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S1 Additional simulation studies

We investigated the sensitivity of the proposed methods under misspecified latent-factor
models. We considered two types of features, S and S, both with dimension p/2.

We generated the features as follows:

3
SH =>"pPU;+ €™ for k=12,
j=1

where (Uy, Uy, Us) are independent standard normal variables, € and € are indepen-

dent (p/2)-variate standard normal variables, and

W =yP =(02,...,02,-02,...,-02,02,...,0.2)",
20 ?errms (p/4—;()r) terms (p/4—;()r) terms
V=P =(03,...,03,03,...,03,-0.15,...,-0.15)",

-~

Vv TV
20 terms (p/4—10) terms (p/4—10) terms

P =) =(03,...,03,03,...,03,0.15,...,0.15)".

TV TV TV
20 terms (p/4—10) terms (p/4—10) terms
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In this setting, every component of 8 and §@ is dependent on all three latent variables,
and there are no type-specific latent variables. The continuous outcome variable was
generated according to the description in Section 5, whereas the binary outcome variable
was generated with P(Y =1 | 8® 8®@) = logit ' {-3.5 + Z;il 0.15(3](-1) + S](-Q))}, such
that P(Y = 1) =~ 0.1. We considered the same missing-data mechanisms and estimation
methods as in Section 5, but for the imputation method based on the factor model and
the proposed method, we only consider rg = r; =ry = 1. We set n = 500 and p = 100 or
300. The results, which are based on 200 replicates, are summarized in Tables S1 and S2.

The pattern of results is very similar to that presented in Section 5. The proposed
method clearly outperforms the complete-case analysis in terms of variable selection and
prediction. Under MCAR, single imputation methods and the proposed method perform
similarly, whereas under MAR, the proposed method yields smaller prediction error and
similar or better false discovery and true positive rates than the single imputation meth-
ods. The results suggest that even under a misspecified latent-variable structure, the
proposed method can still yield satisfactory performance by utilizing information of the

missing variables in the observed data and by accounting for the missing mechanism.

S2 Additional lemmas

Lemma S1. Let Z+,...,Z, be i.i.d. random vectors and f be a vector-valued function.

IfEf(Z:) =0, then |n~"2 37, £(Z:)ll = O,[{El| £(Z1)[*}72).

In the sequel, the distribution of (Y, S) is always evaluated conditional on X, and

we suppress the argument X in the conditional probabilities, expectations, and density
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S2. ADDITIONAL LEMMAS

functions. Let S©) be an arbitrary subvector of S and M be a binary random variable that

is conditionally independent of S given (V, X, S'?)) and satisfies P(M = 1| Y, 8?) >

5(C) (C)

C~! almost surely for some C' > 0. Let £,_"(8) = 0£,_" /00 be the Hessian matrix of the

log-likelihood function for a subject with complete data and

K1(8.5) = M[t](0) — E{£,(0) | Y. 50,

- (C .(C .(C
K;4(0,8©) = _ME{ZE)S)(OM(;S)(O)T Y, SO 0}7

K(0,89) = K,(0,89) + K,(0,89) + K4(0,59).

Let Nic = {(@. 8,6 T ¥, ) : [la — ao|* + | Bs — Bos > + 1€ = &[I* + o | HE (T -
Lo) P+ [[( = H)S (0= To) [P+ | HEg (9 = Wo) [P+ | (1= S (0= W)+
13— 30]|? < K*n'p,, By = 0} for some positive constant K. Let Oys be the true value

of Bs.
Lemma S2. Under conditions (C1), (C5), and (C6) and for any 6,6 € Ny,
(P, — P)d} K(6,5©)d,
is dominated by Pd@TKg(OO; S(O))dg, where dg = 05 — Os.
Lemma S3. Under conditions (C1), (C5), and (C6) and for any 6,6 € N,
Pd;{K(0,5'7) — K (6, 5”)}dy

is dominated by Pdy K 5(0q; S(O))dg, where dy = 0s — Ogs.
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S3 Proofs of lemmas

We now prove Lemmas 1 and S1-3. For any real number sequences a,, and b,,, a, < b,

means that limsup |a,/b,| < oo and limsup |b,/a,| < co.

Proof of Lemma 1. For simplicity of presentation, we assume that S is either completely
observed or is observed only for a fixed subset of S, denoted by S©). Under this missing-
data pattern, the missing-data indicator M can be defined as a univariate variable, with
M = 1 if S is fully observed and M = 0 otherwise. We consider only the case that
pn — 00; the case for p,, < oo is relatively straightforward.

