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Abstract: Many high-dimensional optimization problems can be reformulated as
finding the optimal path under an equivalent state-space model setting. Here,
we present a general emulation strategy for developing a state-space model with
a likelihood function (or posterior distribution) that shares the same general
landscape as that of the original objective function. Then, the solution of the
optimization problem is the same as the optimal state path that maximizes the
likelihood function. To find such an optimal path, we adapt a simulated annealing
approach by inserting a temperature control into the emulated dynamic system, and
propose a novel annealed sequential Monte Carlo (SMC) method that effectively
generates Monte Carlo sample paths based on samples obtained previously on
a higher temperature scale. Compared with the vanilla simulated annealing
implementation, the annealed SMC is an iterative algorithm for state-space model
optimization that generates state paths directly from the equilibrium distributions
using a decreasing sequence of temperatures and sequential importance sampling,
which does not require burn-in or mixing iterations to ensure a quasi-equilibrium
condition. Lastly, we demonstrate the proposed method by presenting several
emulation examples and the corresponding simulation results.

Key words and phrases: Emulation, optimization, sequential Monte Carlo, simu-
lated annealing, state space model.

1. Introduction

High-dimensional global optimization algorithms have been widely investi-
gated since the advent of high-dimensional complex data. For example, the
gradient descent algorithm and its variations (Bertsekas, [1997) require that
the objective function be convex or uni-modal to ensure that the found local
optimal is global. Recent research in machine learning involves many nonconvex
optimization problems (Anandkumar et al., 2014; Arora et al., 2012; Netrapalli
et al.} |2014; Agarwal et al., 2014)). However, many of these problems remain NP-
hard, and theory is only available for their convex relaxations (Jain and Kar,
2017). Deterministic optimization algorithms (Hooke and Jeeves, |1961; |Nelder
and Mead), 1965; [Land and Doig, [1960) may result in an exhaustive search,

*Corresponding author. E-mail: chencheng.cai@wsu.edu


https://doi.org/10.5705/ss.202022.0120
mailto:chencheng.cai@wsu.edu

68 CAI AND CHEN

which is computationally expensive in a high-dimensional space. Stochastic
optimization algorithms use Monte Carlo simulations to explore the parameter
space in a stochastic and often more efficient way (Kiefer and Wolfowitz, [1952;
Kirkpatrick, Gelatt and Vecchi, [1983; Mei, Montanari and Nguyen| 2018]).

In this article, we propose an emulation approach that reformulates a high-
dimensional optimization problem as one of finding the most likely state path
in a state-space model. State-space models describe the behavior of a usually
high-dimensional random variable as a form of dynamic evolution, with wide
applications in mathematics, physics, and many other fields. Many high-
dimensional optimization problems can be transformed to finding the optimal
state path under an equivalent state-space model with a likelihood function that
shares the same general landscape as that of the objective function of the original
optimization problem. Specifically, for a high-dimensional optimization problem
with the objective function f(x), we construct an emulated state-space model
with a likelihood function that is proportional to a Boltzmann-like distribution
exp{—rf(x)}, where k > 0 is the inverted temperature.

Several existing heuristic approaches use the emulation idea. |Cai, Tsay
and Chen| (2009)) transform a regression variable selection problem with many
predictors into an optimization problem over the high-dimensional binary space
{0,1}?. The latter problem can be further converted to a most likely path
problem in a state-space model with binary-valued states indicating the variable
selection, even though the predictors have no chronological order in nature.
Kolm and Ritter| (2015 reformulate a portfolio optimization problem as a state-
space model by mapping the utility function to the log-likelihood function.
The utility function is then optimized by finding the most likely path in the
corresponding state-space model by applying the Viterbi algorithm (Viterbi,
1967) over Monte Carlo samples. Similarly, |Irie and West| (2016) relate the multi-
period portfolio optimization problem to a log-likelihood of a mixture of linear
Gaussian dynamic systems, and propose an algorithm based on the Kalman filter
(Kalman, 1960) and EM algorithm (Dempster, Laird and Rubin| 1977) to find
the most likely path. [Iglesias, Law and Stuart| (2013]) and Zhang, Song and Liang
(2021) reformulate inversion problems as state-space models by segmenting the
observations into a sequence, and then optimizing the hidden path using a Kalman
filter and an ensemble Kalman filter.

The aforementioned studies map high-dimensional optimizations to prob-
lems under state-space model settings. However, finding the most likely path
analytically and numerically remains challenging. For example, the approach in
Cai, Tsay and Chen (2009)) is difficult to generalize to continuous spaces. In
addition, the Viterbi algorithm used in Kolm and Ritter| (2015) requires the
dynamic system to be Markovian and nonsingular, and needs a large sample size,
in general, to achieve high accuracy. The combination of the Kalman filter and the
EM algorithm proposed in Irie and West| (2016)) works only when the underlying
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distribution can be well represented by the mixture of Gaussian distributions.

