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S1 Notation

Throughout this article, ⊗ denotes the Kronecker product. For any matrix

A, A⊗2 = AAT . ∥f∥L2 = [
∫
f 2(u) du]1/2 is the L2 norm of any function

such that
∫
f 2(u) du < ∞. For any vector v = (v1, . . . , vs)

T ∈ Rs, let

∥v∥∞ = max1≤l≤s |vl| and let ∥v∥2 be the Euclidean norm. For any sym-

metric matrix As×s, denote its Lr norm by ∥A∥r = maxv∈Rs,v ̸=0 ∥Av∥r∥v∥−1
r .
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For any matrix A = (Aij)
s,t
i=1,j=1, denote ∥A∥∞ = max1≤i≤s

∑t
j=1 |Aij|.

Given positive numbers an and bn, an ≪ bn means limn→∞ an/bn = 0,

an ≲ bn means an/bn is bounded, and an ≍ bn means limn→∞ an/bn = c,

where c is some nonzero constant. d−→ indicates convergence in distribution.

Denote by C(r)[0, 1] = {ϕ : ϕ(r) ∈ C[0, 1]} the space of rth-order smooth

functions. Let C0,1([a, b], c) be the space of Lipschitz-continuous functions

for any fixed constant c; that is, C0,1([a, b], c) = {ϕ : |ϕ(x1) − ϕ(x2)| ≤

c|x1 − x2| ∀x1, x2 ∈ [a, b]}.

S2 Algorithm Implementation

By de Boor (2001), the first-derivative function ġl(·) can be approximated

by the spline basis function one order lower than that of gl(·). That is,

ˆ̇gl(w, δ̂) =
∑Jn,1

m=1 Ḃm,1(w)λ̂m,l(δ̂) = Bq1−1
1 (w)TEλ̂(δ̂), where Bq1−1

1 (w) =

{Bq1−1
m,1 (w), 2 ≤ m ≤ Jn,1}T is the (q1 − 1)th-order B-spline basis function

and

E = (q1−1)
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Therefore, the gradient of the objective function (2.2) is written as

∂L(δ)

∂δ
= −

n∑
i=1

[
Yi −

d∑
l=1

ĝl(Φ
T
i δ)Xil

][
d∑

l=1

ˆ̇gl(Φ
T
i δ)XilΦi +

∂λ̂(δ)T

∂δ
Di(W

0
i )

]
,

where Di(W
0
i ) = (Di,ml(W

0
i ), 1 ≤ m ≤ Jn,1, 1 ≤ l ≤ d)T with W 0

i = ΦT
i δ.

In fact, the above gradient function can be approximated by

∂L(δ)

∂δ
≈ −

n∑
i=1

[
Yi −

d∑
l=1

Jn,1∑
m=1

Bm,1(Φ
T
i δ)Xilλ̂m,l

][
d∑

l=1

ˆ̇gl(Φ
T
i δ)XilΦ̂i

]
.

This asymptotic equivalence is shown in lemma 4. Φ̂i is defined as Φ̂i =

Φi − Pn(Φi), with Pn(Φi) = {Pn(Φi,sk), 1 ≤ k ≤ p, 1 ≤ s ≤ Jn,2}T and

Pn(Φi,sk) =
∑d

l=1 f̂
0
l,sk(Φ

T
i δ̂)Xil. f̂ 0

l,sk(·) can be obtained in the same way as

ĝl(·), but with Φi,sk replacing Yi.

S3 The Wild Bootstrap of the Hypothesis Testing

Step 1: Perform the proposed three-step approach to estimate β(u) under

the model (1.2) and calculate the residuals ε̂i = Yi−
∑d

l=1 ĝl(Z
T β̂(Ui))

Xil. Denote the centered residuals by ε̂centi .

Step 2: Under H0, obtain the estimator β̂ by applying the profile least

squares method from Ma and Song (2015). Then compute the ob-

served test statistic T by (4.2).

Step 3: Generate the wild bootstrap samples {Y ∗
i ,Xi}, with Y ∗

i =
∑d

l=1

ĝl(Z
T β̂)Xil + ε∗i , where ε∗i = ε̂centi ςi, and {ςi} follows an i.i.d. standard
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normal distribution. Then compute the test statistic T ∗ based on

the wild bootstrap samples {Y ∗
i ,Xi}, that is, T ∗ = n

Jn,2

∫ 1

0
∥β̂∗(u) −

β̂∗∥2 du, where β̂∗(u) and β̂∗ are the estimates with the wild bootstrap

samples.

Step 4: Repeat Step 3 B times to obtain {T ∗
b , 1 ≤ b ≤ B}. The p-value of

the test is defined as B−1
∑B

b=1 I(T ∗
b > T ). Reject the null hypothesis

H0 at level α if the p-value is smaller than a given significant level α.

S4 Proofs

S4.1 Proof of Proposition 1.

Proof. Without loss of generality, let l = 1. Assume the model is not

identifiable. Then there exists {g(·), βk(·)} ̸= {h(·), αk(·)} such that

g

(
p∑

k=1

Zikβk(u)

)
= h

(
p∑

k=1

Zikαk(u)

)
.

Under the condition (C2), we have βk(u) =
∑Jn,2

s=1 Bs,2(u)δsk and αk(u) =∑Jn,2

s=1 Bs,2(u)γsk, with spline coefficients δk = {δsk} and αk = {γsk}. Thus,

g
(∑p

k=1Φ
T
ikδk

)
= h

(∑p
k=1Φ

T
ikαk

)
. Suppose that δ11 ̸= 0 and γ11 ̸= 0.

Then

∂g/∂Φi,sk

∂g/∂Φi,11

=
δsk
δ11

=
γsk
γ11

=
∂h/∂Φi,sk

∂h/∂Φi,11

.
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If ∥β(u)∥L2 = 1, then it holds that
∑p

k=1

∫ 1

0
δT
k B2(u)B2(u)

Tδk du = 1.

By the properties of B-spline basis functions, ∥β(u)∥2L2 ≍ J−1
n,2∥δ∥2 =

J−1
n,2

∑p
k=1 ∥δk∥2 = J−1

n,2

∑p
k=1

∑Jn,2

s=1 δ
2
sk. Let δ′sk = J

1/2
n,2 δsk and γ′sk = J

1/2
n,2 γsk.

Then
∑p

k=1

∑Jn,2

s=1 (δ
′
sk)

2 = O(1), and therefore δ′11 = ±γ′11; furthermore, we

have δsk = ±γsk for any s, k. This yields βk(u) = αk(u) or βk(u) = −αk(u)

for all u ∈ [0, 1] and each k = 1, . . . , p. Assume that β1(u) is monotone

nondecreasing. Then βk(u) = αk(u), and therefore g(·) = h(·), which con-

tradicts the assumption {g(·), βk(·)} ̸= {h(·), αk(·)}. Hence, the model (1.2)

is indeed identifiable.

S4.2 Proof of Proposition 2.

Lemma 1 (Ma and Yang 2011). Let ξ(n)1 , . . . , ξ
(n)
n have a joint normal

distribution with Eξ
(n)
i ≡ 0, E(ξ(n)i )2 ≡ 1, 1 ≤ i ≤ n, and let there exist

constants C > 0, a > 1, r ∈ (0, 1) such that the correlations rij = rnij =

Eξ
(n)
i ξ

(n)
j , 1 ≤ i ̸= j ≤ n satisfy |rij| ≤ min(r, Ca−|i−j|) for 1 ≤ i ̸= j ≤ n.

Then the absolute maximum Mn,ξ = max{|ξ(n)1 |, . . . , |ξ(n)n |} satisfies, for

any τ ∈ R, P (Mn,ξ ≤ τ/an + bn) → exp(−2e−τ ), as n → ∞, where

an = (2 log n)1/2 and bn = an − (1/2)a−1
n (log log n+ log 4π).