The main step of the proof is to show that for any fixed § > 0 and large enough K
and n, P{ supgeon,. Pln(0) < pln(89)} > 1 — 4, such that there exists a local maximum

of pl,(-) in Nk. Let 8 be some value in ONk. By the Taylor series expansion,

n " {pl,(0) — pl,(60)}

9 1 o2
o o T 7 - _ _
= (05 — 005) P15 08@(0)‘6 (05— 00s) P 80580£e(9) (65— 6us)
Pin
+An ij 18i1 = 1Boj) (S1)

where 6 lies between @ and 6. The first term on the right-hand side of (S1) is

(Bs — 505)TPR%£(0)(HO + (@ —ap)", (& - 50)T)ang(9)‘ezeo
+u{ (5 - S0P, 832 0, , §+e{er- \IJO)TPna%é(tS')\”O}
+tr{(0 —T0)"P, %ae)(“o}- 52

For the first term of (S2), note that

Pniz(e)(

o = p{art o0 + (- n) [ 60078 as0 )

6=0¢
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where f(Y,S) is the true density function of (Y, S) (conditional on X'). By the properties
of the score statistic and the missing-at-random assumption, the term in the curly brackets

of the above equation is mean zero. By Jensen’s inequality and condition (C1),
-(C (C 2 -(C
212 (00) + (1= 31) [ 400 1(v8) a5 < BJES 60) |7 = Ot

By Lemma S1, we conclude that ||P,00(0)/0Bsle=s,| = Op(nfl/Qp%/Q). Likewise, by
condition (C1), Lemma S1, Jensen’s inequality, and the fact that 94(0)/0(a”, ET)‘B:BU is
mean zero, we conclude that ||P,0¢(0)/0(a™, ST)|9:90H = 0,(n"2p/?).

For the third term of (S2), we can likewise show that E{@E(O)/@E‘ezeo} = 0, such that
Lemma S1 and Jensen’s inequality imply that ||P,,00(0)/0%| = Op[n_l/Q{EHZ(EC)(B)HQ}l/Q].
Using the fact that 2, = (TeW) + Xo) ' = 251 — S0 (1 + Uy, W)W 2

we can write Z(EC)(BO) as

diag[Q 1 {(S — Ty X) (S — Ty X)" — Q1Y
= diag[{Zy! — By 0o (I + UIx; 1w, e ln
X {(8§ = ToX)(S —ToX)" — Qo}{Zy" — 25" (I + ¥y 0) ' W31}
= diag[E; ' {(5 — Lo X)(S — ToX)" — 2o}
— 2diag[Xy Wy (I + Wy B0 W) ' S (S —ToX) (S —ToX)" — Q13
+ diag[Bq ' Wo (I + ¥y X5 W) ¥ EH{(S — ToX) (S — ToX)" — Q)31

x (I+Uy3, wy) s

The expected squared Lo-norm of the first term on the right-hand side of the second equal-
ity above is bounded by Y- E(S}/05;) = O(pn), where o5; is the jth diagonal element
of ¥,. Similar arguments show that E||2(ZC)(490)||2 = O(p,), so ||Pn3€(0)/82‘0:00|| =
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O, (n~12p/?).

To evaluate the fourth term of (S2), we decompose ¥ — W, = EI/QHZ 1/2(\11 v, +
El/Q(I H)X%, 1/2(\11 W) and show that the expected value of the fourth term of (S2)
can be written as the sum of two terms that converge to zero at different rates as n — oo.
Let Dy = W — ¥, and Dy = X, 2{(§ — [y X)(S — ToX)T — Q,}%,"/?. We find an
orthonormal matrix L and a diagonal matrix A such that ¥y X;'W, = LAL". Under
condition (C5), a; < p,, where a; is the jth diagonal element of A. Because H is a
projection matrix onto the linear space of 3 Y 2\1'0, we can find a matrix R € R™" with
|R| = 1 such that HY; "> Dy = dy ;"> TR for some dy = O(p, *|HE, > Dy ||) =
O(n='2pi/*). Tt can be shown that

Q'S PHS P Dy = 50T - 2P0 L(T + A) LYl s Y HE P Dy
=dyXy'WoL(I + A)"'L"R, (S3)
and
Q'S (1 - H)SyY?Dy = 3,21 - H)X, Dy (S4)
Thus,

tr{kf)(eo)TD@} — tr[ T (S — ToX)(S — ToX)T — Q)0 Dy

— 6| WIS VT - £ AL+ A ILTETE A Dy B2 Dy

—tr|L(I + A) ' LTO]ly; * Dy 2?0 5
x {HX; Dy + (I — H)Z_WD\I,}}
=tr{dy L(I + A)'L"OIs, "’ Dy, W, L(I + A)'L'R
+ LI+ A)'LYIs* Dy (I - H)E, '’ Dy }.
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S3. PROOFS OF LEMMAS

Note that E[tr{dgL(I + A)'L" O s’ D, *WL(I + A)"'L"R}?] is bounded
above by d2 | L(I+A) 'L |4 | @ T s 2 |*E| Dy |2 = O(p; | HEy 2 Dy||?), and E[tr{ L(I+

A)” 1LT\IITE_l/QDV(I H)E_l/QDq,} | is bounded above by
|L(I + A) LY eds, P12 - H)Sy "’ Dy |*E|| Dy |)?
=O{p.||(I - H)S,"’ Dy %}

We conclude that

(@)

(Bl {2y 00" Dey) " = 047 I HE, 2 Dul + OG- H)S, Dy |

Similarly, we can decompose Dy = T—Ty = ¢/ HX, /*(T-To)+ X > (I- H)S, (D -
I'y) and show that
-(C 1/2 _ _
(Bltr{e” (00" Dr})) = O, ) HE, > Drl| + Oy )II(I - H)E, Dy

Applying Lemma S1 and Jensen’s inequality and combining the above results, we conclude

that (S2) is bounded above by

Op(n™2pY ) { e — el + 1Bs — Bosll + 1€ — &l + 1= — o
+ (|1 — H)Sy (T = o)l + [|(1 — H)Sy 2 (@ — )|}

+ O, (n V2 | HE (0 = To)|| + | HS, (% — )|}

Consider the second term of (S1). With dy = 65 — s, we have

2
ngP’na—f(H)‘

d
00506, ?

