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Abstract: We propose an intuitive and simple-to-use procedure for estimating the

cointegration rank of a high-dimensional time series system with possible breaks.

Based on a similar idea to a principal component analysis, the cointegration rank

can be estimated by the number of eigenvalues of a certain nonnegative definite

matrix. There are several advantages to the new method: (a) the dimension of

the cointegrated time series is allowed to vary with the sample size; (b) it is model

free; and (c) it is simple to use and robust against possible breaks in trend. The

cointegration rank can be estimated without the need for a priori testing and esti-

mating of the break points. The asymptotic properties of the proposed methods are

investigated when the dimension of the time series increases with the sample size,

which offers a new alternative to deal with high-dimensional time series. Finally,

the proposed precedure is demonstrated by means of simulations.

Key words and phrases: Cointegration, eigenanalysis, high-dimensional time series,

nonstationary processes, structural break.

1. Introduction

Cointegration was introduced to visualize the long-run equilibrium between

several nonstationary economic series. During the past thirty years, cointegration

analysis has attracted increasing attention from both theoretical and empirical

researchers in economics and statistics alike. An excellent survey on the early

developments in cointegration can be found in Johansen (1995).

Engle and Granger (1987) derived a representation for cointegration in the

form of an error correction model (ECM), which reflects the correction of the

long-run relationship with short-run dynamics. One of the remarkable features

of the ECM is that it clearly identifies the gain in prediction achieved using the

cointegrated variables, rather than the standard ARIMA approach. However,

the associated inference method, now known as the Engle–Granger method, is

designed for bivariate series only. The likelihood inference-based ECM is sys-
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tematically developed in Johansen (1995). This likelihood approach is regarded

as the most effective and efficient inference method for an ECM. It provides the

maximum likelihood estimator for cointegration spaces and likelihood ratio tests

for cointegration ranks. However, the likelihood method is complex, requiring

a correct specification of a finite order of the vector autoregression (VAR) for

the short-run dynamic effect. In many applications, using different orders for

the VAR would result in different conclusions on the cointegration. If the VAR

order is under-specified or if the process lies outside the VAR class, then an

optimal inference on the unknown cointegration relations will lose validity; see

Hualde and Robinson (2010). Related methods, including the triangular system

of Phillips (1991) and the frequency domain approach of Robinson and Yajima

(2002) and Müller and Watson, (2013), suffer similar shortcomings. Furthermore,

most of these methods focus mainly on fixed-dimensional cointegrated time se-

ries, and become impractical when dealing with high-dimensional series; see Ho

and Sorensen (1996) and Gonzalo and Pitarakis (1999) for related discussions.

With the advancement of data acquisition technology, high-dimensional time

series data are often encountered in finance and economics, for example, high-

risk assets in a large portfolio, or large panel data in economics. A natural

question is how to detect a cointegration relationship if there exists a long-run

equilibrium among the high-dimensional nonstationary economic series. Recently,

Onatski and Wang (2018) derived the asymptotic theory for a high-dimensional

setting, and Zhang, Robinson and Yao (ZRY, 2019) proposed a method for es-

timating the cointegration rank based on the eigenvectors of a certain positive-

definite matrix consisting of the sample covariance of the observed series {yt},
given by Ŵ =

∑j0
j=0 Σ̂jΣ̂

′
j , where Σ̂j = (1/n)

∑n−j
t=1 (yt+j − ȳ)(yt − ȳ)′ and

ȳ = (1/n)
∑n

t=1 yt are the sample autocovariance and sample mean of the obser-

vations {yt : t = 1, . . . , n}, respectively. The symbol H ′ denotes the transpose of

the matrix/vector H. Because ZRY employed a strong approximation technique

to establish the asymptotic properties, they have to assume that the dimension

of the time series cannot exceed O(n1/4). In addition, ZRY did not consider

the case with structural breaks in the trend, which can induce an apparent unit

root phenomenon; see Zivot and Andrews (1992); Perron (1997); Cavaliere and

Georgiev (2007), and the references therein. It has been shown that an unac-

counted trend break can lead to substantial over-size and power loss in many

standard tests for cointegration; see Campos, Ericsson and Hendry (1996) and

Harris, Leybourne and Taylor (2016). Compared with the univariate case, rel-

atively less work has been conducted on cointegration with structural breaks in

the trend. Sporadic examples are given in Johansen, Mosconi and Nielsen (2000);
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Saikkonen and Lütkepohl (2000); Trenkler, Saikkonen and Lütkepohl (2008). As

pointed out by Harris, Leybourne and Taylor (2016), these studies all assume

both that a break exists and that the lag order of the VAR model is known a

priori. To overcome these difficulties, Harris, Leybourne and Taylor (2016) ap-

plied Johansen’s likelihood ratio to test for the cointegration rank. To determine

the cointegration rank, they further required a test at each step (an estimate for

the break point and an order selection using the Schwarz information criterion

(SC)), which becomes difficult to implement for high-dimensional series.

The purpose of this study is to propose an approach that is simple to use and

robust to possible breaks to identify the cointegration rank in a high-dimensional

time series setting. To a certain extent, the proposed procedure is similar to a

principal component analysis. In a classical principal component analysis, one

looks for linear combinations of factors that give rise to large variation, which

can be found by eigenvectors corresponding to large eigenvalues of the sample

covariance matrix (see Anderson (1984)). Here, we search for linear combina-

tions of integrated series that become stationary (cointegrated). The eigenvalues

of the long-run sample covariance matrix (see Ŵx below) of the difference of the

stationary components are of smaller order than those of the nonstationary com-

ponents. Thus, we identify the cointegration space by means of the eigenvectors

corresponding to small eigenvalues of the long-run sample covariance matrix of

the time series. A similar idea was considered in Phillips and Ouliaris (1988);

Harris (1997); Robinson and Yajima (2002) for fixed-dimensional cases, where

they used the original series to recover the cointegration space.

Specifically, consider differencing the original series {yt} to eliminate possible

breaks. Note that for a p-dimensional observed series yt with a linear trend, the

differenced series ∇yt = yt − yt−1 would only have a break at the change point.

To elucidate this idea, consider a simple example with one possible break in level

(cases with multiple breaks can be handled similarly). Let yt = c1 + c2I(t ≥
t0) + dt +Xt, where ci, for i = 1, 2, and d are p-dimensional constant vectors,

and Xt is a p-dimensional cointegrated process with no trend. Then,

∇yt = d + c2I(t = t0) +∇Xt.

The trend of∇yt reduces to a constant, except at the change point t = t0. We can

therefore remove the trend by considering ∇yt−∇ȳ, to recover the cointegration

relationship, where ∇ȳ = (1/n)
∑n

t=1∇yt. Because the number of break points

is small, using ∇yt−∇ȳ to estimate the cointegration rank will have little effect

on the performance. The distinct advantage of this method is that it avoids
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estimating and testing for the trend with possible breaks.

Furthermore, we propose recovering the cointegration space based on a weig-

hted matrix function of the sample autocovariance of the differenced process.