In this paper, we propose a new sequential Monte Carlo (SMC) simulated
annealing approach, called the “annealed SMC”, to find the most likely path
in a state-space model. The SMC algorithm is one of a class of Monte Carlo
methods that draws samples from state-space model systems in a sequential
fashion. With the sequential importance sampling and resampling (SISR) scheme,
an SMC is extremely powerful in terms of sampling from complex dynamic
systems, especially for state-space models (Gordon, Salmond and Smith, [1993;
Kitagawa), [1996; Kong, Liu and Wong}, (1994} |Liu and Chenl, [1995] [1998; Pitt and
Shephard), [1999; |Chen, Wang and Liu, [2000; Doucet, de Freitas and Gordon)
2001). Recall that the likelihood function of the emulated state-space model is
designed to be proportional to exp{—«f(x)}, where  is the inverted temperature.
To mimic the (physical) annealing procedure in a non-interactive, non-quantum
thermodynamic system (Kirkpatrick, Gelatt and Vecchi, |1983), we choose a
sequence of decreasing temperatures kg < K; < --- < Kg, which corresponds
to a sequence of emulated state-space models.

We start by drawing sample paths from the base emulated state-space model
at a high base temperature ky. Although samples from a low temperature (large
k) system are close to the optimal sample path, because the distribution is sharp
at a low temperature, drawing from such a distribution directly is usually difficult.
Using the annealed SMC, we can obtain samples of a low temperature system
based on samples obtained at a higher temperature. Eventually, all the SMC
sample paths converge to the most likely one. The sequence of temperatures
Ko < Ky < -+ < Kk provides a slow-changing path from the base emulated
state-space model at kg, which is easy to sample from, but not very useful for
optimization, to the target emulated state-space model at kg, which is difficult
to sample from but provides solutions to the optimization problem.

This study makes two main contributions to the literature. First, we
reformulate the problem as an emulated space-space model, and then we propose
an annealed SMC algorithm to find the solution. Two examples are provided, in
which the emulated state-space models are natural, simple, and illustrative. Two
additional examples are provided in the Supplementary Material to demonstrate
the flexibility of the proposed method in solving existing optimization problems,
with some new applications.

The rest of the paper is organized as follows. Section 2 briefly reviews
state-space models and introduces the principles of state-space emulation. Two
illustrative emulation examples are provided in Section 2.3. Section 3 introduces
the framework of the annealed SMC, designed to find the most likely path.
Simulation results corresponding to the two examples in Section 2.3 are presented
in Section 4. Section 5 concludes the paper.
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2. State-Space Model and State-Space Emulation
2.1. State-space model

State-space models describe the mechanism of sequential observations yr =
(y1,...,yr) using a sequence of latent variables xr = (xy,...,2zr). The latent
variables a1 are assumed to follow a discrete-time stochastic process governed by
the state equations

(@ | 1) = pe(@ | 1), (2.1)

for t = 2,...,T, and x; follows its marginal distribution p;(z;). When the
distribution of z; conditioned on x;_; does not depend on x;_,, such that
p(z; | ®i—1) = p(xy | x4-1), the system is Markovian. The observations yr
are generated independently, conditioned on the latent variables, using the
observational equations

P | ) = ge(ye | 1), (2.2)

for t =1,...,T. In inference problems, the formulae of the state equations p;(+)
and the observation equations g, (-) are usually known, except for a set of unknown
parameters of interest §. Here, we assume p,(-) and ¢;(-) are completely known,
and we infer the latent states 7. Estimating @+ from the observations yr under
the likelihood principle is known as the most likely path (MLP) problem in hidden
Markov models.

The state equations provide the prior information on x:

m(@r) o< pi(z1) Hpt(xt | 1), (2.3)

and the observation equations serve as the likelihood functions:

p(yr | r) Hgt Ye | 1) (2.4)

A maximum-a-posterior (MAP) estimator can be obtained by maximizing the
posterior function in ([2.5)):

T
m(@r | yr) < pr(z)gi(yr | @1) [ pe(ae | 1) ge(ye | 21)- (2.5)
t=2

When both p.(-) and g.(-) are Gaussian, the maximum of can be
obtained easily using a Kalman filter and smoother (Kalman, 1960). In general
cases, when the analytic solution to optimize is infeasible, the MAP
estimator can be obtained by drawing sample paths {(x§ ), . ,x§f>)}i:1 ,,,,, » from
the posterior distribution . We discuss estimating the most likely path using

Monte Carlo methods in Section 3.
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2.2. State-space emulation

We propose a state-space emulation approach for solving high-dimensional
optimization problems. The approach constructs a state-space model so that the
original optimization problem is equivalent to finding the most likely state path
under the state-space model.

Let f : XY — R be the objective function to be minimized and & : R —
[0, 4+00) be a monotone decreasing function. Then, minimizing f(z) is equivalent
to maximizing ¢(x) := &(f(z)), such that

argmin f(z) = argmax ¢(x).
zexd zeXxd

Furthermore, if there exists a state-space model with a posterior function
that is proportional to ¢(z) such that w(xr | yr) x o(xr) = &(f(xr)),
with artificially designed state equations {p;(-)}:=1, .7, observation equations
{9:(-)}¢t=1,. 7, and T = d, we call the state-space model an “emulated”
state-space model. The observations yr can either be observations from the
original optimization problem (e.g., the observed points in the smoothing
spline problem in Section 2.3.1), or can be designed artificially. Note that
it is always possible to rewrite any joint distribution function ¢(xr) in the
form of as p(zr) = G(wr,...,07) = ¢u(@1) [y de(@ | Toor), where
Gy | ioq) = fxT—t ¢(xr)drisr---dp/ fXTfurl ¢(xr)dre - --dp and ¢y (x1) =
Jyio1 #(x)das - - - dxp. However, a series of conditional distributions is difficult
to sample from and to evaluate.