Lemma 2. Let V(δ) = E[Di(W
0
i )Di(W

0
i )

T ] and V̂(δ) = n−1D(W 0)TD(W 0).

Then, under Conditions (C1) and (C4), for any vector α = {(αT
1 , . . . ,α

T
d )

T}dJn,1×1
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with αl = (αm,l : 1 ≤ m ≤ Jn,1)
T and ∥αl∥ = 1, 1 ≤ l ≤ d, there are con-

stants 0 < cV < CV <∞ such that, for large enough n,

cV J
−1
n,1 ≤ αTV(δ)α ≤ CV J

−1
n,1, C−1

V Jn,1 ≤ αTV(δ)−1α ≤ c−1
V Jn,1,

(S4.1)

and, with probability approaching one,

cV J
−1
n,1 ≤ αT V̂(δ)α ≤ CV J

−1
n,1, C−1

V Jn,1 ≤ αT V̂(δ)−1α ≤ c−1
V Jn,1.

(S4.2)

Proof. According to Theorem 5.4.2 of DeVore and Lorentz (1993) and Con-

dition (C1), there are constants 0 < cl ≤ Cl <∞ such that for large enough

n,

clJ
−1
n,1 ≤ αT

l E[B1(Φ
T
i δ)B1(Φ

T
i δ)

T ]αl ≤ ClJ
−1
n,1.

By Conditions (C1) and (C4), it follows that

αTE[Di(W
0
i )Di(W

0
i )

T ]α =
∑
l,l′

∑
m,m′

E[αm,lαm′,l′Bm,1(Φ
T
i δ)Bm′,1(Φ

T
i δ)XilXil′ ]

≥ cQ
∑
l

αT
l E[B1(Φ

T
i δ)B1(Φ

T
i δ)

T ]αl

≥ dcQmin(cl)J
−1
n,1.

Similarly, we have αTE[Di(W
0
i )Di(W

0
i )

T ]α ≤ dCQ max(cl)J
−1
n,1. The sec-

ond result in (S4.1) follows by replacing α as V(δ)−1/2α. Results in

(S4.2) can be derived from (S4.1) and the Bernstein’s inequality in Bosq
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(1998).

Furthermore, by Lemma 2 and Demko (1986), it can be proved that

∥V̂(δ)−1∥∞ = Op(Jn,1).

Proof of Proposition 2.

Proof. (i) Denote ε = (ε1, . . . , εn)
T , g = (g(W1), . . . , g(Wn))

T . By (2.1),

λ̂(δ) can be decomposed into λ̂(δ) = λ̂g(δ) + λ̂ε(δ), where λ̂g(δ) =

[D(W 0)TD(W 0)]−1D(W 0)Tg and λ̂ε(δ) = [D(W 0)TD(W 0)]−1D(W 0)Tε.

Let λ̂ε(δ) = {λ̂1,ε(δ)
T , . . . , λ̂d,ε(δ)

T}T , with λ̂l,ε(δ) = {λ̂m,l,ε(δ) : 1 ≤ m ≤

Jn,1} and λ̂g(δ) = {λ̂1,g(δ)
T , . . . , λ̂d,g(δ)

T}T with λ̂l,g(δ) = {λ̂m,l,g(δ) :

1 ≤ m ≤ Jn,1} for 1 ≤ l ≤ d. Thus, ĝl(w; δ) = ĝl,g(w; δ) + ĝl,ε(w; δ), where

ĝl,g(w; δ) = B1(w)
T λ̂l,g(δ) and ĝl,ε(w; δ) = B1(w)

T λ̂l,ε(δ).

Rewrite ĝl,g(w; δ) = eTl B1(w)λ̂g(δ) and ĝl,ε(w; δ) = eTl B1(w)λ̂ε(δ). No-

tice that

ĝl,g(w; δ)− g0l (w) = eTl B1(w)[λ̂g(δ)− λ0]

= eTl B1(w)[D(W 0)TD(W 0)]−1D(W 0)T [g −D(W 0)λ0]

= ψ1(w) + ψ2(w),
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with

ψ1(w) = eTl B1(w)[D(W 0)TD(W 0)]−1D(W 0)T

[
d∑

l=1

[gl(Wi)− gl(Φ
T
i δ)]Xil

]n
i=1

,

ψ2(w) = eTl B1(w)[D(W 0)TD(W 0)]−1D(W 0)T

{[
d∑

l=1

gl(Φ
T
i δ)Xil

]n
i=1

−D(W 0)λ0

}
.

Since E[Di,ml(δ)] = O(J−1
n,1) and supm,lE[Di,ml(δ)]

2 = O(J−1
n,1), it is easy to

show that ∥n−1D(W 0)T1n∥∞ = Op(J
−1
n,1) by Bernstein’s inequality. There-

fore, we have

sup
w∈SW

|ψ1(w)| ≤
∣∣eTl B1(w)[n

−1D(W 0)TD(W 0)]−1n−1D(W 0)T1n

∣∣ ∥∥∥∥∥
[

d∑
l=1

[gl(Wi)− gl(Φ
T
i δ)]Xil

]n
i=1

∥∥∥∥∥
∞

≤ sup
w∈SW

∣∣∣∣∣∑
m

Bm,1(w)

∣∣∣∣∣ ∥∥V̂(δ)−1
∥∥
∞

∥∥n−1D(W 0)T1n

∥∥
∞O(J

−r
n,2 + an)

= Op(Jn,1)Op(J
−1
n,1)O(J

−r
n,2 + an)

= O(J−r
n,2 + an)

and

sup
w∈SW

|ψ2(w)| ≤
∣∣eTl B1(w)[n

−1D(W 0)TD(W 0)]−1n−1D(W 0)T1n

∣∣ ∥∥∥∥∥
[

d∑
l=1

gl(Φ
T
i δ)Xil

]n
i=1

−D(W 0)λ0

∥∥∥∥∥
∞

≤ sup
w∈SW

∣∣∣∣∣∑
m

Bm,1(w)

∣∣∣∣∣ ∥∥V̂(δ)−1
∥∥
∞

∥∥n−1D(W 0)T1n
∥∥
∞O(J

−r
n,1)

= Op(Jn,1)Op(J
−1
n,1)O(J

−r
n,1)

= O(J−r
n,1).

We then obtain that supw∈SW
|ĝl,g(w; δ)− g0l (w)| = Op(an + J−r

n,1 + J−r
n,2). It
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is obvious that E{ĝl,ε(w; δ) | X,Z} = 0. Moreover, by Condition (C3) and

(S4.1), it holds that

E{ĝl,ε(w; δ) | X,Z}2 = n−2eTl B1(w)V̂(δ)−1D(W 0)TE(εεT | X,Z)D(W 0)V̂(δ)−1B1(w)
Tel

≤ n−1Cσe
T
l B1(w)V̂(δ)−1B1(w)

Tel

≤ n−1Cσ

∥∥B1(w)
Tel
∥∥2
2

∥∥V̂(δ)−1
∥∥
2

= O(Jn,1/n).

Again it can be proved that supw∈SW
|ĝl,ε(w; δ)| = Op((log n)

1/2J
1/2
n,1 n

−1/2)

by Bernstein’s inequality. Finally, we have

sup
w∈SW

|ĝl(w; δ)− gl(w)| = Op(an + J−r
n,1 + J−r

n,2 + (log n)1/2J
1/2
n,1 n

−1/2).