Note that if Xt is cointegrated with rank r, then there exist a p×p matrix A and

a p-dimensional series zt with r stationary components and p− r nonstationary

components, such that

Xt = Azt, (1.1)

(see Zhang, Robinson and Yao (2019)). It follows from (1.1) that the differenced

process {∇Xt} satisfies

∇Xt = A∇zt. (1.2)

We adopt a similar approach to that of ZRY to estimate the cointegration space,

but based on a different sample covariance matrix. Let Σ̂j,x be the sample auto-

covariances between ∇Xt and ∇Xt+j , for j ≥ 0. That is,

Σ̂j,x =
1

n− j

n−j∑
i=1

(∇Xt+j −∇X̄)(∇Xt −∇X̄)′

and

Ŵx =

M∑
j=0

w(j)(Σ̂j,x + Σ̂′j,x), (1.3)

with w(0) = 1/2 and w(j) = (1− j/(M + 1)) , for j ≥ 1.

Then, Ŵx is a symmetric and positive-definite matrix; see Newey and West

(1987). Because the convergent rates of the eigenvalues of Ŵx are different for

cointegrated and non-cointegrated spaces (see (2.3) and (2.4) below), we can

recover the cointegration space using the eigenvectors corresponding to the r

smallest eigenvalues of Ŵx. We also propose two methods for estimating the

cointegration rank r: one based on an information criterion, and the other based

on the ratio of the eigenvalues of Ŵx. Moreover, we establish the consistency of

the estimated cointegration space and the rank for both fixed and diverging p.

Compared with other procedures based on Engle and Granger (1987) ECM,

the proposed method has several advantages. First, it avoids a misspecification

or lag order selection for the VAR model of the short-run effect. Second, unlike

other results, our method works regardless of the existence of breaks in the trend.

Third, we allow the dimension p to diverge with n at a rate faster than that of

ZRY.

Throughout the paper, ‖ · ‖ denotes the spectral norm of a matrix. In par-

ticular, for a matrix H, ‖H‖ =
√
λmax(H′H), where λmax(·) denotes the largest
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eigenvalue of a matrix. The rest of the paper is organized as follows. The pro-

posed methodology is presented in Section 2. The asymptotic theory is developed

in Section 3. Numerical studies are reported in Section 4, and Section 5 concludes

the paper. Technical proofs are relegated to the Supplementary Material.

2. Methods

2.1. Setting

We call a vector process ut weakly stationary if (i) Eut is a constant vector

independent of t, and (ii) E‖ut‖2 < ∞, and Cov(ut,ut+s) depends on s only

for any integers t, s, where ‖ · ‖ denotes the Euclidean norm. Denote by ∇ the

difference operator, that is, ∇ut = ut − ut−1. Furthermore, if ut has a spectral

density matrix that is finite and definitely positive at zero frequency, then we

say ut is an I (0) process. An example of an I (0) process is a stationary and

invertible vector ARMA. We say xt is a p-dimensional integrated process of order

one (i.e., I(1)) if all its components follow a unit-root process, that is, ∇xt = ut.

Now, assume yt is a p-dimensional observable time series with a linear trend and

admits the following form: y0 = 0 and

yt =

m+1∑
i=1

aiI(ti−1 < t ≤ ti) + bt+ xt, and xt = Azt, (2.1)

where 0 = t0 < t1 < · · · < tm+1 = n, b and ai are p-dimensional constant vectors,

A is an unknown and invertible constant matrix, xt is a latent p-dimensional I(1)

process, zt = (z′t1, z
′
t2)
′ is a p-dimensional process, zt2 is an r-dimensional I(0)

process, and zt1 is a (p − r)-dimensional I(1) process. Furthermore, no linear

combination of zt1 is I(0), because such a stationary variable can be subsumed

into zt2. Each component of zt2 is a cointegrating error of xt, and r ≥ 0 is

the cointegration rank. In the event that there is no cointegration among the

components of xt, then r = 0. When xt itself is an I(0) process, then r = p.

For many economic and financial applications, there exists a small number of

cointegrated variables, that is, r ≥ 1 is a small integer. Expression (2.1) was

considered in ZRY for the case without a trend, that is, all the coefficients ai and

b are zero.

The pair (A, zt) in (2.1) is not uniquely defined, because it can be replaced

by (AH−1,Hzt) for any invertible H of the form(
H11 H12

0 H22

)
,
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where H11 and H22 are square matrices of size (p − r) and r, respectively, and

0 denotes a matrix with all entries equal to zero. Therefore, there is no loss of

generality in assuming A to be orthogonal, because any non-orthogonal A admits

the decomposition A = QU, where Q is orthogonal and U is upper-triangular,

and we may then replace (A, zt) in (2.1) by (Q,Uzt). In the following, we always

assume that A in (2.1) is orthogonal, that is, A′A = Ip, where Ip denotes the

p× p identity matrix. Write

A = (A1,A2),

where A1 and A2 are p × (p − r) and p × r matrices, respectively. Because

zt2 = A′2xt, the linear space spanned by the columns of A2, denoted byM(A2),

is called the cointegration space. In fact this cointegration space is uniquely

defined by (2.1).

2.2. Estimation

The goal is to determine the cointegration rank r in (2.1) and to identify

A2, or more precisely M(A2). Then, M(A1) is the orthogonal complement of

M(A2), and zit = A′ixt, for i = 1, 2. Our estimation method is motivated by the

following observation. To remove the trend effect, we consider the first difference

of yt. From (2.1), it follows that

∇yt = b +

m∑
i=1

(ai+1 − ai)I(t = ti + 1) +∇xt. (2.2)

From (2.2), we know that the trend of ∇yt changes only at the break points

ti + 1, for i = 1, 2, . . . ,m. If we ignore these break points and consider ∇yt as a

process with a constant mean, then it can be detrended by subtracting the sample

mean, ∇ȳ = (1/n)
∑n

t=1∇yt. That is, consider ∇x̂t = ∇yt − ∇ȳ, and recover

the cointegration space based on the sample covariance of ∇x̂t. In particular, for

j ≥ 0, we define

Σ̂j =
1

n− j

n−j∑
t=1

∇x̂t+j∇x̂′t,

and define W as in (1.3), that is, let w(0) = 1/2 and w(j) = (1− j/(M + 1)), for

j ≥ 1, and

Ŵ =

M∑
j=0

w(j)(Σ̂j + Σ̂′j).
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Owing to possible breaks, {∇x̂t} is not stationary and Ŵ is not an exact es-

timator of the spectral density of ∇xt at frequency zero. However, {∇x̂t} is

asymptotically stationary and, consequently, Ŵ can still estimate the spectral

density consistently at frequency zero. It can be shown that under some mild

conditions, for any c ∈M(A2),

c′Ŵc = Op

(
1

M
+BnMp

)
= op(1), (2.3)

as n,M →∞, where BnMp is given in (3.3) below. However, for any c /∈M(A2),

c′Ŵc = Oe(1), (2.4)

where U = Oe(V ) indicates that P (0 < |U/V | < ∞) → 1. Intuitively, the

r directions of the cointegration space M(A2) make |c′Ŵc| as small as possi-

ble. Consequently, M(A2) can be estimated by the linear space spanned by the

r eigenvectors of Ŵ corresponding to the r smallest eigenvalues. In addition,

M(A1) can be estimated by the linear space spanned by the (p− r) eigenvectors

of Ŵ corresponding to the (p− r) largest eigenvalues.