However, in certain problems, including our examples shown later, it is
possible to reformulate the conditional distribution as ¢y(x; | ®;—1) = pi(z; |
i-1)9:(y: | x), in which it is easy to generate a sample from p;(x; | @;—1), and
it is easy to evaluate g¢,(y; | x;), for some designed y,. In general, objective
functions with local dependence between parameters can be easily emulated by
Markovian state-space models, as in our examples of smoothing splines, trend
filtering, and the optimal trading path. Objective functions with more complex
interactions between the parameters usually lead to non-Markovian emulated
state-space models, which need more careful designs. The lasso regression in the
Supplementary Material is one such case.

Minimizing the objective function is then equivalent to finding the most likely
path for the emulated state-space model. The emulated state and observation
equations provide guidance for further SMC implementation, even though they
are artificial.

A common choice for £(-) is the Boltzmann distribution function

&(s) =e ", (2.6)

where £ is a positive constant that relates to the temperature in statistical physics.
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In statistics, the Boltzmann function in links the least squares method to
the maximum likelihood approach with independent and identically distributed
(ii.d.) Gaussian noise. With this choice of &(-), the system has a physical
interpretation: The objective function f(-) is regarded as the possible energy
levels in a non-quantum thermodynamic system. Assuming no interactions, the
number of particles at the energy f(z) follows the Boltzmann distribution under
thermodynamic equilibrium. The integrability of ¢(x) ensures the existence of
the canonical partition function, such that this physical canonical system is valid.
The minimization of f(-) is now equivalent to finding the base energy level, which
inspires the use of simulated annealing of this thermodynamic system; see Section
3 for further discussion.

2.3. Examples

2.3.1. Cubic smoothing spline

Consider a nonparametric regression model y, = m(x;) + ¢ with equally
spaced x;. Without loss of generality, let x; = t and treat them as time. The cubic
smoothing spline method (Green and Silverman) [1993)) estimates a continuous
function m(t) by minimizing

Llyr) = 3o~ m(@) + A [ {m(0))"de. 2.7

The first term in is the total squared tracking errors at the observation
times, and the second term is the penalty term on the smoothness of the latent
function m(-), where A controls the regularization strength. Given values of
m(1),...,m(T), the minimizer of the second term is a natural cubic spline
that interpolates m(1),...,m(T) (see |Green and Silverman, |1993)). Hence, the
solution that minimizes is a natural cubic spline, which is second-order
continuously differentiable and is a cubic polynomial in all intervals [¢,¢ + 1], for
t=1,...,7—1, and is linear outside [1,7].

Define the derivatives of m(t) at each observation at time ¢ as

m//l(s)

a; =m(t), b, =m'(t), ¢ = d; = lim

2 ’ s—t_
The natural cubic spline solution to (2.7) is equivalent to an emulated state-space
model on x; = (ay, by, ¢;) with a vector autoregressive state equation

a 1 1 +/3/3 @y 1/3
b|=10 1 V3-1 by |+ 1 |, (2.8)
0 0 —(2—V3)| ey 1

Ct

with 7, ~ N(0,0?) and o = 3(2 —v/3)/(4\k). The corresponding observation
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equation is y; = a; + €, with ¢ ~ N(0,07), o7 = 1/(2x), and the initial
values a; ~ N (y;,0 ) b1 ~ 1, and ¢; = 0. The derivation is postponed to the

Supplementary Materlal.

2.3.2. Optimal trading path

In asset portfolio management, the optimal trading path problem is a class
of optimization problems that typically maximize certain utility functions of the
trading path (Markowitz, 1959). [Kolm and Ritter (2015) and [Irie and West
(2016) proposed reformulating such problems as an emulated state-space model.
Specifically, let &r = (xg,...,z7) be a trading path in which x; represents the
position held at time ¢. Kolm and Ritter| (2015) propose maximizing the following
utility function:

T T
Z Ct — Ty— 1 Z ht(yt - $t)a (2-9)
t=1 t=0

where (yo, ..., yr) is a predetermined optimal trading path in an ideal world with-
out trading costs, typically obtained by maximizing the risk-adjusted expected
return under the Markowitz mean-variance theory (Markowitz, 1959). Kolm and
Ritter| (2015) provide a construction of (yo, ..., yr) based on the term structure of
the underlying asset’s alpha (the excess expected return relative to the market).
Let ¢;(-) represent the transaction cost, which is often assumed to be a quadratic
function of the absolute position change |x; — x;_1|. Without loss of generality,
we parametrize it as

1
|z —xq|) = 992 (‘xt — $t—1‘2 + 20|z, — x| + Oé2) )
where « is a nonnegative constant related to the volatility and liquidity of the
asset (Kyle and Obizhaeval, 2011). Let h.(-) be the utility loss due to the departure
of the realized path from the ideal path. We use the squared loss h.(y; — x;) =
(y+ — x¢)?/(207). Then, the objective function is

e (zT) |xt Li— 1| + Oé ajt)2
x Hexp{ = Hexp s

Taking the position constraint xz, = xp into consideration, as discussed in [Cali,
Chen and Lin| (2018), an emulated state-space model can therefore be constructed
as

k(| — 21| + @)’ } , (2.10)

2
202

9e(ye | 1) o< exp {—M} - (2.11)

2
20y

Pt(l‘t | xt—l) X €exp {_
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With the state equation (2.10) and the observation equation (2.11)), the state-
space model has a likelihood function proportional to exp{—ru(zr)}.