(ii) Rewrite ˆ̇gl(w, δ) = ˆ̇gl,g(w, δ)+ˆ̇gl,ε(w, δ) with ˆ̇gl,g(w, δ) = Bq1−1
1 (w)TEλ̂l,g(δ)

and ˆ̇gl,ε(w, δ) = Bq1−1
1 (w)TEλ̂l,ε(δ). It is easy to show that ∥E∥∞ =

O(Jn,1). Applying the same approach as in the proof of (i), we get

sup
w∈SW

|ˆ̇gl(w; δ)− ġl(w)| = Op(anJn,1 + J1−r
n,1 + Jn,1J

−r
n,2 + (log n)1/2J

3/2
n,1 n

−1/2).

S4.3 Proof of Theorem 1.

Lemma 3 (Ma 2016). Under Condition (C2), there exists δ̃0
1 = (δ̃0s1, 1 ≤

s ≤ Jn,2)
T ∈ RJn,2 with δ̃011 ≤ · · · ≤ δ̃0Jn,21

such that supu∈SU
|β1(u)−β̃1(u)| =

Op(J
−r
n,2), where β̃1(u) = B2(u)

T δ̃0
1.
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Lemma 4. Let δ̃0 = (δ̃0
1, δ

0
2, . . . , δ

0
p)

T . Under the assumptions of Theo-

rem 1, we have∥∥∥∥∥∂L(δ̃0)

∂δ
−

n∑
i=1

[
Yi −

d∑
l=1

gl(Wi)Xil

]
d∑

l=1

ġl(Wi)XilΦ̃i

∥∥∥∥∥
∞

= op

(√
n/Jn,2

)
.

Proof. For λ̂(δ) defined in (2.1), we have

Di(W
0
i )

T ∂λ̂(δ)

∂δT
= Di(W

0
i )

T ∂[λ̂(δ)− λ0]

∂δT

= Di(W
0
i )

T ∂{[D(W 0)TD(W 0)]−1D(W 0)T [Y −D(W 0)λ0]}
∂δT

= Θ1(δ) + Θ2(δ), (S4.3)

where

Θ1(δ) = −Di(W
0
i )

T [D(W 0)TD(W 0)]−1D(W 0)T

[
d∑

l=1

ġ0l (Φ
T
i δ)XilΦ

T
i

]n
i=1

,

Θ2(δ) = Di(W
0
i )

T ∂{[D(W 0)TD(W 0)]−1D(W 0)T}
∂δT

[Y −D(W 0)λ0].

Define W̃i = ZT
i β̃(Ui), Di(W̃i) = {Di,ml(W̃i),1 ≤ l ≤ d,1 ≤ m ≤ Jn,1}T

with Di,ml(W̃i) = Bm,1(W̃i)Xi,l,

κ̂ = argmin
κ∈RdJn,1×pJn,2

n∑
i=1

[Φi −Di(W̃i)
Tκ]T [Φi −Di(W̃i)

Tκ],

Pn{Φi} = Di(W̃i)
T κ̂

= Di(W̃i)
T [D(W̃ )TD(W̃ )]−1D(W̃ )T (Φ1, . . . ,Φn)

T .

From the definition of P(·) given in Section 2 and Condition (C5), it can

be proved that ∥Pn{Φi} − P{Φi}∥∞ = Op(J
−2
n,1 + J

1/2
n,1 n

−1/2). Thus, we can
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rewrite Θ1(δ̃
0) as

Θ1(δ̃
0) = −Pn

{
d∑

l=1

ġ0l (Φ
T
i δ̃

0)XilΦ
T
i

}

= −P

{
d∑

l=1

ġ0l (Φ
T
i δ̃

0)XilΦ
T
i

}
+Op(J

−2
n,1 + J

1/2
n,1 n

−1/2)

= −
d∑

l=1

ġ0l (Φ
T
i δ̃

0)XilP{ΦT
i }+Op(J

−2
n,1 + J

1/2
n,1 n

−1/2). (S4.4)

Decompose Θ2(δ̃
0) as

Θ2(δ̃
0) = Di(W̃i)

T

[
∂{[D(W̃ )TD(W̃ )]−1D(W̃ )T}

∂δT

]{
Y −

[
d∑

l=1

gl(Wi)Xil

]n
i=1

}

+Di(W̃i)
T

[
∂{[D(W̃ )TD(W̃ )]−1D(W̃ )T}

∂δT

]{[
d∑

l=1

gl(Wi)Xil

]n
i=1

−D(W̃ )λ0

}

= Θ21(δ̃
0) + Θ22(δ̃

0). (S4.5)

Let A(δ̃0) = [V̂(δ̃0)−1D(W̃ )T ]Jn,1d×n, and let ∂A(δ̃0)/∂δT = (Ȧi,ml,sk)sk

be a Jn,1d×n×Jn,2p array. Similar to Lemma A.3 of Ma and Song (2015),

we have

∥Θ21(δ̃
0)∥∞ =

∥∥∥∥∥n−1Di(W̃i)
T ∂A(δ̃0)

∂δT

{
Y −

[
d∑

l=1

gl(Wi)Xil

]n
i=1

}∥∥∥∥∥
∞

=

∥∥∥∥∥n−1

n∑
i′=1

d∑
l=1

Jn,1∑
m=1

Di,ml(W̃i)(Ȧi′,ml,sk)skεi′

∥∥∥∥∥
∞

= Op((log n)
1/2n−1/2).

By B-spline properties, the basis functions B1(·), B2(·), and Ḃ1(·) are
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bounded between zero and one. Notice that

∥∥[D(W̃ )TD(W̃ )]−1D(W̃ )T1n

∥∥
∞

≤
∥∥[D(W̃ )TD(W̃ )]−1

∥∥
∞

∥∥D(W̃ )T1n

∥∥
∞ = OP (Jn,1)Op(J

−1
n,1) = Op(1),

and so, together with Condition (C1), we can directly derive

∥Θ22(δ̃
0)∥∞ =

∥∥∥∥∥Di(W̃i)
T

[
∂{[D(W̃ )TD(W̃ )]−1D(W̃ )T}

∂δT

]{
D(W̃ )λ0 −

[
d∑

l=1

gl(Wi)Xil

]n
i=1

}∥∥∥∥∥
∞

=

∣∣∣∣∣∑
m,l

Di,ml(W̃i)

∣∣∣∣∣
∥∥∥∥∥∂{[D(W̃ )TD(W̃ )]−1D(W̃ )T1n}

∂δ

∥∥∥∥∥
∞

Op(J
−r
n,1 + J−r

n,2)

= Op(J
−r
n,1 + J−r

n,2).

Thus,

∥Θ2(δ̃
0)∥∞ = Op((log n)

1/2n−1/2 + J−r
n,1 + J−r

n,2). (S4.6)

Combining (S4.3)–(S4.6), we have

Di(W̃i)
T ∂λ̂(δ̃

0)

∂δT

= −
d∑

l=1

ġ0l (Φ
T
i δ̃

0)XilP{ΦT
i }+Op(J

1/2
n,1 n

−1/2+J−2
n,1+J

−r
n,2+(log n)1/2n−1/2).

