

evaluation; see Ionides et al. (2021) for likelihood evaluation for metapopulation

models. Briefly, the basic particle filter provides a consistent evaluation of the log-

likelihood in a limit with sufficient particles to make the Monte Carlo standard

deviation small. This is practical only when U is small (say, U ≤ 5), but this

situation can be used to calibrate the bias induced by a BPF, which turns out to

be small for our multi-town measles model when each town is its own block. It

may be surprising that resampling independently on each block (which is what a

BPF does) is able to capture the dependence. Heuristically, note that the dynamic

dependence between blocks is maintained by a BPF, which updates particles

according to the full coupled dynamics. Whether this is sufficient to obtain a

good approximation to the filter distribution depends on the situation, but for

the specific case of metapopulation models (for which the strongest coupling is

within units, rather than between units), the approximation can be empirically

successful. In principle, the approximation error can be reduced by increasing the

number of units in each block. However, in practice, the additional Monte Carlo

variance acquired by doing so is not worthwhile when the coupling is relatively

weak. The BPF log-likelihood evaluation at the true parameter value is ℓtrue =

−40612.5, with a Monte Carlo standard error of 0.6.

3.2. IBPF on simulated data

One of our goals is to obtain appropriate algorithmic choices for a data

analysis. Thus, we seek to develop methodology that is demonstrably successful

when the truth is known, before applying it to data. One could revisit the simulat-

ion study based on the data analysis in Section 3.3 using MLEs of the parameters.

In Figure 3 we investigate a sequence of successive searches for the MLE

for the models A, B, and C described previously. Each search is replicated 36

times. Search 1 was started with each parameter adjusted by a uniform [−0.1, 0.1]

random perturbation on an appropriate dimensionless scale (log for nonnegative

parameters, and logit for [0, 1] valued parameters; see Section S2). This is a fairly

small perturbation, but it is nevertheless sufficient to knock the likelihood of the

parameter vector around 200 log units below the MLE (shown in Figure 4). Our

goal is to show that the algorithm can succeed reliably on a relatively easy local

optimization task. Subsequent searches were started with four copies of each

parameter vector with an estimated likelihood in the top 25% for the previous

search.
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Figure 3. Fitting simulated measles data, using an initial search and four refinement
steps. (A1–A5) model A, 4 × 20 unit-specific parameters and nine shared parameters;
(B1–B5) model B, 13 × 20 unit-specific parameters and no shared parameters; (C1–
C5) model C, all unit-specific, but with immigration rather than coupling, matching He,
Ionides and King (2010). The horizontal dashed line is the log-likelihood at the true
parameters, evaluated using BPF.

The MLE is not known exactly in this case. Wilks’ theorem gives an

asymptotic expectation that the log-likelihood at the MLE should be greater

than the likelihood at the truth by approximately 1/2 the number of parameters,

which here is (4 × 20 + 9)/2 = 44.5 for A, and (13 × 20)/2 = 130 for B. The

y-axis values in Figure 3 show log-likelihoods exceeding the truth by less than

this, indicating some imperfection in the Monte Carlo maximization so far as

Wilks’ asymptotic result holds. Despite this limitation, searches that exceed the

likelihood at the truth have found inferentially plausible sets of parameters that

can be used to study the likelihood surface around the maximum. For example,

Monte Carlo profile confidence intervals can give proper coverage, even in the

presence of considerable Monte Carlo error (Ionides et al. (2017); Ning, Ionides

and Ritov (2021)).