3. Annealed SMC

3.1. SMC

The SMC method is a class of sampling methods designed for state-space
models. It uses the sequential nature of state-space models, and draws sam-
ples incrementally using sequential importance sampling and resampling (SISR)
schemes. A typical SMC approach is demonstrated in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (SMC) Algorithm.
()
1

e Draw z7”’ from p;(z1) and set weight w(()i) =1lfori=1,...,n.

e For timet=2,--- 71"

— Propagation: For i =1,--- n,
% Draw a:gi) from q;(z; | scgl_)l) and set :cgi) = ( Ei_)l,x,(f)).
* Update weights by setting

) ‘ (@) ) .0 (@)
w,gl) - wt(z_)l ) pe(zy” | p2y)ge(ye | 2y )

— Resampling (optional):

Assign a priority score ﬂt(i) to each sample xéll

*

*

Draw samples {J1, ..., J,} from the set {1,...,n} with replacement, with
probabilities proportional to {5151)}1-:1 n-

Set {(z(”, wi) izt n = {(@] 0; D) icr e

*

*

e Return the weighted sample set {(:cg,f), wgf))},'=17,,_,n.

The function ¢ (-) in the propagation step in Algorithm 1 is the proposal
distribution. As discussed in |Lin, Chen and Liu (2013), the “perfect” choice
for the proposal is the conditional distribution with the full information set,
such that q.(z; | ®;—1) = p(z; | ®—1,yr). However, in most cases, it is not
possible to evaluate or sample from this conditional probability at time ¢. The
priority score fB; is the weight used in the resampling step, and quantifies the
sampler’s preference over different sample paths. The most common choice of
B is ﬂt(i) x wt(i). Variations of the SMC algorithm choose different proposal
distributions and different priority scores. The Bayesian particle filter (Gordon,
Salmond and Smith} [1993) sets qi(x; | ©1—1) = pe(xe | @4—1). It works well
when the observations yr are relatively noisy compared with the state equation
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part. With accurate observations, the independent particle filter (Lin et al.,
2005) uses q;(z; | ;1) < g4(y: | x¢). As an important (with a certain additional
cost) compromise over the Bayesian particle filter and the independent particle
filter, [Kong, Liu and Wong] (1994) and |Liu and Chen| (1998)) suggest adopting
qi(zy | @) x pe(xy | ®i-1)g:(ys | x) to reduce the variance. Other SMC
methods focus on finding more appropriate priority scores in resampling, with
the help of future information. The auxiliary particle filter (Pitt and Shephard,
1999) conducts resampling with the priority score 8" = w\”p(yes1 | 2:). The
delayed sampling method (Chen, Wang and Liu, 2000; |Lin, Chen and Liu,, 2013)
looks ahead A steps, and uses Bf@ = fwt(i)p(ytﬂ, cosYran | o).

In emulations for the optimizations, we are more interested in generating
samples in the high probability density region of mw(xr). Hence our prob-
lem is essentially a smoothing problem. Briers, Doucet and Maskell (2010)
proposed using a generalization of the two-filter smoothing formula to sample
approximately from the joint distribution 7(xr). Additional local Markov Chain
Monte Carlo (MCMC) moves can be adopted to mitigate degeneracy (Gilks and
Berzuini, 2001)). Many other SMC smoothing algorithm implementations reduce
the potential degeneracy in samples; see, for example, |Godsill, Doucet and West
(2004); Del Moral, Doucet and Singh| (2010)); Briers, Doucet and Maskell (2010));
Guarniero, Johansen and Lee| (2017)).

3.2. Finding the most likely path

With emulation, finding the optimum of f(x) is now equivalent to finding
the mode, or the most likely state path (MLP), of w(xr),

x; = argmax m(xr | yr), (3.1)
:IZTEXT

with 7(@7 | yr) defined in and X being the common support for all latent
variables. By construction, the mode, which is the optimum of f(x), does not
depend on k used in .

In this article, we focus on finding the MLP from Monte Carlo samples. A set
of weighted Monte Carlo samples from the distribution 7(2r) can be generated
using the SMC and its various implementation schemes. Let {(z{”, w{)}ic1. .
be the samples drawn from the emulated state-space model using the SMC
algorithm in Algorithm 1. A natural and easy way is to use the empirical MAP
path, such that

&7 = argmax  w(xr | yr). (3.2)

che{:c(T“}i=1,...,n
Although the empirical MAP involves the least computation given the Monte
Carlo samples, it usually requires a very large sample size to achieve high
accuracy, especially when the dimension T is large.



76 CAI AND CHEN

Note that the MLP is the same under different k. However, the distribution
7(@x7 | yr, k) is more flat for small x (high temperature), and is more concentrated
around the MLP for large x. Hence, the empirical MAP path tends to be more
accurate if the Monte Carlo samples are generated from the target distribution
with large k. When & is sufficiently large, the average sample path is also a
good estimate of the MAP. However, it is much more difficult to generate Monte
Carlo samples with large k, because of the tendency to be trapped in a local
optimum. Simulated annealing gradually modifies the easily generated samples
at a higher temperature to obtain samples from a lower temperature system with
more accurate estimates.

