
Statistica Sinica 35 (2025), 67-89
doi:https://doi.org/10.5705/ss.202022.0120

STATE SPACE EMULATION AND

ANNEALED SEQUENTIAL MONTE CARLO

FOR HIGH DIMENSIONAL OPTIMIZATION

Chencheng Cai∗ and Rong Chen

Washington State University and Rutgers University

Abstract: Many high-dimensional optimization problems can be reformulated as

finding the optimal path under an equivalent state-space model setting. Here,

we present a general emulation strategy for developing a state-space model with

a likelihood function (or posterior distribution) that shares the same general

landscape as that of the original objective function. Then, the solution of the

optimization problem is the same as the optimal state path that maximizes the

likelihood function. To find such an optimal path, we adapt a simulated annealing

approach by inserting a temperature control into the emulated dynamic system, and

propose a novel annealed sequential Monte Carlo (SMC) method that effectively

generates Monte Carlo sample paths based on samples obtained previously on

a higher temperature scale. Compared with the vanilla simulated annealing

implementation, the annealed SMC is an iterative algorithm for state-space model

optimization that generates state paths directly from the equilibrium distributions

using a decreasing sequence of temperatures and sequential importance sampling,

which does not require burn-in or mixing iterations to ensure a quasi-equilibrium

condition. Lastly, we demonstrate the proposed method by presenting several

emulation examples and the corresponding simulation results.

Key words and phrases: Emulation, optimization, sequential Monte Carlo, simu-

lated annealing, state space model.

1. Introduction

High-dimensional global optimization algorithms have been widely investi-

gated since the advent of high-dimensional complex data. For example, the

gradient descent algorithm and its variations (Bertsekas, 1997) require that

the objective function be convex or uni-modal to ensure that the found local

optimal is global. Recent research in machine learning involves many nonconvex

optimization problems (Anandkumar et al., 2014; Arora et al., 2012; Netrapalli

et al., 2014; Agarwal et al., 2014). However, many of these problems remain NP-

hard, and theory is only available for their convex relaxations (Jain and Kar,

2017). Deterministic optimization algorithms (Hooke and Jeeves, 1961; Nelder

and Mead, 1965; Land and Doig, 1960) may result in an exhaustive search,
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which is computationally expensive in a high-dimensional space. Stochastic

optimization algorithms use Monte Carlo simulations to explore the parameter

space in a stochastic and often more efficient way (Kiefer and Wolfowitz, 1952;

Kirkpatrick, Gelatt and Vecchi, 1983; Mei, Montanari and Nguyen, 2018).

In this article, we propose an emulation approach that reformulates a high-

dimensional optimization problem as one of finding the most likely state path

in a state-space model. State-space models describe the behavior of a usually

high-dimensional random variable as a form of dynamic evolution, with wide

applications in mathematics, physics, and many other fields. Many high-

dimensional optimization problems can be transformed to finding the optimal

state path under an equivalent state-space model with a likelihood function that

shares the same general landscape as that of the objective function of the original

optimization problem. Specifically, for a high-dimensional optimization problem

with the objective function f(x), we construct an emulated state-space model

with a likelihood function that is proportional to a Boltzmann-like distribution

exp{−κf(x)}, where κ > 0 is the inverted temperature.

Several existing heuristic approaches use the emulation idea. Cai, Tsay

and Chen (2009) transform a regression variable selection problem with many

predictors into an optimization problem over the high-dimensional binary space

{0, 1}p. The latter problem can be further converted to a most likely path

problem in a state-space model with binary-valued states indicating the variable

selection, even though the predictors have no chronological order in nature.

Kolm and Ritter (2015) reformulate a portfolio optimization problem as a state-

space model by mapping the utility function to the log-likelihood function.

The utility function is then optimized by finding the most likely path in the

corresponding state-space model by applying the Viterbi algorithm (Viterbi,

1967) over Monte Carlo samples. Similarly, Irie and West (2016) relate the multi-

period portfolio optimization problem to a log-likelihood of a mixture of linear

Gaussian dynamic systems, and propose an algorithm based on the Kalman filter

(Kalman, 1960) and EM algorithm (Dempster, Laird and Rubin, 1977) to find

the most likely path. Iglesias, Law and Stuart (2013) and Zhang, Song and Liang

(2021) reformulate inversion problems as state-space models by segmenting the

observations into a sequence, and then optimizing the hidden path using a Kalman

filter and an ensemble Kalman filter.

The aforementioned studies map high-dimensional optimizations to prob-

lems under state-space model settings. However, finding the most likely path

analytically and numerically remains challenging. For example, the approach in

Cai, Tsay and Chen (2009) is difficult to generalize to continuous spaces. In

addition, the Viterbi algorithm used in Kolm and Ritter (2015) requires the

dynamic system to be Markovian and nonsingular, and needs a large sample size,

in general, to achieve high accuracy. The combination of the Kalman filter and the

EM algorithm proposed in Irie and West (2016) works only when the underlying
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distribution can be well represented by the mixture of Gaussian distributions.

In this paper, we propose a new sequential Monte Carlo (SMC) simulated

annealing approach, called the “annealed SMC”, to find the most likely path

in a state-space model. The SMC algorithm is one of a class of Monte Carlo

methods that draws samples from state-space model systems in a sequential

fashion. With the sequential importance sampling and resampling (SISR) scheme,

an SMC is extremely powerful in terms of sampling from complex dynamic

systems, especially for state-space models (Gordon, Salmond and Smith, 1993;

Kitagawa, 1996; Kong, Liu and Wong, 1994; Liu and Chen, 1995, 1998; Pitt and

Shephard, 1999; Chen, Wang and Liu, 2000; Doucet, de Freitas and Gordon,

2001). Recall that the likelihood function of the emulated state-space model is

designed to be proportional to exp{−κf(x)}, where κ is the inverted temperature.

