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1 Technical Appendix

Recall that

D(B0,1,B0,2) =
√
p− dτ − tr(B0,1B>0,1B0,2B>0,2),

where B0,1, B0,2 ∈ H, and H is the set containing all p× (p− dτ ) semi-orthogonal

matrices, H, i.e., H>H = Ip−dτ . We shall first state the following lemma which is

shown in Pan and Yao (2008).

Lemma 1.1. Let HD := H/D be the quotient space consisting of all equivalent classes;

that is, H1 and H2 are treated as the same element in HD if and only if D(H1,H2) =

0. The set HD and the distance function D form a metric space in the sense that D

is a well-defined distance function on HD.

We shall use Lemma 1.1 and Lemma 1.2 below for the proof of Theorem 1. Next

we shall prove Lemma 1.2.

Lemma 1.2. If X ∈ L2, then for any U, V ∈ HD and any τ ∈ (0, 1),

|Gτ (U)−Gτ (V)| ≤ c · D(U,V), (1)
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|Ĝτ (U)− Ĝτ (V)| ≤ c · D(U,V), (2)

where c > 0 is a generic constant.

Proof of Lemma 1.2. Due to the fact that U is a semi-orthogonal matrix, we

can rewrite Gτ (U) as

Gτ (U) = −E[(1(Y ≤ yτ )− τ)(1(Y
′ ≤ yτ )− τ)‖UU>X−UU>X

′‖].

Then by the Cauchy-Schwarz inequality and the fact that D(U,V)2 = 1
2
‖UU> −

VV>‖2
F and E

[
‖X−X

′‖2
]
<∞, we have

|Gτ (U)−Gτ (V)|

=
∣∣∣−E [(1(Y ≤ yτ )− τ)(1(Y

′ ≤ yτ )− τ)
{
‖UU>X−UU>X

′‖ − ‖VV>X−VV>X
′‖
}]∣∣∣

≤ E
[
(1(Y ≤ yτ )− τ)2(1(Y

′ ≤ yτ )− τ)2
]1/2

E
[{
‖UU>X−UU>X

′‖ − ‖VV>X−VV>X
′‖
}2
]1/2

≤ c · E
[{
‖(UU> −VV>)(X−X

′
)‖
}2
]1/2

≤ c · ‖UU> −VV>‖F · E
[
‖(X−X

′
)‖2
]1/2

= c ·D(U,V),

This completes the proof of (1), and (2) can be shown by using similar arguments.

♦

Proof of Theorem 1. Simple calculation yields that

Ĝτ (β0) =
−1

n2

∑
i,j

(1(Yi ≤ ŷτ )− τ)(1(Yj ≤ ŷτ )− τ)‖β>0 Xi − β>0 Xj‖

=
−1

n2

∑
i,j

(1(Yi ≤ ŷτ )− τ)(1(Yj ≤ ŷτ )− τ)Ãij,

where Ãij = aij − ai· − a·j + a··, aij = ‖β>0 Xi − β>0 Xj‖, ai· = 1
n

∑n
k=1 aik, a·j =
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1
n

∑n
l=1 alj, a·· =

1
n2

∑n
k,l=1 alk; see Section 2 in Lee and Shao (2018).

We shall show that

∣∣∣Ĝτ (β0)− G̃τ (β0)
∣∣∣→p 0, (3)

where

G̃τ (β0) =
−1

n2

∑
i,j

Ãij(1(Yi ≤ yτ )− τ)(1(Yj ≤ yτ )− τ),

which is replacing ŷτ with yτ in Ĝτ (β0).

For the ease of notation, we write Ŵi = 1(Yi ≤ ŷτ ) and Wi = 1(Yi ≤ yτ ). Due

to the fact that
∑

i Ãij =
∑

j Ãij = 0, we have

∣∣∣Ĝτ (β0)− G̃τ (β0)
∣∣∣ =

∣∣∣∣∣−1

n2

∑
i,j

Ãij

{
ŴiŴj −WiWj

}∣∣∣∣∣
≤ 1

n2

∑
i,j

C̃i,j

∣∣∣ŴiŴj −WiWj

∣∣∣ ,
where C̃i,j =

{
‖Xi −Xj‖+ 1

n2

∑
k,l ‖Xk −Xl‖

}
. Then

1

n2

∑
i,j

C̃ij

∣∣∣ŴiŴj −WiWj

∣∣∣ =
1

n2

∑
i,j

∣∣∣Ŵi −Wi

∣∣∣ ŴjC̃ij +
1

n2

∑
i,j

∣∣∣Ŵj −Wj

∣∣∣WiC̃ij

=
1

n2

∑
i,j

1(yτ<Yi≤ŷτ )ŴjC̃ij +
1

n2

∑
i,j

1(ŷτ<Yi≤yτ )ŴjC̃ij

+
1

n2

∑
i,j

1(yτ<Yj≤ŷτ )WiC̃ij +
1

n2

∑
i,j

1(ŷτ<Yj≤yτ )WiC̃ij

= In,1 + In,2 + In,3 + In,4,

where In,i, i = 1, 2, 3, 4 are defined implicitly.