3.3. Annealed SMC

We propose a simulated annealing algorithm for the SMC on state-space
models. The idea comes from the thermodynamics analogue discussed in the
previous section. When the function £(-) is chosen to be Boltzmann-like, as in
, the Monte Carlo samples from the emulated state-space model correspond
to a random sample set from the non-interacting particles in a thermodynamic
equilibrium system, as discussed in Section 2.2.

If the temperature cools to zero sufficiently slowly that the system is
approximately in thermodynamic equilibrium for any temperature in between, all
particles will condense to the base energy level. The idea of simulated annealing
as an analogy of the physical system was proposed and discussed in [Kirkpatrick,
Gelatt and Vecchi| (1983]).

To mimic the thermodynamic procedure, we propose the following system
to simulate the annealing procedure for the SMC samples. Let 0 < ko < k1 <

- < kg be an increasing sequence of inverse temperatures. Suppose at kg, a
base emulated state-space model is constructed as

T
(@ ko) o e @) o po () H (¢ | @i—1)g:(ye | ). (3.3)

At a higher inverse temperature kg, an emulated state-space model can be induced

from (3.3]) such that

T
m(Tr; Ky) X e~ rnf(@T) X po(xo; ki, H (¢ | ®p—1; k1) G (Ye | T3 Bie)s (3.4)

ki /Ko

where pt(l"t ‘ Ti—1; Hk) & {pt(xt ’ xt—l)}mk/ﬂo and gt(yt ’ T, Hk) & {gt(yt | xt)}
are the corresponding state equations and observation equations, respectively at
ki. The starting inverse temperature kg is usually chosen to be relatively small,
such that the function 7(x7; ko) o e~"7(@7) is relatively flat and is easy to sample
from using the SMC. We start with xq, and draw {(a:(()])T, w((f%)}j:l,m’m from the
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base emulated state-space model w(xr;rkg). For &k = 1,..., K, new samples
(4) ()

{(z) 7, wilr)}j=1,..m are drawn with respect to the distribution m(xr;ks),
using the samples {(:1:,(3)1T,w,(f)lT)}j:L__,7m obtained at kj_;. The procedure
is depicted in Algorithm 2. The annealed SMC uses the following proposal

distribution at temperature k;:

Qk,t(a;t | @13 k) ﬁk,t(xt | @13 K1), (3.5)
where the conditional distribution py.(z; | @i—1;kk—1) is an estimate of
(x| :Bt 1,I<Jk 1), and can be obtained from the Monte Carlo samples

{(mg)l T wk 17)}i=1,...m under k;_;. We discuss how to obtain such an estimate
later. Because k increases slowly, nr(xy | @, 1; k1) and 7p(z; | ®4_1; ki) are
reasonably close. With a sufficiently large terminating Ky, samples from the
target distribution 7(xr;kx) are highly concentrated around the true optimal
path %, and hence are useful for inferring the most likely path.

Algorithm 2 Annealed Sequential Monte Carlo Algorithm.

e Draw {(wéﬂpw(()j)T)}j:l ,,,,, m from w(xr; ko) with SMC in Algorithm 1, using a set
of proposal distributions q1,1(zy | @113 Ko)-

e For k = 1,...,K, draw {(:c,(ﬂ_,«,wkT)}J 1,..m from m(xr;k;) with SMC in

Algorithm 1 using the proposal distribution
Qo (e | @15 K1) o< Pre(@e | ),
where the right hand side is an estimate of wr (2t | ©r—1; Kp—1).

e Estimate the most likely path from {(:cK T wK T)}j 1,..m-

In summary, the annealed SMC provides an iterative procedure for the
difficult sampling problem under xx by using samples obtained at a higher
temperature. On the one hand, the annealed SMC provides a relatively “flat”
and easy-to-sample starting distribution m(xr; k), and designs a slow-changing
path connecting 7(xr; ko) to the desired “sharp” distribution 7(@x7; kg ). On the
other hand, for each iteration k = 1, ..., K, the annealed SMC adopts an optimal
proposal distribution p(z; | ©;_1,yr; kr_1) based on the full information set yr,
and is usually difficult to evaluate in conventional SMC implementations. In
the annealed SMC, the proposal distribution is estimated by using sample paths
from the previous iteration. The details of estimating the proposal distribution
are discussed in the Supplementary Material.

Our annealing framework falls into the general framework of simulated
annealing. The design of temperature sequences {kg}r—o . x is known as the
“cooling schedule”. Kirkpatrick, Gelatt and Vecchi| (1983) uses an exponential
schedule such that xj, = ¥k, for some positive number o. A more conservative
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schedule such that s o log(1 + k) is suggested by Hajek| (1988) and |Aarts and
Korst| (1989)) to ensure convergence to a global minimum. {Ingber| (1989) proposed
a fast adaptive cooling schedule that allows the temperature to increase (or s to
decrease) in order to regain the broadness of the samples at a certain point. The
specific choice of cooling schedule is beyond the scope of this study. By default,
we choose the most aggressive exponential schedule, with a picked value of a for
faster convergence, in the example section, and the results are promising.