To mimic the (physical) annealing procedure in a non-interactive, non-quantum

thermodynamic system (Kirkpatrick, Gelatt and Vecchi, 1983), we choose a

sequence of decreasing temperatures κ0 < κ1 < · · · < κK , which corresponds

to a sequence of emulated state-space models.

We start by drawing sample paths from the base emulated state-space model

at a high base temperature κ0. Although samples from a low temperature (large

κ) system are close to the optimal sample path, because the distribution is sharp

at a low temperature, drawing from such a distribution directly is usually difficult.

Using the annealed SMC, we can obtain samples of a low temperature system

based on samples obtained at a higher temperature. Eventually, all the SMC

sample paths converge to the most likely one. The sequence of temperatures

κ0 < κ1 < · · · < κK provides a slow-changing path from the base emulated

state-space model at κ0, which is easy to sample from, but not very useful for

optimization, to the target emulated state-space model at κK , which is difficult

to sample from but provides solutions to the optimization problem.

This study makes two main contributions to the literature. First, we

reformulate the problem as an emulated space-space model, and then we propose

an annealed SMC algorithm to find the solution. Two examples are provided, in

which the emulated state-space models are natural, simple, and illustrative. Two

additional examples are provided in the Supplementary Material to demonstrate

the flexibility of the proposed method in solving existing optimization problems,

with some new applications.

The rest of the paper is organized as follows. Section 2 briefly reviews

state-space models and introduces the principles of state-space emulation. Two

illustrative emulation examples are provided in Section 2.3. Section 3 introduces

the framework of the annealed SMC, designed to find the most likely path.

Simulation results corresponding to the two examples in Section 2.3 are presented

in Section 4. Section 5 concludes the paper.



70 CAI AND CHEN

2. State-Space Model and State-Space Emulation

2.1. State-space model

State-space models describe the mechanism of sequential observations yT =

(y1, . . . , yT ) using a sequence of latent variables xT = (x1, . . . , xT ). The latent

variables xT are assumed to follow a discrete-time stochastic process governed by

the state equations

p(xt | xt−1) = pt(xt | xt−1), (2.1)

for t = 2, . . . , T , and x1 follows its marginal distribution p1(x1). When the

distribution of xt conditioned on xt−1 does not depend on xt−2, such that

p(xt | xt−1) = p(xt | xt−1), the system is Markovian. The observations yT

are generated independently, conditioned on the latent variables, using the

observational equations

p(yt | xt) = gt(yt | xt), (2.2)

for t = 1, . . . , T . In inference problems, the formulae of the state equations pt(·)
and the observation equations gt(·) are usually known, except for a set of unknown

parameters of interest θ. Here, we assume pt(·) and gt(·) are completely known,

and we infer the latent states xT . Estimating xT from the observations yT under

the likelihood principle is known as the most likely path (MLP) problem in hidden

Markov models.

The state equations provide the prior information on xT :

π(xT ) ∝ p1(x1)
T∏

t=2

pt(xt | xt−1), (2.3)

and the observation equations serve as the likelihood functions:

p(yT | xT ) =
T∏

t=1

gt(yt | xt). (2.4)

A maximum-a-posterior (MAP) estimator can be obtained by maximizing the

posterior function in (2.5):

π(xT | yT ) ∝ p1(x1)g1(y1 | x1)
T∏

t=2

pt(xt | xt−1)gt(yt | xt). (2.5)

When both pt(·) and gt(·) are Gaussian, the maximum of (2.5) can be

obtained easily using a Kalman filter and smoother (Kalman, 1960). In general

cases, when the analytic solution to optimize (2.5) is infeasible, the MAP

estimator can be obtained by drawing sample paths {(x(i)
1 , . . . , x

(i)
T )}i=1,...,n from

the posterior distribution (2.5). We discuss estimating the most likely path using

Monte Carlo methods in Section 3.
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2.2. State-space emulation

We propose a state-space emulation approach for solving high-dimensional

optimization problems. The approach constructs a state-space model so that the

original optimization problem is equivalent to finding the most likely state path

under the state-space model.

Let f : X d → R be the objective function to be minimized and ξ : R →
[0,+∞) be a monotone decreasing function. Then, minimizing f(x) is equivalent

to maximizing ϕ(x) := ξ(f(x)), such that

argmin
x∈Xd

f(x) = argmax
x∈Xd

ϕ(x).

Furthermore, if there exists a state-space model with a posterior function (2.5)

that is proportional to ϕ(x) such that π(xT | yT ) ∝ ϕ(xT ) = ξ(f(xT )),

with artificially designed state equations {pt(·)}t=1,...,T , observation equations

{gt(·)}t=1,...,T , and T = d, we call the state-space model an “emulated”

state-space model. The observations yT can either be observations from the

original optimization problem (e.g., the observed points in the smoothing

spline problem in Section 2.3.1), or can be designed artificially. Note that

it is always possible to rewrite any joint distribution function ϕ(xT ) in the

form of (2.3) as ϕ(xT ) = ϕ(x1, . . . , xT ) = ϕ1(x1)
∏T

t=2 ϕt(xt | xt−1), where

ϕt(xt | xt−1) =
∫
XT−t ϕ(xT )dxt+1 · · · dT/

∫
XT−t+1 ϕ(xT )dxt · · · dT and ϕ1(x1) =∫

X t−1 ϕ(xT )dx2 · · · dxT . However, a series of conditional distributions is difficult

to sample from and to evaluate.