Based on the results in Proposition 2, it is easy to see that

ˆ̇gl(Φ
T
i δ̃

0)Xil = ġl(Wi)Xil +Op(J
3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2).
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Therefore,
d∑

l=1

ˆ̇gl(Φ
T δ̃0)XilΦi +

∂λ̂(δ̃0)T

∂δ
Di(W̃i)

=

[
d∑

l=1

ġl(Wi)Xil +Op(J
3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)

]
Φi

−

[
d∑

l=1

ġl(Wi)Xil +Op(J
1−r
n,1 + Jn,1J

−r
n,2)

]
P{Φi}+Op(J

1/2
n,1 n

−1/2 + J−2
n,1 + J−r

n,2 + (log n)1/2n−1/2)

=
d∑

l=1

ġl(Wi)XilΦ̃i +ΦiOp(J
3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)− P{Φi}Op(J

1−r
n,1 + Jn,1J

−r
n,2)

+Op(J
1/2
n,1 n

−1/2 + J−2
n,1 + J−r

n,2 + (log n)1/2n−1/2). (S4.7)

By (2.2) and the above results, we obtain

∂L(δ̃0)

∂δ
= −

n∑
i=1

[
Yi −

d∑
l=1

Jn,1∑
m=1

Bm,1(Φ
T
i δ̃

0)Xilλ̂m,l(δ̃
0)

][
d∑

l=1

ˆ̇gl(Φ
T
i δ̃

0)XilΦi +
∂λ̂(δ̃0)T

∂δ
Di(W̃i)

]

= −
n∑

i=1

[
Yi −

d∑
l=1

gl(Wi)Xil

]
d∑

l=1

ġl(Wi)XilΦ̃i − (Λ1 + Λ2 + Λ3 + Λ4),

where

Λ1 =
n∑

i=1

[
d∑

l=1

gl(Wi)Xil −Di(W̃i)
T λ̂(δ̃0)

]
d∑

l=1

ġl(Wi)XilΦ̃i,

Λ2 =
n∑

i=1

[Yi −Di(W̃i)
T λ̂(δ̃0)]ΦiOp(J

3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2),

Λ3 = −
n∑

i=1

[Yi −Di(W̃i)
T λ̂(δ̃0)]P{Φi}Op(J

1−r
n,1 + Jn,1J

−r
n,2),

Λ4 =
n∑

i=1

[Yi −Di(W̃i)
T λ̂(δ̃0)]Op(J

1/2
n,1 n

−1/2 + J−2
n,1 + J−r

n,2 + (log n)1/2n−1/2).

We will show that ∥Λi∥∞ = op(n
1/2J

−1/2
n,2 ) for each i = 1, 2, 3, 4. Based

on Bernstein’s inequality and the results in Proposition 2, we can directly



14XIN GUAN, HUA LIU, JINHONG YOU AND YONG ZHOU

derive that

∥Λ1∥∞ =

∥∥∥∥∥
n∑

i=1

[
d∑

l=1

ġl(Wi)XilΦ̃i

]∥∥∥∥∥
∞

Op(J
−r
n,1 + J−r

n,2 + n−1/2J
1/2
n,1 )

= Op(n
1/2J

−1/2
n,2 (log n)1/2)Op(J

−r
n,1 + J−r

n,2 + n−1/2J
1/2
n,1 )

= op(n
1/2J

−1/2
n,2 ).

Note that sups,k E(Φi,skεi) = 0 and sups,k E(Φi,skεi)
2 = O(J−1

n,2), and, by

Bernstein’s inequality, it holds that ∥
∑n

i=1 Φiεi∥∞ = Op((log n)
1/2J

−1/2
n,2 n1/2).

Similarly, we have ∥
∑n

i=1 Φi∥∞ = Op(nJ
−1
n,2). By the assumptions n1/(2r+2) ≪

Jn,1 ≪ n1/4 and n1/(2r+2) ≪ Jn,2 ≪ n1/4, it is obvious that

∥Λ2∥∞ =

∥∥∥∥∥
n∑

i=1

Φiεi

∥∥∥∥∥
∞

Op(J
3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)

+

∥∥∥∥∥
n∑

i=1

[
d∑

l=1

gl(Wi)Xil −Di(W̃i)
T λ̂(δ̃0)

]
Φi

∥∥∥∥∥
∞

Op(J
3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)

= Op((log n)
1/2J

−1/2
n,2 n1/2)Op(J

3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)

+Op(nJ
−1
n,2)Op(J

−r
n,1 + J−r

n,2 + n−1/2J
1/2
n,1 )Op(J

3/2
n,1 n

−1/2 + J1−r
n,1 + Jn,1J

−r
n,2)

= op(n
1/2J

−1/2
n,2 ),

Similarly, we have ∥Λ3∥∞ = op(n
1/2J

−1/2
n,2 ). Again according to the assump-
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tions n1/(2r+2) ≪ Jn,1 ≪ n1/4 and n1/(2r+2) ≪ Jn,2 ≪ n1/4, we obtain

∥Λ4∥∞ = Op(n
1/2)Op(J

1/2
n,1 n

−1/2 + J−2
n,1 + J−r

n,2 + (log n)1/2n−1/2)

+ nOp(J
−r
n,1 + J−r

n,2 + n−1/2J
1/2
n,1 )Op(J

1/2
n,1 n

−1/2 + J−2
n,1 + J−r

n,2 + (log n)1/2n−1/2)

= op(n
1/2J

−1/2
n,2 ).

Lemma 5. Let δ̂ be the minimizer of L(δ) given in (2.2) satisfying ∥δ̂ −

δ0∥ ≤ an with probability tending to one. Then, under the assumptions of

Theorem 1, we have

∥δ̂ − δ̃0∥2 = Op(n
−1/2Jn,2). (S4.8)

Proof. By Lemma 4, it is straightforward to prove that

∂2L(δ̃0)

∂δ ∂δT
=

n∑
i=1

[
d∑

l=1

ġl(Wi)XilΦ̃i

]⊗2

+ op(nJ
−1
n,2).

Suppose that δ̂ minimizes L(δ) given in (2.2) satisfying ∥δ̂−δ0∥ ≤ an with

probability tending to one. Then we assume that the minimizer is obtained

in a neighborhood of δ0 in probability. To prove (S4.8), it suffices to show

that for any ϵ > 0, there exists a constant C > 0 such that for large enough

n,

P

{
sup

∥δ−δ̃0∥2=Cn−1/2Jn,2

(δ − δ̃0)T
∂L(δ)

∂δ
> 0

}
≥ 1− ϵ. (S4.9)
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By Taylor expansion, there exists δ∗ lying between δ̃0 and δ such that

(δ − δ̃0)T
∂L(δ)

∂δ
= (δ − δ̃0)T

∂L(δ̃0)

∂δ
+ (δ − δ̃0)T

∂2L(δ∗)

∂δ ∂δT
(δ − δ̃0)

= (δ − δ̃0)T
∂L(δ̃0)

∂δ
+ (δ − δ̃0)T

∂2L(δ̃0)

∂δ ∂δT
(δ − δ̃0)[1 + op(1)].

According to Lemma 4, we have ∂L(δ̃0)/∂δ = −
∑n

i=1

∑d
l=1 ġl(Wi)XilΦ̃iεi[1+

op(1)]. Thus, for any δ satisfying ∥δ − δ̃0∥2 = Cn−1/2Jn,2, we employ the

Cauchy–Schwartz inequality to derive∣∣∣∣∣(δ − δ̃0)T
∂L(δ̃0)

∂δ

∣∣∣∣∣ ≤ Cn−1/2Jn,2

∥∥∥∥∥
n∑

i=1

d∑
l=1

ġl(Wi)XilΦ̃iεi

∥∥∥∥∥
2

. (S4.10)

Note that E{
∑n

i=1

∑d
l=1 ġl(Wi)XilΦ̃iεi} = 0. Similar to the proof of Lemma 2,

together with Conditions (C1), (C2), and (C4), we have

E


∥∥∥∥∥

n∑
i=1

d∑
l=1

ġl(Wi)XilΦ̃iεi

∥∥∥∥∥
2

2

 = E


n∑

i=1

ε2i tr

[ d∑
l=1

ġl(Wi)XilΦ̃i

]⊗2


≤ Cσ tr

 n∑
i=1

[
d∑

l=1

ġl(Wi)XilΦ̃i

]⊗2
 = O(n),

where tr(·) is the matrix trace. Then ∥
∑n

i=1

∑d
l=1 ġl(Wi)XilΦ̃iεi∥2 = Op(n

1/2)

by the weak law of large numbers. Applying this result to (S4.10), we obtain∣∣∣∣∣(δ − δ̃0)T
∂L(δ̃0)

∂δ

∣∣∣∣∣ ≲ CJn,2. (S4.11)

On the other hand,∣∣∣∣∣(δ − δ̃0)T
∂2L(δ̃0)

∂δ ∂δT
(δ − δ̃0)

∣∣∣∣∣ ≲ ∥δ − δ̃0∥22ρmax

 n∑
i=1

[
d∑

l=1

ġl(Wi)XilΦ̃i

]⊗2


≲ C2Jn,2, (S4.12)
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where ρmax(·) represents the largest eigenvalue of a matrix. The rela-

tionships (S4.10)–(S4.12) imply that (δ − δ̃0)T∂L(δ̃0)/∂δ is dominated by

(δ − δ̃0)T [∂2L(δ̃0)/∂δ ∂δT ](δ − δ̃0), which is always positive for large n.