Let Aδ = {ŷτ − yτ > δ}∪{ŷτ − yτ ≤ −δ}. For any ε > 0, choose 0 < δ < δ0 such
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that P (Aδ) ≤ ε/2 for large n. For any ε > 0,

P (|In,1| > ε)

≤ P (|In,1| > ε,Acδ) + P (Aδ) ≤ P (|In,1| > ε,Acδ) + ε/2

≤ P

(
1

n2

∣∣∣∣∣∑
i,j

1(yτ < Yi ≤ ŷτ ,Acδ)ŴjC̃ij

∣∣∣∣∣ > ε

)
+ ε/2

≤ 1

εn2
E

∣∣∣∣∣∑
i,j

1(yτ < Yi ≤ ŷτ ,Acδ)ŴjC̃ij

∣∣∣∣∣+ ε/2

≤ 1

εn2

∑
i,j

E[1(yτ < Yi ≤ ŷτ ,Acδ)Ŵj]
1/2E[C̃2

ij]
1/2 + ε/2

≤ cδ1/2

ε
+ ε/2. (4)

Here (4) is derived by using the fact that E[C̃2
ij] <∞, and

E[1(yτ < Yi ≤ ŷτ ,Acδ)Ŵj]

≤ cE[1(yτ < Yi1 ≤ yτ + δ)] ≤ cG2(δ0)δ.

Therefore, we choose a small δ such that

P (|In,1| > ε) ≤ ε,

which implies In,1 = op(1). Similarly, we also have In,i = op(1), i = 2, 3, 4 and

obtain (3).

Notice that G̃τ (β0) can be rewritten as

G̃τ (β0) =
(n− 1)

n

1(
n
2

)∑
i<j

H(Zi, Zj),
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where Zi = (Xi, Yi) and

H(Zi, Zj) = (1(Yi < yτ )− τ) (1(Yj < yτ )− τ)
{
−‖β>0 Xi − β>0 Xj‖

}
.

Under the assumption that X ∈ L2, we have E[H(Z,Z
′
)2] <∞. Applying Lemma

5.2.1.A (page 183) in Serfling (1980), we obtain |G̃τ (β0)−Gτ (β0)| = Op(n
−1/2), for

any fixed matrix β0 ∈ H. Furthermore, with (3), we obtain |Ĝτ (β0)−Gτ (β0)| →p 0

for any matrix β0. Since Ĝτ (β0) is equicontinuous, this implies that

supβ0∈H
|Ĝτ (β0)−Gτ (β0)| →p 0. (5)

Since (C2) in Condition 2, Lemma 1.1, Lemma 1.2, and (5) are satisfied, we obtain

the following result by applying the argmax mapping theorem (Theorem 3.2.2 and

Corollary 3.2.3) in van der Vaart and Wellner (1996). Therefore, for a fixed τ , we

have

D(B̂τ,0,Bτ,0)→p 0, as n→∞.

♦

Proof of Theorem 2. For simplicity, we assume that E(X) = 0. Let α ∈ Rp be

any vector that falls in the orthogonal complement of Σspan(B), i.e., α>ΣB = 0.

We need to show that α>E(X | 1(Y ≤ yτ )) = 0, ∀τ ∈ (0, 1) which is equivalent to

α>QMDDMX|Y (τ)α = 0, ∀τ ∈ (0, 1); see Section 4.1. For any τ ∈ (0, 1),

α>E {X | 1(Y ≤ yτ )} = α>E
[
E{X | B>X,1(Y ≤ yτ )} | 1(Y ≤ yτ )

]
= E

[
E(α>X | B>X) | 1(Y ≤ yτ )

]
,

where the last equality follows from the fact that Y X|B>X. We claim that
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E(α>X | B>X) = 0 which is equivalent to

E[{E(α>X | B>X)}2] = 0.