However, in certain problems, including our examples shown later, it is

possible to reformulate the conditional distribution as ϕt(xt | xt−1) = pt(xt |
xt−1)gt(yt | xt), in which it is easy to generate a sample from pt(xt | xt−1), and

it is easy to evaluate gt(yt | xt), for some designed yt. In general, objective

functions with local dependence between parameters can be easily emulated by

Markovian state-space models, as in our examples of smoothing splines, trend

filtering, and the optimal trading path. Objective functions with more complex

interactions between the parameters usually lead to non-Markovian emulated

state-space models, which need more careful designs. The lasso regression in the

Supplementary Material is one such case.

Minimizing the objective function is then equivalent to finding the most likely

path for the emulated state-space model. The emulated state and observation

equations provide guidance for further SMC implementation, even though they

are artificial.

A common choice for ξ(·) is the Boltzmann distribution function

ξ(s) = e−κs, (2.6)

where κ is a positive constant that relates to the temperature in statistical physics.
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In statistics, the Boltzmann function in (2.6) links the least squares method to

the maximum likelihood approach with independent and identically distributed

(i.i.d.) Gaussian noise. With this choice of ξ(·), the system has a physical

interpretation: The objective function f(·) is regarded as the possible energy

levels in a non-quantum thermodynamic system. Assuming no interactions, the

number of particles at the energy f(x) follows the Boltzmann distribution under

thermodynamic equilibrium. The integrability of ϕ(x) ensures the existence of

the canonical partition function, such that this physical canonical system is valid.

The minimization of f(·) is now equivalent to finding the base energy level, which

inspires the use of simulated annealing of this thermodynamic system; see Section

3 for further discussion.

2.3. Examples

2.3.1. Cubic smoothing spline

Consider a nonparametric regression model yt = m(xt) + ϵt with equally

spaced xt. Without loss of generality, let xt = t and treat them as time. The cubic

smoothing spline method (Green and Silverman, 1993) estimates a continuous

function m(t) by minimizing

L(yT ) =
T∑

t=1

{yt −m(t)}2 + λ

∫
{m′′(t)}2 dt. (2.7)

The first term in (2.7) is the total squared tracking errors at the observation

times, and the second term is the penalty term on the smoothness of the latent

function m(·), where λ controls the regularization strength. Given values of

m(1), . . . ,m(T ), the minimizer of the second term is a natural cubic spline

that interpolates m(1), . . . ,m(T ) (see Green and Silverman, 1993). Hence, the

solution that minimizes (2.7) is a natural cubic spline, which is second-order

continuously differentiable and is a cubic polynomial in all intervals [t, t+ 1], for

t = 1, . . . , T − 1, and is linear outside [1, T ].

Define the derivatives of m(t) at each observation at time t as

at = m(t), bt = m′(t), ct =
m′′(t)

2
, dt = lim

s→t−

m′′′(s)

6
.

The natural cubic spline solution to (2.7) is equivalent to an emulated state-space

model on xt = (at, bt, ct) with a vector autoregressive state equationat

bt
ct

 =

1 1
√
3/3

0 1
√
3− 1

0 0 −(2−
√
3)


at−1

bt−1

ct−1

+

1/31
1

 ηt, (2.8)

with ηt ∼ N (0, σ2
b ) and σ2

b = 3(2−
√
3)/(4λκ). The corresponding observation
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equation is yt = at + ϵt, with εt ∼ N (0, σ2
y), σ2

y = 1/(2κ), and the initial

values a1 ∼ N (y1, σ
2
y), b1 ∼ 1, and c1 = 0. The derivation is postponed to the

Supplementary Material.

2.3.2. Optimal trading path

In asset portfolio management, the optimal trading path problem is a class

of optimization problems that typically maximize certain utility functions of the

trading path (Markowitz, 1959). Kolm and Ritter (2015) and Irie and West

(2016) proposed reformulating such problems as an emulated state-space model.

Specifically, let xT = (x0, . . . , xT ) be a trading path in which xt represents the

position held at time t. Kolm and Ritter (2015) propose maximizing the following

utility function:

u(xT ) = −
T∑

t=1

ct(xt − xt−1)−
T∑

t=0

ht(yt − xt), (2.9)

where (y0, . . . , yT ) is a predetermined optimal trading path in an ideal world with-

out trading costs, typically obtained by maximizing the risk-adjusted expected

return under the Markowitz mean-variance theory (Markowitz, 1959). Kolm and

Ritter (2015) provide a construction of (y0, . . . , yT ) based on the term structure of

the underlying asset’s alpha (the excess expected return relative to the market).

Let ct(·) represent the transaction cost, which is often assumed to be a quadratic

function of the absolute position change |xt − xt−1|. Without loss of generality,

we parametrize it as

ct(|xt − xt−1|) =
1

2σ2
x

(
|xt − xt−1|2 + 2α|xt − xt−1|+ α2

)
,

where α is a nonnegative constant related to the volatility and liquidity of the

asset (Kyle and Obizhaeva, 2011). Let ht(·) be the utility loss due to the departure

of the realized path from the ideal path. We use the squared loss ht(yt − xt) =

(yt − xt)
2/(2σ2

y). Then, the objective function is

e−κu(xT ) ∝
T∏

t=1

exp

{
−κ(|xt − xt−1|+ α)2

2σ2
x

} T∏
t=1

exp

{
−κ(yt − xt)

2

2σ2
y

}
.