The conventional simulated annealing algorithm (Kirkpatrick, Gelatt and
Vecchil, |1983)) is a variation of the MCMC method, which adapts the Metropolis—
Hastings algorithm (Metropolis et al., [1953; |[Hastings, [1970) with an extra
temperature control. The convergence of the conventional simulated annealing
algorithm is given by |Granville, Krivanek and Rasson (1994). In contrast, the
annealed SMC does not require a mixing condition, as is usually the case in
MCMC algorithms. At each iteration at kj, the samples are always properly
weighted with respect to the target distribution 7(xr; ki), because of the weight
adjustments. The convergence of the SMC is discussed in |Crisan and Doucet
(2000).

The terminology “annealed SMC” is also used by |[Ulker, Gunsel and Cemgil
(2011) and Wang, Wang and Bouchard-Coté (2019), although differently to how
we use it in our method. The method of Ulker, Gunsel and Cemgil (2011)
and Wang, Wang and Bouchard-Coté (2019) (henceforth, “SMC annealing”)
constructs an annealing sequence of intermediate target distributions m(x),
indexed by ¢t = 0,...,T, with my(x) as the beginning distribution and nr(x) as
the terminating distribution. The goal the method is to generate a set of samples
that follow the terminating distribution by starting from samples that follow a
relatively flat beginning distribution. SMC techniques are used when translating
samples from the current distribution m;(x) to the next m,;(x) by adopting an
MCMC move as the proposal distribution. Our method also constructs a sequence
of annealed target distributions 7 (xr | k%), with the optimization using a Monte
Carlo of a (near) degenerated terminating distribution. In our method, within
each temperature (ky), we use the SMC to sample the high-dimensional 7 under
a dynamic system setup. The sequence of SMC proposal distributions within each
temperature uses the information contained in the Monte Carlo samples from the
previous temperature.

More specifically, there are three major differences between the proposed
method and the SMC annealing method. First, the goal of SMC annealing is to
draw samples from a target distribution (usually the posterior) that is difficult
to sample from directly. The goal of our algorithm is to find the optimum such
that the terminating distribution is proportional to the original one, raised to
an arbitrarily high power. Second, our method solves the problem when x itself
is high dimensional with a dynamic structure, for which the SMC is used to
sequentially sample the components of @, whereas SMC annealing deals with
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relatively lower dimensional &, without needing SMC sampling. Third, SMC
annealing uses the SMC on the sequence of annealing distributions, whereas
our method performs as SMC within each annealing temperature, and uses the
samples from the previous iteration to construct the internal SMC propagation
proposal step in the subsequent temperature.

3.4. Path refinement using the Viterbi algorithm

A more accurate estimate of the mode can be obtained by using the Viterbi
algorithm (Viterbi, 1967)) on the discrete space consisting of the SMC samples.
The Viterbi algorithm is a dynamic programming algorithm originally used to
solve the MLP problem in hidden Markov models, where the hidden states are
finite. Let A, = {aij)}jzlwym be the grid points for x;, and Q = A; x --- X Ap be
the Cartesian product of the grid point sets. In state-space models, the Viterbi
algorithm searches for the maximum over all possible combinations of the grid
points in . Specifically, the MLP obtained by the Viterbi algorithm is

~ (viterbi)

Tr = argmax (7 | yr). (3.6)
xS

The Viterbi algorithm for state-space models based on the grid points {agj) Fiztms
. {a¥} =1 s depicted in Algorithm 3.

Algorithm 3 Viterbi Algorithm for Markovian State-Space Models.

o Let A; = {agj)}jzlw,m be a set of grid points for z; for t =1,...,T.
e At time 1, initialize ééj) =0 and i(lj) = agj) forj=1,...,m.

e At each timet=2,...,T, for j=1,...,m, set

4 A Nk .
6= max 40 | 209w | ), (3.7)
ke{l,....m}
and set :&gi) = (aﬁili;l), aij)), where j7 is the optimal point of 1)
e Return aﬁg,f*), where j* = argmax;c i ) 452').

Although the original Viterbi algorithm was designed for discrete state
spaces, we adopt it for continuous state spaces by discretizing the state space
into a set of selected finite grid points at each time point. The performance
depends on the “quality” of the selected grid points (e.g., how densely close to
the underlying optimal path) and on the number of grid points used. Here, we
use the generated Monte Carlo samples as the discretizing grid points. Because
these samples follow the target distribution at a low temperature, they should
concentrate in the important regions.
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.....

cee X {ng)}izlv__ﬂn is the joint set of all SMC sample points. Running the Viterbi
algorithm through these samples improves the result from the Monte Carlo
samples, but does not obtain the underlying optimal path in the continuous space.
Therefore, we refer to this step as “refinement” rather than “optimization”.

One can also add and remove grids points to expand the coverage, with
more detail around the more important state paths. For instance, in the lasso
regression example in the Supplement Material, a Viterbi refinement helps to
shrink the estimate of the zero coefficients to exactly zero.

