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Abstract: Detecting the interaction effects among the predictors on the response

variable is a crucial step in numerous applications. We first propose a simple

method for sure screening interactions (SSI). Although its computation complex-

ity is O(p2n), the SSI method works well for problems of moderate dimensionality

(e.g., p = 103 ∼ 104), without the heredity assumption. For ultrahigh-dimensional

problems (e.g., p = 106), motivated by a discretization associated Boolean repre-

sentation and operations and a contingency table for discrete variables, we propose

a fast algorithm, called “BOLT-SSI.” The statistical theory is established for SSI

and BOLT-SSI, guaranteeing their sure screening property. We evaluate the perfor-

mance of SSI and BOLT-SSI using comprehensive simulations and real case studies.

Our numerical results demonstrate that SSI and BOLT-SSI often outperform their

competitors in terms of computational efficiency and statistical accuracy. The pro-

posed method can be applied to fully detect interactions with more than 300,000

predictors. Based on our findings, we believe there is a need to rethink the rela-

tionship between statistical accuracy and computational efficiency. We have shown

that the computational performance of a statistical method can often be greatly im-

proved by exploring the advantages of computational architecture with a tolerable

loss of statistical accuracy.

Keywords: Discretization, package “BOLTSSIRR”, sure independent screening for

interaction detection, trade-off between statistical efficiency and computational

complexity, ultra-high dimensionality.

1. Introduction

In the past two decades, numerous innovative algorithms have been pro-

posed to address the computational challenges of statistical inference in high-

Corresponding author: Mingwei Dai, Center of Statistical Research and School of Statistics, South-
western University of Finance and Economics, Chengdu, Sichuan 610074, China. E-mail: daimw@
swufe.edu.cn.

https://doi.org/10.5705/ss.202020.0498
mailto:daimw@swufe.edu.cn
mailto:daimw@swufe.edu.cn


2328 ZHOU ET AL.

dimensional problems. However, there still exists a gap between established

statistical theory and the computational performance of these algorithms. On

the one hand, many statistical models can deal with high-dimensional problems

under some theoretically mild conditions, but their computational cost becomes

too expensive to be affordable when the dimensionality becomes extremely large.

On the other hand, to address many real problems, some algorithms are not de-

veloped in a principled way, leading to computational results without statistical

guarantees. As argued by Chandrasekaran and Jordan (2013), there is a great

need to rethink the relationship between statistical accuracy and computational

efficiency.

To bridge this gap, most studies focus on reducing the theoretical complexity

of an algorithm or simply use parallel computing to speed it up, without taking

advantage of the computational architecture. In fact, the computational per-

formance of statistical models can often be greatly improved by designing new

data structures or using hardware acceleration (e.g., graphical processing units

for training deep neural networks). Here, we use the interaction detection prob-

lem in high-dimensional models to show that it is possible to design statistically

guaranteed algorithms by taking advantage of the computational architecture.

1.1. Interaction effect detection

The Oxford English Dictionary defines the word “interaction” as a reciprocal

action or influence of persons or things on each other. It is a relationship between

two or more objects that have a mutual influence on one another. There is a long

history of investigating interaction effects in different scientific fields (Wang and

Chen (2020)). For example, in physical chemistry, the main topics are interac-

tions between atoms and molecules. A simple example in the real world is that of

carbon and steel. Neither has much effect on the strength, but the combination of

the two has substantial effects. In medicine and pharmacology, the interaction ef-

fects of multiple drugs have been widely observed (Lees, Cunningham and Elliott

(2004)). In genomics, gene-gene interactions and gene-environment interactions

have been widely studied by bio-medical researchers since the seminal work of

Bateson (1909). In recent years, there has been increasing interest on detecting

gene-gene interactions from genome-wide association studies (GWAS) (Cordell

(2009); Wang and Chen (2018)).

Here, we investigate interaction effects from a statistical perspective, where

an interaction effect is characterized by a statistical departure from the addi-

tive effects of two or more factors (see Fisher (1918); Cox (1984)). In a high-

dimensional regression framework, it is common to use products of explanatory
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variables to study the interaction effects of the explanatory variables on the re-

sponse variables. Consider three explanatory variables Xi, Xj , and Xk with

two-way interaction terms XjXk, XiXj , and XiXk. After including these inter-

action terms, the standard linear regression model becomes Y = β0+
∑p

i=1 βiXi+∑
1≤j<k≤p βjkXjXk+ε, where Y is the response variable, β0 is the intercept term,

βi is the coefficient of the main effect term Xi, βjk is the coefficient of the inter-

action term XjXk, and ε is an independent error. In high-dimensional data, the

number of variables p can be much larger than the sample size n. Clearly, the

number of parameters to be determined is p+p(p−1)/2 if all two-way interaction

terms are included. For example, a GWAS may include millions of genotyped ge-

netic variants, that is, p ≈ 106. The number of interaction terms is of the order

of 1012. In this case, the computational cost of detecting such interaction effects

becomes unaffordable, making theoretical guarantees with mild conditions (e.g.,

sparsity assumptions) useless.

To reduce the computational cost, methods often make two types of heredity

assumptions. The strong heredity assumption means that the interaction effect is

important only if both parents are significant, and the weak heredity assumption

states that the interaction term is important only if at least one of its parents is

included in the model. Choi, Li and Zhu (2010) extended the LASSO method to

identify the significant interaction terms in a linear model and generalized linear

models (GLMs) under the strong heredity assumption. They proved that their

method possesses the oracle property (Fan and Li (2001); Fan and Peng (2004)),

that is, it performs as though the true model was known in advance. The al-

gorithm hierNet was developed by Bien, Taylor and Tibshirani (2013) to select

interactions. They added a set of convex constraints to the LASSO in the lin-

ear model and constructed a sparse interaction model using the strong and weak

heredity assumptions. For the linear model, Hao and Zhang (2014) proposed two

algorithms, iFORT and iFORM, identifying the interaction effects in a greedy

fashion under the heredity assumption. Lim and Hastie (2015) introduced the

method “glinternet” for learning pairwise interactions in a linear regression or lo-

gistic regression model with a strong hierarchy constraint. Hao, Feng and Zhang

(2018) improved the interaction detection by proposing a regularization algorithm

under the marginality principle (RAMP). The “backtracking” method was devel-

oped by Shah (2016). It can be incorporated into many existing high-dimensional

methods based on penalty functions, and works by iteratively building increasing

sets of candidate interactions. She, Wang and Jiang (2018) proposed a group

regularized estimation under a structural hierarchy about variable selection for

models that include interactions. They provided the minimax lower bounds for
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strong and weak hierarchical variable selection, and showed that the proposed

estimators enjoy sharp rate oracle inequalities. Deviating from these heredity

assumptions for interaction detection, Fan et al. (2016) (Li et al. (2021)) sug-

gested a flexible sure screening procedure, called the interaction pursuit (IP),

in ultrahigh-dimensional linear interaction models. The IP method selects the

“active interaction variables” by first screening significant predictor variables us-

ing the strong Pearson correlation between X2
j and Y 2, and then detecting the

interaction effects between the identified active interaction variables. The IP

method is a good attempt to detect pure interaction effects in a model. Kong

et al. (2017) extended the IP method to the ultrahigh-dimensional linear interac-

tion model with multiple responses by identifying the active interactive variables

using the distance correlation with X2
j and the multiple response Y 2, where

Y = (Y1, . . . , Yq) is a q-dimensional vector of responses and Y 2 = (Y 2
1 , . . . , Y

2
q ).

However, the heredity assumption may not be satisfied in practice because of

the existence of pure interaction effects. In human genetics, many gene-gene inter-

action effects have been detected in the absence of main effects (Cordell (2009);

Wan et al. (2010)). For instance, Ritchie et al. (2001) detected pure epistatic

interactions among two or more loci in relatively small samples for common com-

plex multifactorial human diseases. They proposed the method MDR to identify

interactions, and applied it to a real-data example (sporadic breast cancer case-

control data set) to demonstrate the existence of pure interactions. Culverhouse

et al. (2002) discussed interaction models without main effects, and examined

pure epistatic interactions with loci that did not display any single-locus effects.

Cordell (2009) discussed detecting gene-gene interactions that underlie human

diseases, and indicated that many existing methods miss pure interactions in the

absence of main effects. In real applications, methods without the heredity con-

straint enjoy better flexibility and are more suitable for models with pure epistatic

interactions. This motivated new methods of detecting interactions without any

heredity assumptions. For example, Fan et al. (2015) proposed a two-stage proce-

dure “IIS-SQDA” for detecting important interactions for two-class classification

with possibly unequal covariance matrices in a high-dimensional setting. Li and

Liu (2019) considered stepwise conditional likelihood variable selection for dis-

criminant analysis (SODA) to detect both main and quadratic interaction effects

in logistic regression and quadratic discriminant analysis models. Tang, Fang and

Dong (2020) proposed a method for detecting the interaction effects in regression

problems using a one-step penalized M-estimator, and used an ADMM-based al-

gorithm to solve the estimator efficiently. A new algorithm xyz based on random

projection was introduced by Thanei, Meinshausen and Shah (2018) to screen in-
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teraction effects. This algorithm does not rely on the heredity assumption. Thus,

it can detect interaction effects in the absence of corresponding main effects. How-

ever, based on our empirical observations, its performance in real applications is

not entirely satisfactory, because its accuracy when detecting interaction effects

depends largely on the number of random projections. However, we still lack

computationally efficient algorithms with statistically guaranteed performance

for interaction detection. The aforementioned methods were all developed under

a linear or a logistic regression framework.