6=0
—P,|dl K (8)dy — (1 — M)E{£y. (8)"dy | V,S©); 6} }
< (P, — P)d} K(8)dy + Pdj { K (6) — K(8,)}dy + Pdj K (6,)dy

< {1~ 0,(1)}Pd; K5(80)ds,
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where we have suppressed the argument $© in K (-, -) and K3(-, -), and the last inequality
follows from Lemma S2, Lemma S3, and the fact that PK,(6y) = PK,(6,) = 0. Clearly,

(@)

.(C
Pdl K,(60)ds = — Pd} [ME{EG (B0)25. (80)" | Y, S'O; eoHdQ

- »(C) »(C) - 5(C)
<-C 11@{d}£98 (60)2,. (OO)TdG} — C'd}Phy. (60)dy,
where the inequality follows from condition (C2). Note that for (d; x ds)-matrices Cy
and Dy, (ds x dy)-matrices Cy and Dy, and any twice-differentiable function f : R41*d2 x

Rsxds s R

82
Ovec(C1)0vec(Cy)T

vec(D1)"

f(Cl, CQ)VGC(DQ) = tr |il)'1T agl tr{ 822 f(Ch C2)TD2}:| .

To simplify the presentation of the second derivatives of functions with respect to I', W,

and X, we express the right-hand side of the above equation as

82
trd DI ————— f(C,C5) D> .
r{ 13015’0;rf< 1, C2) 2}

By simple matrix calculus,
2
OwOwT
— tr{ — VIO UDIO Dy — VO DO Q' Dy + (I - 9$'Q ') Dy BDy

tr{D$ log f(S;T, W, E)DQ}

—9"BD,9"Q Dy, - U"BUDIO ' D, — \IITQ_ID@‘I’TBD\IJ}y (S5)
62
trd Dy—2—_log f(S:T, ¥, )D
r{ = AT og f( ) W}
_ tr( T D ' Dy — WTBDQ Dy — WTQ‘IDEBqu), (S6)
82
trd D 1 T.¥.2)D
1"{ 28282 ng(S, ) ) ) E}
1
_ itr( _Q'DeQ Dy — BD:Q ' Dy — Q‘ngBDg>, (S7)
0? Ty—1 T
tr{ v log f(S: T, %, ) Dy }: —tr(DFQ D XX ) (S8)
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S3. PROOFS OF LEMMAS

82 . _ To-1 T —1
tr{DFara‘I’Tlogf(S,I‘,\Il,Z)Dq,}——2tr{D\I,Q DrX(S -TX)'Q \If} (S9)

82 . — -1 TOo-—1
tr{DFaFaE log f(S,I‘,\Il,E)Dg} - —tr{DgQ DrX(S -TX)'Q } (S10)

where Dy, = £~ 3, and B = Q' {(S-TX)(S-TX)"—Q}Q". With d4s¢) denoting
the (a, Bg, &)-component of dy, we can write

dlPEy. (6y)dy

— dl 56 PV s(cxo, By, o) dase) —tr(llf Q' 0, DI Dy + $TO; Dy T Dy
+ 20, Q' D' Dy + 5lepzaglpz + DEQ(;1DFIPXXT>, (S11)

where Vs(a, 8,€) is the submatrix of V (e, 3,&) that corresponds to (a,Bs,&). By

condition (C1),

d(ose)PV s(e0, By, €o)diage) < —C1 <||a — a|* + [1Bs — BoslI* + 1€ - €0||2>

for some positive constant c;.

To bound the first two terms in the trace of the right-hand side of (S11), we note that
OO 0, =0l VT - 570 (T + A) LTl s A s e,
=LA(I+A)'L". (S12)
y (S3), (S4), and (S12), we have
10, ¥ DL0; Dy
=dy I U DI W L(I + A)'L"R+ U Q' W, DI V(1 — H)S, > Dy
=2 OIS O RIS LI+ A)'L"R+ ¥ 0 ', DS (1 — H)S; '’ Dy

—ALA(I+ A 'L"R'LA(I + A)"'L"R+ [ Q;'w, DL (1 — H)S, '’ Dy
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Likewise, ¥, Q' Dy ¥, Q' Dy = d2LA(I + A)"'L"RLA(I + A)"'L"R. Thus, with

R=L"RL,

tr(W, Q' Uy Dy Q' Dy + U Q' Dy ¥ Q' Dy)

= détr{A(I + A)fl(_ﬁT + ﬁ,)A(I —+ A) 1R} T tr{\IITQ I\IloDTE 1/2(1- H)E 1/2D\I/}
The first term on the right-hand side of the above equation is nonnegative, because

tr{A(I + A)"Y(R +R)A(I+A)'R)

r r ajar, N o
= ZZ (Fjk + Thj)Tkj
i1 k1 1+CLJ 1—|—ak)
—226 3 S (T + ), (313)
1+a 2 “ (1+aj)(1+ak) ! !

where 7, is the (j, k)th element of R. For the third term in the trace on the right-hand

side of (S11), (S3) and (S4) yield

tr( Q' D Q' Dy) = tr{L(I + A) ' LT ¥} X' D Q' Dy}
=dytr{L(I + A) 'L %' Dy ' W, L(I + A)"'L"R}
+t{L(I + A) ' L™ D3, V(1 - H)S, 2Dy}
< O(p, "lldsll{O(dw) + O(p}/*)|(I = H)Zy " Dy||}
= o(n""pn).