Let (γ̂1, . . . , γ̂p) be the orthogonal eigenvectors of Ŵ that correspond to the

eigenvalues arranged in descending order. Define

Â = (Â1, Â2), Â1 = (γ̂1, . . . , γ̂p−r), Â2 = (γ̂p−r+1, . . . , γ̂p). (2.5)

Then, M(Â1) and M(Â2), the linear spaces spanned by the eigenvectors of Ŵ,

are consistent estimators for M(A1) and M(A2) respectively; see Theorem 1

below.

The idea of using an eigenanalysis based on sample autocovariance matrices

has been used for factor modeling for dimension reduction (see Lam and Yao

(2012), and the references therein), and for identifying a cointegration space

(ZRY). These papers are based on a quadratic form of the sample autocovariance

of the observed series yt, which requires estimating the trend and testing for

possible break points. From (2.2) to (2.5), these difficulties can be circumvented

by means of ∇yt.

2.3. Determining cointegration ranks

We introduce two criteria to estimate the cointegration rank r based on the

estimated eigenvalues of Ŵ. Let λ̂1 ≥ · · · ≥ λ̂p ≥ 0 be the eigenvalues of Ŵ

and νn = M−1 + BnMp. From (2.3) and (2.4), λ̂i converges to some positive

constant for all 1 ≤ i ≤ p − r, and λ̂i = Op(νn) for all p − r < i ≤ p. Hence, for
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1 ≤ r < p, λ̂i/ν
1/2
n → ∞ in probability for all 1 ≤ i ≤ p − r. For p − r < i ≤ p,

λ̂i/ν
1/2
n = op(1). This leads to estimating r by

r̂ = max

{
j :

λ̂p+1−j

ν
1/2
n

≤ 1, 1 ≤ j ≤ p
}
, (2.6)

which can be viewed as a revised ratio estimate of Lam and Yao (2012). However,

Lam and Yao’s estimator is not consistent, whereas r̂ is; see Theorem 2.

Alternatively, we may define a so-called information criterion as follows:

IC(l) =

l∑
j=1

λ̂p+1−j + (p− l)ωn,

where the first term is used to fit the cointegrated components, and the second

term is the penalty for the lack of fit and ωn → 0. Then, r can be estimated by

r̃ = argmin
1≤l≤p

IC(l). (2.7)

Note that when ωn = ν
1/2
n , then r̃ = r̂. The consistency of r̃ is established in

Theorem 2.

3. Asymptotic Properties

In this section, we investigate the asymptotic properties of the proposed esti-

mators. First, we show that with r given, the linear spaceM(Â2) is a consistent

estimate for the cointegration space M(A2). We measure the distance between

the two spaces by

D(M(Â2),M(A2)) =

√
1− 1

r
tr(Â2Â′2A2A′2). (3.1)

Then, D(M(Â2),M(A2)) ∈ [0, 1], being zero if and only if M(Â2) = M(A2),

and one if and only if M(Â2) and M(A2) are orthogonal. Furthermore, we

show that both estimators r̂ and r̃, defined in (2.6) and (2.7), respectively, are

consistent. We consider two asymptotic regimes: (i) p is fixed, while n→∞, and

(ii) p→∞ as n→∞.

Put zt1 = (zt,1, . . . , zt,p−r)
′ and zt2 = (zt,p−r+1, . . . , zt,p)

′ . Under (2.1), zt,j
is I(1) for 1 ≤ j ≤ p − r, and et,j ≡ ∇zt,j is weakly stationary, that is, an I(0)

process. Write et1 = (et,1, . . . , et,p−r)
′ and et = (e′t1, z

′
t2)
′. We introduce the

following regularity conditions.
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Regularity Conditions

(i) There exists a sequence of independent and identically distributed (i.i.d.)

random vectors εt = (εt1, εt2, . . . , εtl)
′, such that

et =

t∑
j=−∞

Ct−jεj , (3.2)

where εti, for 1 ≤ i ≤ l, are independent random variables with mean zero

and max1≤i≤l E|εti|4 <∞, and Cj , j ≥ 0 are p× l matrices satisfying

∞∑
j=0

‖Cj‖ <∞ and λmin

 ∞∑
j=0

CjC
T
j

 > δ,

for some δ > 0, where λmin denotes the smallest eigenvalue of a matrix.

(ii) The bandwidthM defined in (1.3) and the dimensions p satisfy thatM →∞
and

BnMp =
M
√
p
∑m

i=1 ‖ai+1 − ai‖
n

+

√
M min(p2, l2)

n
→ 0 (3.3)

as n→∞.

Remark 1. Model (3.2) includes a large class of linear processes, including the

vector ARMA process. The process when l = p with fixed p, (3.2), has been stud-

ied by several authors (see, for example, Marinucci and Robinson (2000)). How-

ever, little is known about the large p case. Recently, Chen and Wu (2019) consid-

ered the process (3.2) for the large p case under the assumption that εti, t, i ∈ Z
are i.i.d. random variables, and assume that

∑∞
j=0 ‖Cj‖F < ∞, where ‖ · ‖F

denotes the Frobenius norm of a matrix. Note that
∑∞

j=0 ‖Cj‖ < ∞ is weaker

than
∑∞

j=0 ‖Cj‖F < ∞, and is sufficient to ensure that
∑∞

k=0 ‖E(eke
T
0 )‖ < ∞,

which implies that the important measure of the stability (the spectral density)

of et exists and is bounded and continuous (Basu and Michailidis (2015)). The

assumption of the independence of the elements of εt is imposed for simplicity in

presenting the proof. When l ≤ p, the independent assumption can be replaced

by E(‖εtεTt ‖2) = O(l).

Remark 2. When
∑∞

j=0 ‖Cj‖F <∞, we can replace BnMp by

B∗nMp =
M
√
p
∑m

i=1 ‖ai+1 − ai‖
n

+

√
M

n
→ 0.



1202 CHAN AND ZHANG

Remark 3. It is easy to see that BnMp in Condition 1(ii) satisfies BnMp =

O(
√
Mp2/n). Furthermore, when l is finite, then Condition (ii) reduces to

M
√
p
∑m

i=1 ‖ai+1 − ai‖/n → 0, which depends on the jump size of the common

breaks
∑m

i=1 ‖ai+1−ai‖. If only a finite number of components of yt have breaks

in level at each break point, then
∑m

i=1 ‖ai+1 − ai‖ = O(1) and Condition (ii) is

equivalent to M
√
p/n→ 0. As a result, p is allowed to be bigger than the sample

size n when M = o(n1/2). When l ≥ p, because the number m of break points

is always finite, Condition (ii) reduces to Mp2/n → 0. In all cases, under the

fourth moment condition and M = o(n1/4), as in Theorem 2 of Newey and West

(1987), p is allowed to be larger than O(n3/8), which is much larger than that of

ZRY.