1.2. Our contribution

Our contribution is to develop a computationally efficient and statistically

guaranteed method for interaction detection in high-dimensional problems:

a. We propose a new sure screening procedure (SSI) based on the increment

of the log-likelihood function to fully detect significant interactions in high-

dimensional GLMs. Furthermore, to reduce the computational burden, we

take advantage of computer architecture such as parallel techniques and

Boolean operations to construct a more computationally efficient algorithm,

BOLT-SSI, and detect interaction effects in a large-scale data set. For exam-

ple, for the data set Northern Finland Birth Cohort (NFBC) with n = 5,123

individuals and p = 319,147 SNPs, the number of interactions is about

5× 1010. BOLT-SSI can quickly screen all these interactions within a short

time; see Section 6.

b. We investigate the sure screening properties of SSI and BOLT-SSI from

theoretical insights, and show that our computationally efficient methods

are statistically guaranteed. We provide implementations of both the core

SSI algorithm and its extension BOLT-SSI in the R package BOLT-SSI,

available on the authors’ website (https://github.com/daviddaigithub/

BOLTSSIRR).

c. More importantly, our work is a practical attempt to integrate the ad-

vantages of well-designed computer architecture and statistically rigorous

methodology to promote the application of computational structure in sta-

tistical modeling and practice, especially in the era of “big data”. We hope

this example motivates more combinations of statistical methods and com-

putational techniques, greatly improving the computational performance of

statistical methods.

The rest of this paper is organized as follows. In Sections 2 and 3, we pro-

https://github.com/daviddaigithub/BOLTSSIRR
https://github.com/daviddaigithub/BOLTSSIRR
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pose the sure screening algorithms SSI and BOLT-SSI for detecting interactions

in a ultrahigh-dimensional generalized linear regression model, where we briefly

introduce the Boolean representation and operations. The theoretical proper-

ties of sure screening for the proposed methods are investigated in Section 4. In

Section 5, we examine the finite-sample performance of SSI and BOLT-SSI com-

pared with that of the alternative methods RAMP, xyz-algorithm, and IP using

simulation studies. In Section 6, three real data sets are used to demonstrate

the utility of our approaches. Our findings and conclusions are summarized in

Section 7. All proofs are available in the Supplementary Material.

2. Sure Screening Methods for Interaction in GLM

2.1. GLMs with two-way interaction

Assume that given the predictor vector x, the conditional distribution of the

random variable Y belongs to an exponential family, with a probability density

function that has the canonical form fY |x(y|x) = exp[yθ(x) − b{θ(x)} + c(y)],

where b(·) and c(·) are some known functions and θ(x) is a canonical natural

parameter. Here, we ignore the dispersion parameter φ in the canonical form,

because we concentrate on the estimation of the mean regression function. It is

well known that the exponential family includes the binomial, Gaussian, gamma,

inverse-Gaussian and Poisson distributions.

We consider the following GLM with two-way interactions:

E(Y |X) = b′{θ(X)} = g−1

β0 +

p∑
i=1

βiXi +
∑
i<j

βijXiXj

 (2.1)

for the canonical link function g−1(·) = b′, with θ(X) = β0 +
∑p

i=1 βiXi +∑
i<j βijXiXj=̂β0+

∑p
i=1 βiXi+

∑
i<j βijXij , whereX = (XT

C ,X
T
I )T withXC =

(X0, X1, X2, X3, . . . , Xp)
T and XI = (X12, X13, . . . , X(p−1)p)

T . For simplicity,

we assume that X0 = 1 and each of the other predictor variables is standardized

with zero mean and unit variance. The corresponding sets of coefficients are

βC = (β0, β1, β2, . . . , βp)
T ∈ Rp and βI = (β12, β13, . . . , β(p−1)p)

T ∈ Rq, where

q =
(
p
2

)
= p(p− 1)/2.

In a ultrahigh-dimensional regression model, we usually assume there is a

sparse structure in the underlying model. This means that only a few of predic-

tor variables or features are significantly correlated with the response Y . Hence,

for the above model with two-way interactions, we assume there are only a small

number of interactions contributing to the response Y . Denote the true param-
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eter β? = (β?C
T ,β?I

T )T , where β?C = (β?0 , β
?
1 , β

?
2 , . . . , β

?
p)T ∈ Rp+1 for the main

effects, and β?I = (β?12, β
?
13, . . . , β

?
(p−1)p)

T ∈ Rq with q =
(
p
2

)
= p(p− 1)/2 for the

interactions. Let N? = {(i, j) : β?ij 6= 0, 1 ≤ i < j ≤ p} and sn = |N?|. Then, the

nonsparsity size sn is a relative small number compared with the dimension p of

the model.

2.2. SSI for two-way interaction in GLM

The model (2.1) can be simply rewritten in the ordinary generalized linear

regression model form E(Y |X) = b′(θ(X)) = g−1(XTβ). Fan, Samworth and

Wu (2009) suggested selecting the important variables by sorting the marginal

likelihood, and Fan and Song (2010) pointed out that this technique can be

considered as marginal likelihood ratio screening, which builds on the difference

between two marginal log-likelihood functions. If we regard the interaction vari-

able Xij the same as the other main effects from the predictor variables Xi, Xj ,

by considering the marginal likelihood of (Xij , Y ), we could directly apply the

sure screening techniques of Fan, Samworth and Wu (2009) and Fan and Song

(2010) to detect the significant interaction effects. However such a direct screen-

ing method ignores the main effects of Xi and Xj , as argued by Jaccard, Wan

and Turrisi (1990), often leading to false discoveries for the pure significant in-

teraction effects. Hence, we consider the following sure screening procedure to

detect pure interaction effects in the model (2.1).

The random samples {(X(k), Y (k), k = 1, . . . , n} are independent and iden-

tically distributed (i.i.d.) from the model (2.1) with the canonical link. Let

Xij = (1, Xi, Xj , Xij)
T and Xi,j = (1, Xi, Xj)

T . Their coefficients are ex-

pressed as βij = (βij0, βi, βj , βij)
T and βi,j = (βi,j0, βi,, βj,)

T , respectively. The

first step of the sure screening procedure for detecting the interaction effects

(SSI) is to calculate the maximum marginal likelihood estimator β̂
M

ij using the

minimizer of the marginal regression β̂
M

ij = argminβ
ij

Pn{l(XT
ijβij , Y )}, where

l(θ, Y ) = b(θ)− θY − c(Y ) and Pnf(X, Y ) = n−1
∑n

k=1 f(X
(k)
i , Y

(k)
i ) is the em-

pirical measure. Similarly, we can calculate the maximum marginal likelihood

estimator β̂
M

i,j without the interaction effect using the minimizer of the marginal

regression β̂
M

i,j = argminβ
i,j

Pn{l(XT
i,jβi,j , Y )}.

Correspondingly, let the population version of the above minimizers of the

marginal regressions be βMij = argminβ
ij

E{l(XT
ijβij , Y )} and βMi,j = argminβ

i,j

E{l(XT
i,jβi,j , Y )}. In fact, the coefficient βMij measures the importance of the

interaction terms from population insight. Though the real joint regression

parameter β?ij is not the same as the marginal regression coefficient βMij , we
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still expect that, under mild conditions, |βMij | or the increment of the marginal

log-likelihood function L?ij = E{l(XT
i,jβ

M
i,j , Y ) − l(XT

ijβ
M
ij , Y )} is large, if and

only if |β?ij | is large. Hence, the second step of the SSI procedure is to cal-

culate the increment of the empirical maximum marginal likelihood function,

Lij,n = Pn{l(XT
i,jβ̂

M

i,j , Y )− l(XT
ijβ̂

M

ij , Y )} and Ln = (L12,n, . . . , L(p−1)p,n)T ∈ Rq

. Then, Lij,n measures the strength of the interaction Xij in the marginal model

from the empirical version. A larger Lij,n, similarly to L∗ij , indicates that the in-

teraction Xij contributes more to the response Y . The final step of the SSI proce-

dure is to sort the vector Ln in decreasing order, and given the threshold value γn,

to select the interaction effect variables N̂γn = {(i, j) : Lij,n ≥ γn, 1 ≤ i < j ≤ p}
as the final candidates of the significant pure interaction effects.

Under regularized conditions and similarly to the classical approach, it is not

difficult to show that SSI has the so-called “sure screening properties.” Therefore,

we relegate investigations of the SSI properties to the Supplementary Material.

From practical insight, the proposed SSI procedure’s computational complexity

is O(p2n). When p is of moderate size (103 − 104), SSI can quickly screen all

interaction terms. It can be accelerated further using parallel computing, because

all the interaction terms can be evaluated independently.

3. BOLT-SSI

Despite the simplicity of SSI, it cannot be scaled up to handle the case that

the dimensionality p is very large, for example, p = 106. In such a scenario, as

in other methods, we can impose similar uncheckable heredity assumptions to

shrink the screening space of SSI to detect the interaction effects. However for

such an approach, some significant interaction effects may never be discovered.