For the fourth term in the trace on the right-hand side of (S11), we have

tr(Qangﬂang)
—tr(X; ' DyX; ' Dy) — 2tr{(I + A) V2L OIS ' Dy X' DX 'O L(T + A)Y?)
+tr{(I + A)"V2PLT OIS ' DS ' O L(I + A) ' LY O S, ' D3, ' W L(T + A)~ /2.
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The third term of the expression on the right-hand side of the above equation is clearly
nonnegative. To show that the second term of the expression is dominated by the first
term, let dy, = veed(Zg 2Dy X, ). Clearly, tr(S;' D' Dy) = dids;, and

tr{(I + A)"V L™ OIS, ' Dy 3 ' Dy T W L(I + A)~1/?%}

= i[{‘I’OL(I +A) 2o ds] " [{WL(I + A) "%} 0 dy),

j=1
where {W,L(I + A)~Y/2}, is the jth column of WoL(I + A)~Y2 (j =1,...,r). Because
aj — oo (j = 1,...,r) and each element of ¥, is bounded, the right-hand side of the
above equation is dominated by dyds, so tr(2; ' DxQ;*Ds) > {1 — o(1)}dyds.

To bound the fifth term in the trace on the right-hand side of (S11), let HEal/QDp =
dr3, Y29,Q for some dp = O(n=Y 2/ %) and finite matrix Q of appropriate dimensions.
By condition (C1),
tr<DE951DF]P>XXT) > eotr (Dgﬂglpp)

_ c2tr{d%QTLA(I +A)'LTQ + DIy V(I - H)ngDF}
for some positive constant c,. Combining the above results, we conclude that the right-

hand side of (S11) is bounded above by
— e[l = ao|]” + 11Bs — Bosll” + 1€ = &ol* + (X — H)Zg /(T = T) |
+ (I = H)S, (% — %) |2 + ||Z — So? + d2tr{Q"LA(I + A)'L"Q}]
— Bt{AT+ A (R +R)AT + A)'R} + o(n"'p,)

for some positive constant c3 and large enough n.

The third term on the right-hand side of (S1) is bounded above by

Pin

A Y wilBs = Bogl < MallBs — Boslllwsl = Op(Aan?p/*|1Bs — Bosll) = 0p(n~"pn)
j=1

11
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under conditions (C3) and (C4). Thus, for some positive constant ¢y,

n~H{pl,(0) — pl.(6o)}
<O(n~'"2p ) {lle — ol + [1Bs — Basll + 1€ = &ll + = — =0

+[|(1 = H)S5 (0 = To)|| + (I — H)Sg (% — W)}

—ca{lee — a)* + [|Bs — Bosl® + 1€ = &I + 12 — o

+ (I = H)Zg (T = To)|* + [|(T - H)Sy (¥ - ¥,)|°}

+ 0y Pp ) HEG (D = To)| — cxditr{Q"LA(I + A) ' L™ Q}

O, (n 2 V) | HE V2 (0 — W) — exditr{A(I+ A) (R + R)A(I + A)"'R}

+0,(n"'p,).
Let 7 and 75 be such that [ — el|” + [|Bs — Bosll® + 1€ — &oll* + 1% — o[> + [[(T —
H)S, A0 =T) |2+ | (I-H)S; (0 —Wy) |2 = 1 K2n~p, and | HE, (0 —W,)||2 =
K2 1p2, so | HE, 2(T=To)|? = (1—m—72) K2n~p2. If 71 does not vanish as n — oo,
then the right-hand side of the above inequality is bounded by

Op(Kn™'p,) — s K*np, + Op(Kn™'p/?) + 0,(n""py)

for some positive c5. Because the above expression is negative for large enough K and n,
the desired result follows. Alternatively, if ; — 0 and 75 is bounded away from zero, then
dy = n~'/2p/%. In this case, we show by contradiction that tr{A(I—kA)*l(RT—l—fi)A(I—i—
A)"'R} is bounded away from zero or equivalently, that at least one element of (R+ IN%T)
is bounded away from zero. Suppose that R + R = o(1), so that R+ R" = o(1); here,

the o(1) term refers to a matrix that converges to 0 elementwise. Note that

3, 2(® - W) = HS,’Dy + (I — H)S; '’ Dy = dy Sy, *OyR + (I — H)S; '’ Dy,

12
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SO
U =Uy(I+dyR)+3;"*(I - H)S;'’Dy = ¥y + dg {UoR + o(1)};

the second equality holds because each element of the second term on the right-hand
side of the first equality is o(n="2py/®) if 7, — 0. Write R as a (K + 1) x (K + 1)
block matrix and let RY®) e R"5*™ be its (j 4+ 1,k + 1)th block element for j, k =
0,..., K. Because the upper-right corner of the block matrix representation of ¥ in (2.1)
is zero, WD ROK) L g RAK) — (1) By condition (C5), no linear combinations (with
nonvanishing coefficients) of the columns of (&Y W) g0 to zero, so RX) = o(1) and