Theorem 1. Let r be given. Under Condition 1, we have

‖Â−A‖ = Op(BnMp). (3.4)

For the eigenvalues λ̂1 ≥ · · · ≥ λp of Ŵ, we have

λp−r = Oe(1) and λp−r+1 = Op

(
1

M
+BnMp

)
. (3.5)

For the cointegration space, we have

D(M(Â2),M(A2)) = Op(BnMp). (3.6)

Theorem 2. Let 1 ≤ r < p and Condition 1 hold.

(i) For r̂ defined in (2.6), limn→∞ P ( r̂ = r ) = 1.

(ii) For r̃ defined in (2.7), limn→∞ P ( r̃ = r ) = 1 provided ωn → 0 and ωn/νn →
∞.

Remark 4. Theorem 1 shows that as BnMp → 0 and M → ∞, one can re-

cover the cointegration space consistently without knowing a priori if breaks

exist. Theorem 2 shows that when the cointegration rank r is unknown, then

one can estimate it consistently based on the ratio or information criterion of the

eigenvalues of Ŵ, without estimating and testing for possible breaks. In addi-

tion, the conclusions of Theorem 1 still hold by replacing r with its estimator.

Hence, the proposed method is much simpler than the others, and is applicable

to high-dimensional cointegrated series.
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4. Numerical Results

We illustrate the proposed method using five simulated examples. A com-

parison with Johansen (1991) likelihood method is also conducted in Example 1.

Examples 2–4 illustrate the method in the presence of a break point, in which

we also compare the proposed method with that based on a unit-root test, such

as the sample autocorrelation function (ACF) method of ZRY (see also Zhang

and Chan (2018)) and the Phillips–Perron test (PP.test). Example 5 applies the

method to the case with breaks in a linear trend. We also apply the method to

the monthly exchange rates of the U.S. dollar versus the currencies of 19 OECD

countries in Example 6. In view of Condition 1(ii), the dimension p is usually no

bigger than n1/2. Therefore, we consider only p ≤ 80 in these examples, which is

slightly bigger than the square root of the sample size n = 2500.

Example 1. To facilitate the computation, in model (2.1), let a1 = · · · = am

be a p-dimensional vector with each component independently generated from

U(−1, 1). Likewise, let b be a p-dimensional vector with each component in-

dependently generated from U(1, 2), and let zt2 consist of r stationary AR(1)

processes with coefficients generated from U(−0.5, 0.5). Let the remaining p− r
components of zt1 be ARIMA(1,1,1) models with AR and MA coefficients gener-

ated independently from U(0, 0.6) and U(0, 0.8), respectively. All innovations are

independent N(0, 1) random variables. Such a setting ensures all regularity con-

ditions are valid. Let A be an orthogonalized version of a matrix with elements

generated independently from U(−3, 3). We estimate the cointegration rank r by

(2.7), with ωn = ν
1/3
n , νn = M−1 + B̄nMP , and M = 50 in Ŵ. For each setting,

we replicate the exercise 500 times. We then estimate Â by (2.5). Because r̃ or r̂

is not necessarily equal to r, we extend the definition of the discrepancy measure

(3.1) as follows:

D∗1(M(Â2),M(A2)) =

{
1−

tr
(
Â2Â

′
2A2A

′
2

)
max(r, r̂)

}1/2

. (4.1)

When r̂ = r, D∗1(M(Â2),M(A2)) = D(M(Â2),M(A2)), defined in (3.1). The

relative frequencies (RFs) for the occurrence of the event {r̂ = r} and the average

value of D1 = D∗1(M(Â2),M(A2)) for 500 replications are listed in Table 1 under

the label IC.

Because the cointegration rank is the number of stationary components of

zt, one can also estimate the rank using a unit-root test (see Engle and Granger

(1987)). We also include the results of the unit-root test estimation introduced
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by Zhang and Chan (2018) (see also ZRY) in Table 1 under the label ACF. In

particular, let x̂t = yt − â− b̂t and

ẑt = (ẑt,1, . . . , ẑt,p)
′ = Â′x̂t, (4.2)

where (â, b̂) is given by

(â, b̂) = argmin
(a,b)

n∑
t=1

(yt − a− bt)′(yt − a− bt). (4.3)

Note that the order of the components inversely reflects the closeness to station-

arity of the component series, with the last component {ẑt,p} most likely to be

stationary, and the first component {ẑt,1} most likely to be an I(1) process. Let

ρ̂i(·) be the ACF of ẑt,i given by

ρ̂i(k) =
γ̂i(k)

γ̂i(0)
,

where γ̂i(k) = (1/n)
∑n−k

t=1 ẑt+k,iẑt,i, for i = 1, 2, . . . , p, and define

Tn,i =
n

q(q + 1)

q∑
k=1

(ρ̂i(k)− 1).

We estimate the cointegration rank r by

r̂∗ =

p∑
i=1

I{Tn,i < −an}, (4.4)

where an → ∞ and R is a prescribed upper bound of r. In our numerical

experiments, we set an = (n/q)1/2, q = [n1/4].

To illustrate the performance of the proposed method, in Table 1, we also

report the results of Johansen’s likelihood estimation with cointegration rank r

estimated by the trace test; see Johansen (1991). We apply the method twice

with testing levels 0.05 and 0.01, respectively, written as Jo(0.05) and Jo(0.01)

in Table 1. The null distribution of the trace test statistic is approximated by[
T∑
t=1

et(Xt−1 − X̄)′

][
T∑
t=1

(Xt−1 − X̄)(Xt−1 − X̄)′

]−1[ T∑
t=1

(Xt−1 − X̄)e′t

]
,

where et = (εt,1, . . . , εt,p−r)
′,X0 = 0 and Xt =

∑t
j=1 et, and {εt,i} are indepen-

dent N(0, 1); see Johansen and Juselius (1990). This approximated distribution
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is calculated by simulation with T = 1000 and 6000 replications. Owing to the

heavy computational burden, we consider only the cases for p ≤ 30.

Table 1 clearly indicates that the newly proposed method outperforms Jo-

hansen’s method. The estimators r̃ and r̂∗ defined in (2.7) and (4.4), respectively,

achieve higher RFs for attaining the true value r than those achieved by the trace

test, with significance level at either 0.05 or 0.01. For small n, the situation be-

comes more challenging when p and r increase. For all p ≤ 30, the new method

works reasonably well, even when n = 300, and almost perfectly when n ≥ 500.

However, Johansen’s method, which is not designed for large p, fails for p ≥ 20,

even when n = 2000.

Example 2. Consider model (2.1) with a linear trend and one break point, that

is,

yt = a1I(0 < t ≤ t1) + a2I(t1 < t ≤ n) + bt+ xt,

xt = Azt, t = 1, 2, . . . , n,

where the change point t1 is taken as [n/2], the ith components of a1, a2, and b

are taken as a1i = i/p, a2i = 2 + i/p, and bi = 0.5, respectively, and zt2 consists

of r stationary AR(1) processes with coefficients −0.4 + i/r (i = 1, . . . , r). Let

the p− r components of zt1 be an ARIMA(1,1,1) with autoregressive coefficients

generated independently from U(0, 0.6) and moving average coefficients 0.2 +

0.6i/(p− r) (i = 1, . . . , p− r), and let A be generated as in Example 1.