Hence, even with enough large observational samples, the method’s efficiency

could still be worst. The other approach is to use a rough, but fast algorithm

or calculation method to approximate and accelerate SSI’s speed to deal with

ultrahigh-dimensional scenarios. From a theoretical perspective, this would not

decrease the original SSI algorithm’s complexity and has to sacrifice SSI stability.

Such an approach would not lose much information about the data or miss essen-

tial discoveries. In particular, because the number of observations is sufficiently

large, such an approach’s statistical efficiency could be satisfied by the require-

ments of real applications. This is the trade-off between statistical efficiency and

computational efficiency.

Using the computer’s computational architecture, we follow the second ap-

proach and present a computationally efficient algorithm named “BOLT-SSI”
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for detecting interactions in ultrahigh-dimensional problems. The BOLT-SSI al-

gorithm is motivated by the following fact: when Xj , Xk, and Y are discrete

variables, the interaction effects of Xj and Xk on Y measured by a logistic re-

gression can be calculated exactly based on a few numbers in the contingency

table of Xj , Xk, and Y . These numbers can be obtained efficiently by designing

a new data structure and its associated operations, that is, a Boolean represen-

tation and Boolean operations. To handle continuous or countable variables, we

propose discretization first, and then use the above strategy for screening. This

section describes the BOLT-SSI algorithm, and the next section establishes the

statistical theory that guarantees its performance.

3.1. Equivalence between logistic models and log-linear models

When all predictors and the response are categorical variables, we usually

take the logistic model (for a binary response) or baseline-category logit models

(for a response with several categories) to fit the data set. Actually, the logistic

regression models or baseline-category logit models have corresponding log-linear

regression models for the contingency table when the predictor and the response

are categorical (see Agresti and Kateri (2011), Chapter 9, Section 9.5). Based

on this equivalence, the significance of the interaction effects can be measured by

the increment of the corresponding log-linear regression models.

We consider the following two logistic models with main effects and the full

model: logit{P (Y = 1|X,Z)} = β0 + βXi + βZj and logit{P (Y = 1|X,Z)} =

β0 + βXi + βZj + βXZij . Denote l̂M and l̂F as the sample versions of the negative

maximum log-likelihood for the above logistic regression models with main effects

and the full model, respectively. The increment of the log-likelihood function

is defined as l̂M − l̂F . The corresponding log-linear regression models can be

expressed as the homogeneous association regression model log(µijk) = λ+λXi +

λZj +λYk +λXZij +λXYik +λZYjk and the saturated model log(µijk) = λ+λXi +λZj +

λYk +λXZij +λXYik +λZYjk +λXZYijk . Let l̂H and l̂S be the sample version of the negative

maximum log-likelihood for the homogeneous association regression model and

the saturated model, respectively. l̂H − l̂S is the corresponding increment of the

log-likelihood function. Thus, we can take advantage of l̂H − l̂S to screen the

interaction terms instead of using l̂M − l̂F .

Now, we want to obtain the difference l̂H − l̂S . Suppose that we have one

three-way (I × J × K) table with cell counts {nijk} of random variables X,

Z, and Y . The kernel of the log-likelihood function for this contingency table

is L(µ) =
∑

ijk nijk log(µijk) −
∑

ijk µijk. Denote that πi++ =
∑

jk πijk is the
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marginal probability of X = i and ni++ =
∑

jk nijk is the number of samples

with X = i, and πij+ =
∑

k πijk is the marginal probability of X = i and Z = j

and nij+ =
∑

k nijk is the corresponding count. Similarly, π+j+ =
∑

ik πijk,

π++k =
∑

ij πijk, πi+k =
∑

j πijk, ni+k =
∑

j nijk, π+jk =
∑

i πijk, n+j+ =∑
ik nijk, n++k =

∑
ij nijk, and n+jk =

∑
i nijk.

For the saturated model, we know that µ̂ijk = nijk and directly get the

estimation l̂S =
∑

ijk nijk log(nijk)−
∑

ijk nijk. For the homogeneous association

regression model, the iterative proportional fitting (IPF) algorithm Deming and

Stephan (1940) is used to calculate the estimate of uijk efficiently. Three steps are

included in the first cycle of the IPF algorithm: µ
(1)
ijk = µ

(0)
ijk(nij+/µ

(0)
ij+), µ

(2)
ijk =

µ
(1)
ijk(ni+k/µ

(1)
i+k), and µ

(3)
ijk = µ

(2)
ijk(n+jk/µ

(2)
+jk), where µij+ =

∑
k µijk, and µi+k =∑

j µijk, µ+jk =
∑

i µijk. This cycle does not stop until the process converges.

The convergence property has been proved by Fienberg (1970) and Haberman

(1974). We count the number nijk by using the Boolean representation. Thus,

the contingency table for X and Z given Y can be constructed in a fast manner.

In this way, we obtain the estimation l̂H .

Consequently, we can take advantage of this equivalence to efficiently esti-

mate the corresponding increment of the log-likelihood function using the IPF

algorithm when the predictors and the response are qualitative. If some variables

are continuous, we can discretize them; see the next section. In Section 4, we

show that our algorithm is still statistically guaranteed after discretization.

She and Tang (2019) revisited the IPF, showing that it can be modified

slightly to deliver coefficient estimates. They also discovered an interesting con-

nection between the IPF and majorization-minimization (MM) algorithms, and

employed state-of-the-art optimization techniques to develop highly scalable IPF

algorithms (IPS) (without using parallel computation). We do not use this version

of the IPS algorithms because we consider a simple model with two main effects

and one interaction term. However, it is possible to accelerate our algorithm by

replacing the original IPF algorithm with the new IPS algorithm.

3.2. Discretization

If some of the predictors and/or response are continuous or countable, we

suggest discretizing them, simply binned by equal width or frequency. Con-

sidering the variation of random observations, it is more reasonable to use the

equal-frequency method by quantiles to split the domain of variables into several

intervals. The number of intervals is called the “arity” in the discretization con-

text (Liu et al. (2002)). Assume that the arity is denoted by l, and then l − 1 is
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the maximum number of cut-points of the continuous features.

We follow the assumption of Fan and Song (2010), and consider variable

or feature selection of the following GLM: Y = b′(XTβ) + ε, where X =

(X1, X2, . . . , Xp)
T is a p×1 random vector, β = {β1, β2, . . . , βp} is the param-

eter vector, Y is the response, b′(·) is the canonical link function, and we assume

thatM? = {1 ≤ k ≤ p : βk 6= 0} is the set of indices of nonzero parameters. De-

fine the marginal log-likelihood increment L?k = E{l(βM0 , Y ) − l(XT
k β

M
k , Y )},

for k = 1, 2, . . . , p, where βM0 = argminβ0
El(β0, Y ), XT

k = {1, Xk}, βMk =

{βk,0, βMk }T , and βMk = argminβ
k

El(XT
k βk, Y ). Furthermore, E(Y ) = E(Xk) =

0 and E(Y 2) = E(X2
k) = 1, for k = 1, 2, . . . , p. Let ρk = Corr(Y,Xk) and

(Y1, X1k), (Y2, X2k) be independent copies of (Y,Xk).

Assume that SXk and SY are the support sets of the variables Xk and Y ,

respectively. Denote that {PXk

i }li=1 and {P Yj }mj=1 are partitions of their sup-

ports, which means that
⋃l
i=1 P

Xk

i = SXk and PXk

i1

⋂
PXk

i2
= ∅ for i1 6= i2,

and
⋃m
j=1 P

Y
j = SY and P Yj1

⋂
P Yj2 = ∅ for j1 6= j2, where l and m are

two positive constants. Here, the l-quantiles and m-quantiles are considered as

break points for the partitions of the variables Xk and Y . Define X̃k = i − 1 if

Xk ∈ PXk

i , for i = 1, . . . , l, and Ỹ = j − 1 if Y ∈ P Yj , for j = 1, . . . ,m. Then,

the variables Xk and Y are discretized into two categorical variables, X̃k and

Ỹ , respectively. Furthermore, denote that X̃ki = I(Xk ∈ PXk

i ), for 1 ≤ i ≤ l,

and Ỹj = I(Y ∈ P Yj ), for 1 ≤ j ≤ m, where I(·) is the indicator function. Af-

ter discretization, we have the new increment of the log-likelihood function as

L̃?k = E{l(β̃M0 , Ỹ )− l(X̃
T

k β̃
M

k , Ỹ )}, for k = 1, 2, . . . , p.

Now, we consider the discretization for the marginal model with the interac-

tion effect. Assume that SXi , SXj , and SY are the support sets of the variablesXi,

Xj , and Y , respectively. Denote that {PXi
s }

l1
s=1, {PXj

t }
l2
t=1, and {P Yk }mk=1 are par-

titions of their supports, which means that
⋃l
s=1 P

Xi
s = SXi and PXi

s1

⋂
PXi
s2 = ∅

for s1 6= s2,
⋃l
t=1 P

Xj

t = SXj and P
Xj

t1

⋂
P
Xj

t2 = ∅ for t1 6= t2, and
⋃m
k=1 P

Y
k = SY

and P Yk1
⋂
P Yk2 = ∅ for k1 6= k2, where l1, l2, and m are positive constants. Here,

we still consider the l1-quantiles, l2-quantiles, and m-quantiles as the break points

for the partitions of the variables Xi, Xj , and Y , respectively. Define X̃i = s−1 if

Xi ∈ PXi
s , for s = 1, . . . , l1, and X̃j = t−1 if Xj ∈ PXj

t , for t = 1, . . . , l2. Further-

more, denote that X̃ij = u− 1 for u = 1, . . . , l1 ∗ l2, if Xi ∈ PXi
s and Xj ∈ PXj

t .