RMK) = 5(1). Similar arguments show that

R®Y ¢ o --- 0
R(071) R(171) O e 0

R = R(072) 0 R(212) e 0 + 0(1)
ROK) 0 . 0 RWE&EK)

If R+ R" = o(1), then R®% can be chosen as 0 (k = 1,...,K). Also, noting that the
upper triangular elements of ¥V and ¥* (k=1,...,K) are 0 and that the true values
of Z/}j(-g’l) (j=1,...,79) and wj(.?) (j=1,...,r;k=1,...,K) are bounded away from 0,
we conclude that the upper triangular elements of RFF) (k=0,...,K) can be chosen as
0. Therefore, R + R" = o(1) implies that R = o(1), which contradicts the definition of
R. We conclude that d2tr{A(I + A)_l(ﬁT + R)A(I + A)'R} > ¢sK?n'p, for some

c¢ > 0 and large enough n. Therefore, if 77 — 0 and 7 is bounded away from 0, then

n~{pl,(0) — pl,(60)}

13
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< 0p(Kn™'pa) + Op(n ™ 2p, )| HEG (W — Wo) | = c6Kn ™' p + 0p(n ' py)
< 0,(Kn'p,) + Op(Kn~'p?) — cs K*n ™ p,, 4 0,(n ' py),
where the right-hand side of the above inequality is negative for large enough K and n.

The desired result follows. Finally, we can use similar arguments to show that the desired

result holds when 7, — 0 and ™ — 0. ]

Proof of Lemma S1. Let p be the dimension of f(Z) and f;(Z) be its jth component

(j=1,...,p). We have

EHn_l/an:f(Z
=1

—1/2&]‘}(20}2
i=1
_1ij(zi _1ng i)[i(Zy) }
=1

i#£k

> {r
> i

EY fi(Z,)? =E|f(Z))]>

'Mw I M@ [ M

<
Il
—-

The desired result follows from Markov’s inequality. m

Proof of Lemma S2. Since M is bounded, it suffices to prove that

(C

(®, - P)dE ) @) |v.59:0}d,

+ '(Pn - P)d;FE{

e L CROLR U T (s14)

is dominated by Pd} K3(6,)dy. Consider the first term of (S14). Let v(&, 3, €) be an

arbitrary element of V (e, ,B’,E) By the Taylor series expansion,

(@ B.) = v(00, By, €0) + (e, By &) s + 3B 5 € )

where v and ¥ are, respectively, the first and second derivatives of v, E(QBQ = (aT —

ol B — BLE — DT, and (o, B, €") lies between (&, B3,€) and (a, By, &,). We

14



S3. PROOFS OF LEMMAS

apply (P, — P) to both sides of the above equation. By condition (C1), the right-hand

side of the resulting equation is bounded above by
Op(n™2) + Op (0™ 2p,/®) | d (e | + Op(pn) | diape) I = Op(n™'72).
Therefore,

(P = P)doe)V s(&, B, E)dase) = Op(n"?pa) [ diase |I” = 0p(1)l|dase) I

which, by condition (C1) and (S11), is dominated by Pd; K3(8,)ds.
To derive the bound for the remaining terms of (P, — P) d;féé? (8)dy, we note that for

any (¥, Q) that satisfy condition (C5), |[I — ¥ Q' = |[(I+ TS '¥)1| = O(p;}).

n

Furthermore, for any matrix C of appropriate dimensions,
et to| = ez - = I + v et |
<|L||L" =" -2 w(I + oTETe) T eTE O
=|LIII(I +A)'LTE'=C| = O(p, )| Cl,

and |[CTQC|| = O([[C|P)+O([CP)o(|=~ P O{ I+ T = )|} = O(|C|P?).

Let B = ﬁil{(S —TX)(S-TX)" - ﬁ}ﬁil. We can show that

~ ~—1 ~ ~—1
IDyBDy| <[ Dy (S -TX)|* +[|DyQ Dyl

~_1 ~
<Dy Dyl(1+]IS—-TX]|>?),
s0 (P, —P)tr{(I— ¥ Q@ ®)DIBDy} = 0,(n"/2)|DIQ ' Dy. In addition,
~T ~ ~ ~—1
19" BDy| < {1+0(p,"*)|IS ~TX|*}| D32 Dyl'?,
=T = =T ~~-1 o —1/2,1/2 TS ! . .
so (P, —P)tr(¥ BDy¥ Q Dy) = O,(n~"?p,/")||Dy Dy]|. Likewise,

~T ~ ~ ~—1 ~—1
(P, —P)tr (¥ B¥DyQ Dy) =O0,(n "?)||D3Q Dyl

15
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Let H1(0),..., Hg(@) denote the terms on the left-hand side of (S5)—(S10), respectively.