We estimate the cointegration rank r by (2.7) with ωn = ν
1/3
n and (4.4)

with an = (n/q)1/2, q = [n1/4]. We still take M = 50 in Ŵ, and replicate the

exercise 500 times for each setting. The RFs for the occurrence of the event

{r̃ = r} or {r̂ = r} and the average value of D1 = D∗1(M(Â2),M(A2)) over 500

replications for t1 = [n/2] are listed in Table 2 under the labels IC and ACF,

respectively. Table 2 shows that both proposed procedures work reasonably well

when p is small and the sample size n is relatively large. When p is large, for

example p ≥ 50, the ACF method works poorly, but the proposed method can

still estimate the cointegration rank and the cointegration space very well. This

confirms that ZRY’s method works for smaller p than the proposed method does.

Also included in Table 2 are the results of applying the Phillips–Perron unit-

root test (PP.test) to the process {ẑt} defined in (4.2), with the significance level

set at 0.01, for estimating r. When p is large and n is small, the PP.test estimates

r slightly better than the procedures (4.4) do, but not as well as (2.7) does. In

all cases, (2.7) always performs better than the other methods. Table 2 also

shows that for a given p, a larger r/p yields more accurate estimates for r. In
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Table 1. RFs of {r̂ = r} and the average distance D1 between the estimated and the
true cointegration spaces (see (4.1)) in the simulation with 500 replications for Example
1.

n = 300 n = 500 n = 1000 n = 1500 n = 2000

Method RF D1 RF D1 RF D1 RF D1 RF D1

Jo(0.05) 0.170 0.656 0.228 0.606 0.424 0.456 0.408 0.472 0.266 0.571

p=6 Jo(0.01) 0.406 0.467 0.460 0.420 0.692 0.258 0.666 0.285 0.536 0.362

r=1 IC 0.998 0.071 0.998 0.060 1.000 0.052 0.998 0.064 1.000 0.045

ACF 0.888 0.141 0.972 0.077 0.990 0.058 0.996 0.065 1.000 0.045

Jo(0.05) 0.484 0.310 0.448 0.323 0.376 0.365 0.450 0.333 0.534 0.260

p=6 Jo(0.01) 0.730 0.185 0.706 0.191 0.646 0.222 0.706 0.200 0.796 0.126

r=3 IC 1.000 0.067 1.000 0.056 1.000 0.063 1.000 0.066 1.000 0.029

ACF 0.940 0.093 0.982 0.064 0.980 0.074 0.826 0.160 1.000 0.029

Jo(0.05) 0.188 0.489 0.372 0.370 0.260 0.437 0.216 0.470 0.346 0.383

p=8 Jo(0.01) 0.404 0.352 0.694 0.207 0.536 0.283 0.484 0.310 0.610 0.233

r=3 IC 1.000 0.080 1.000 0.066 1.000 0.067 1.000 0.060 1.000 0.047

ACF 0.788 0.170 0.922 0.101 0.912 0.112 0.924 0.100 0.994 0.050

Jo(0.05) 0.178 0.371 0.112 0.399 0.102 0.393 0.148 0.373 0.132 0.387

p=12 Jo(0.01) 0.584 0.224 0.466 0.253 0.452 0.247 0.530 0.211 0.448 0.242

r=6 IC 0.980 0.104 1.000 0.075 1.000 0.058 1.000 0.040 1.000 0.041

ACF 0.622 0.210 0.906 0.105 0.942 0.078 0.982 0.046 0.988 0.045

Jo(0.05) 0.132 0.289 0.102 0.286 0.148 0.263 0.294 0.210 0.232 0.237

p=20 Jo(0.01) 0.474 0.202 0.456 0.187 0.554 0.155 0.748 0.097 0.596 0.134

r=14 IC 0.970 0.113 0.996 0.071 1.000 0.054 1.000 0.039 1.000 0.039

ACF 0.652 0.169 0.928 0.084 0.964 0.061 0.990 0.041 0.992 0.041

Jo(0.05) 0.134 0.314 0.074 0.297 0.170 0.249 0.066 0.283 0.106 0.265

p=30 Jo(0.01) 0.330 0.272 0.254 0.239 0.436 0.186 0.234 0.221 0.340 0.193

r=20 IC 0.694 0.240 0.944 0.145 1.000 0.096 1.000 0.079 1.000 0.067

ACF 0.072 0.320 0.498 0.203 0.832 0.122 0.854 0.106 0.896 0.087

Herein, Jo(0.05) and Jo(0.01) are based on Johansen’s method with levels 0.05 and 0.01, respectively,
IC is based on the proposed method, and ACF is based on (4.4) by ZRY; r is the cointegration rank.

general, (2.7) performs more stably than the unit-root test procedures based on

the PP.test and (4.4).

To give some insight into the underpinning logic, we present box plots of

D∗1(M(Â2),M(A2)) based on (2.7) and the PP.test for (p, r) = (6, 2) and (8, 4)

in Figure 1 and Figure 2, respectively. The two figures show that both the infor-

mation criterion and the PP.test work well, and the estimation errors decrease as

the sample size n increases.
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Table 2. RFs of {r̂ = r} and the average distance D1 between the estimated and the
true cointegration spaces in a simulation with 500 replications for Example 2.