Thus, (S4.9) holds.

Proof of Theorem 1.

Proof. (i) According to the results of Lemma 5 and the properties of B-

spline basis functions, we have

∥β̂(u)− β0(u)∥2L2
≍ J−1

n,2∥δ̂ − δ̃0∥22 = Op(Jn,2n
−1).

Combined with (3.3), we get

∥β̂(u)− β(u)∥L2 ≤ ∥β̂(u)− β0(u)∥L2 + ∥β0(u)− β(u)∥L2

= Op(J
1/2
n,2 n

−1/2 + J−r
n,2).

(ii) By Taylor expansion, we can directly derive

δ̂ − δ̃0 = −

[
∂2L(δ̃0)

∂δ ∂δT

]−1
∂L(δ̃0)

∂δ
[1 + op(1)].

Similar to Lemma 2 of Ma (2016), it can be shown that ∂2L(δ̃0)/∂δ ∂δT =

Op(nJ
−1
n,2) and ∥∂L(δ̃0)/∂δ∥∞ = Op((log n)

1/2n1/2J
−1/2
n,2 ). Then, applying

the results of Demko (1986), we have

∥∥δ̂ − δ̃0
∥∥
∞ ≤

∥∥∥∥∥∥
[
∂2L(δ̃0)

∂δ ∂δT

]−1
∥∥∥∥∥∥
∞

∥∥∥∥∥∂L(δ̃0)

∂δ

∥∥∥∥∥
∞

= Op((log n)
1/2J

1/2
n,2 n

−1/2).
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Therefore,

sup
u∈SU

|β̂(u)− β0(u)| ≲ ∥δ̂ − δ̃0∥∞ = Op((log n)
1/2J

1/2
n,2 n

−1/2),

and hence

sup
u∈SU

|β̂(u)− β(u)| ≤ sup
u∈SU

|β̂(u)− β0(u)|+ sup
u∈SU

|β0(u)− β(u)|

= Op((log n)
1/2J

1/2
n,2 n

−1/2 + J−r
n,2).

(iii) By Lemma 4, it is easy to see

δ̂ − δ̃0

=

n−1

n∑
i=1

[
d∑

l=1

ġl(Wi)XilΦ̃i

]⊗2


−1 [
n−1

n∑
i=1

d∑
l=1

ġl(Wi)XilΦ̃iεi

]
+op(n

−1/2J
1/2
n,2 ).

According to the Lindeberg–Feller central limit theorem, it is straightfor-

ward to derive that

Ω−1
2 (u)[β̂(u)− β0(u)]

d−→ N(0, 1).

By Slutsky’s lemma and the condition nJ
−(2r+1)
n,2 = o(1), the result (iii)

holds. Further, for k = 1, . . . , p, we have

σ−1
2,k(u)[β̂k(u)− βk(u)]

d−→ N(0, 1).

Proof of Theorem 2.
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Proof. (i) According to the results in Theorem 1(ii) and Proposition 2, it is

easy to see that

sup
w∈SW

|ĝl(w, δ̂)−gl(w)| = Op(J
−r
n,1+J

−r
n,2+(log n)1/2J

1/2
n,1 n

−1/2+(log n)1/2J
1/2
n,2 n

−1/2).

(ii) Under the assumptions of Theorem 2, and the conditions Jn,2J−1
n,1 = o(1),

nJ
−(2r+1)
n,2 = o(1) and (3.2), we obtain

ĝl(w, δ̂)− gl(w) = ĝl(w, δ̂)− g0l (w) + g0l (w)− gl(w)

= ĝl,ε(w, δ̂) + ĝl,g(w, δ̂)− g0l (w) +Op(J
−r
n,2 + J

1/2
n,2 n

−1/2)

= ĝl,ε(w, δ̂) + op(J
1/2
n,1 n

−1/2),

with

ĝl,ε(w, δ̂) = eTl B1(w)V̂(δ̂)−1n−1

n∑
i=1

Di(Ŵi)εi.

Furthermore, we decompose ĝl,ε(w, δ̂) = I1 + I2, with

I1 = eTl B1(w)V̂(δ̂)−1n−1

n∑
i=1

Di(Wi)εi,

I2 = eTl B1(w)V̂(δ̂)−1n−1

n∑
i=1

[Di(Ŵi)−Di(Wi)]εi.

Since E{[Di,ml(Ŵi) − Di,ml(Wi)]εi}2 ≲ ∥β̂(u) − β(u)∥2L2
= Op(Jn,2n

−1), it

can be proved using Bernstein’s inequality that

sup
1≤l≤d,1≤m≤Jn,1

∣∣∣∣∣n−1

n∑
i=1

[Di,ml(Ŵi)−Di,ml(Wi)]εi

∣∣∣∣∣ = Op((log n)
1/2J

1/2
n,2 n

−1).
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Thus, I2 = op(n
−1/2J

1/2
n,1 ). Finally, we have

ĝl(w, δ̂)− gl(w)

= eTl B1(w)

[
n−1

n∑
i=1

Di(Wi)Di(Wi)
T

]−1

n−1

n∑
i=1

Di(Wi)εi+op(n
−1/2J

1/2
n,1 ).

By checking the Lindeberg condition, it is straightforward to show that

σ−1
1,l (w)[ĝl(w; δ̂)− gl(w)]

d−→ N(0, 1).

S4.4 Proofs of Theorems 3 and 4.

Proof. We show only the proof of Theorem 3, since the proof of Theorem 4

is similar.

Let Π = E{σ2(Ui,Zi,Xi)[
∑d

l=1 ġl(Wi)XilΦ̃i]
⊗2} and let M1, . . . ,Mn

be independent random variables from the multivariate normal distribu-

tion N(0, IJn,2p×Jn,2p), where Mi = {Mi,sk, 1 ≤ s ≤ Jn,2, 1 ≤ k ≤ p} and

IJn,2p×Jn,2p is the Jn,2p× Jn,2p identity matrix. Define

η0k(u) = σ−1
2,k(u)b

T
kB2(u)Ξ

−1
2 n−1

n∑
i=1

Π1/2Mi.

By the strong approximation theorem (Csörgő and Révész 1981, Theo-

rem 2.6.2), together with the same arguments as were used for Theorem 3
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in Ma (2016), it can be proved that

sup
u∈SU

|σ−1
2,k(u)[β̂k(u)− βk(u)]− η0k(u)| = op(J

1/2
n,2 n

−1/2). (S4.13)

Applying similar techniques as for Theorem 4 in Ma et al. (2015), we par-

tition SU into K2 equally spaced intervals with 0 < ν0 < ν1 < · · · < νK2 <

νK2+1 = 1, where K2 → ∞, and we construct SCBs over a subset of SU ,

which is specified as Sn,2 = (ν0, . . . , νK2).