We conclude that

_ - ~ ~ 1 ~ 1
(P, —P)H\(8) = (P, —P)O(1 +p,*|S —TX|*)| Dy Dyl = 0,(| D32 Dyl).
(S15)
For any matrices C'; and Cy of appropriate dimensions,

crQ ' —aH)o,

ESAN O TS oo D ST QNUR 7 S A Rk TR SR ek N0 QR 0 Shat JRELR 10 Sa RV O N

~—1

NS 0, - ORI+ S )

— (I + U, 2 ) 2 O,

-1

~ ~—1
=CT(EX —-3ZH)C,-Cl(E —ZHW(I + ¥, 2,0 ' 21C,

~_1 ~
—CIY (¥ - W) (I + P 2;'0) "5 Cy
OISR+ ST ) (I els ) el Lo,
COTETI AT S ) YT - ) SO,

-1

ORI S0 (B - s 0. (S16)
The Frobenius norm of each term on the right-hand side of (S16) and thus ||C;F(SN]_1 —

Q51)C,|| are bounded by O(n~Y2p/*)||C1|||Ca||. Thus,
~—1 ~—1
ID3 Dy < [|DyS2 " Do+ Dy (2 —Q") Dyl = [| Dy ' Dy [[+0(n~?p/?) || Dy |1*

By the proof of Lemma 1, |[D3Q' Dyl > cp;!||Dyl||? for large enough n and some
constant ¢ > 0, such that the second term on the right-hand side of the equality above
is dominated by the first term in the expression. We conclude that the left-hand side of
(S15) is dominated by || D3, Dy || and thus Pdy K3(0,)dy.
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S3. PROOFS OF LEMMAS

Clearly,

u{¥'Q (§—TX)(S-TX)"Q D Dy}
1/2

<tr{¥ Q (§-TX)(S-TX)'Q Dy (S-TX)(S-TX)"Q ¥}
To 1 oL 1/2
x tr(DyQ DsQ Dy)
<|T' Q7S -TX)(S-TX)'Q (§-TX)(S-TX)TQ ¥|/2

< |IDIQ "Dy |?tr(Q DsQ  Dy)"?

=0(p,")|8 ~TX|P|D3Q ' Dy (@' Do Dy) "

Thus,

(P, — P)Hy(B) = (P, — P)O{p,*(1 + ||S ~ TX|))}|DEQ "Dy | *tr(Q D2 ' Dy)"?
TS ! 12 (0 T ot 1/2

We can show that

~ 1
tr{(Q  —Q,)Dx:Q; ' Ds}
~—1
=tr[(2  — Q") D3y — 3 UL + ¥y 55 o) ¥ 3, } Dy
—u{(Q — Q,)DsX;'Ds} — w{(Q — QDX (I + U 2, W) o, 2, Dy}

pTL
~—1
=) (Ds%;'Dy)jitr{ef (2 — Q' )e;}
j=1
—t{ OIS D (Q — Q) DS (I 4+ B W) )
<O(n™2p /3| Dx|* + O(n=2p,/?) [ W S ' Dy |*||(T + ¥ g o) |
=o(|| Dxl), (S18)

where (DX " Dy,);; denotes the (j, j)th element of Dy X" Dy, and e; is a p,-vector with

1 at the jth component and 0 elsewhere. Therefore, tr(ﬁingﬁing)—tr(ﬂnggﬂngg)

17
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is dominated by || Dx||? and thus tr(Q;' DxQy "' Dys). We conclude that the left-hand side
of (S17) is dominated by || D3 Q' Dyl||/?tr(Qy ' DxQy ' Dx)'/? and thus Pdy K3(0,)dy.

Similar arguments on (S7)—(S10) yield

H3(0) = O(1 + ||S — TX||*)tr (2 DxQ; ' Dy), (S19)
H,(0) = O(1)||Df Q5" Dy |, (S20)
H;(6) = O(p,"*||S — TX|)| Dy Dy ||| DEQG Dy |72, (S21)
Hq(0) = O(||S — TX|)| DIy Dr||*tr (5 D2 ' Dy) 2. (522)

We conclude that (P, — P)dj & (8)dy is dominated by Pd} K 3(60)ds.
Next, we derive the bound for the second term of (S14). For any element v(é, 3, €) of
V(&,,@,E), the fourth-order Taylor series expansion of E{v(&B,g) | Y, S(O);é} at 6y,

together with condition (C6), yields

3
(P.—P)E{v(&, B.€) | V.8;0} = 3" 0,(n 1 /2p/2)(|0—0|"+0,(p2)|0—64||* = O,(n~1/?).
k=0

Therefore, (Pn—P)daﬁg)E{Vs(&, B.£)|Y, 8. a}d(agg) is dominated by Pd; K 3(8¢)ds.
By condition (C6),
(P = P)E(|[SI* | Y. 5'7;8) = Oy (n~"/°p,).
In light of (S15), (S17), and (S19)-(S22), we conclude that (P, — [P’)dgE{éé? 6) |
Y, 8 E}de is dominated by ]P’deTKg(Oo)dg.
For the third term of (S14), we can show that
. C ~
&, (0)"dy
. (C) ~ ~ _ _ ~
= O{l1€(as)(0) [ I d(ase | + O(|S = TX|)|| Dy " Dr ||V + O(1 +p, ?[|S = TX|*)
x | D3 Dy||* + Ofp/* +||(S = TX) o (S = T'X)|}| D5, (523)

18
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where Eg/)%) denotes the subvector of Zéf) that corresponds to (a, Bg,&). Hence,

)(C) = (C) _ _
dy £y (0)€, ()" dy = Op(pn) (I diape)I” + | Dr " Dr|| + | Dy Q' Dy || + || Ds|),