Taking the position constraint x0 = xT into consideration, as discussed in Cai,

Chen and Lin (2018), an emulated state-space model can therefore be constructed

as

pt(xt | xt−1) ∝ exp

{
−κ(|xt − xt−1|+ α)2

2σ2
x

}
, (2.10)

gt(yt | xt) ∝ exp

{
−κ(yt − xt)

2

2σ2
y

}
. (2.11)
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With the state equation (2.10) and the observation equation (2.11), the state-

space model has a likelihood function proportional to exp{−κu(xT )}.

3. Annealed SMC

3.1. SMC

The SMC method is a class of sampling methods designed for state-space

models. It uses the sequential nature of state-space models, and draws sam-

ples incrementally using sequential importance sampling and resampling (SISR)

schemes. A typical SMC approach is demonstrated in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (SMC) Algorithm.

� Draw x
(i)
1 from p1(x1) and set weight w

(i)
0 = 1 for i = 1, . . . , n.

� For time t = 2, · · · , T :

– Propagation: For i = 1, · · · , n,

* Draw x
(i)
t from qt(xt | x(i)

t−1) and set x
(i)
t = (x

(i)
t−1, x

(i)
t ).

* Update weights by setting

w
(i)
t ← w

(i)
t−1 ·

pt(x
(i)
t | x

(i)
t−1)gt(yt | x

(i)
t )

qt(x
(i)
t | x

(i)
t−1)

.

– Resampling (optional):

* Assign a priority score β
(i)
t to each sample x

(i)
0:t.

* Draw samples {J1, . . . , Jn} from the set {1, . . . , n} with replacement, with

probabilities proportional to {β(i)
t }i=1,...,n.

* Let x
∗(i)
t = x

(Ji)
t and w

∗(i)
t = w

(Ji)
t /β

(Ji)
t .

* Set {(x(i)
t , w

(i)
t )}i=1,...,n ← {(x∗(i)

t , w
∗(i)
t )}i=1,...,n.

� Return the weighted sample set {(x(i)
T , w

(i)
T )}i=1,...,n.

The function qt(·) in the propagation step in Algorithm 1 is the proposal

distribution. As discussed in Lin, Chen and Liu (2013), the “perfect” choice

for the proposal is the conditional distribution with the full information set,

such that qt(xt | xt−1) = p(xt | xt−1,yT ). However, in most cases, it is not

possible to evaluate or sample from this conditional probability at time t. The

priority score βt is the weight used in the resampling step, and quantifies the

sampler’s preference over different sample paths. The most common choice of

βt is β
(i)
t ∝ w

(i)
t . Variations of the SMC algorithm choose different proposal

distributions and different priority scores. The Bayesian particle filter (Gordon,

Salmond and Smith, 1993) sets qt(xt | xt−1) = pt(xt | xt−1). It works well

when the observations yT are relatively noisy compared with the state equation
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part. With accurate observations, the independent particle filter (Lin et al.,

2005) uses qt(xt | xt−1) ∝ gt(yt | xt). As an important (with a certain additional

cost) compromise over the Bayesian particle filter and the independent particle

filter, Kong, Liu and Wong (1994) and Liu and Chen (1998) suggest adopting

qt(xt | xt−1) ∝ pt(xt | xt−1)gt(yt | xt) to reduce the variance. Other SMC

methods focus on finding more appropriate priority scores in resampling, with

the help of future information. The auxiliary particle filter (Pitt and Shephard,

1999) conducts resampling with the priority score β
(i)
t = w

(i)
t p(yt+1 | xt). The

delayed sampling method (Chen, Wang and Liu, 2000; Lin, Chen and Liu, 2013)

looks ahead ∆ steps, and uses β
(i)
t = w

(i)
t p(yt+1, . . . , yt+∆ | xt).

In emulations for the optimizations, we are more interested in generating

samples in the high probability density region of π(xT ). Hence our prob-

lem is essentially a smoothing problem. Briers, Doucet and Maskell (2010)

proposed using a generalization of the two-filter smoothing formula to sample

approximately from the joint distribution π(xT ). Additional local Markov Chain

Monte Carlo (MCMC) moves can be adopted to mitigate degeneracy (Gilks and

Berzuini, 2001). Many other SMC smoothing algorithm implementations reduce

the potential degeneracy in samples; see, for example, Godsill, Doucet and West

(2004); Del Moral, Doucet and Singh (2010); Briers, Doucet and Maskell (2010);

Guarniero, Johansen and Lee (2017).

3.2. Finding the most likely path

With emulation, finding the optimum of f(x) is now equivalent to finding

the mode, or the most likely state path (MLP), of π(xT ),

x∗
T = argmax

xT∈XT

π(xT | yT ), (3.1)

with π(xT | yT ) defined in (2.5) and X being the common support for all latent

variables. By construction, the mode, which is the optimum of f(x), does not

depend on κ used in (2.6).

In this article, we focus on finding the MLP from Monte Carlo samples. A set

of weighted Monte Carlo samples from the distribution π(xT ) can be generated

using the SMC and its various implementation schemes. Let {(x(i)
T , w

(i)
T )}i=1,...,n

be the samples drawn from the emulated state-space model using the SMC

algorithm in Algorithm 1. A natural and easy way is to use the empirical MAP

path, such that

x̂
(map)
T = argmax

xT∈{x(i)
T }i=1,...,n

π(xT | yT ). (3.2)

Although the empirical MAP involves the least computation given the Monte

Carlo samples, it usually requires a very large sample size to achieve high

accuracy, especially when the dimension T is large.
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Note that the MLP is the same under different κ. However, the distribution

π(xT | yT , κ) is more flat for small κ (high temperature), and is more concentrated

around the MLP for large κ. Hence, the empirical MAP path tends to be more

accurate if the Monte Carlo samples are generated from the target distribution

with large κ. When κ is sufficiently large, the average sample path is also a

good estimate of the MAP. However, it is much more difficult to generate Monte

Carlo samples with large κ, because of the tendency to be trapped in a local

optimum. Simulated annealing gradually modifies the easily generated samples

at a higher temperature to obtain samples from a lower temperature system with

more accurate estimates.