By the linearity condition,

E[{E(α>X | B>X)}2] = E[E({E(α>X | B>X)}X>α | B>X)]

= E[{E(α>X | B>X)}X>α]

= C>B>E[XX>]α (6)

= C>B>Σα = 0,

where C is a d-dimensional vector such that E(α>X | B>X) = C>B>X. This

completes the proof. ♦

Proof of Theorem 3. For simplicity, we still assume that E(X) = 0. Since we

consider τi = i
n
, i = 1, · · · , n − 1, we shall set yi = Y(i), where Y(i) is the i-th

smallest observation among (Yj)
n
j=1. We denote QMDDM

(i)
X|Y and ̂QMDDM

(i)

X|Y as

the QMDDM between Y and X and its sample counterpart with yi as the marginal

quantile of Y . We first show that

‖Σ̂−1 ̂QMDDM
(i)

X|Y − Σ−1QMDDM
(i)
X|Y ‖

2
2 = Op(n

−1), i = 1, · · · , n− 1. (7)

From (A.1) in Zhu, Zhu, and Feng (2010), we have the following result for all
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i = 1, · · · , n− 1.

Σ̂−1 ̂QMDDM
(i)

X|Y − Σ−1QMDDM
(i)
X|Y

= Σ−1(Σ− Σ̂)Σ̂−1

(
̂QMDDM

(i)

X|Y −QMDDM
(i)
X|Y

)
+Σ−1(Σ− Σ̂)Σ̂−1QMDDM

(i)
X|Y + Σ−1

(
̂QMDDM

(i)

X|Y −QMDDM
(i)
X|Y

)

Since ‖Σ− Σ̂‖2
2 = Op(n

−1), we focus on showing ‖ ̂QMDDM
(i)

X|Y −QMDDM
(i)
X|Y ‖2

2 =

Op(n
−1) which implies (7).

For any i = 1, · · · , n− 1, we have

‖ ̂QMDDM
(i)

X|Y −QMDDM
(i)
X|Y ‖2 ≤ ‖ ̂QMDDM

(i)

X|Y −QMDDM
(i)
X|Y ‖F

where ̂QMDDM
(i)

X|Y = −1
n2

∑n
h,l=1 XhX

>
l |1(Yh ≤ yi)−1(Yl ≤ yi)| =

[(
̂QMDDM

(i)

X|Y

)
s,t

]p
s,t=1

.

For any (s, t), we can rewrite

(
̂QMDDM

(i)

X|Y

)
s,t

as

(
̂QMDDM

(i)

X|Y

)
s,t

=
(n− 1)

n

1(
n
2

) ∑
j<m

h(Zj, Zm)

:=
(n− 1)

n
Un,

where Un is defined implicitly and

h(Zj, Zm) =
−1

2!

(j,m)∑
(v,u)

Xv,sXu,t|1(Yv ≤ yi)− 1(Yu ≤ yi)|,

with Zj = (Xj, Yj) and
∑(j,m)

(v,u) is the summation over all permutations of the 2-tuple

of indices (j,m).

7



Under the assumption that X ∈ L2, we have E[h(Z,Z
′
)2] <∞. Then by apply-

ing Lemma 5.2.1.A (page 183) in Serfling (1980) to Un, we obtain

∣∣∣∣∣
(

̂QMDDM
(i)

X|Y

)
s,t

−
(

QMDDM
(i)
X|Y

)
s,t

∣∣∣∣∣
2

= Op(n
−1),

and implies that

‖ ̂QMDDM
(i)

X|Y −QMDDM
(i)
X|Y ‖

2
F

≤
p∑

s,t=1

∣∣∣∣∣
(

̂QMDDM
(i)

X|Y

)
s,t

−
(

QMDDM
(i)
X|Y

)
s,t

∣∣∣∣∣
2

= Op(n
−1) (8)

Thus we have ‖ ̂QMDDM
(i)

X|Y −QMDDM
(i)
X|Y ‖2 = Op(n

−1/2) and obtain (7).

We let {λj,i, γj,i}pj=1 be the eigenvalues and eigenvectors of QMDDM
(i)
X|Y . Also,

we let {λ̂j,i, γ̂j,i}pj=1 be the sample counterparts. Next, we use Lemma A.1. in Kneip

and Utikal (2001) to show ‖γ̂1,i − γ1,i‖ = Op(n
−1/2) for i = 1, · · · , n− 1.