(©)

and by condition (C6), (P, — P)dSE{&,. (0)£y. ()T | Y, S;0}dy is dominated by

IP’d;FK 3(09)dy. The desired result follows. O

Proof of Lemma S3. 1t suffices to prove that

(©)

(C) AN g @
P +P|df { &, (©)8, (0)" — &, (80)dyg (60)" }dy

5(C) 3 5(O)
di {6, (8) - & (60) b,

+P|d] [E{ééf’(b’) 'Y, SO 5} - E{ééf)(é) 1Y, S, OOH do
+P|d? [E{ééf’(e)e“)( )T 1Y, 80©), 9} {égf)(o)egc)( )Y, 8, 00}] do| (S24)

is dominated by Pdj K3(0y)dy. Consider the first term of (S524). By condition (C1),

dosePAVs(@. B, €) = Vis(aw, By, €0)diase) = ol diase) 1)

so the left-hand side of the above equality is dominated by Pdj K3(8y)dy. The difference

between the first term on the right-hand side of (S5) evaluated at 6 versus at 6, is
(@' Q UDIO Dy — $T019,DIO Dy
~T~—1~ _ _ ~T~—1~ ~—1 _
<[ Q¥ - T O||[| Dy Dyl + [T 2 P[[|Dy (2 — Q') Dyl
=0(n"’p}*)| Dy Dy|.
For the second term of the right-hand side of (S5),
=T ~-1 =T~-1 T-1 To-1
tI‘(\I’ Q D\I/\I’ Q D\p — ‘IIO QO D\y\I’O QO .D\p)
~ ~T ~—1
=O{[[(¥ —¥)"Q ' Dy ¥ ' Dy + ¥ (Q  — Q" )Dy¥ Q' Dy}

<% — @) Q5 (¥ — o) |25 5 o || Dy Dy || + O(n™2p,/2) | Dy ||?

19
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=0(n""’p}/*)| Dy Dy|.
By similar arguments,
Hy(8) — Hi(60) = {O(n™*pi/*) (1 + |S = TX|*) + O(n"*p}/*)||S — TX|[}| D3 ' Dy .

For the right-hand side of (S6), note that

tr{ (¥ — W)"Q; ' D Q5 Dy}
<tr{(¥ — ¥,)"Q; ' D (¥ — W)} 2tr(DEQ; ' DOy ' Dy) 2
<% — )" (¥ — W) ||| Dy, Dy || *tr(92 ' DSy ' D)2
<O(n?p,)| Dy ' Dy || *tr(Q2, ' DsQy ' Dy) 2.
Furthermore,
w{@T(Q - 2,)Ds2 Dy} <OVl || Ds ' Dy |
<O(n™*p,) Dy ' Dy ||V ?tr(2" D2y ' D)2,
By similar arguments,
Ho(8) = Hy(60) ={O(n™"*pu) + O(n™*p;/*)||S = TX || + O(n " *p/?) | S — TX |1}
x || D3y Dy |'*tr(Qy ' D€, ' D) /2.

By (S18) and the arguments for bounding H;(6) — H:(6,) and Ha(8) — Ha(6,),
Hy(8) — Hy(05) ={O(n2p/%) (1 + IS = TX|2) + O(n~/p,)|S — TX |} D |
Hy(6) — Ha(6o) = O(n™"/*p/*)| D Q' Dy
H;(0) — Hs(60) =O(n~*p/*)(1 + p;/*||S — TX )| DEQ ' Dr||*| Dy Q' D2,
Hy(8) — Hy(8y) =O(n™*p,) (1 + |8 = TX ||| DF " Dr ||| Dy
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We conclude that the first term of (S24) is dominated by Pdy K3(0,)dy.

Next, we consider the second term of (S24). For some 6" between 6 and 6,,

J(0) = (0) .
{ese (0) — £i513e)(00) Y ey = O(n™ DY) 1€ ey (0| s [

2O 3 (O) - = _

tr[Dr{r(8) — £ (60)}] = O(n™2p,)(1+[|S — LX) Dy ' Dr |2,
2O 3y 5(O) -

[ Dy {2y " (0) — £y (00)}] = O(n " *p,)(p}/* + IS = TX || + ||§ - TX|*)| Dy ' D,
)(O) 3 (O)

tr[Dx{ly () — &5 (60)}] = O(n™*p*) (0, + p/*|S —TX| + |8 - TX|*)| D

where 2&5) denotes the submatrix of Zéf) that corresponds to (e, Bg,&). It follows from

(S23) that

(C) =\ H(C) & -(C) (C)
P dGT{ees (9)293 (O)T _295 (00)598 (OO)T}de

<O(n™"2p*)(ldiase I” + | Dr 2" Drl| + | Dy D + | D),

which is dominated by IP’dgK 3(09)dy.
For the third term of (S24), we note that
P [ 416 @)ai(S | Y.550) - 1(S| .500)} a5
— [ a1 @)dif (5 | V.5 67)7( - 60) as ™
<[p [ a5l @aniis | v. 5674516 - .
where 6* is some value between 6 and 6. By condition (C6), (S15), (S17), and (S19)-
(S22), the first term on the right-hand side of the inequality above is O(pim)IPdgKg(Bo)dg,

so the third term of (S24) is dominated by Pdj K3(8)dy. Likewise, by (S23) and condition