In addition, we define the discretized response Ỹ as Ỹ = j − 1 if Y ∈ P Yj , for

j = 1, . . . ,m. Hence, we have the new categorical predictor X̃i, X̃j , and the

response Ỹ . We also get the new interaction variable X̃ij . Furthermore, denote

that X̃ij
st = I({Xi ∈ PXi

s }
⋂
{Xj ∈ P

Xj

t }), for 1 ≤ s ≤ l1, 1 ≤ t ≤ l2, and
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Ỹj = I(Y ∈ P Yj ), for 1 ≤ j ≤ m, where I(·) is the indicator function. After

discretization, the new increment of the log-likelihood function in the population

version is defined as L̃?ij = E{l(X̃
T

i,jβ̃
M

i,j , Ỹ )− l(X̃
T

ijβ̃
M

ij , Ỹ )}, 1 ≤ i < j ≤ p.

Remark 1. Actually, there is a trade-off between the arity l and the accuracy of

the screening procedures. Higher arity leads to a more accurate sure screening.

However, when the sample size of the data is large enough, a relatively small arity

l can also guarantee the accuracy of the screening procedure, from our theoret-

ical investigation and numerical studies. Hence, large li for different continuous

features Xi can also be used. We recommend using l = 2, 3 for the trade-off

between the computational burden and the efficiency of the model estimation

for our proposed BOLT-SSI when the sample size of the data is relatively large.

Furthermore, if Y is a continuous response, we suggest using the two-quantile

(median) to split the response Y , that is, m = 2 and Ỹ = 0 if Y ≤ Md(Y ), and

Ỹ = 1 if Y > Md(Y ), where Md(Y ) is the median of the response Y . Further-

more, if X and Y are countable, they can be discretized more like the continuous

case, because they are counting data with an order.

3.3. Boolean representation and logical operations

After discretization, the Boolean operation can be used to speed up the SSI

procedure, especially the algorithm to calculate L̃∗k. The Boolean representation

and its operations is a classical and fundamental computer computing technique.

A standard floating computation that provides a basic operation for many sta-

tistical applications comprises of hundreds of Boolean operations under a lower

level of computing. Hence, if the Boolean operation can be directly applied to

realize the proposed algorithm, the computational speed can be much improved.

Assume that the continuous data set X is one n× p matrix with n observa-

tions and p predictors, and Y is the response. After discretizing the data set X

and response Y , each predictor X̃i has l levels and Ỹ has m categories. Here, we

take l = 3 and m = 2 as an example. Assuming that Ỹ has two values (0 and 1),

then instead of using one row for each predictor X̃i, the new representation uses

three rows, because three levels are included in each X̃i. Each row consists of

two-bit strings, one for samples with Ỹ = 0, and the other for those with Ỹ = 1.

Each bit represents one sample in the string. The values (0 and 1) illustrate

whether the sample belongs to such a categorical level for each predictor Xi. For

instance, we have one discretized data set X̃ with two predictors and 16 sam-

ples, where the first eight columns represent samples with Ỹ = 0, and the others

represent samples with Ỹ = 1:
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X̃
T

=

Ỹ

X̃1

X̃2


0 0 0 0 0 0 0 0

... 1 1 1 1 1 1 1 1

1 3 2 3 1 2 3 2
... 2 2 1 1 3 2 2 1

3 2 1 1 3 2 2 1
... 2 3 2 3 1 2 3 2

 .
Its Boolean representation is

X̃
T

bit =

X̃1 = 1

X̃1 = 2

X̃1 = 3

X̃2 = 1

X̃2 = 2

X̃2 = 3



Ỹ = 0 Ỹ = 1

10001000 00110001

00100101 11000110

01010010 00001000

00110001 00001000

01000110 10100101

10001000 01010010


.

From the Boolean representation X̃bit, we find that the first sample belongs to

the first category of X1 and the third category of X2. Further, we can quickly

obtain the number of observations that belong to any two categories by taking

the logic operation. For example, if we want to calculate the number of samples

with X̃1 = 2 and X̃2 = 2 in the category Ỹ = 0, we just conduct the logical

AND operation: “00100101 AND 01000110 = 00000100, ” and then count the

number of 1s in the final string “00000100”, that is, one. As a result, it is more

efficient to use X̃bit to construct the contingency table for any two discretized

predictors. Because we use the fast logic operation with X̃bit, we can accelerate

our computation for our algorithm.

Obviously, X̃ and X̃bit are equivalent, and store the same amount of infor-

mation. Because one byte is composed of 8 bits, X̃bit uses 128 bits to save the

data, but X̃ uses 32× 64 bits, 16 times the space of X̃bit, to save the same data

if our computer is a 64-bit computer system. As a result, the Boolean repre-

sentation could dramatically reduce the storage space of the data, and the large

data can be uploaded directly into the RAM, or even saved in the cache. The

transferring time for the data between the hard disk and the RAM, and that

between the RAM and the cache, can be reduced significantly. This is the other

advantage of the Boolean representation or the discretization.

3.4. New algorithm “BOLT-SSI”

In this section, we discuss our algorithm BOLT-SSI. For our ultrahigh-dim-

ensional GLM (2.1), instead of calculating the increment L̃ij,n = l̂Mij
− l̂Fij

for any

pair of X̃i and X̃j , we compute the new increment of the log-likelihood function
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L̃′ij,n = l̂Hij
− l̂Sij

using the IPF method. Then, by taking the thresholding value

γn or choosing the large d = bn/log nc or max(n, p), we obtain the selected sure

screening set N̂γn . Our algorithm BOLT-SSI is summarized as follows:

Step 1. For any pair of continuous variables Xi and Xj , for 1 ≤ i < j ≤ p,

transform them to the corresponding discretized variables X̃i with level li
and X̃j with level lj , and change the response Y to a categorical variable

Ỹ , if necessary.

Step 2. Directly calculate l̂Sij
, and use the IPF algorithm to approximately esti-

mate l̃Hij
. Then compute L̃′ij,n = l̂Hij

− l̂Sij
for all pairs of Xi and Xj .

Step 3. Choose the threshold γn and select the following interactions: Ñγn =

{(i, j) : L̃′ij,n ≥ γn, 1 ≤ i < j ≤ p}. Usually, we select the d largest Lij,n,

where d = max(n, p).

Sometimes, the dimension p is very large and can be in the order of tens

of millions. The IPF method may be time consuming when computing all l̂Hij
.

Here, we propose using an approximation tool to prune the interaction terms in

the second step. For the homogeneous association regression model in Section

3.1, we use the Kirkwood Superposition Approximation (KSA), first proposed by

Kirkwood (1935), to provide an estimator for µijk in this model. That is, µ̂KSAijk =

(n/η){π̂ij+π̂i+kπ̂+jk/(π̂i++π̂+j+π̂++k)}, where η =
∑

ijk{π̂ij+π̂i+kπ̂+jk/(π̂i++

π̂+j+π̂++k)} is a normalization term, n =
∑

ijk nijk. Then, we get the approxi-

mation l̂KSA for l̂Hij
. Wan et al. (2010) shows that l̂KSA − l̂S is an upper bound

of l̂H− l̂S , that is, 0 ≤ l̂H− l̂S ≤ l̂KSA− l̂S . Based on this boundary and by setting

up one threshold γKSA, in the second step, we can filter out many insignificant

interaction terms quickly, and reduce the size of the pool of all interaction ef-

fects. The value γKSA can be defined by the conservative Bonferroni correction

or specified by the user. Obviously, if γKSA = 0, no interaction term is deleted in

this step. In the final step, for the remaining interaction terms, we compute L̃′ij,n
using the IPF algorithm. Then, select the d largest L̃′ij,n, where d = max(n, p) or

bn/log nc, or take the thresholding value γn to obtain the sure screening set N̂γn .

The term γn can be taken as the Bonferroni correction 100∗(1−0.05∗p(p−1)/2)%

percentile decided by the χ2 test with degrees of freedom (li − 1)(lj − 1) for any

one interaction between X̃i and X̃j . In summary, our algorithm BOLT-SSI with

KSA is summarized as follows:

Step 1. For any pairs of continuous variables Xi and Xj , for 1 ≤ i < j ≤ p,

transform them to corresponding discretized variables X̃i with level li and
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X̃j with level lj , and change the response Y to a categorical variable Ỹ , if

necessary.

Step 2. By using the KSA to approximate l̃Hij
of the IPF algorithm for all pairs

of Xi and Xj , we compute l̂KSAij
− l̂Sij

and set up the threshold γKSA to

remove part of the interaction terms.

Step 3. For the remaining interaction effects, we compute L̃′ij,n = l̂Hij
− l̂Sij

and

further identify the important interaction effects using the χ2-test with de-

grees of freedom (li − 1)(lj − 1), or directly selecting the d largest L̃′ij,n.