3.3. Annealed SMC

We propose a simulated annealing algorithm for the SMC on state-space

models. The idea comes from the thermodynamics analogue discussed in the

previous section. When the function ξ(·) is chosen to be Boltzmann-like, as in

(2.6), the Monte Carlo samples from the emulated state-space model correspond

to a random sample set from the non-interacting particles in a thermodynamic

equilibrium system, as discussed in Section 2.2.

If the temperature cools to zero sufficiently slowly that the system is

approximately in thermodynamic equilibrium for any temperature in between, all

particles will condense to the base energy level. The idea of simulated annealing

as an analogy of the physical system was proposed and discussed in Kirkpatrick,

Gelatt and Vecchi (1983).

To mimic the thermodynamic procedure, we propose the following system

to simulate the annealing procedure for the SMC samples. Let 0 < κ0 < κ1 <

· · · < κK be an increasing sequence of inverse temperatures. Suppose at κ0, a

base emulated state-space model is constructed as

π(xT ;κ0) ∝ e−κ0f(xT ) ∝ p0(x0)
T∏

t=1

pt(xt | xt−1)gt(yt | xt). (3.3)

At a higher inverse temperature κk, an emulated state-space model can be induced

from (3.3) such that

π(xT ;κk) ∝ e−κkf(xT ) ∝ p0(x0;κk)
T∏

t=1

pt(xt | xt−1;κk)gt(yt | xt;κk), (3.4)

where pt(xt | xt−1;κk) ∝ {pt(xt | xt−1)}κk/κ0 and gt(yt | xt;κk) ∝ {gt(yt | xt)}κk/κ0

are the corresponding state equations and observation equations, respectively at

κk. The starting inverse temperature κ0 is usually chosen to be relatively small,

such that the function π(xT ;κ0) ∝ e−κ0f(xT ) is relatively flat and is easy to sample

from using the SMC. We start with κ0, and draw {(x(j)
0,T , w

(j)
0,T )}j=1,...,m from the
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base emulated state-space model π(xT ;κ0). For k = 1, . . . ,K, new samples

{(x(j)
k,T , w

(j)
k,T )}j=1,...,m are drawn with respect to the distribution π(xT ;κk),

using the samples {(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m obtained at κk−1. The procedure

is depicted in Algorithm 2. The annealed SMC uses the following proposal

distribution at temperature κk:

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | xt−1;κk−1), (3.5)

where the conditional distribution p̂k,t(xt | xt−1;κk−1) is an estimate of

πT (xt | xt−1;κk−1), and can be obtained from the Monte Carlo samples

{(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m under κk−1. We discuss how to obtain such an estimate

later. Because κ increases slowly, πT (xt | xt−1;κk−1) and πT (xt | xt−1;κk) are

reasonably close. With a sufficiently large terminating κK , samples from the

target distribution π(xT ;κK) are highly concentrated around the true optimal

path x∗
T , and hence are useful for inferring the most likely path.

Algorithm 2 Annealed Sequential Monte Carlo Algorithm.

� Draw {(x(j)
0,T , w

(j)
0,T )}j=1,...,m from π(xT ;κ0) with SMC in Algorithm 1, using a set

of proposal distributions q1,t(xt | xt−1;κ0).

� For k = 1, . . . ,K, draw {(x(j)
k,T , w

(j)
k,T )}j=1,...,m from π(xT ;κk) with SMC in

Algorithm 1 using the proposal distribution

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | x(j)
k,t−1),

where the right hand side is an estimate of πT (xt | xt−1;κk−1).

� Estimate the most likely path from {(x(j)
K,T , w

(j)
K,T )}j=1,...,m.

In summary, the annealed SMC provides an iterative procedure for the

difficult sampling problem under κK by using samples obtained at a higher

temperature. On the one hand, the annealed SMC provides a relatively “flat”

and easy-to-sample starting distribution π(xT ;κ0), and designs a slow-changing

path connecting π(xT ;κ0) to the desired “sharp” distribution π(xT ;κK). On the

other hand, for each iteration k = 1, . . . ,K, the annealed SMC adopts an optimal

proposal distribution p(xt | xt−1,yT ;κk−1) based on the full information set yT ,

and is usually difficult to evaluate in conventional SMC implementations. In

the annealed SMC, the proposal distribution is estimated by using sample paths

from the previous iteration. The details of estimating the proposal distribution

are discussed in the Supplementary Material.

Our annealing framework falls into the general framework of simulated

annealing. The design of temperature sequences {κk}k=0,...,K is known as the

“cooling schedule”. Kirkpatrick, Gelatt and Vecchi (1983) uses an exponential

schedule such that κk = αkκ0, for some positive number α. A more conservative
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schedule such that κk ∝ log(1 + k) is suggested by Hajek (1988) and Aarts and

Korst (1989) to ensure convergence to a global minimum. Ingber (1989) proposed

a fast adaptive cooling schedule that allows the temperature to increase (or κ to

decrease) in order to regain the broadness of the samples at a certain point. The

specific choice of cooling schedule is beyond the scope of this study. By default,

we choose the most aggressive exponential schedule, with a picked value of α for

faster convergence, in the example section, and the results are promising.