The Viterbi algorithm explores all combinations of sample points, and results
in a better mode estimation than that of the empirical MAP in . However,
it has limitations in terms of implementation with state-space models. One
limitation is that the Viterbi algorithm works only on Markovian state-space
models. In addition, it works only with a nonsingular state evolution in which
the degrees of freedom is the same as the state variable dimension. Otherwise,
the state paths cannot be re-assembled by the Viterbi algorithm. For example, in
the cubic spline problem, the state evolution is singular. Although one can reduce
the dimension of the state variable to make the evolution nonsingular, the state
evolution then becomes non-Markovian. Another limitation is the requirement
of the Monte Carlo sample size. The Monte Carlo samples induced by €2 provide
a discretization of the support A for each time t. The accuracy of the Viterbi
algorithm depends strongly on the discretization quality, especially when X is
continuous. In general, the denser the Monte Carlo samples are around the true
MLP, the more accurate the Viterbi algorithm solution is. As a result, it often
requires a large Monte Carlo sample size to generate better discretization and to
achieve high accuracy. To reduce the path error ||Z{%™*) — 2 .|| by half, the
Monte Carlo sample size m needs to be doubled, because the discretization size
is reduced by half, on average, when the sample size doubles. On the other hand,
the computational cost increases quadratically with the sample size m. One way
to improve this is to apply the Viterbi algorithm iteratively by shrinking to the
high value region of the previous iteration, and regenerating grid points there.
However, similar to an iterative grid search, the iterative Viterbi algorithm may
yield a suboptimal solution.

4. Simulation Results

In this section, we provide simulated results for the annealed SMC in terms
of finding the most likely path for the two emulated state-space models from
Section 2.3.

Note that the smoothing spline problem has a closed-form solution. Even in
the emulated state-space model setting, the Kalman filter provides the exact
solution. It is used for illustration purposes only. On the other hand, the
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Figure 1. Sample paths at kg = 4.

optimal trading path problem is not trivial, and is a real application to which
the proposed method is ideally suited, especially when nonlinear solvers usually
give less accurate solutions.

Two additional examples are provided in the Supplementary Material. We
aim to demonstrate the flexibility of the proposed method by solving existing
optimization problems with some new applications, though our approach may not
yield better performance than that of specially designed optimization algorithms
for general problems.

4.1. Cubic smoothing spline

In this simulation study, we consider the cubic smoothing spline problem in
Section 2.3.1. The observations are generated by y; = sin{9(¢ — 1)/100} + ¢;, for
t=1,...,50, with ¢; ~ N(0,1/16), and we fix A = 10 in the objective function
&7

Because the dynamic system is linear and Gaussian, the most likely path
is obtained by the Kalman smoother (Kalman| [1960). We use this as the
benchmark. We start from the initial inverse temperature k = kg = 4. Figure 1
demonstrates m = 1,000 samples (in gray) drawn from the target distribution
m(x7 | yr; ko) o [m(zr | yr)]™ by the SMC algorithm described in Algorithm 1,
along with the observations yr (the solid line) and the true most likely path (the
dashed line).

The proposal distribution ¢;(-) used at kg is chosen to be proportional to
pe(zy | Te—1)g:(ye | x¢). At each time ¢, 7, is drawn from the proposal distribution
q:(ne | ag—1,b4-1,¢—1,y:), which is Gaussian. Resampling is conducted when the
effective sample size (ESS) defined in is less than 0.3m:

(4.1)
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Figure 2. Sample paths at different «’s.

To find the most likely path stochastically and numerically, we apply the
annealed SMC approach in Algorithm 2 with a predetermined sequence of
inverted temperatures s, = 1.5%kg, for k = 1,...,16. The proposal distribution
for the annealed SMC is estimated using the parametric approach (see the
Supplementary Material).  Specifically, because the innovation in the state
equation is of one dimension, at k;, we need only to generate proposal samples
for ¢;. To do so, we first fit {(Cg21,t’al(€j21,t—1’bfﬁu—pCl(cjzl,t—l)}jzl,.wm with a
multivariate Gaussian distribution, and then sample from the conditional distri-
bution. To prevent degeneracy, the resampling step is only conducted at the end
of each annealed SMC iteration, and after each iteration, one post-MCMC move
is conducted to regenerate the sample states. The post-MCMC move uses blocked
Gibbs sampling (Jensen, Kjeerulff and Kong, |1995), owing to the special structure
of the state dynamic. At each iteration of the Gibbs sampling, (z;, 11, Z42) are
updated together.

Figure 2 shows the sample paths (after the post-MCMC step) at the end
of different annealed SMC iterations. When the temperature shrinks to zero as
k increases, the sample paths move to a small neighborhood region around the

true most likely path. Figure 3 shows the value of the objective function at the
weighted average path of the samples for different numbers of iterations. The
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Figure 3. Value of the objective function against the number of iterations.

true optimal value (the objective function value at the optimal path) obtained by
the Kalman smoother is plotted as the dashed horizontal line. As the number of
iterations increases, the objective function value at the averaged path decreases
stochastically, and converges at roughly the seventh iteration.

To compare the computational efficiency, we record the computing time
needed for different approaches, as follows. The Kalman smoother takes 2.2 ms,
Scipy minimizer takes 129.6 ms and the annealed SMC takes 232.9 ms. The Scipy
approach uses the nonlinear optimizer provided by the python package Scipy
(Jones, Oliphant and Peterson, |2001)), which implements the Broyden—Fletcher—
Goldfarb-Shanno (BFGS) algorithm by default. The annealed SMC records the
time until convergence (the time when the value of the objective function is not
improved by further iteration). The Kalman smoother is the fastest one to find
the most likely path for linear Gaussian models, owing to its deterministic nature.
The annealed SMC is slower than the nonlinear solver program provided by Scipy,
but achieves similar accuracy. Note that this is a simple convex optimization
problem in which a straightforward optimization algorithm such as the Scipy
performs well. Our estimation approach is more flexible, and this example serves
as an illustration of how the algorithm works.