Note that for 0 ≤ j ≤ K2, η0k(u) is a Gaussian process with E[η0k(u)] = 0

and Var[η0k(u)] = 1. By the fact that |σ2,k(u)| = Op(J
1/2
n,2 n

−1/2) and using

Conditions (C3) and (C7), we find that for any j < j′, the covariance matrix

of the Gaussian process is

|Cov{η0k(νj), η0k(νj′)}| = |n−1σ−1
2,k(νj)σ

−1
2,k(νj′)b

T
kB2(νj)Ξ

−1
2 ΠΞ−1

2 B2(νj′)
Tbk|

≍ J−1
n,2|bT

kB2(νj)Ξ
−1
2 B2(νj′)

Tbk|

≍ |bT
kB2(νj)B2(νj′)

Tbk| ≍

∣∣∣∣∣
Jn,2∑
s=1

Bs,2(νj)Bs,2(νj′)

∣∣∣∣∣ .
According to the properties of B-spline functions, we have |Cov{η0k(νj), η0k(νj′)}| ≤

C−|j−j′|. Based on the above results and Lemma 1, it is easy to see that

lim
n→∞

P

{
sup

0≤j≤K2

∣∣[2 log(K2 + 1)]−1/2η0k(νj)
∣∣ ≤ d2n(α)

}
= 1− α. (S4.14)

Combining (S4.13) and (S4.14), we have

lim
n→∞

P

{
sup

u∈Sn,2

∣∣[2 log(K2 + 1)]−1/2σ−1
2,k(u)[β̂k(u)− βk(u)]

∣∣ ≤ d2n(α)

}
= 1−α.
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S4.5 Proof of Theorem 5.

Proof. (i) By (3.2) and Condition (C2), there exists β0
k(u) = B2(u)

Tπ0
k such

that ∥βP
k (u) − β0

k(u)∥L2 = O(J−r
n,2) with π0

k = (π0
1k, . . . , π

0
Jn,2k

)T . Let π̂ be

the minimizer of Q(π) given in (4.1) and let this minimizer be obtained in

a neighborhood of π0 with probability tending to one. We first show that

∥π̂ − π0∥2 = rn, with rn = Op(Jn,2n
−1/2 + J

(1−r)/2
n,2 α

1/2
n ).

By Taylor expansion, there exists π∗ that lies between π̂ and π0 such

that

Q(π̂)−Q(π0) = (π̂ − π0)T
∂L(π0)

∂π
+

1

2
(π̂ − π0)T

∂2L(π∗)

∂π ∂πT
(π̂ − π0)

+ n

p∑
k=2

[pαn(∥π̂k∥H)− pαn(∥π0
k∥H)]. (S4.15)

According to the results of Lemma 5,

(π̂ − π0)T
∂2L(π∗)

∂π ∂πT
(π̂ − π0) = (π̂ − π0)T

∂2L(π0)

∂π ∂πT
(π̂ − π0)[1 + op(1)]

= ∥π̂ − π0∥22Op(nJ
−1
n,2) = Op(r

2
nJ

−1
n,2n)

(S4.16)

and∣∣∣∣(π̂ − π0)T
∂L(π0)

∂π

∣∣∣∣ ≤ ∥∥π̂ − π0
∥∥
2

∥∥∥∥∂L(π0)

∂π

∥∥∥∥
2

= Op(rnn
1/2). (S4.17)
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For k = 2, . . . , p, by Minkowski’s inequality, it follows that |∥π̂k∥H −

∥π0
k∥H| ≤ ∥π̂k − π0

k∥H = op(1). Thus, it holds that ∥π̂k∥H → ∥β0
k∥L2 with

probability. Note that ∥β0
k∥L2 > 0 for k = 2, . . . , p1 and αn → 0, then, with

probability approaching one, we have ∥π̂k∥H > aαn and ∥π0
k∥H > aαn,

which implies P{pαn(∥π̂k∥H) = pαn(∥π0
k∥H)} → 1, k = 2, . . . , p1. Since

∥β0
k∥L2 = 0 for k = p1+1, . . . , p, we have ∥π0

k∥H = Op(J
−r
n,2). Under the con-

dition J−r
n,2/αn → 0, it follows directly that P{pαn(∥π0

k∥H) = αn∥π0
k∥H} →

1, k = p1 + 1, . . . , p. Then

n

p∑
k=2

[pαn(∥π̂k∥H)− pαn(∥π0
k∥H)] = −nαn

p∑
k=p1+1

∥π0
k∥H = −Op(nαnJ

−r
n,2).

(S4.18)

Combining (S4.15)–(S4.18), we have Q(π̂)−Q(π0) = Op(rnn
1/2+r2nJ

−1
n,2n)−

Op(nαnJ
−r
n,2), which implies that rn = Op(Jn,2n

−1/2+J
(1−r)/2
n,2 α

1/2
n ). Further-

more, ∥β̂P (u)− β0(u)∥L2 = Op(J
1/2
n,2 n

−1/2 + J
−r/2
n,2 α

1/2
n ) holds.

Next we will show that, with probability tending to one, π̂k = 0 for

k = p1 + 1, . . . , p. Suppose there exists k0 > p1 such that π̂k0 ̸= 0. Let π̄

be a vector constructed by replacing π̂k0 with 0 in π̂. Similar to (S4.15),

we have

Q(π̂)−Q(π̄) = (π̂ − π̄)T
∂L(π̄)

∂π
+

1

2
(π̂ − π̄)T

∂2L(π0)

∂π ∂πT
(π̂ − π̄)

+ npαn(∥π̂k0∥H) + op(1).
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By definition, ∥π̂ − π̄∥H = ∥π̂k0∥H > 0. Noting that βk0(u) = 0, we

have ∥π̂k0∥H = ∥β̂P
k0
(u)∥L2 = Op(J

1/2
n,2 n

−1/2 + J
−r/2
n,2 α

1/2
n ). Then, under the

condition J
1/2
n,2 n

−1/2/αn → 0, J−r
n,2/αn → 0, pαn(∥π̂k0∥H) = αn∥π̂k0∥H holds.

Along the same line of argument as above, we have

Q(π̂)−Q(π̄) = Op(∥π̂k0∥HJ
1/2
n,2 n

1/2 + ∥π̂k0∥2Hn) +Op(nαn∥π̂k0∥H).

(S4.19)

It is easy to see that the first two terms of (S4.19) are dominated by the third

term, which is always positive. This contradicts the fact thatQ(π̂)−Q(π̄) ≤

0. Thus, (i) holds.

(ii) Let β(u) = (β(1)(u)T ,β(2)(u)T )T , with β(1)(u) = (β1(u), . . . , βp1(u))
T

and β(2)(u) = (βp1+1(u), . . . , βp(u))
T . Denote π = ((π(1))T , (π(2))T )T , with

π(1) = (πT
1 , . . . ,π

T
p1
)T and π(2) = (πT

p1+1, . . . ,π
T
p )

T . By (3.3) and Condi-

tion (C2), there exists a B-spline function βoracle(u) = (β
(1)
oracle(u)

T ,β
(2)
oracle(u)

T )T

satisfying ∥βoracle(u) − β(u)∥L2 = Op(J
−r
n,2). Denote the corresponding B-

spline coefficients by πoracle = ((π
(1)
oracle)

T , (π
(2)
oracle)

T )T . Since the true func-

tion β(2)(u) = 0, we define β
(2)
oracle(u) = 0 and π

(2)
oracle = 0.

Let π̂ be the minimizer of Q(π) given in (4.1). We assume that the min-

imizer can be obtained in a neighborhood of πoracle with probability tending

to one. We will show that ∥π̂ − πoracle∥2 = r̃n, with r̃n = Op(Jn,2n
−1/2).