The conventional simulated annealing algorithm (Kirkpatrick, Gelatt and

Vecchi, 1983) is a variation of the MCMC method, which adapts the Metropolis–

Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) with an extra

temperature control. The convergence of the conventional simulated annealing

algorithm is given by Granville, Krivanek and Rasson (1994). In contrast, the

annealed SMC does not require a mixing condition, as is usually the case in

MCMC algorithms. At each iteration at κk, the samples are always properly

weighted with respect to the target distribution π(xT ;κk), because of the weight

adjustments. The convergence of the SMC is discussed in Crisan and Doucet

(2000).

The terminology “annealed SMC” is also used by Ulker, Gunsel and Cemgil

(2011) and Wang, Wang and Bouchard-Côté (2019), although differently to how

we use it in our method. The method of Ulker, Gunsel and Cemgil (2011)

and Wang, Wang and Bouchard-Côté (2019) (henceforth, “SMC annealing”)

constructs an annealing sequence of intermediate target distributions πt(x),

indexed by t = 0, . . . , T , with π0(x) as the beginning distribution and πT (x) as

the terminating distribution. The goal the method is to generate a set of samples

that follow the terminating distribution by starting from samples that follow a

relatively flat beginning distribution. SMC techniques are used when translating

samples from the current distribution πt(x) to the next πt+1(x) by adopting an

MCMCmove as the proposal distribution. Our method also constructs a sequence

of annealed target distributions πk(xT | κk), with the optimization using a Monte

Carlo of a (near) degenerated terminating distribution. In our method, within

each temperature (κk), we use the SMC to sample the high-dimensional xT under

a dynamic system setup. The sequence of SMC proposal distributions within each

temperature uses the information contained in the Monte Carlo samples from the

previous temperature.

More specifically, there are three major differences between the proposed

method and the SMC annealing method. First, the goal of SMC annealing is to

draw samples from a target distribution (usually the posterior) that is difficult

to sample from directly. The goal of our algorithm is to find the optimum such

that the terminating distribution is proportional to the original one, raised to

an arbitrarily high power. Second, our method solves the problem when x itself

is high dimensional with a dynamic structure, for which the SMC is used to

sequentially sample the components of x, whereas SMC annealing deals with
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relatively lower dimensional x, without needing SMC sampling. Third, SMC

annealing uses the SMC on the sequence of annealing distributions, whereas

our method performs as SMC within each annealing temperature, and uses the

samples from the previous iteration to construct the internal SMC propagation

proposal step in the subsequent temperature.

3.4. Path refinement using the Viterbi algorithm

A more accurate estimate of the mode can be obtained by using the Viterbi

algorithm (Viterbi, 1967) on the discrete space consisting of the SMC samples.

The Viterbi algorithm is a dynamic programming algorithm originally used to

solve the MLP problem in hidden Markov models, where the hidden states are

finite. Let At = {a(j)
t }j=1,...,m be the grid points for xt, and Ω = A1×· · ·×AT be

the Cartesian product of the grid point sets. In state-space models, the Viterbi

algorithm searches for the maximum over all possible combinations of the grid

points in Ω. Specifically, the MLP obtained by the Viterbi algorithm is

x̂T
(viterbi) = argmax

xT∈Ω
π(xT | yT ). (3.6)

The Viterbi algorithm for state-space models based on the grid points {a(j)
1 }j=1,...,m,

. . . , {a(j)
T }j=1,...,m is depicted in Algorithm 3.

Algorithm 3 Viterbi Algorithm for Markovian State-Space Models.

� Let At = {a(j)t }j=1,...,m be a set of grid points for xt for t = 1, . . . , T .

� At time 1, initialize ℓ
(j)
0 = 0 and x̂

(j)
1 = a

(j)
1 for j = 1, . . . ,m.

� At each time t = 2, . . . , T , for j = 1, . . . ,m, set

ℓ
(j)
t = max

k∈{1,...,m}
ℓ
(k)
t−1pt(a

(j)
t | x̂

(k)
t−1)gt(yt | a

(j)
t ), (3.7)

and set x̂
(i)
t = (x̂

(k∗
j )

t−1 , a
(j)
t ), where j∗j is the optimal point of (3.7).

� Return x̂
(j∗)
T , where j∗ = argmaxj∈{1,...,m} ℓ

(j)
T .

Although the original Viterbi algorithm was designed for discrete state

spaces, we adopt it for continuous state spaces by discretizing the state space

into a set of selected finite grid points at each time point. The performance

depends on the “quality” of the selected grid points (e.g., how densely close to

the underlying optimal path) and on the number of grid points used. Here, we

use the generated Monte Carlo samples as the discretizing grid points. Because

these samples follow the target distribution at a low temperature, they should

concentrate in the important regions.
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For example, one can set At = {x(i)
t }i=1,...,m such that Ω = {x(i)

1 }i=1,...,m ×
· · · × {x(i)

T }i=1,...,m is the joint set of all SMC sample points. Running the Viterbi

algorithm through these samples improves the result from the Monte Carlo

samples, but does not obtain the underlying optimal path in the continuous space.

Therefore, we refer to this step as “refinement” rather than “optimization”.

One can also add and remove grids points to expand the coverage, with

more detail around the more important state paths. For instance, in the lasso

regression example in the Supplement Material, a Viterbi refinement helps to

shrink the estimate of the zero coefficients to exactly zero.