Figure 4 shows the convergence diagnostics corresponding to A for the

simulated data (the first column) and B for the UK measles data (the second

column). For now, we focus on the first column. The first row plots the

log-likelihood obtained after the initial search against the log-likelihood of the

randomly selected starting value. The horizontal and vertical dashed lines denote

the likelihood at the truth, and the diagonal dashed line represents equality, so

that points above the diagonal show improvement after the search. We find

that IBPF robustly and rapidly approaches a neighborhood of the MLE, as

measured by likelihood. The second row shows that further investigation of more
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Figure 4. Three steps of a likelihood search on simulated data (left panel, model A)
and UK measles data (right panel, model B). Dashed lines parallel to the axes show the
log-likelihood at the truth (left panel) and the He, Ionides and King (2010) value (right
panel). Points above the diagonal dashed line show improvement owing to the search
step.
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Figure 5. Fitting different models to the UK measles data using the method tested on
simulated data. (A) 4 × 20 unit-specific parameters and nine shared parameters; (B)
13×20 unit-specific parameters and no shared parameters; (C) all unit-specific, but with
immigration rather than coupling. The horizontal dashed line is the likelihood from He,
Ionides and King (2010).

successful searches can reliably obtain likelihood values higher than those at the

truth. However, for a Monte Carlo search based on a Monte Carlo likelihood

evaluation, it may be problematic to pinpoint the exact maximum in a high-

dimensional space. The third row shows that continued searching does not lead

to substantially better outcomes. When using these methods, we emphasize the

need to make proper inferences despite imperfect maximization (Ionides et al.

(2017); Ning, Ionides and Ritov (2021)).

The results in Figure 3 and the first column of Figure 4 show that IBPF can

be effective for simulated data, but do not guarantee comparable performance

for our data analysis. Indeed, model misspecification, which is inevitable for

data analysis, may be expected to add difficulties to filtering and therefore to

numerical methods based on filtering. Rather, we view the simulation study as

a lower bound on the effort required to perform effective inference on data, and

therefore a starting point for investigating how to proceed with a data analysis.

Before moving on to the data analysis, we briefly describe the details of the model.

3.3. IBPF applied to data

Figure 5 shows the results from fitting models A, B, and C to the UK measles

data using successive rounds of IBPF, applying the same method used for the

simulation study shown in Figure 3. The dashed lines show the sum of the

log-likelihoods obtained by He, Ionides and King (2010), ℓHe = −40345.7. The

value ℓHe corresponds to model C. BPF with each town forming a separate
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block, applied to an uncoupled model such as C, is equivalent to carrying out

independent particle filters for each unit. Indeed, if we assign the published

parameter values from He, Ionides and King (2010) to the spatPomp object for

model C, and apply the bpfilter function to carry out BPF, we retrieve ℓHe, up

to a Monte Carlo error. Models A, B, and C in Figure 5 each show a shortfall

relative to ℓHe.

The largest shortfall is for A, perhaps because A has more shared parameters

than the evidence in the data supports. The results of He, Ionides and King (2010)

suggest that the data are explained better when various parameters are a function

of the town population. However, determining suitable functional forms for this

relationship, and establishing regularities across towns that can be represented

by shared parameters, remains an open problem. This may be investigated using

panel methods, such as PanelPOMP models (Bretó, Ionides and King (2019)), in

addition to consideration of SpatPOMP models.

Models B and C yield comparable likelihoods, which is in contrast to the

results shown in Figure 3. Fitting to simulated data from B (in the special

case in which all unit-specific parameters are equal across all units), the shortfall

for C in Figure 3 indicates that we obtain a substantially worse fit when we

approximate coupling using an uncoupled reservoir of infection. If the actual

data were also explained substantially better by the coupled model, we would

expect to see comparable results in the data analysis. However, because we

do not, we conclude that this coupled model does not provide a substantially

better explanation than the uncoupled model. Although various other candidate

coupling mechanisms have been proposed (Bjørnstad et al. (2019)), they have

not yet been fitted to the full data, suggesting a lack of appropriate methodology

to do so. Instead, Bjørnstad et al. (2019) consider summary statistics based on

local fade-outs and re-introductions.