So far, we have specified the procedures of our new algorithm BOLT-SSI.

Apparently, the new method BOLT-SSI is much faster than the original method

SSI. Even though BOLT-SSI loses some statistical efficiency by discretizing the

predictor variables or response variable, its sure screening properties can still

be guaranteed for moderate or large sample sizes. Moreover, compared with

other screening methods, BOLT-SSI does not rely on hierarchy assumptions, but

screens significant two-way interactions for all pairs among the predictors.

4. Sure Screening Properties of BOLT-SSI

In this section, we derive the sure screening properties of BOLT-SSI by dis-

cussing SIS’s relationship and discretization. SIS was first proposed by Fan and

Lv (2008) for screening features. Later, works discussed this issue further, such as

Fan, Samworth and Wu (2009); Fan and Song (2010); Fan, Feng and Song (2011);

Chang, Tang and Wu (2013); Chen, Weng and Chu (2013); Saldana and Feng

(2018), and Pan et al. (2018). The details of the sure screening properties of SSI

are available in Section 1 of the Supplementary Material. We also demonstrate

the efficiency loss by discretization in the last part of this section.

4.1. Properties of discretization SIS

First, without considering interaction effects, we investigate the connection

between the marginal likelihood and the marginal likelihood after the discrization

of the predictor variables and response variables, that is, the connection between

SIS and discretized SIS. As discussed in Section 3.1, after discretization, we have

a new increment of the log-likelihood function L̃?k = E{l(β̃M0 , Ỹ )− l(X̃
T

k β̃
M

k , Ỹ )},
for k = 1, 2, . . . , p, with m = 2 and l ≥ 2. First, we need some marginally

symmetric conditions. These conditions are used to investigate the sure screening

properties of the rank robust SIS procedure of Li et al. (2012).

(M1) Let (Y1, X1k), (Y2, X2k) be independent copies of (Y,Xk). Denote ∆εk =
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Y1−Y2−ρk(X1k−X2k) and ∆Xk = X1k−X2k, where ρk = corr(Y,Xk). The

conditional distribution of ∆εk given ∆Xk is a symmetric finite mixture dis-

tribution, that is, f∆εk|∆Xk
(t) = π0kf0(t, σ2

0|∆Xk) + (1− π0k)f1(t, σ2
1|∆Xk),

where f0(t, σ2
0|∆Xk) is a symmetric unimodal probability distribution,

f1(t, σ2
1|∆Xk) is a symmetric probability distribution function, and σ2

0, σ2
1

are conditional variances related to ∆Xk, for k ∈ M?. Furthermore, there

exists a given positive constant π? ∈ (0, 1] such that π0k ≥ π?, for any

k ∈M?.

(M2) cM?
= mink∈M?

E|Xk| is a positive constant and is free of p.

(M3) The predictorsXi = (Xi1, . . . , Xip)
T and the error term εi are independent,

for i = 1, 2, . . . , n.

Theorem 1. Under the marginally symmetric conditions (M1)−(M3) and

the condition of Theorem 3 in Fan and Song (2010), that is, for k ∈ M?,

|Cov(b′(XTβ?), Xk)| ≥ C1n
−κ, where C1 is a positive constant and κ < 1/2.

After using the two-quantile and l-quantiles to discretize the response Y and the

predictor Xk, we have

(1) at least one X̃ki, such that |Cov(Ỹ , X̃ki)| ≥ C2n
−κ, for some positive con-

stant C2.

(2) Furthermore, mink∈M?
L̃?k ≥ C3n

−2κ, for some positive constant C3, and L̃
?
k

is the corresponding increment of the log-likelihood after discretization.

Theorem 1 ensures that if the predictor variables in the original scale are

associated with the response, they are also related to each other after discretiza-

tion. Therefore, as in our argument above, combining the Boolean representation,

logical operation, and discretization could provide a fast way of screening the pre-

dictor variables in high-dimensional GLMs without losing much efficiency. This

stimulates us to apply discretization to the interaction pursuit. Based on the

results above, we obtain a similar connection between SSI and discretized SSI

(BOLT-SSI).

4.2. Properties of BOLT-SSI

As before, we need the following marginally symmetric conditions to inves-

tigate the screening properties of BOLT-SSI.

Let ζij = Y−b′(XT
i,jβ

M
i,j) and (Y1, X1i, X1j , X1ij , ζ1ij), and (Y2, X2i, X2j , X2ij ,

ζ2ij) be independent copies of (Y,Xi, Xj , Xij , ζij). We further centralize ζij and

denote that ρij = Cov(ζij , Xij)/
√

Var(ζij)Var(Xij).
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(M1′) Denote ∆εij = ζ1ij − ζ2ij − ρij(X1ij − X2ij) and ∆Xij = X1ij − X2ij .

Then the conditional distribution of ∆εij given ∆Xij is a symmetric fi-

nite mixture distribution, that is, f∆εij |∆Xij
(t) = π0ijf0(t, σ2

0|∆Xij) + (1−
π0ij)f1(t, σ2

1|∆Xij), where f0(t, σ2
0|∆Xij) is a symmetric unimodal prob-

ability distribution, f1(t, σ2
1|∆Xij) is a symmetric probability distribu-

tion function, and σ2
0, σ2

1 are conditional variances related to ∆Xij , for

i, j ∈ N?. Furthermore, there exists a constant π? ∈ (0, 1] such that

π0ij ≥ π?, for any i, j ∈ N?.

(M2′) cN?
= mini,j∈N?

E|Xij | is a positive constant and is free of p.

(M3′) The predictors X = (X1, . . . , Xp)
T and the error term ε are independent.

Remark 2. In fact, the marginally symmetric condition (M1′) is also easily

satisfied. Denote that εij = ζij − ρijXij . A special case is that under the linear

model, the conditional distribution of εij given Xij does not depend on Xij and

it has K modes, where K is finite. This implies that the conditional distribution

εij |Xij is the same as the distribution of εij . Suppose that ε1ij and ε2ij follow

a distribution fε(t) with K modes, that is, fε(t) =
∑K

k=1 πkfk(t), where πk ≥ 0

and
∑K

k=1 πk = 1. Moreover, assume that f?lm(t), for 1 ≤ l,m ≤ K, are the

distributions of the difference Zl − Zm, where Zl and Zm are independent and

follow the distributions fl(t) and fm(t), respectively. Therefore, the distribution

of ∆εij = ε1ij − ε2ij can be expressed as

f∆ε(t) =
∑
l

∑
m

πlπmf
?
lm(t) =

∑
l

π2
l f

?
ll(t) +

∑
l 6=m

πlπmf
?
lm(t)

=

(∑
l

π2
l

)∑
l

π2
l∑
l π

2
l

f?ll(t) +

(
1−

∑
l

π2
l

)∑
l 6=m

πlπm
1−

∑
l π

2
l

f?lm(t)

, π?0f
?
0 (t) + (1− π?0)f?1 (t).

Obviously, f?ll(t) are symmetric unimodal distributions because of the unimodal

distributions fl(t), and then f?0 (t) is symmetric and unimodal. Furthermore,

f?1 (t) is a symmetric and multimodal density function. Moreover, π?0 =
∑

l π
2
l ≥

(
∑

l π
2
l )

2/K = 1/K.

As the definition of the conditional linear expectation, provided by Barut,

Fan and Verhasselt (2016), denote that EL(Y |XT
ijβ

M
ij ) = b′(XT

ijβ
M
ij ), EL(Y |

XT
i,jβ

M
i,j) = b′(XT

i,jβ
M
i,j), and CovL(Y,Xij |XT

i,jβ
M
i,j) ≡ E{Xij−EL(Xij |XT

i,jβ
M
i,j)}

{Y − EL(Y |XT
i,jβ

M
i,j)}.
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Theorem 2. Under the marginally symmetric conditions (M1′)−(M3′) and the

condition: for i, j ∈ N? with |CovL(Y,Xij |XT
i,jβ

M
i,j)| ≥ c1n

−κ, where c1 is a

positive constant and κ < 1/4, after using the two-quantile, l1-quantiles, and

l2-quantiles to discretize the response Y and the predictors Xi and Xj, we have

(1) at least one X̃ij
st such that |CovL(Ỹ , X̃ij

st |X̃
T

i,jβ̃
M

i,j)| ≥ c10n
−κ, for some

positive constant c10.

(2) Furthermore, mini,j∈N?
L̃?ij ≥ c11n

−2κ, for some positive constant c11, and

L̃?ij is the corresponding increment of the log-likelihood after discretization.

Theorem 2 claims that important interaction terms are still significant after

discretization. Consequently, similarly to the sure screening properties of SSI, we

can also show the sure screening properties of BOLT-SSI, that is, it can detect

significant interaction effects with large probability, even when the dimension of

the model is ultrahigh.

4.3. Discussion of efficiency loss by discretization

By Theorem 1 and Theorem 2, and the steps in Theorems A.5 and A.6 in the

Supplementary Material, the sure screening properties of discretization SIS and

BOLT-SIS can be guaranteed as the sample size n tends to infinity. However,

there is information loss by discretization, and the efficiency of the proposed

screening procedure could be much reduced, especially when the arity l,m = 2

or 3.