The Viterbi algorithm explores all combinations of sample points, and results

in a better mode estimation than that of the empirical MAP in (3.2). However,

it has limitations in terms of implementation with state-space models. One

limitation is that the Viterbi algorithm works only on Markovian state-space

models. In addition, it works only with a nonsingular state evolution in which

the degrees of freedom is the same as the state variable dimension. Otherwise,

the state paths cannot be re-assembled by the Viterbi algorithm. For example, in

the cubic spline problem, the state evolution is singular. Although one can reduce

the dimension of the state variable to make the evolution nonsingular, the state

evolution then becomes non-Markovian. Another limitation is the requirement

of the Monte Carlo sample size. The Monte Carlo samples induced by Ω provide

a discretization of the support X for each time t. The accuracy of the Viterbi

algorithm depends strongly on the discretization quality, especially when X is

continuous. In general, the denser the Monte Carlo samples are around the true

MLP, the more accurate the Viterbi algorithm solution is. As a result, it often

requires a large Monte Carlo sample size to generate better discretization and to

achieve high accuracy. To reduce the path error ∥x̂(viterbi)
1:T − x∗

1:T∥ by half, the

Monte Carlo sample size m needs to be doubled, because the discretization size

is reduced by half, on average, when the sample size doubles. On the other hand,

the computational cost increases quadratically with the sample size m. One way

to improve this is to apply the Viterbi algorithm iteratively by shrinking to the

high value region of the previous iteration, and regenerating grid points there.

However, similar to an iterative grid search, the iterative Viterbi algorithm may

yield a suboptimal solution.

4. Simulation Results

In this section, we provide simulated results for the annealed SMC in terms

of finding the most likely path for the two emulated state-space models from

Section 2.3.

Note that the smoothing spline problem has a closed-form solution. Even in

the emulated state-space model setting, the Kalman filter provides the exact

solution. It is used for illustration purposes only. On the other hand, the
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Figure 1. Sample paths at κ0 = 4.

optimal trading path problem is not trivial, and is a real application to which

the proposed method is ideally suited, especially when nonlinear solvers usually

give less accurate solutions.

Two additional examples are provided in the Supplementary Material. We

aim to demonstrate the flexibility of the proposed method by solving existing

optimization problems with some new applications, though our approach may not

yield better performance than that of specially designed optimization algorithms

for general problems.

4.1. Cubic smoothing spline

In this simulation study, we consider the cubic smoothing spline problem in

Section 2.3.1. The observations are generated by yt = sin{9(t− 1)/100}+ ζt, for

t = 1, . . . , 50, with ζt ∼ N (0, 1/16), and we fix λ = 10 in the objective function

(2.7).

Because the dynamic system is linear and Gaussian, the most likely path

is obtained by the Kalman smoother (Kalman, 1960). We use this as the

benchmark. We start from the initial inverse temperature κ = κ0 = 4. Figure 1

demonstrates m = 1,000 samples (in gray) drawn from the target distribution

π(xT | yT ;κ0) ∝ [π(xT | yT )]
κ0 by the SMC algorithm described in Algorithm 1,

along with the observations yT (the solid line) and the true most likely path (the

dashed line).

The proposal distribution qt(·) used at κ0 is chosen to be proportional to

pt(xt | xt−1)gt(yt | xt). At each time t, ηt is drawn from the proposal distribution

qt(ηt | at−1, bt−1, ct−1, yt), which is Gaussian. Resampling is conducted when the

effective sample size (ESS) defined in (4.1) is less than 0.3m:

ESS =
(
∑m

i=1 w
(i)
t )2∑m

i=1(w
(i)
t )2

. (4.1)
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Figure 2. Sample paths at different κ’s.

To find the most likely path stochastically and numerically, we apply the

annealed SMC approach in Algorithm 2 with a predetermined sequence of

inverted temperatures κk = 1.5kκ0, for k = 1, . . . , 16. The proposal distribution

for the annealed SMC is estimated using the parametric approach (see the

Supplementary Material). Specifically, because the innovation in the state

equation is of one dimension, at κk, we need only to generate proposal samples

for ct. To do so, we first fit {(c(j)k−1,t, a
(j)
k−1,t−1, b

(j)
k−1,t−1, c

(j)
k−1,t−1)}j=1,...,m with a

multivariate Gaussian distribution, and then sample from the conditional distri-

bution. To prevent degeneracy, the resampling step is only conducted at the end

of each annealed SMC iteration, and after each iteration, one post-MCMC move

is conducted to regenerate the sample states. The post-MCMC move uses blocked

Gibbs sampling (Jensen, Kjærulff and Kong, 1995), owing to the special structure

of the state dynamic. At each iteration of the Gibbs sampling, (xt, xt+1, xt+2) are

updated together.

Figure 2 shows the sample paths (after the post-MCMC step) at the end

of different annealed SMC iterations. When the temperature shrinks to zero as

κ increases, the sample paths move to a small neighborhood region around the

true most likely path. Figure 3 shows the value of the objective function at the

weighted average path of the samples for different numbers of iterations. The
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Figure 3. Value of the objective function against the number of iterations.

true optimal value (the objective function value at the optimal path) obtained by

the Kalman smoother is plotted as the dashed horizontal line. As the number of

iterations increases, the objective function value at the averaged path decreases

stochastically, and converges at roughly the seventh iteration.

To compare the computational efficiency, we record the computing time

needed for different approaches, as follows. The Kalman smoother takes 2.2 ms,

Scipy minimizer takes 129.6 ms and the annealed SMC takes 232.9 ms. The Scipy

approach uses the nonlinear optimizer provided by the python package Scipy

(Jones, Oliphant and Peterson, 2001), which implements the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm by default. The annealed SMC records the

time until convergence (the time when the value of the objective function is not

improved by further iteration). The Kalman smoother is the fastest one to find

the most likely path for linear Gaussian models, owing to its deterministic nature.