Figure 5 shows that model B has a small, but distinct shortfall compared with

ℓHe. For the simulated data, we do not observe this shortfall, and thus we deduce

that the real data provide a more challenging optimization environment. When

performing difficult optimization problems, it may be possible to develop helpful

strategies specific to the model and data in question. For example, one could

try merging unit-specific parameters from different searches, using the likelihood

component for each unit to assess successful choices. However, optimization

heuristics such as this do not have general theoretical support; if they obtain

higher likelihoods, that is sufficient justification. For analyses of panel time series

data using PanelPOMP models, such methods have clearer theoretical support

and have been found to be useful (Bretó, Ionides and King (2019)).
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4. Discussion

Theoretical interest in BPF algorithms has been inspired by the work of

Rebeschini and Van Handel (2015), who showed mathematically that a BPF en-

joys linear scaling properties under suitable conditions. However, they expressed

pessimism about the practical applicability of their algorithm, which may help to

explain its limited practical use. A similar algorithm was proposed independently

under the name of a factored particle filter by Ng, Peshkin and Pfeffer (2002), who

offered an empirical justification. However, the latter algorithm has also seen only

limited use. The numerical results in Figure 3 of Ionides et al. (2021) suggest that

BPF is particularly well suited to metapopulation models, in which we expect

most of the population dynamics to occur at a local level, among individuals at

one spatial unit. As a broad generalization, in ecological systems, the dispersion

of individuals between spatial units is rare but dynamically important. Therefore,

edge effects between blocks, which may be a serious problem for a BPF in a system

with stronger spatial coupling (Ionides et al. (2021)) is a relatively minor concern

in metapopulation models. Blocks of size one unit are therefore a natural choice

for block filtering of metapopulation models when the constituent populations

are spatially distinct.

We have proposed a likelihood-maximization approach to inference. Much

research has been done on inference for high-dimensional partially observed

stochastic dynamic systems, and we have cited only the most directly relevant

work. A Bayesian inference approach based on the ensemble Kalman filter is

proposed by Katzfuss, Stroud and Wikle (2020). An expectation-maximization

approach based on a BPF is presented by Finke and Singh (2017). Spatiotemporal

models with a convenient factorization across units are studied by Beskos et al.

(2017) and Xu and Jasra (2019).

We have demonstrated a workflow that led to a likelihood-based assessment of

measles metapopulation models (A and B), with the possibility of finding evidence

that they outperform the uncoupled model, C. Our methodology successfully

refutes C on simulated data, when the truth is within A and B. However,

there was no evidence of an advantage for these coupled models when the same

comparison was carried out on the data. Likelihood maximization for the measles

data fits the common task framework described by Donoho (2017, Section 6), with

the likelihood value for C obtained by He, Ionides and King (2010) providing

a benchmark challenge. Future improvements in models, perhaps facilitated

by the open-source models and methods accompanying this article, may obtain

metapopulation models that convincingly beat model C.

The computation time for Figures 3 and 5 was approximately 24hr on a single

core of a computing node, for 4,000 particles iterated 100 times over 730 time

points (weekly data for 14 years) for 20 cities. Each box in these figures involves

36 replications, and thus took 24 hours on all cores of one node on a computing
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cluster. A measure of computational efficiency is the size of a problem that can

be solved on this timescale, as discussed further in Section S3. Tasks that are

considerably larger, perhaps 103 or more spatial units, may require additional

approximations, such as those inherent in the ensemble Kalman filter (Evensen

(2009); Katzfuss, Stroud andWikle (2020)) or other numerical filtering techniques

(Whitehouse, Whiteley and Rimella (2023)). However, we anticipate that many

practical metapopulation analyses can be addressed within the scope we have

demonstrated. The majority of the computational effort lies in simulating from

the dynamic model. In the spatPomp R package, as in pomp, the user supplies

a snippet of C code to simulate a single particle between a single arbitrary

pair of times, and the package provides a vectorized form of this computation,

which is used by the inference methodologies within the package. As a result,

the computational performance is competitive even though the majority of the

package is written in R (FitzJohn et al. (2020, Table 1)).

Supplementary Material

Supplementary text presents the following: S1, parameters for the measles

model; S2, algorithmic parameters and transformations; S3, computational

efficiency; S4, varying the spatial autoregression parameter, r. Source code is

at https://github.com/ionides/ibpf_article.
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