By applying part (b) of Lemma A.1. in Kneip and Utikal (2001), we have

γ̂1,i−γ1,i = −

{∑
h6=1

1

λh,i − λ1,i

γh,iγ
T
h,i

}(
Σ̂−1 ̂QMDDM

(i)

X|Y − Σ−1QMDDM
(i)
X|Y

)
γ1,i+R2,

where

‖R2‖2 ≤
6‖Σ̂−1 ̂QMDDM

(i)

X|Y − Σ−1QMDDM
(i)
X|Y ‖2

2

min
λ∈E(Σ−1QMDDM

(i)
X|Y ),λ 6=λ1,i

|λ− λ1,i|2
= Op(n

−1),
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and E(A) denotes the set of eigenvalues of a matrix A. By using (7),

∥∥∥∥∥−
{∑
h6=1

1

λh,i − λ1,i

γh,iγ
>
h,i

}(
Σ̂−1 ̂QMDDM

(i)

X|Y − Σ−1QMDDM
(i)
X|Y

)
γ1,i

∥∥∥∥∥
2

=
∑
h6=1

{
γ>h,i

(
Σ̂−1 ̂QMDDM

(i)

X|Y − Σ−1QMDDM
(i)
X|Y

)
γ1,i

}2

(λh,i − λ1,i)2
= Op(n

−1).

Hence, we have

‖γ̂1,i − γ1,i‖ = Op(n
−1/2) for all i = 1, · · · , n− 1. (9)

Finally, we show that

‖Γ̂− Γ‖2 = Op(n
−1/2). (10)

Based on the definition of Γ̂, we have

Γ̂− Γ =
1

n
V̂ V̂ > − 1

n
V V > +

1

n
V V > − Γ (11)

= Jn,1 + Jn,2,

where V = (γ1,1, · · · , γ1,n−1) ∈ Rp×n−1 and V̂ = (γ̂1,1, · · · , γ̂1,n−1) ∈ Rp×n−1, Jn,1 =

1
n
V̂ V̂ > − 1

n
V V >, and Jn,2 = 1

n
V V > − Γ.

Using (9), we obtain

‖Jn,1‖2
2 ≤ ‖Jn,1‖2

F ≤
c

n2
‖V̂ (V̂ − V )>‖2

F +
c

n2
‖(V̂ − V )V >‖2

F ≤ Op(n
−1), (12)

where c > 0 is a constant. Furthermore, since Γ(τ) satisfies (D2) in Condition 3, we

apply Theorem 1 (c) in Chui (1971) to Jn,2 and obtain ‖Jn,2‖2 ≤ ‖Jn,2‖F = o(n−1)
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which implies (10). Then by using the same argument showing (9), we have

‖η̂j − ηj‖ = Op(n
−1/2), j = 1, · · · , d.

For the eigenvalues, we apply part (a) of Lemma A.1. in Kneip and Utikal

(2001). Then we have

ν̂j − νj = tr
(
ηjη

T
j {Γ̂− Γ}

)
+R1 for j = 1, · · · , d, (13)

where

|R1| ≤
6‖Γ̂− Γ‖2

2

minν∈E(Γ),ν 6=νj |ν − νj|
= Op(n

−1). (14)

As we further have
∣∣∣tr (ηjηTj {Γ̂− Γ}

)∣∣∣ ≤ ‖Γ̂− Γ‖2 = Op(n
−1/2), we obtain

ν̂j − νj = Op(n
−1/2) for j = 1, · · · , d.

This completes the proof. ♦

2 Additional Simulation

Following the suggestion of a referee, we consider models with infinite variance noise.

Example 2.1.

Y = 3x1 + x2 + ε,

where X = (x1, · · · , xp) is independently generated from standard normal distribu-

tion and ε is generated by Cauchy(0, 0.25). For a given τ , Bτ = (3, 1, 0, · · · , 0)T/
√

10.
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Table 1: Simulation results for the central τ−th quantile subspace estimation for
Example 2.1. Reported results are mean(standard deviation) of the trace corre-
lation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.97 (0.02) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.97 (0.02) 0.99 (0.01)

10 0.94 (0.04) 0.97 (0.01) 0.96 (0.02) 0.98 (0.01) 0.94 (0.03) 0.97 (0.01)

QOPG

ch = 0.7
5 0.99 (0.01) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00)

10 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.00) 0.98 (0.01) 0.99 (0.00)

ch = 1.5
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

10 0.99 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.00) 1.00 (0.00)

ch = 2.34
5 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

10 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

SIQR

ch = 0.7
5 0.45 (0.29) 0.38 (0.26) 0.45 (0.28) 0.39 (0.26) 0.45 (0.29) 0.39 (0.26)