To simplify our analysis of the efficiency loss by discretization, we compare

the estimation efficiency of the Pearson correlation ρ between the sample cor-

relation estimate and the estimate by our discretization for the bivariate nor-

mal random vector (X,Y )T ∼ N

{
(0, 0)T ,

(
1 ρ

ρ 1

)}
. To discretize X and Y ,

we consider the worst disretization with the largest information loss, that is,

m = l = 2, and X̃ = I{X > Md(X)} and Ỹ = I{Y > Md(Y )}. Then, based on

the proof of Theroem 4.1 in the Supplementary Material, we have ρ̃ = Corr(X̃, Ỹ )

= 4E{I(X2 > X1)I(Y2 > Y1)} − 1 = τ = (2/π) arcsin ρ, where τ , is the Kendall

rank correlation of the bivariate normal random vector (X,Y ). It is well known

that τ = (2/π) arcsin ρ for the bivariate normal population. Hence, if we have

the estimate τ̂ of the Kendall rank correlation, then the Pearson correlation of

the bivariate normal random vector can be estimated as ρ̂τ = sin(π/2)τ̂ .

Let ρ̂s be the sample Pearson correlation of X and Y , which is the optimal

estimate of the Pearson correlation ρ. Hotelling (1953) shows that the asymptotic
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Figure 1. Relative efficiency of ρ̂τ and ρ̂s.

property of ρ̂s under the normal assumption is
√
n(ρ̂s − ρ) ∼ N{0, (1 − ρ2)2},

which implies that
√
nρ̂s ∼ N(0, 1) when X and Y are independent.

Next, let τ̂ be the sample correlation of X̃ and Ỹ . As discussed above,

it is an estimate of the Kendall rank correlation τ . By the results of Esscher

(1924) and Kendall (1949) under the normal assumption, and based on the

asymptotic normality of U-statistics (Lee (1990)), the asymptotic distribution

of the estimate τ̂ is
√
n(τ̂ − τ) ∼ N(0, 4[1/9 − {(2/π) arcsin(ρ/2)}2]). Then, us-

ing the delta method and a simple calculation, the asymptotic normality of ρ̂τ is√
n(ρ̂τ−ρ) ∼ N(0, 4[1/9−{(2/π) arcsin(ρ/2)}2]∗(π2/4)(1−ρ2)), that is,

√
nρ̂τ ∼

N(0, π2/9) when ρ = 0. Therefore, the relative efficiency of these two procedures

is Var(ρ̂τ )/Var(ρ̂s) = 4[1/9− {(2/π) arcsin(ρ/2)}2] ∗ (π2/4){1/(1− ρ2)}.
As shown in Figure 1, such relative efficiency is bounded between π2/9 ≈

1.0966 at ρ = 0, and 2
√

3π/9 ≈ 1.2092 at ρ = 1 or −1. Therefore, we do not

need many more samples to get the same accurate estimate of ρ as our discretized

estimate ρ̂τ , compared with the sample Pearson correlation estimate ρ̂s, which is

the optimal estimate of ρ in some sense.

Though the above discussion is based on the assumption that (X,Y ) follows a

bivariate normal population, if (X,Y ) follows some other bivariate distribution,

by monotonic transformation, we can transfer (X,Y ) to one of the bivariate

normal random vectors. Usually, under general conditions, such a monotonic

transformation would not much change the Pearson correlation between X and

Y under general conditions. Furthermore, the discretized estimate ρ̂τ is invariant.

Hence, in some sense, because the sample size of the data is relatively large, ρ̂τ
can be used to screen the relationship between X and Y , without losing much
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efficiency.

The above discussion is based on the worst discretization that the arity m =

l = 2. In this case, it has been shown that the statistical efficiency loss is relatively

small, but as shown by our numerical studies, the computational complexity is

reduced dramatically. Hence, the discretization approach is an appropriate way to

balance the trade-off between statistical efficiency and computational complexity.

The statistical efficiency loss by discretization can be tolerated, as long as the

sample size of the data is relatively large.

5. Numerical Studies

In this section, we investigate the performance of the proposed SSI and

BOLT-SSI using numerical studies. By default, we use BOLT-SSI with KSA

in our simulation studies. The methods hierNet (Bien, Taylor and Tibshirani

(2013)), glinternet (Lim and Hastie (2015)), IP (Fan et al. (2016)), RAMP (Hao,

Feng and Zhang (2018)), and xyz (Thanei, Meinshausen and Shah (2018)) are

used to compare the performance of the estimation and prediction.

We consider the linear model y =
∑p

i=1Xiβi+
∑

j<kXjXkβjk+ε and logistic

model log{π/(1− π)} =
∑p

i=1Xiβi+
∑

j<kXjXkβjk. We generate the covariates

{xi}ni=1 ∼ N(0,Σ) with Σjk = ρ|j−k|, where ρ varies in [0, 0.5], and then generate

the response y using the above linear model and logistic model. For all settings,

the set of important main effects is S = {1, 2, . . . , 10}, with the true coefficients

βS = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T . For the linear model, the error term ε ∼ N(0, σ2)

with σ ∈ {2, 3, 4} for different signal-to-noise ratio (SNR) situations. For the

logistic model, we change the values of the coefficients of the interactions, and

let the significant interaction effect coefficient βij = 1, 2, 3 to obtain the different

SNR. We consider different heredity structures, including strong heredity, weak

heredity, and anti-heredity, using the following interaction effect settings for the

linear regression model or logistic model. For the Poisson regression, we discuss

the performance of BOLT-SSI in our Supplementary Material.

Example 1. (Linear Model with Strong Heredity). The set of 10 impor-

tant interaction effects is defined as T = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 4), (6, 8),

(6, 10), (7, 8), (7, 9), (9, 10)} with corresponding coefficients (2,2,2,2,2,2,2,2,2,2).

Example 2. (Linear Model with Weak Heredity). The set of 10 important

interaction effects is defined as T = {(1, 2), (1, 13), (2, 3), (2, 15), (3, 4), (6, 10),

(6, 18), (7, 9), (7, 18), (10, 19)} with corresponding coefficients (2,2,2,2,2,2,2,2,2,2).
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Example 3. (Linear Model with Anti-Heredity). The set of 10 important

interaction effects is T = {(11, 12), (11, 13), (12, 13), (12, 15), (13, 14), (16, 18),

(16, 20), (17, 18), (17, 19), (19, 20)} with corresponding coefficients (2,2,2,2,2,2,2,

2,2,2)

Example 4. (Linear Model with Mixed Heredity). The set of 10 impor-

tant interaction effects is T = {(1, 2), (1, 3), (2, 3), (2, 15), (6, 18), (7, 18), (16, 20),

(17, 18), (17, 19), (19, 20)} with corresponding coefficients (2,2,2,2,2,2,2,2,2,2).

Example 5. (Logistic Model with Strong Heredity). Logistic Model with

Strong Heredity. The set of 10 important interaction effects is T = {(1, 2), (1, 3),

(2, 3), (2, 5), (3, 4), (6, 8), (6, 10), (7, 8), (7, 9), (9, 10)}.

Example 6. (Logistic Model with Weak Heredity]). The set of 10 impor-

tant interaction effects is T = {(1, 2), (1, 13), (2, 3), (2, 15), (3, 4), (6, 10), (6, 18),

(7, 9), (7, 18), (10, 19)}.

Example 7. (Logistic Model with Anti-Heredity). The set of 10 important

interaction effects is T = {(11, 12), (11, 13), (12, 13), (12, 15), (13, 14), (16, 18),

(16, 20), (17, 18), (17, 19), (19, 20)}.

Example 8. (Logistic Model with Mixed Heredity). The set of 10 impor-

tant interaction effects is T = {(1, 2), (1, 3), (2, 3), (2, 15), (6, 18), (7, 18), (16, 20),

(17, 18), (17, 19), (19, 20)}.

We investigate the screening performance and post-screening performance

of the interaction effect screening and variable selection methods under different

examples.

Let T with cardinality t = |T | denote the significant interaction effects in

the model, that is, T = {(j, k) : βj,k 6= 0}. For each scenario, we run M = 100

Monte Carlo simulations for each method. For the mth simulation, denote the

estimated interaction subsets as T̂m. We evaluate the performance in terms of

variable selection and model prediction based on the following criteria:

• The average coverage rate (ACR): the percentage of all true interactions

included in the selected models.

• Average model size (AMS): M−1
∑M

m=1MSm, where MSm is the model

size of the interaction effect predictors selected by the screening methods or

post-model selection method in the mth simulation.

• The average out-of-sample R2 for linear regression model: R2 = 100% ×{
1−

∑
(Y ∗i −X∗Ti β̂)2/

∑
(Y ∗i − Ȳ ∗)2

}
, where (X∗i , Y

∗
i ) is the testing data

and β̂ is the estimate of the coefficient based on the training data.
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• Predictive misclassification rate (PMR) for the logistic model: PMR =

I(Y ∗i 6= Ŷ ), where Y ∗i is the true value of the testing data, and Ŷ is the

predictive value of the testing data based on the training model.