According to the proof of (i), ∥β̂P (u) − β(u)∥L2 = op(1) holds, where
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β̂P (u) = B2(u)
T π̂ = (β̂(1)(u)T , β̂(2)(u)T )T . Then ∥β̂(1)(u)∥L2 → ∥β(1)(u)∥L2 >

0 with probability. By definition, we have ∥β(1)
oracle(u)∥L2 → ∥β(1)(u)∥L2 >

0 with probability. On the other hand, by the results of (i), we have

∥β̂(2)(u)∥L2 = 0 with probability. Thus,

p∑
k=2

pαn(∥βk,oracle(u)∥L2) =

p∑
k=2

pαn(∥β̂P
k (u)∥L2)

holds with probability tending to one. Similar to (S4.15), we have

Q(π̂)−Q(πoracle)

= (π̂ − πoracle)
T ∂L(πoracle)

∂π
+

1

2
(π̂ − πoracle)

T ∂
2L(πoracle)

∂π∂πT
(π̂ − πoracle) + op(1)

= Op(r̃nn
1/2 + r̃2nJ

−1
n,2n), (S4.20)

which implies that r̃n = Op(Jn,2n
−1/2) by the fact that the second term

of (S4.20) is always positive. Further, we have ∥β̂P (u) − βoracle(u)∥L2 =

J
1/2
n,2 n

−1/2. Finally, ∥β̂P (u)− β(u)∥L2 = Op(J
1/2
n,2 n

−1/2 + J−r
n,2) holds.

S4.6 Proofs of Theorems 6 and 7.

Proof. We only give the proof of Theorem 7, since Theorem 6 can be ob-

tained by setting ∆(u) = 0 in this proof.
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The test statistic can be decomposed into T = T1 + T2 + T3, where

T1 =
n

Jn,2

∫ 1

0

∥β̂(u)− βn(u)∥2 du,

T2 =
n

Jn,2

∫ 1

0

∥βn(u)− β̂∥2 du,

T3 =
2n

Jn,2

∫ 1

0

[β̂(u)− βn(u)]
T [βn(u)− β̂] du.

By Condition (C2), there exists a B-spline function β0
n(u) satisfying ∥β0

n(u)−

βn(u)∥ = Op(J
−r
n,2). Rewrite T1 = T11 + T12 + T13, with

T11 =
n

Jn,2

∫ 1

0

∥β̂(u)− β0
n(u)∥2 du,

T12 =
n

Jn,2

∫ 1

0

∥β0
n(u)− βn(u)∥2 du,

T13 =
2n

Jn,2

∫ 1

0

[β̂(u)− β0
n(u)]

T [β0
n(u)− βn(u)] du.

Denote Ψi =
∑d

l=1 ġl(Wi)XilΦ̃i. Following the proof of Theorem 1, we have

T11 =
n

Jn,2

∫ 1

0

[β̂(u)− β0
n(u)]

T [β̂(u)− β0
n(u)] du

=
n

Jn,2

∫ 1

0

B2(u)Ξ
−1
2

(
1

n

n∑
i=1

Ψiεi

)(
1

n

n∑
i=1

ΨT
i εi

)
Ξ−1
2 BT

2 (u) du+ op(1)

=
1

Jn,2

∫ 1

0

B2(u)Ξ
−1
2

(
1

n

n∑
i=1

ΨiΨ
T
i ε

2
i

)
Ξ−1
2 BT

2 (u) du

+
2

Jn,2

∫ 1

0

B2(u)Ξ
−1
2

(
1

n

n∑
i=1

∑
i<j

ΨiΨ
T
j εiεj

)
Ξ−1
2 BT

2 (u) du+ op(1)

= T (1)
11 + T (2)

11 + op(1).
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Similar to the proof of Theorem 4.3 in Vogt (2015) and Hu, Huang, and

You (2019), it can be proved that T (1)
11 = B + op(1) and T (2)

11
d−→ N(0, V ).

By definition, we have T12 = op(1). Using the Cauchy–Schwarz inequality,

we have T13 = op(1). Note that T2 = T21 + T22 + T23 with

T21 =
n

Jn,2

∫ 1

0

∥βn(u)− β∥2 du,

T22 =
n

Jn,2

∫ 1

0

∥β − β̂∥2 du,

T23 =
2n

Jn,2

∫ 1

0

[βn(u)− β]T [β − β̂] du.

Then T21 = ∆̃. Since ∥β̂ − β∥2 = op(n
−1/2), we have T22 = op(1). Further-

more, it is easy to see T23 = op(1) and T3 = op(1) by the Cauchy–Schwarz

inequality. Thus, we finally complete the proof.
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Figure 1: (a)-(c) give the curves of varying coefficient functions βk(·), for k = 1, . . . , 3.

Curves are the true functions (solid), the three step spline estimators (dashed), the

95% PCBs (dotted) and the 95% wild bootstrap intervals (long dashed). (d)-(e) give

the curves of index functions gl(·), for l = 1, 2. Curves are the true function (solid),

the three step spline estimators (dashed), the 95% PCBs (dotted) and the 95% wild

bootstrap intervals (long dashed).

S5 Numerical Example

Example 3.(Continued) In this example, we investigate the finite-sample

performance of the proposed model identification strategy presented in
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Section 4.1. The data are generated from the model (1.2) with varying-

coefficient components β1(u) = 1 + u2, β3(u) = (1 − u)2, β5(u) = −1 +

4(u− 0.5)2, and β2(u) = β4(u) = β6(u) = 0. The index components are the

same as in Example 1. Covariates Xl and Zk with l = 1, 2 and k = 1, 2, 3

are generated by the same way as in Example 1. Covariates Z4, Z5, and

Z6 are simulated from an independent U(0, 1). The interior variable U is

generated from U(0, 1), and the error term is given as in Example 1.

As in Wang, Li, and Huang (2008) and Hu, Huang, and You (2019),

we represent the percentage of selections of the correct model (CF), the

percentage of under-fitting (UF), the percentage of over-fitting (OF), the

average number of selections of relevant variables in the model (AR), and

the average number of selections of irrelevant variables in the model (AI)

based on 500 replications, with sample size n = 500, 700, 900. From Table 1,

it can be seen that the percentage of selections of the correct model (CF)

increases with sample size. Meanwhile, the average number of selections

of the relevant variables is approximately equal to the number of nonzero

varying-coefficient components, and the average number of selections of

irrelevant variables (AI) decreases with increasing sample size.
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Table 1: Simualtion results of variable selection in example 2.

n UF CF OF AR AI

500 0.000 0.506 0.494 3.000 0.628

700 0.000 0.660 0.340 3.000 0.418

900 0.000 0.816 0.184 3.000 0.210

S6 Real Data Analysis(Continued)

In this section, we illustrate the proposed model via the analysis of two real

data applications.

S6.1 Body Fat Dataset

The body fat dataset contains 252 observations on subjects from 22 to 81

years old. These data are available at SatLib. The purpose of this study is

to explore the relationship between body fat percentage and the predictors,

including age, weight, height and ten body circumference measurements.

We exclude six outliers as suggested by Peng and Huang (2011).

We obtain the body fat percentage by Brozek’s equation (457/density−

414.2). Let Y be the logarithm of the body fat percentage. According to the

Pearson correlation analysis, we select three body circumference measure-

ments with the strongest Pearson correlation coefficients with the response.