n = 300 n = 500 n = 1000 n = 1500 n = 2000 n = 2500

(p, r) Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

IC 0.998 0.092 0.998 0.084 1.000 0.067 1.000 0.054 1.000 0.051 1.000 0.055

(6, 2) ACF 0.880 0.151 0.936 0.119 0.950 0.098 0.988 0.061 0.968 0.071 0.952 0.085

PP.test 0.964 0.112 0.936 0.121 0.962 0.091 0.996 0.057 0.984 0.060 0.976 0.068

IC 0.980 0.088 0.998 0.066 1.000 0.063 1.000 0.038 1.000 0.060 1.000 0.070

(6, 3) ACF 0.892 0.129 0.964 0.083 0.908 0.110 0.996 0.040 0.814 0.161 0.754 0.202

PP.test 0.916 0.131 0.972 0.084 0.954 0.092 0.992 0.042 0.914 0.117 0.928 0.118

IC 0.998 0.092 1.000 0.076 1.000 0.066 1.000 0.050 1.000 0.054 1.000 0.053

(8, 3) ACF 0.826 0.168 0.930 0.107 0.948 0.092 0.990 0.055 0.970 0.070 0.842 0.137

PP.test 0.918 0.138 0.976 0.091 0.958 0.089 0.994 0.053 0.994 0.057 0.944 0.088

IC 0.996 0.075 1.000 0.060 1.000 0.049 1.000 0.055 1.000 0.041 1.000 0.029

(8, 4) ACF 0.896 0.113 0.970 0.072 0.980 0.057 0.956 0.075 0.996 0.042 1.000 0.029

PP.test 0.986 0.081 0.998 0.061 0.990 0.053 0.982 0.065 0.992 0.044 0.996 0.031

IC 1.000 0.101 1.000 0.074 1.000 0.050 1.000 0.051 1.000 0.043 1.000 0.033

(12, 6) ACF 0.762 0.170 0.918 0.100 0.990 0.053 0.960 0.065 0.980 0.050 0.998 0.034

PP.test 0.966 0.117 0.982 0.087 0.994 0.052 0.992 0.056 0.986 0.049 0.992 0.036

IC 0.996 0.073 1.000 0.054 1.000 0.037 1.000 0.032 1.000 0.028 1.000 0.031

(12, 8) ACF 0.838 0.115 0.976 0.060 0.998 0.038 0.994 0.034 0.998 0.029 0.986 0.035

PP.test 0.996 0.073 0.994 0.058 0.994 0.039 0.998 0.033 0.994 0.030 0.992 0.033

IC 0.942 0.125 0.996 0.080 1.000 0.055 1.000 0.045 1.000 0.043 1.000 0.037

(20, 14) ACF 0.604 0.180 0.894 0.099 0.964 0.064 0.960 0.054 0.940 0.057 0.942 0.052

PP.test 0.908 0.152 0.990 0.083 0.990 0.059 0.986 0.054 0.978 0.054 0.990 0.045

IC 0.826 0.226 0.988 0.151 1.000 0.102 1.000 0.082 1.000 0.071 1.000 0.059

(30, 20) ACF 0.114 0.315 0.386 0.237 0.696 0.155 0.796 0.121 0.772 0.121 0.894 0.081

PP.test 0.532 0.330 0.642 0.300 0.878 0.158 0.934 0.112 0.928 0.106 0.984 0.065

IC 0.128 0.448 0.520 0.355 0.996 0.233 1.000 0.189 1.000 0.143 1.000 0.134

(50, 30) ACF 0.018 0.481 0.084 0.419 0.048 0.441 0.046 0.435 0.118 0.326 0.030 0.427

PP.test 0.014 0.766 0.014 0.775 0.048 0.690 0.140 0.587 0.490 0.361 0.310 0.478

IC 0.160 0.505 0.064 0.459 0 0.371 0.392 0.295 0.930 0.245 0.998 0.223

(80, 50) ACF 0 0.539 0.052 0.474 0.044 0.461 0.002 0.544 0 0.589 0 0.660

PP.test 0.016 0.675 0 0.799 0.004 0.796 0.002 0.812 0 0.800 0.002 0.823

IC is based on the proposed method, ACF is based on (4.4) by ZRY, the PP.test is based on the
Phillips–Perron unit-root test, and r is the cointegration rank.

Example 3. Consider model (2.1) with one change point, that is,

yt = a1I(0 < t ≤ t1) + a2I(t1 < t ≤ n) + bt+ Azt,

where the change point t1 is taken as [n/2], and the coefficients a1, a2, b, and zt2
are taken as in Example 2. We change only the autoregressive coefficients in the

components of zt1, which are taken as 0.3 + (−1)i0.5i/(p− r), for i = 1, . . . , p− r.
The cointegration rank r is estimated as in Example 2. Based on 500 replications,

we report the RFs for the occurrence of the event {r̃ = r} or {r̂ = r} and the

average value of D1 = D∗1(M(Â2),M(A2)) in Table 3. Table 3 shows that the



1208 CHAN AND ZHANG

0.
05

0.
10

0.
15

sample size
300 500 1,000 1,500 2,000 2,500

0.
05

0.
10

0.
15

sample size
300 500 1,000 1,500 2,000 2,500

Figure 1. The left panel is the box plot of the distance D∗
1(M(Â2),M(A2)) based on

the proposed method, and the right panel is based on the PP.test when p = 6, r = 2 in
Example 2.
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Figure 2. The left panel is the box plot of the distance D∗
1(M(Â2),M(A2)) based on

the proposed method, and the right panel is based on the PP.test when p = 8, r = 4 in
Example 2.

proposed procedure based on (2.7) works reasonably well, especially when p is

small or when the sample size n is large. Furthermore, together with Example 2,

it can be seen that the unit-root procedures based on the PP.test or (4.4) are not

stable and are affected by the coefficients of the nonstationary process. However,

(2.7) performs reasonably well, in general.

To demonstrate that the proposed method is more robust than that based

on the unit-root test, we also present box plots of D∗1(M(Â2),M(A2)) based

on (2.7) and the PP.test for (p, r) = (8, 4) and (12, 6) in Figure 3 and Figure 4,

respectively. From these figures, it can be seen that the estimation errors decrease

as the sample size n increases for both procedures. However, the information

criterion always performs better than the PP.test.
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Table 3. RFs of {r̂ = r} and the average distance D1 between the estimated and the
true cointegration spaces in the simulation with 500 replications for Example 3.