5.1. Screening performance

For the screening procedures, we consider SSI, BOLT-SSI, IP and xyz for

the linear model and logistic model. For the method xyz, we choose the top 500

interaction terms screened by it (actually, 500 is the largest number of interactions

that the package “xyz” can select by screening), and let the projection time L of

“xyz” be 10, 100, 1000, respectively. For the method IP, we choose the top n− 1

variables as the active set. For our method SSI, the top n − 1 interaction effect

terms are selected into the active set. For BOLT-SSI, we consider two cases:

keeping the top n − 1, or the top max{n, p} significant interaction predictors

as the screening selected active set. Because the methods IP and xyz are not

available for the logistic model, we only investigate the screening properties of

SSI and BOLT-SSI for Examples 5−8.

From the results in Tables 1 and 2, the coverage rate decreases when the

SNR is relatively small. The proposed SSI has a high coverage percentage in

screening interaction effects for different heredity structures. The methods xyz

and IP have a lower converge percentage, except for the strong heredity setting

compared with SSI. For the proposed BOLT-SSI, though its performance is not

better than that of SSI, its coverage rate is better than the other two methods

when the top p significant interaction effects are considered as the screening active

set. By discretization, the data lose some information, and hence BOLT-SSI is

not as efficient as SSI, even though its speed is much faster. Hence, it would

increase the probability of keeping the true active interaction effect predictors in

the screened model by keeping the p top significant interaction effect predictors

in the active set after screening. All in all, the screening performance of SSI and

BOLT-SSI(p) is more stable than that of the other methods.

5.2. Post-screening performance

In this subsection, we compare the final model selection and prediction of

existing methods (RAMP, xyz, hierNet, glinternet) with the Lasso after screen-

ing by our proposed SSI and BOLT-SSI. For the method RAMP, the tuning

parameter is selected using EBIC with γ = 1, because the EBIC tends to work

best among of the settings, as shown by Hao, Feng and Zhang (2018). For the

method xyz, we consider the projection time L as 100, 500 and use five-fold cross-

validation (CV) to select the tuning parameter for the post-screening selection.
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Table 1. Screening results for linear models when p = 5,000.

Methods σ SSI BOLT-SSI BOLT-SSI(p) IP xyz-L10 xyz-L100 xyz-L1000
(n, p, ρ)=(500, 5000, 0)

2 0.98 0.03 0.64 0.73 0.00 0.01 0.76
Example 1 3 0.94 0.00 0.60 0.70 0.00 0.04 0.73

4 0.80 0.00 0.48 0.59 0.00 0.01 0.55
(n, p, ρ)=(500, 5000, 0.5)

2 1.00 0.80 0.98 0.99 0.29 0.52 0.52
Example 1 3 1.00 0.58 0.94 0.99 0.22 0.51 0.52

4 1.00 0.43 0.88 0.98 0.14 0.50 0.50
(n, p, ρ)=(500, 5000, 0)

2 0.90 0.01 0.38 0.03 0.00 0.04 0.56
Example 2 3 0.82 0.01 0.36 0.01 0.00 0.00 0.41

4 0.73 0.00 0.00 0.01 0.00 0.01 0.31
(n, p, ρ)=(500, 5000, 0.5)

2 0.73 0.03 0.60 0.00 0.00 0.00 0.00
Example 2 3 0.71 0.02 0.57 0.01 0.00 0.00 0.00

4 0.67 0.00 0.45 0.00 0.00 0.00 0.00
(n, p, ρ)=(500, 5000, 0)

2 0.89 0.03 0.62 0.03 0.00 0.02 0.56
Example 3 3 0.82 0.03 0.44 0.02 0.00 0.01 0.53

4 0.73 0.00 0.45 0.01 0.00 0.00 0.46
(n, p, ρ)=(500, 5000, 0.5)

2 1.00 0.33 0.81 0.74 0.28 0.53 0.53
Example 3 3 1.00 0.23 0.74 0.72 0.25 0.50 0.50

4 1.00 0.11 0.73 0.68 0.14 0.51 0.51
(n, p, ρ)=(500, 5000, 0)

2 0.91 0.00 0.44 0.06 0.00 0.03 0.47
Example 4 3 0.82 0.00 0.42 0.05 0.00 0.03 0.48

4 0.69 0.00 0.23 0.03 0.00 0.00 0.34
(n, p, ρ)=(500, 5000, 0.5)

2 0.80 0.07 0.75 0.27 0.00 0.01 0.01
Example 4 3 0.78 0.05 0.73 0.28 0.00 0.01 0.01

4 0.76 0.02 0.66 0.28 0.00 0.01 0.01

For our methods SSI and BOLT-SSI, we use five-fold CV and the LASSO to

further refine the model selection after screening. All of the simulation settings

are the same as those in Examples 1 to 8. We set ρ = 0.5 for all the studies. To

compare the prediction, for every simulation, we let n1 = 0.75n of the data set

as the training data, and the remaining data are the testing data. Note that we

first let p be relatively small so that it is possible to compare the performance

of hierNet (Bien, Taylor and Tibshirani (2013)) and glinternet (Lim and Hastie

(2015)) in Tables 2−3 of the Supplementary Material, where “w” stands for weak

heredity.

Note that the computation time for hierNet-s and glinternet is very large for a

single replicate. As a result, we omit the comparisons with hierNet and glinternet
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Table 2. Screening results for logistic models with n = 400 and p = 2,000.

Methods βjk SSI BOLT-SSI BOLT-SSI(p) SSI BOLT-SSI BOLT-SSI(p)
ρ = 0 ρ = 0.5

1 0.02 0.00 0.35 0.53 0.08 0.76
Example 5 2 0.40 0.04 0.56 0.84 0.30 0.86

3 0.77 0.12 0.66 0.83 0.27 0.86
1 0.02 0.00 0.28 0.00 0.00 0.39

Example 6 2 0.31 0.02 0.34 0.32 0.01 0.49
3 0.56 0.06 0.63 0.44 0.05 0.66
1 0.02 0.00 0.35 0.53 0.08 0.76

Example 7 2 0.40 0.04 0.56 0.84 0.30 0.86
3 0.77 0.12 0.66 0.83 0.27 0.86
1 0.00 0.00 0.28 0.04 0.00 0.43

Example 8 2 0.33 0.05 0.57 0.24 0.04 0.63
3 0.52 0.05 0.70 0.41 0.13 0.68

for the other higher dimensional examples. In the high dimensional settings, we

consider (n, p) = (500, 5000), (1000, 5000), (1500, 5000), (2000, 5000), (1500,

10000), (1500, 20000), and compare the performance of BOLT-SSI, RAMP, and

xyz. Other methods are very time consuming, and are not considered in this

setting. We set σ = 2 for the linear models, and βij = 3 for the logistic models.

All results of the methods with (n, p) = (1000, 5000) are summarized in Table 3.

It is shown that our method still has good performance in the high-dimensional

feature space. Furthermore, we take Examples 5 and 8 to illustrate the patterns

of our method. The results are shown in Figures 1−4 in the Supplementary

Material. Obviously, as sample size n increases, all of the methods perform

better, as shown in Figure 1 and Figure 3 in the Supplementary Material, and

our method performs best. In Figures 2 and 4 in the Supplementary Material,

though the performance of our method degrades as the dimension p increases,

its performance is still much better than that of others. The method RAMP is

influenced by the heredity assumption, especially if the anti-heredity exists, and

so the result of RAMP is worst.

5.3. Efficiency comparison

Here, we use Example 1 and Example 5 to study the efficiency of all the

above methods. The machine we used is an Intel (R) Xenon(R) CPU E5-1603 v4

@ 2.80GHZ with 8.00 GB RAM. We compare the average computation time of

variable selection among the following methods: SSI, BOLT-SSI, xyz, RAMP-s,

RAMP-w, hierNet-s, and hierNet-w, based on the 50 simulated data sets by the

screening procedure and the post-screening procedure, where “w” and “s” stand
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Table 3. Selection and prediction results (standard error) with (n, p) = (1000, 5000).
The standard errors are shown in parentheses.

Assumption Methods ACR AMS R2 PMR
BOLT-SSI 0.98 53.91(2.5) 94.52(0.22) —

Example 1 RAMP 0.16 21.67(0.7) 76.29(1.60) —
xyz-L100 0.73 28.10(0.7) 58.46(0.95) —
xyz-L500 1 23.94(0.2) 60.07(0.82) —

BOLT-SSI 0.62 45.80(2.3) 87.16(0.62) —
Example 2 RAMP 1.00 20.35(0.1) 95.34(0.01) —

xyz-L100 0.23 72.70(2.9) 58.5 (1.16) —
xyz-L500 0.97 35.64(0.5) 76.43 (0.56) —

BOLT-SSI 0.93 47.61(1.8) 90.94(0.33) —
Example 3 RAMP 0.00 4.5 (0.6) 13.96(0.11) —

xyz-L100 0.80 27.85(7.1) 58.48(1.31) —
xyz-L500 1 23.94(0.2) 59.36(1.20) —

BOLT-SSI 0.53 49.38(1.9) 88.53(0.50) —
Example 4 RAMP 0.00 15.54(0.6) 61.83(0.79) —

xyz-L100 0.34 47.26(1.8) 59.53(1.05) —
xyz-L500 1 28.47(0.5) 68.44(0.89) —

Example 5 BOLT-SSI 0.53 36.09(4.0) - 23.26(0.32)
RAMP 0.00 0.14(0.1) - 25.62(0.03)

Example 6 BOLT-SSI 0.42 47.75(4.9) - 26.73(0.62)
RAMP 0.00 6.80(0.5) - 28.15(0.60)

Example 7 BOLT-SSI 0.62 79.80(5.0) - 20.98(0.31)
RAMP 0.00 2.97(0.2) - 28.67(0.31)

Example 8 BOLT-SSI 0.53 79.26(5.1) - 22.85(0.41)
RAMP 0.00 1.69(0.1) - 25.34(0.24)

for weak heredity and strong heredity, respectively. To make fair comparisons,

we do not consider the selection of tuning parameters in modeling. Figures 5−6

in the Supplementary Material. and Table 4 summarize the average computation

time (seconds per run) for each procedure. Because the differences of computation

time are relative small for various σ and ρ, we only present the results when σ = 2,

βjk = 2, and ρ = 0.5. It is clear that the method hierNet spends much time on the

computation, no matter under the strong or weak heredity assumption, and the

method RAMP with weak heredity is also very slow. BOLT-SSI is consistently

fast and its screening of the algorithm does not rely on the heredity assumption

of the data structure.