These are abdomen (Z1), chest (Z2), and hip (Z3). All predictors are cen-
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tered and standardized. Note that the body fat percentage may depend on

weight, and so we divide the data into three groups according to weight:

light-weight (lighter than the first quantile of weight), medium-weight (be-

tween the first and second quantiles of weight), and high-weight (heavier

than the second quantile of weight). For each group, we run a regression

analysis using the single-index model

Y = g(ZTβ) + ε, (S6.21)

where g(·) is an unknown smooth function, Z = (Z1, Z3, Z3)
T , and β =

(β1, β2, β3)
T is a loading parameter vector. Figure 2(a) depicts three bro-

ken lines connected by variant estimated coefficient vectors (β̂1, β̂2, β̂3),

which represent light-weight (solid), medium-weight (long dashed), and

high-weight (dashed), respectively. It is clear that abdomen circumfer-

ence is the most important factor in each group, while the effect of chest

circumference varied quite a lot. The parameters β1, β2 and β3 change with

weight, which inspires us to further investigate the possible dynamic effect

of body circumference measurements.

Let U = (1− fraction of body fat)× weight be the fat-free weight. We

focus on the model

Y = g(ZTβ(U)) + ε, (S6.22)

where ZTβ(U) = Z1β1(U) + Z2β2(U) + Z3β3(U). The interior index U is
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Figure 2: Broken lines connected by the estimated coefficient vectors of different groups

for two real data. (a) Light weight (solid), Medium weight (long dashed) and High weight

(dashed); (b)Short distance (solid), Medium distance (long dashed) and Long distance

(dashed).

normalized. To check the applicability of the model (S6.22), we conduct

the hypothesis procedure described in Section 4.2 with 500 wild bootstrap

resamples, and the resulting p-value is less than 0.01. Thus, there is suffi-

cient evidence to reject H0 (the model (S6.21)) at a 0.05 significance level.

Based on the BIC in the simulation study, we choose as the optimal pa-

rameters (q1, q2, K1, K2) = (3, 3, 2, 2). The residual standard deviation is

0.2141. In addition, the R2 of the model (S6.22) is 0.7777, and thus this

model outperforms the model (S6.21), whose R2 is 0.6569.

Figures 3(a)–(c) give the spline estimates (solid) and the corresponding

95% SCBs (dashed) for the loading functions βk(·), k = 1, 2, 3, based on

500 wild bootstrap samples. Figure 3(a) shows that the interaction effect
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between abdomen circumference and fat-free weight increases as the fat-free

weight grows, and that their interaction has the most important positive ef-

fect on body fat percentage among the selected circumferences. Figure 3(b)

represents that the interaction of chest circumference changes slightly when

the fat-free weight is less than its mean value, and decreases monotonically

when the fat-free weight exceeds its mean. In addition, their interaction

results in a negative trend with increasing body fat percentage. Figure 3(c)

shows that the interaction effect between hip circumference and fat-free

weight is nearly linear when the fat-free weight is less than zero, and shows

a decreasing trend as the fat-free weight increases. Moreover, their inter-

action has a negative influence on body fat percentage. Figure 3(d) shows

the estimated g function (solid) versus the estimated index, together with

the corresponding 95% SCBs (long dashed), as well as the response vari-

ables (scatter points). It can be seen that the estimated g function shows

an increasing trend as the estimated index ZT β̂(U) increases and that the

combination of the three selected circumferences and fat-free weight has a

positive impact on body fat percentage. The QQ plot of the residuals is

shown in Figure 3(e).



34XIN GUAN, HUA LIU, JINHONG YOU AND YONG ZHOU

−2 −1 0 1 2 3

0
1

2
3

4

u

β 1
(u

)

(a)

−2 −1 0 1 2 3

−
5

−
4

−
3

−
2

−
1

0
1

2

u

β 2
(u

)

(b)

−2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

u

β 3
(u

)

(c)

−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

index

g(
w

)

(d)

−3 −2 −1 0 1 2 3

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

QQ plot of Sample Data versus Standard Normal

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(e)

Figure 3: (a)-(c) The estimators (solid) of varying coefficient functions and the 95%

SCB (dashed) for βk, k = 1, 2, 3, respectively; (d)The spline estimators (solid), the

corresponding 95% SCBs (dashed) of index function g(·) and the response data Y (scatter

points); (e) The QQ plot of the residuals.

S6.2 Boston Housing Data

The Boston house-price data are for 506 different houses in the Boston

Standard Metropolitan Statistical Area in 1970 and include the median

value of owner-occupied homes and 13 sociodemographic variables. The aim

of using these data is to study the potential relationship between response

and predictors.
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We consider several predictors commonly used in the literature, namely,

the average number of rooms per dwelling (RM, Z1), the percentage of the

population who are of lower status (LSTA, Z2), and the full-value property

tax per $10,000 (TAX, Z3). On the other hand, we are interested in the

impact of the per capita crime rate by town (CRIM), so we take X1 = 1

as the intercept term and X2 as the logarithmic transformation of CRIM.

Chaudhuri, Doksum and Samarov (1997) and Wu, Yu and Yu (2010) found

that the effect of weighted distances to five Boston employment centers

(DIS) varies wildly at different quantiles, which motivates us to study the

dynamic interaction between DIS and other predictors.

To begin, we similarly split the data into three groups according to

the quantiles of distance, which are short-distance, medium-distance, and

long-distance groups. Then we fit each group by the single-index model

Y = g1(Z
Tβ) + g2(Z

Tβ)X2 + ε, (S6.23)

where gl(·), l = 1, 2, are unknown smooth functions, Z = (Z1, Z2, Z3)
T ,

and β = (β1, β2, β3)
T is the coefficient vector. Covariates Z are standard-

ized, and the response Y is centered around zero. Figure 2(b) shows the

estimated coefficient vectors of the three groups: short-distance (solid),

medium-distance (long dashed), and long-distance (dashed). It is worth

noting that DIS does indeed modify the interaction pattens. Therefore, we
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select U = DIS and consider the model

Y = g1(Z
Tβ(U)) + g2(Z

Tβ(U))X2 + ε, (S6.24)

where β(·) = (βk(·), 1 ≤ k ≤ 3)T . We perform the hypothesis test from

Section 4.2 with 500 wild bootstrap resamples, and we find that the test

p-value is 0.058. Thus, we reject H0 (the model (S6.23)) at a 0.1 signifi-

cance level. We choose the optimal parameters (q1, q2, K1, K2) = (3, 3, 4, 2)

according to the BIC. Figure 4 shows the resulting spline estimators (solid)

and the corresponding 95% SCBs (dashed) based on 500 wild bootstrap

samples for βk(u), k = 1, 2, 3. The R2 of the model (S6.24) is 0.8857, while

the R2 under the null hypothesis is 0.8146. The residual standard deviation

of the model (S6.24) is 3.1096.

Figure 4(a) shows that the interaction relationship between RM and

DIS becomes stronger with increasing DIS and that their combination has a

significant positive nonlinear impact on the median value of owner-occupied

homes since the 95% SCBs are above zero. Figure 4(b) shows that there is

an increasing nonlinear interaction relationship between LSTA and DIS and

that their interactions have a negative impact on the response. Figure 4(c)

shows that the interaction effect of TAX decreases with increasing DIS, and

that their interaction has a significant negative effect on the response. The

spline estimators of the index functions gl(·), l = 1, 2, and the corresponding
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Figure 4: (a)-(c) The estimators (solid) of varying coeffcient functions and the 95% SCB

(dashed) for βk(·), k = 1, · · · , 3, respectively; (d-e)The spline estimates (solid) and the

95% SCBs (dashed) for index functions gl(·), l = 1, 2; (f) The QQ plot of the residuals.

95% SCBs are depicted in Figures 4(d) and (e), respectively. Figure 4(d)

shows that there is a truly nonlinear relationship between the median value

of owner-occupied homes and the predictors, and that the combined effect of

DIS and other sociodemographic variables is monotonically increasing and

changes from negative to positive. Figure 4(e) shows that the modification

due to CRIM is altered by the admixture of other variables, and that this

influence is negative with a decreasing trend. In addition, the QQ plot of
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the residuals in Figure 4(f) shows that the model (S6.24) is a a reasonable

option for this dataset.
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