n = 300 n = 500 n = 1000 n = 1500 n = 2000 n = 2500

(p, r) Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

IC 0.994 0.120 0.998 0.099 1.000 0.088 1.000 0.085 1.000 0.082 1.000 0.083

(6, 2) ACF 0.454 0.430 0.398 0.461 0.282 0.529 0.266 0.539 0.208 0.575 0.158 0.607

PP.test 0.412 0.461 0.428 0.443 0.370 0.474 0.358 0.480 0.314 0.507 0.264 0.539

IC 0.990 0.092 1.000 0.071 1.000 0.059 1.000 0.054 1.000 0.052 1.000 0.051

(6, 3) ACF 0.840 0.157 0.896 0.123 0.850 0.137 0.820 0.147 0.786 0.169 0.718 0.207

PP.test 0.936 0.127 0.946 0.106 0.906 0.123 0.912 0.116 0.898 0.122 0.872 0.139

IC 0.996 0.116 1.000 0.087 1.000 0.071 1.000 0.063 1.000 0.060 1.000 0.060

(8, 3) ACF 0.692 0.244 0.780 0.197 0.720 0.221 0.668 0.244 0.600 0.282 0.562 0.308

PP.test 0.848 0.206 0.836 0.188 0.830 0.185 0.828 0.179 0.804 0.192 0.770 0.216

IC 0.998 0.105 1.000 0.087 1.000 0.079 1.000 0.075 1.000 0.074 1.000 0.072

(8, 4) ACF 0.368 0.415 0.258 0.489 0.148 0.579 0.116 0.602 0.076 0.657 0.080 0.658

PP.test 0.396 0.537 0.336 0.571 0.264 0.636 0.236 0.652 0.192 0.690 0.214 0.673

IC 0.998 0.126 1.000 0.097 1.000 0.076 1.000 0.069 1.000 0.066 1.000 0.064

(12, 6) ACF 0.384 0.358 0.330 0.395 0.182 0.485 0.130 0.534 0.080 0.581 0.052 0.622

PP.test 0.418 0.509 0.418 0.521 0.324 0.588 0.304 0.615 0.250 0.667 0.248 0.665

IC 0.992 0.095 1.000 0.075 1.000 0.063 1.000 0.058 1.000 0.056 1.000 0.056

(12, 8) ACF 0.398 0.322 0.292 0.381 0.168 0.456 0.120 0.477 0.084 0.513 0.060 0.561

PP.test 0.468 0.485 0.378 0.570 0.312 0.635 0.254 0.690 0.242 0.700 0.206 0.740

IC 0.894 0.161 0.996 0.112 1.000 0.079 1.000 0.067 1.000 0.061 1.000 0.057

(20, 14) ACF 0.284 0.331 0.306 0.330 0.212 0.366 0.182 0.396 0.128 0.437 0.088 0.471

PP.test 0.340 0.490 0.380 0.489 0.382 0.530 0.360 0.572 0.290 0.641 0.270 0.647

IC 0.706 0.274 0.982 0.196 1.000 0.135 1.000 0.111 1.000 0.096 1.000 0.087

(30, 20) ACF 0.178 0.380 0.132 0.402 0.120 0.405 0.074 0.423 0.068 0.431 0.082 0.438

PP.test 0.112 0.624 0.160 0.582 0.258 0.513 0.250 0.546 0.250 0.559 0.290 0.539

IC 0.080 0.466 0.230 0.392 0.988 0.281 0.998 0.231 1.000 0.202 1.000 0.182

(50, 30) ACF 0.104 0.492 0.068 0.520 0.002 0.603 0.002 0.613 0 0.618 0.002 0.620

PP.test 0.006 0.812 0 0.835 0.002 0.835 0.010 0.787 0.010 0.765 0.014 0.750

IC 0.312 0.510 0.024 0.470 0.036 0.390 0.662 0.327 0.978 0.288 0.998 0.263

(80, 50) ACF 0.002 0.521 0.092 0.510 0 0.633 0 0.691 0 0.724 0 0.740

PP.test 0 0.833 0.002 0.828 0 0.890 0 0.892 0 0.881 0 0.876

IC is based on the proposed method, ACF is based on (4.4) by ZRY, the PP.test is based on the
Phillips–Perron unit-root test, and r is the cointegration rank.

Example 4. Now, we consider an example in which the components of yt are

I(1) with a constant trend and one break point, that is,

yt = a1I(0 < t ≤ t1) + a2I(t1 < t ≤ n) +Xt

= a1I(0 < t ≤ t1) + a2I(t1 < t ≤ n) + Azt,

where a1, a2, and zt are given as in Example 3. Table 4 reports the RFs of

the occurrence of the event {r̂ = r} and the average distance (4.1) for the case

with a change point t1 = [n/2] in a simulation with 500 replications, where the

cointegration rank is estimated as in Example 2. Also included in Table 4 are the



1210 CHAN AND ZHANG

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

sample size
300 500 1,000 1,500 2,000 2,500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

sample size
300 500 1,000 1,500 2,000 2,500

Figure 3. The left panel is the box plot of the distance D∗
1(M(Â2),M(A2)) based on

the proposed method, and the right panel is based on the PP.test when p = 8, r = 4 in
Example 3.
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Figure 4. The left panel is the box plot of the distance D∗
1(M(Â2),M(A2)) based on

the proposed method, and the right panel is based on the PP.test when p = 12, r = 6 in
Example 3.

results obtained from applying the Phillips–Perron unit-root test for ẑt defined in

(4.2) to estimate r. Table 4 indicates that (2.7) works well, even in the presence

of breaks in a constant trend. However, the unit-root procedure performs very

poorly if one overlooks the breaks in the data.

Example 5. Next, we consider an example with breaks in level and slope. Let

yt = (a1 + b1t)I(0 < t ≤ t1) + (a2 + b2t)I(t1 < t ≤ n) +Xt

= (a1 + b1t)I(0 < t ≤ t1) + (a2 + b2t)I(t1 < t ≤ n) + Azt, (4.5)

where a1, a2 and zt are given as in Example 3, t1 = [n/2], and all components of

b1 and b2 are taken as 0.3 and 0.8, respectively. It follows from (4.5) that
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Table 4. RFs of {r̂ = r} and the average distance D1 between the estimated and the
true cointegration spaces in a simulation with 500 replications for Example 4.

n = 300 n = 500 n = 1000 n = 1500 n = 2000 n = 2500

(p, r) Method RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

IC 0.996 0.116 1.000 0.100 1.000 0.089 1.000 0.086 1.000 0.083 1.000 0.083

(6, 2) ACF 0.190 0.594 0.176 0.600 0.092 0.651 0.076 0.660 0.066 0.666 0.026 0.692

PP.test 0.472 0.424 0.428 0.445 0.340 0.494 0.312 0.509 0.260 0.542 0.232 0.560

IC 0.986 0.095 0.998 0.071 1.000 0.059 1.000 0.053 1.000 0.052 1.000 0.051

(6, 3) ACF 0.590 0.315 0.578 0.313 0.514 0.342 0.488 0.356 0.434 0.391 0.380 0.424

PP.test 0.922 0.135 0.918 0.126 0.916 0.116 0.910 0.115 0.906 0.118 0.878 0.137

IC 0.998 0.116 1.000 0.088 1.000 0.071 1.000 0.065 1.000 0.060 1.000 0.057

(8, 3) ACF 0.388 0.451 0.362 0.457 0.340 0.472 0.300 0.493 0.262 0.518 0.222 0.555

PP.test 0.840 0.210 0.842 0.190 0.814 0.194 0.784 0.210 0.816 0.186 0.796 0.195

IC 0.994 0.107 1.000 0.088 1.000 0.078 1.000 0.075 1.000 0.073 1.000 0.074

(8, 4) ACF 0.092 0.651 0.052 0.704 0.036 0.725 0.034 0.745 0.016 0.767 0.016 0.789

PP.test 0.410 0.520 0.332 0.575 0.264 0.629 0.224 0.667 0.214 0.666 0.188 0.696

IC 0.996 0.130 1.000 0.098 1.000 0.077 1.000 0.069 1.000 0.067 1.000 0.064

(12, 6) ACF 0.058 0.645 0.046 0.663 0.022 0.700 0.018 0.735 0.012 0.769 0.012 0.767

PP.test 0.394 0.538 0.380 0.552 0.326 0.590 0.318 0.603 0.210 0.699 0.214 0.693

IC 0.978 0.099 1.000 0.077 0.998 0.063 1.000 0.058 1.000 0.057 1.000 0.055

(12, 8) ACF 0.074 0.576 0.056 0.610 0.040 0.636 0.010 0.667 0.014 0.680 0.010 0.708

PP.test 0.438 0.507 0.352 0.589 0.322 0.623 0.274 0.669 0.214 0.726 0.214 0.726

IC 0.780 0.183 0.984 0.116 1.000 0.078 1.000 0.068 1.000 0.061 1.000 0.057

(20, 14) ACF 0.034 0.562 0.030 0.564 0.034 0.575 0.026 0.617 0.018 0.632 0.014 0.650

PP.test 0.346 0.491 0.350 0.499 0.384 0.524 0.320 0.592 0.302 0.623 0.304 0.630

IC 0.544 0.291 0.926 0.204 1.000 0.135 1.000 0.111 1.000 0.096 1.000 0.089

(30, 20) ACF 0.004 0.701 0.002 0.661 0 0.643 0 0.644 0.002 0.633 0.002 0.666

PP.test 0.118 0.617 0.152 0.588 0.232 0.526 0.274 0.511 0.306 0.525 0.282 0.560

IC 0.092 0.467 0.242 0.391 0.972 0.281 1.000 0.232 1.000 0.202 1.000 0.182

(50, 30) ACF 0 0.854 0.002 0.859 0 0.859 0 0.848 0.002 0.839 0.002 0.836

PP.test 0.006 0.813 0 0.837 0.002 0.824 0 0.788 0.010 0.775 0.004 0.761

IC 0.314 0.511 0.030 0.470 0.042 0.390 0.646 0.328 0.976 0.288 1.000 0.263

(80, 50) ACF 0 0.872 0 0.885 0 0.907 0 0.916 0.002 0.916 0 0.919

PP.test 0.004 0.835 0.002 0.832 0 0.880 0 0.890 0 0.887 0 0.885

IC is based on the proposed method, ACF is based on (4.4) by ZRY, the PP.test is based on the
Phillips–Perron unit-root test, and r is the cointegration rank.