(C6), the fourth term of (S24) is dominated by Pd; K3(6,)dy. O
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Table S1: Simulation results for the continuous outcome variable under a misspecified factor model

Lasso A-Lasso
Variables Pred. Variables Pred.
selected FDR TPR error selected FDR TPR error
MCAR; p =100

Complete 28.3  0.379 0.570 0.120 22.2  0.262 0.540 0.116
SMC 32.1  0.369 0.657 0.097  25.7  0.251 0.632 0.094
Imputed 33.6  0.379 0.679 0.090 26.4  0.246 0.655 0.088
Proposed 28.8  0.321 0.643 0.090 24.1  0.214 0.625 0.090
MAR; p = 100

Complete 32.8 0.364 0.675 0.171 26.2  0.228 0.664 0.191
SMC 29.1  0.341 0.621 0.107 23.3  0.220 0.596 0.105
Imputed 29.0 0.330 0.624 0.116  22.7  0.196 0.595 0.117
Proposed 30.1  0.277 0.717 0.078  25.5  0.182 0.689 0.077
MCAR; p = 300

Complete 34.2  0.532 0.500 0.149 27.4  0.432 0.502 0.133
SMC 35.7  0.485 0.587 0.118 29.1  0.380 0.588 0.107
Imputed 39.9  0.520 0.609 0.107 30.1  0.380 0.609 0.098
Proposed 30.0 0.446 0.544 0.116  26.0  0.334 0.567 0.101
MAR; p =300

Complete 39.7 0.507 0.612 0.163  29.7  0.362 0.615 0.190
SMC 31.3  0.441 0.559 0.129  25.5  0.335 0.554 0.119
Imputed 36.0 0.454 0.618 0.125 26.9  0.293 0.613 0.119
Proposed 32.3  0.358 0.679 0.094 28.2  0.269 0.679 0.079

NOTE: See NOTE to Table 1.
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Table S2: Simulation results for the binary outcome variable under a misspecified factor model

Lasso A-Lasso
Variables Pred. Variables Pred.
selected FDR TPR error selected FDR TPR error
MCAR; p = 100

Complete 24.3 0.382 0.484 1.558 18.4 0.271 0.442 1.417
SMC 27.5  0.373 0.563 1.263  20.5  0.240 0.512 1.205
Imputed 27.3  0.392 0.541 1.277  20.4  0.257 0.500 1.196
Proposed 27.5  0.391 0.546 1.258  20.5  0.257 0.500 1.190
MAR; p =100

Complete 28.6  0.373 0.587 1.210  21.2  0.230 0.540 1.089
SMC 26.3  0.351 0.556 1.287  20.1  0.224 0.515 1.172
Imputed 23.7  0.350 0.500 1.383  17.9  0.217 0.463 1.333
Proposed 28.3  0.357 0.595 1.198  21.5  0.226 0.549 1.072
MCAR; p = 300

Complete 29.6  0.565 0.404 1.908  22.7  0.460 0.395 1.682
SMC 32.4  0.519 0.496 1.522 24.1  0.375 0.486 1.276
Imputed 349  0.572 0.472 1.568 249  0.425 0.465 1.334
Proposed 33.3  0.575 0.448 1.611  25.7  0.437 0.467 1.301
MAR; p = 300

Complete 34.5  0.536 0.512 1.528 24.5  0.373 0.500 1.246
SMC 29.8  0.498 0.474 1.632 22.6  0.360 0.470 1.356
Imputed 28.8  0.498 0.458 1.586  21.9  0.359 0.456 1.464
Proposed 35.4  0.518 0.542 1.443  26.2  0.381 0.528 1.163

NOTE: See NOTE to Table 1.
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Table S3: Selected features in the analysis of the TCGA data

Feature type Feature name

Feature type Feature name

Gene

expression

WDR37 (22884)
FUT7 (2529)
DDITA4 (54541)
FCRLA (84824)
TRAFD1 (10906)
C100rf2 (56652)
STK17B (9262)
STC1 (6781)
INHA (3623)
ZNF683 (257101)
C6orf62 (31688)
CCBL1 (883)
ZC3HAV1 (56829)
HOXA11AS (221883)
GRIP2 (80852)
NCOA5 (57727)
SCP2 (6342)
IGFBP1 (3484)

Gene

expression

SAMDS (142891)
USP38 (84640)
IMPG2 (50939)
TRMT12 (55039)
VAV3 (10451)
RMNDI (55005)
DNAJC5 (80331)
SSBP3 (23648)
CCL3L3 (414062)
GOLGAGL5 (374650)
LASS5 (91012)
ZNF124 (7678)
YTHDF?2 (51441)
KLRF1 (51348)
ATGI12 (9140)
XKR3 (150165)
LOC389333 (389333)
GDF7 (151449)

GLUDI1 (2746)
MTMI1 (4534)
PTPRVP (148713)
KCNF1 (3754)
TMEM22 (80723)
UPK2 (7379)
RPL13AP20 (387841)
PCOLCE2 (26577)
NUP62CL (54830)

Protein

expression

53BP1

AMPK _alpha

ARIDIA
Chromogranin-A-N-term
EGFR

EGFR_pY1068

Ku80

pl6_INK4a

NOTE: For gene expressions, the Entrez gene ID is given in parentheses.
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Figure S1: Missing-data pattern in the TCGA data.
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