The annealed SMC is slower than the nonlinear solver program provided by Scipy,

but achieves similar accuracy. Note that this is a simple convex optimization

problem in which a straightforward optimization algorithm such as the Scipy

performs well. Our estimation approach is more flexible, and this example serves

as an illustration of how the algorithm works.

4.2. Optimal trading path

In this simulation, we consider the optimal trading path problem in Sec-

tion 2.3.2. Following Cai, Chen and Lin (2018), we set T = 20, σ2
x = 0.25,

σ2
y = 1, and α = 0.5. The ideal trading path is given by

yt = 25 exp

(
− t+ 1

8

)
− 40 exp

(
− t+ 1

4

)
.
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Figure 4. Sample paths at κ0.

We start from the initial temperature κ = κ0 = 1.0. The sample paths at

κ0 are drawn using the constrained SMC (Cai, Chen and Lin, 2018), where the

resampling step is performed with the priority scores βt(xt) ∝ p̂(yt+1, . . . , yT |
xt). The priority scores are estimated from a set of backward pilot samples

(Cai, Chen and Lin, 2018). In this example, we use m∗ = 300 backward pilot

samples. The resulting m = 1000 (forward) sample paths are shown in Figure 4.

The observations y1, . . . , yT , which represent the ideal optimal trading strategy

without trading costs, are plotted as the solid line. An estimated path (dashed

line) is provided by the Scipy nonlinear optimization algorithm.

We use the following sequence of inverted temperatures for annealing: κk =

2kκ0, for k = 1, . . . , 20. The proposal distribution in the annealed SMC is sampled

using the parametric approach by approximating the joint distribution of xk−1,t

and xk−1,t−1 with a bivariate normal distribution. The annealed m = 1000

sample paths are resampled at the end of each iteration, and no post-MCMC

step is conducted. Samples at several different inverted temperatures are shown

in Figure 5. We use the sample average as our estimator for the most likely

path. The value of the objective function at the sample average path decreases

stochastically, as shown in Figure 6, eventually converging to around the 11th

iteration. The optimal objective function value achieved by the annealed SMC

is 89.459, whereas that obtained by the Scipy nonlinear optimizer is 89.462. The

values of the objective function at the sample paths at the 20th iteration have

an average of 89.459 and a standard deviation of 1.09 × 10−5. The annealed

SMC gains some improvement in accuracy at the cost of extra computation. The

Scipy nonlinear optimizer takes 78 ms, and the annealed SMC takes 1.820 s for

the initial emulated model (including the time for backward sampling) and costs

around 2 ms for each subsequent iteration. Sampling from the base emulated

model costs much more than in subsequent iterations for two reasons. First,

it requires a large sample size for the base model, because of high degeneracy.
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Figure 5. Sample paths at different κ’s.
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Figure 6. Value of the objective function against the number of iterations.

Second, the end point constraint is imposed and an additional backward pilot

run is needed to reduce degeneracy.

5. Conclusion

In this article, we have proposed a general framework for state-space model

emulation in high-dimensional optimization problems. The main idea of emula-
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tion is to change the goal from optimization to sampling. We have demonstrated

that by constructing a proper state-space model, many high-dimensional opti-

mization problems can be reformulated in terms of finding the optimal (most

likely) path under the state-space model. In order to reduce the accuracy loss

due to the nature of sampling, we propose the annealing steps with an extremely

sharp terminating distribution, where the samples, though random, are highly

concentrated around the optimum (the most likely path). We demonstrate the

procedure of state-space model emulation using two conventional problems in

the main content and in two additional problems given in the Supplementary

Material and show how they can be solved using the proposed annealed SMC

approach.

The proposed annealed SMC approach shares some properties with tradi-

tional simulated annealing methods. Both can optimize a wide range of objective

functions, including nonconvex functions and multi-modal functions, and both

often require a heavier computation cost than the simpler standard optimization

algorithms, such as the gradient descent algorithms. However, the annealed SMC

approach for state-space models differs from the traditional simulated annealing

methods with an MCMC for stochastic optimization in the following ways. First,

emulating an optimization problem as a state-space model is advantageous when

the problem is high dimensional, and when the system is inherently dynamic

(such as the trading path problem or the ℓ1 trend filtering problem) or when the

parameters to be estimated inherently play similar roles in the problem (such as

the parameters in the regression problem). Second, the SMC as an alternative to

the MCMC has certain advantages in many fixed-dimensional problems, such as

those in which the “dependence” between the parameters in the emulated target

distribution is local and (locally) very strong. In such problems, the MCMC

encounters slow mixing difficulties, whereas the SMC naturally takes advantage

of such properties. Third, given any temperature, the SMC samples target the

equilibrium distribution, whereas the MCMC samples often move toward the

target distribution gradually. Hence, the annealed SMC may tolerate a faster

cooling schedule. Fourth, the inherited parallel structure of the SMC allows for

faster computation, and enables better adaption to multi-modal problems.

The state-space model emulation and the annealed SMC provide an alter-

native way to solve high-dimensional optimization problems. Of course, the

approach may not be suitable for all problems, owing to its high computational

cost and its requirement of certain structures. Nevertheless, the proposed

approach is a useful high-dimensional optimization method for a wide range of

complex problems that more traditional methods struggle to solve. Although the

examples presented here do not demonstrate a significant improvement of the

state-space emulation approach over the traditional one, they effectively show

how to implement, and how to use it for other problems.
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Supplementary Material

The online Supplementary Material contains technical details related to the

annealed SMC algorithm, and two additional emulation examples with simulation

results.
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