∇yt = b1I(1 < t ≤ t1) + {b2 + (b2 − b1)t1}I(t = t1 + 1)

+b2I(t > t1 + 1) +∇zt. (4.6)

We estimate the change point t1 by

t̂1 = argmax
1≤t≤n

|∇yt,2|, (4.7)

and then apply our procedure to estimate r and the cointegration space by re-

placing ∇yt̂1+1 with zero. The corresponding RFs of the occurrence of the event

{r̂ = r} and the average distance (4.1) in a simulation with 500 replications are
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Table 5. RFs of {r̂ = r} and the average distance D1 between the estimated and the
true cointegration spaces by the proposed method in a simulation with 500 replications
for Example 5.

n = 300 n = 500 n = 1000 n = 1500 n = 2000 n = 2500

(p, r) RF D1 RF D1 RF D1 RF D1 RF D1 RF D1

(6, 3) 0.992 0.090 1.000 0.070 1.000 0.058 1.000 0.054 1.000 0.051 1.000 0.051

(8, 4) 0.996 0.105 1.000 0.088 1.000 0.078 1.000 0.076 1.000 0.073 1.000 0.073

(12, 8) 0.996 0.091 1.000 0.074 1.000 0.062 1.000 0.058 1.000 0.057 1.000 0.055

(20, 14) 0.936 0.158 0.996 0.111 1.000 0.079 1.000 0.067 1.000 0.060 1.000 0.057

(30, 20) 0.820 0.272 0.980 0.198 1.000 0.135 1.000 0.112 1.000 0.096 1.000 0.087

(50, 30) 0.024 0.473 0.088 0.397 0.966 0.283 1.000 0.233 1.000 0.202 1.000 0.183

(80, 50) 0.246 0.512 0.004 0.474 0.010 0.394 0.580 0.330 0.972 0.290 1.000 0.264

reported in Table 5. Table 5 indicates that the proposed procedure (2.7) is simple

to carry out, and works well even in the presence of breaks in a linear trend.

In summary, Examples 1–5 show that the proposed procedure (2.7) works

reasonably well when p is small and n is large. When p is large, for example when

p ≥ 50, the methods based on the ACF of ZRY, the likelihood ratio of Johansen,

and the PP.test all fail to work adequately. The proposed method, however, can

still estimate the cointegration rank and the cointegration space very well for

large p. That is, (2.7) always performs better than the other methods. It is

shown that for a given p, a larger r/p yields more accurate proposed estimates

for r. In general, (2.7) is more robust than other existing procedures. Both the

figures and the tables show that the estimation errors of the proposed method

decrease as the sample size n increases. There are a couple of possible expla-

nations for the superiority of the proposed method. First, the breaks have little

effect on estimating the cointegration rank when ∇yt−∇ȳ is used, whereas other

procedures using the original series are sensitive to the existence of breaks. The

advantage of our method is that it avoids estimating and testing for the trends.

Second, the proposed method allows a larger p, because the matrix for recovering

the cointegration space is based on the stationary process ∇yt, whereas other

methods can deal only with smaller values of p.

Example 6. We consider the monthly exchange rates of the U.S. dollar ver-

sus the currencies of 19 OECD countries (Austria, Belgium, Canada, Denmark,

Finland, France, Germany, Ireland, Italy, Japan, Korea, Netherlands, Norway,

Portugal, South Africa, Spain, Sweden, Switzerland, and the United Kingdom)

from January 1973 to December 2000, published by the Federal Reserve Eco-

nomic Data (FRED), and analyzed in Engel, Mark and West (2015) and Trapani

(2021). All exchange rates are transformed by taking the logarithm, and each
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of the transformed series are shown to follow a unit-root model based on the

PP.test at significance levels 0.05 and 0.1. Applying the proposed method to

the transformed data, both (4.4) and the PP.test at significance level 0.1 for the

series ẑt = Â′xt lead to r̂ = 2 with M = n1/4 and r̂ = 4 with M = 4(n/100)1/4

(given as in the KPSS test); r̂ = 1 for both M = n1/4 and M = 4(n/100)1/4

by the PP.test at significance level 0.05. To shed further light on the estimated

rank, we plot the four possible cointegrated series and their ACF corresponding

to the first four smallest eigenvalues based on (4.4) with M = 4(n/100)1/4 and

M = n1/4 in Figure 5 and Figure 6, respectively. Both figures show that the two

estimated series are stationary, whereas the other two series tend to be nonsta-

tionary. It would therefore be more reasonable to estimate the cointegration rank

as two. On the other hand, all procedures show that cointegration exists in the

exchange rates, which is consistent with the findings of Engel, Mark and West

(2015), who showed that these exchange rates can be modeled by a nonstationary

factor model.

5. Conclusion

We have proposed a simple, direct, and model-free method for identifying

cointegration relationships between high-dimensional integrated time series with

possible breaks in trend. To remove the effects of the trend and the possible

breaks, we propose using the first difference of the observed series. Based on

a nonnegative-definite matrix consisting of the Bartlett-weighted sample covari-

ance, the cointegration space can be recovered by the eigenvectors corresponding

to the smallest eigenvalues. An information criterion is proposed to estimate the

cointegration rank, which estimates the rank consistently. In addition, unit-root

tests may be applied to determine the number of stationary components of ẑt.

The proposed method differs from that of ZRY, which is based on the quadratic

form of the sample covariances of the observed series. Under similar conditions,

the proposed procedure allows p to be much larger.

This study focuses only on inference for the cointegration rank r and the

cointegration space M(A2) when all the components of the cointegrated series

are I(1) processes and there are possible breaks in level. With some extra effort, it

is feasible to generalize the procedure to the case with breaks in trend. Under this

circumstance, the change points can be detected easily and the proposed method

can be applied to the subsamples in each regime; see Example 5 in Section 4.

Furthermore, it would be interesting to extend the procedure to cases in which

the integrated orders of the cointegrated series are different (see ZRY) or have
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Figure 5. Time series plots of the estimated cointegrated series by the proposed method
and their sample ACF for the logarithmic exchange rates based on M = 4(n/100)1/4.

fractional values (i.e., fractional cointegration (see, for example, Robinson and

Hualde (2003); Robinson (2008); Chen and Hurvich (2006)). These topics are

left to future research.
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Figure 6. Time series plots of the estimated cointegrated series by the proposed method
and their sample ACF for the logarithmic exchange rates based on M = n1/4.
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