10 0.40 (0.30) 0.35 (0.29) 0.41 (0.29) 0.37 (0.29) 0.40 (0.30) 0.35 (0.29)

ch = 1.5
5 0.41 (0.30) 0.34 (0.28) 0.41 (0.29) 0.34 (0.27) 0.42 (0.30) 0.35 (0.28)

10 0.36 (0.31) 0.31 (0.30) 0.37 (0.31) 0.31 (0.30) 0.36 (0.31) 0.31 (0.30)

ch = 2.34
5 0.39 (0.30) 0.33 (0.28) 0.40 (0.30) 0.33 (0.28) 0.40 (0.30) 0.33 (0.28)

10 0.34 (0.32) 0.29 (0.31) 0.34 (0.32) 0.30 (0.31) 0.34 (0.32) 0.29 (0.31)

Example 2.2.

Y =
√
x1 + 1 +

√
x2 + 1 + ε,

where X = (x1, · · · , xp) is generated by χ2(2), and ε is from Cauchy(0, 0.25). Here

Bτ = (β1, β2), where β1 = (1, 0, · · · , 0)> and β2 = (0, 1, 0, · · · , 0)>.
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Table 2: Simulation results for the central τ−th quantile subspace estimation for
Example 2.2. Reported results are mean(standard deviation) of the trace corre-
lation from 100 replications.

τ = 0.25 τ = 0.5 τ = 0.75

Method p n = 200 n =400 n = 200 n =400 n = 200 n =400

QMDD
5 0.82 (0.10) 0.90 (0.07) 0.89 (0.07) 0.94 (0.04) 0.89 (0.08) 0.95 (0.04)

10 0.68 (0.13) 0.79 (0.09) 0.80 (0.09) 0.89 (0.06) 0.80 (0.10) 0.88 (0.06)

QOPG

ch = 0.7
5 0.58 (0.12) 0.61 (0.12) 0.57 (0.10) 0.62 (0.14) 0.59 (0.12) 0.60 (0.11)

10 0.43 (0.10) 0.50 (0.07) 0.45 (0.08) 0.51 (0.07) 0.45 (0.10) 0.50 (0.07)

ch = 1.5
5 0.61 (0.13) 0.62 (0.13) 0.63 (0.14) 0.66 (0.14) 0.64 (0.15) 0.64 (0.14)

10 0.50 (0.07) 0.52 (0.05) 0.53 (0.07) 0.56 (0.09) 0.52 (0.08) 0.56 (0.09)

ch = 2.34
5 0.62 (0.13) 0.64 (0.15) 0.69 (0.15) 0.74 (0.16) 0.71 (0.16) 0.69 (0.15)

10 0.51 (0.06) 0.52 (0.04) 0.56 (0.08) 0.60 (0.10) 0.57 (0.11) 0.62 (0.12)

MIQR

ch = 0.7
5 0.59 (0.18) 0.60 (0.16) 0.63 (0.17) 0.62 (0.17) 0.58 (0.16) 0.59 (0.17)

10 0.41 (0.16) 0.43 (0.17) 0.46 (0.14) 0.49 (0.16) 0.40 (0.15) 0.42 (0.18)

ch = 1.5
5 0.57 (0.15) 0.58 (0.16) 0.58 (0.15) 0.57 (0.16) 0.57 (0.15) 0.57 (0.18)

10 0.42 (0.16) 0.41 (0.16) 0.42 (0.13) 0.45 (0.15) 0.39 (0.15) 0.41 (0.15)

ch = 2.34
5 0.56 (0.17) 0.56 (0.15) 0.54 (0.14) 0.56 (0.17) 0.53 (0.13) 0.53 (0.16)

10 0.39 (0.15) 0.40 (0.16) 0.39 (0.14) 0.40 (0.15) 0.36 (0.14) 0.38 (0.14)

From Table 1, it shows that our method and the QOPG approach provide accu-

rate estimates of the central quantile subspace and outperform the SIQR method.

From Table 2, we observe that our approach produce more accurate results than the

other existing methods in terms of a higher trace correlation.

3 Additional Figure

Below is the sufficient summary plots for the estimated directions of the central

τth-quantile subspace applying QMDD-based approach for the riboflavin data set

when g = 10.
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Figure 1: Sufficient summary plots of the central τth-quantile subspace for QMDD-based ap-
proach with g = 10. The solid lines refer to the local quantile regressions for each quantile.
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