4.2. Optimal trading path

In this simulation, we consider the optimal trading path problem in Sec-
tion 2.3.2. Following |Cai, Chen and Lin| (2018)), we set T = 20, o2 = 0.25,
o7 =1, and a = 0.5. The ideal trading path is given by

t+1 t+1
yt:25exp<—;> —40exp<—z>.
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Figure 4. Sample paths at k.

We start from the initial temperature x = ko = 1.0. The sample paths at
ko are drawn using the constrained SMC (Cai, Chen and Lin| 2018]), where the
resampling step is performed with the priority scores 5;(x:) < p(Yss1,-.-, Y7 |
x;). The priority scores are estimated from a set of backward pilot samples
(Cai, Chen and Lin| 2018)). In this example, we use m* = 300 backward pilot
samples. The resulting m = 1000 (forward) sample paths are shown in Figure 4.
The observations yi, ..., yr, which represent the ideal optimal trading strategy

without trading costs, are plotted as the solid line. An estimated path (dashed
line) is provided by the Scipy nonlinear optimization algorithm.

We use the following sequence of inverted temperatures for annealing: x;, =
2%k, for k =1,...,20. The proposal distribution in the annealed SMC is sampled
using the parametric approach by approximating the joint distribution of zj_q,
and 1,1 with a bivariate normal distribution. The annealed m = 1000
sample paths are resampled at the end of each iteration, and no post-MCMC
step is conducted. Samples at several different inverted temperatures are shown
in Figure 5. We use the sample average as our estimator for the most likely
path. The value of the objective function at the sample average path decreases
stochastically, as shown in Figure 6, eventually converging to around the 11th
iteration. The optimal objective function value achieved by the annealed SMC
is 89.459, whereas that obtained by the Scipy nonlinear optimizer is 89.462. The
values of the objective function at the sample paths at the 20th iteration have
an average of 89.459 and a standard deviation of 1.09 x 1075. The annealed
SMC gains some improvement in accuracy at the cost of extra computation. The
Scipy nonlinear optimizer takes 78 ms, and the annealed SMC takes 1.820 s for
the initial emulated model (including the time for backward sampling) and costs
around 2 ms for each subsequent iteration. Sampling from the base emulated
model costs much more than in subsequent iterations for two reasons. First,
it requires a large sample size for the base model, because of high degeneracy.
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Figure 6. Value of the objective function against the number of iterations.

Second, the end point constraint is imposed and an additional backward pilot
run is needed to reduce degeneracy.
5. Conclusion

In this article, we have proposed a general framework for state-space model
emulation in high-dimensional optimization problems. The main idea of emula-
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tion is to change the goal from optimization to sampling. We have demonstrated
that by constructing a proper state-space model, many high-dimensional opti-
mization problems can be reformulated in terms of finding the optimal (most
likely) path under the state-space model. In order to reduce the accuracy loss
due to the nature of sampling, we propose the annealing steps with an extremely
sharp terminating distribution, where the samples, though random, are highly
concentrated around the optimum (the most likely path). We demonstrate the
procedure of state-space model emulation using two conventional problems in
the main content and in two additional problems given in the Supplementary
Material and show how they can be solved using the proposed annealed SMC
approach.

The proposed annealed SMC approach shares some properties with tradi-
tional simulated annealing methods. Both can optimize a wide range of objective
functions, including nonconvex functions and multi-modal functions, and both
often require a heavier computation cost than the simpler standard optimization
algorithms, such as the gradient descent algorithms. However, the annealed SMC
approach for state-space models differs from the traditional simulated annealing
methods with an MCMC for stochastic optimization in the following ways. First,
emulating an optimization problem as a state-space model is advantageous when
the problem is high dimensional, and when the system is inherently dynamic
(such as the trading path problem or the ¢; trend filtering problem) or when the
parameters to be estimated inherently play similar roles in the problem (such as
the parameters in the regression problem). Second, the SMC as an alternative to
the MCMC has certain advantages in many fixed-dimensional problems, such as
those in which the “dependence” between the parameters in the emulated target
distribution is local and (locally) very strong. In such problems, the MCMC
encounters slow mixing difficulties, whereas the SMC naturally takes advantage
of such properties. Third, given any temperature, the SMC samples target the
equilibrium distribution, whereas the MCMC samples often move toward the
target distribution gradually. Hence, the annealed SMC may tolerate a faster
cooling schedule. Fourth, the inherited parallel structure of the SMC allows for
faster computation, and enables better adaption to multi-modal problems.

The state-space model emulation and the annealed SMC provide an alter-
native way to solve high-dimensional optimization problems. Of course, the
approach may not be suitable for all problems, owing to its high computational
cost and its requirement of certain structures. Nevertheless, the proposed
approach is a useful high-dimensional optimization method for a wide range of
complex problems that more traditional methods struggle to solve. Although the
examples presented here do not demonstrate a significant improvement of the
state-space emulation approach over the traditional one, they effectively show
how to implement, and how to use it for other problems.
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Supplementary Material

The online Supplementary Material contains technical details related to the
annealed SMC algorithm, and two additional emulation examples with simulation
results.
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