In summary, compared with other methods, our proposed SSI and BOLT-

SSI(p) have a stably high coverage rate in terms of screening performance. When

the dimension of the data p is not too large, by fine coding, SSI can also finish

the screening task in a limited time. After discretization, some data informa-
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Table 4. Average computation time of post-screening procedure for linear and logistic
models.

n p BOLT-SSI hierNet-s hierNet-w xyz-L100 xyz-L500 RAMP-s RAMP-w

Linear Regression Models

500 50 1.13 75.26 4.92 0.22 0.86 25.00 28.85

500 100 2.55 321.88 22.43 0.39 1.61 33.11 42.44

500 500 1.66 — 669.99 2.10 10.07 60.65 106.82

500 5,000 34.75 — — 30.38 155.22 68.20 658.42

200 1,000 1.62 — — 3.58 18.35 6.69 53.35

400 1,000 2.26 — — 4.15 20.69 57.68 107.11

800 1,000 4.02 — — 5.32 25.52 54.18 230.20

Logistic Regression Models

500 50 0.44 306.91 11.53 — — 139.52 147.16

500 100 0.82 1,105.96 37.16 — — 177.84 207.08

500 500 0.74 — 511.21 — — 311.87 368.86

500 5,000 27.15 — — — — 127.52 1,281.45

200 1,000 1.10 — — — — 12.34 83.98

400 1,000 1.38 — — — — 94.48 273.06

800 1,000 2.18 — — — — 588.62 820.87

tion is lost, and hence BOLT-SSI cannot use all of the information for screening,

and hence is not as efficient as SSI. However, it is much faster than SSI and

most of the other screening methods, and can finish screening for ultrahigh-

dimensional data in a relatively short time. In fact, from our numerical studies,

it is shown that BOLT-SSI makes a good trade-off between the computation com-

plexity and the efficiency of screening. Consequently, SSI and BOLT-SSI have

absolute competitiveness compared with other interaction screening and variable

selection methods. In particular, when the computational cost becomes unafford-

able for SSI, we believe that BOLT-SSI is a valuable tool for high-dimensional or

ultrahigh-dimensional interaction screening.

6. Real Data

The real data was collected from a major supermarket located in northern

China and has been analyzed by Wang (2009) and Hao, Feng and Zhang (2018),

which includes 6,398 predictors and 464 observations. The response is the number

of customers on a particular day, and each predictor is the corresponding sale

volume of the product. The supermarket manager wonders which products would

be more associated with the number of customers, which means that he or she

wants to select the most informative products to predict the response. Note that

here, the total number of interaction terms for the supermarket data in modeling
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Table 5. Average results and the standard errors (in parentheses) on the supermarket
data set.

main size inter size R2(%)

BOLT-SSI 196.19(3.79) 42.43(1.13) 93.95(0.15)

SSI 107.70(0.73) 10.90(0.37) 92.73(0.14)

xyz-L10 37.80(0.26) 12.61(0.25) 87.03(0.26)

xyz-L100 35.54(0.24) 14.40(0.23) 86.94(0.22)

xyz-L500 35.26(0.25) 14.84(0.24) 86.59(0.28)

RAMP-AIC 229.18(1.68) 94.53(1.06) 90.48(0.23)

RAMP-BIC 101.17(3.25) 34.36(1.65) 91.18(0.20)

RAMP-EBIC 29.27(1.01) 3.07(0.29) 89.67(0.31)

RAMP-GIC 30.71(0.92) 3.20(0.30) 90.08(0.28)

iFORT ——– ——– 88.91(0.17)

iFORM ——– ——– 88.66(0.18)

LASSO-AIC 264.28(0.91) 0(0) 92.04(0.18)

LASSO-BIC 63.47(0.77) 0(0) 90.76(0.20)

LASSO-EBIC 15.62(0.46) 0(0) 72.09(0.53)

LASSO-GIC 19.19(0.74) 0(0) 75.05(0.58)

LASSO-AIC-m 30.72(0.61) ——– 82.65(0.40)

LASSO-BIC-m 13.21(0.22) ——– 69.58(0.48)

is about 2× 107, much larger than the number of interaction effects to model the

residential building data; see the Supplementary Material.

Here, we randomly select 400 observations as the training data and the re-

maining 64 observations as the testing data, and then use the out-of-sample R2

to evaluate the prediction performance of our methods based on 100 random

splits. The settings of all methods are the same as those of the above example.

The average performance is summarized in Table 5, which includes the average

sizes of the main effects and interaction effects, the average out-of-sample R2,

and their standard errors over 100 experiments. In addition to the results of

our methods, Table 5 displays the out-of-sample R2 by other methods, including

RAMP-AIC, RAMP-BIC, RAMP-EBIC, RAMP-GIC, iFORT & iFORM, and

RAMP. The corresponding results are extracted directly from the respective pa-

pers. We extract the results of LASSO-AIC, LASSO-BIC, LASSO-EBIC, and

LASSO-GIC, from Hao, Feng and Zhang (2018) (RAMP). For LASSO-AIC-m

and LASSO-BIC-m, we only consider the main effects. From the results in Ta-

ble 5, BOLT-SSI demonstrates the best performance, with a mean out-of-sample

R2 = 93.95%. Although BOLT-SSI selects more products, and it is a challenging

task for the supermarket manager to interpret them, more products can improve
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Table 6. Average computation time on the supermarket data set.

Methods BOLT-SSI SSI xyz-L10 xyz-L100 xyz-L500 RAMPs RAMPw

Time(s) 98.81 431.55 59.09 463.15 2,252.95 33.75 NULL

the supermarket’s profit. Therefore, our method is helpful for the supermarket

manager to make a decision.

To fairly assess the efficiency of the methods BOLT-SSI, SSI, xyz, and RAMP

on this real data set, we use the computer as previously. Time(s) is the average

computation time of five experiments, including variable selection and prediction.

The results are listed in Table 6. Here, the result “NULL” means that the error

exists. When we only run one time using “RAMP” with the weak heredity

assumption, the error “cannot allocate vector of size 1.1 Gb” appears, which

implies that the method “RAMP” may not be widely used on some ordinary

computers when the dimension of the data set is huge. From the above two tables,

in the first step of our screening methods, we use only marginal information of the

data, or even sacrifice some information for the method BOLT-SSI. However, the

advantages of computational efficiency are evident. For BOLT-SSI, the sacrifice

of the data information can be ignored, which is consistent with our theoretical

investigation.

7. Conclusion

We have presented a screening method for detecting important significant

interaction effects in the high-dimensional GLMs. A new and straightforward

procedure SSI and its extension BOLT-SSI are proposed. In contrast to most

other screening or variable selection methods for detecting interaction effects,

our proposed methods do not depend on the heredity assumption. The proposed

screening methods conduct a full screening search for all of the interaction effects

among the data. For ultrahigh-dimensional data, in some sense, such a task seems

impossible. Here, we show that, by taking advantage of the computational struc-

ture, seemly impossible tasks can be done using a standard personal computer.

Importantly, the statistical property of the proposed method is guaranteed by

our established theory.

Our numerical studies consider only screening interaction effects for our

method, even if p is ultrahigh. In real problems, if p is ultrahigh and the regu-

larization methods cannot obtain a reasonable optimal solution in a limited time

and with limited computing resources, we should also screen the main effects and

interaction effects simultaneously.
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In general, most data analysis projects are similar to engineering projects.

Though most of the theoretical research would be beneficial to such projects,

the requirements and expectations of engineering projects differ from those of

theoretical studies. How to combine the advantages of engineering techniques to

complete such projects under practical requirements and expectations requires

further investigation.

Supplementary Material

To conserve space, all discussions and the sure screening properties of SSI and

their proofs are relegated to Sections 1 and 2 of the Supplementary Material. In

addition, Section 2 includes proofs of Theorems 1 and 2 about the sure screening

properties of BOLT-SSI. Section 3 also contains part of the simulation for the

data set with a small dimension and a dicussion on how to choose between SSI

and BOLT-SSI. Two additional case studies are presented in Section 4. In one,

the data dimension is huge, with p = 319,156. The total number of interaction

terms is about 5 × 1010. The R-package “BOLTSSIRR” contains the code for

algorithms decribed in the article.
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