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Supplementary Material

This supplementary material gives proofs of Lemmas [I] and [2| and Theorems in the main

paper.

S1 Proofs of Lemmas [1] and 2

We first introduce some useful results depending on the FPCA. In what
follows, we use ¢ and d to denote positive constants that may change from
line to line. Define ||Z[° = [[,.[S(s, t)]>dsdt. By using the result in

Bhatia et al. (1983), we can obtain

Y%

| and sups;lg; — 651 < 82
j>1

‘ Y

where 0; = minj<<;(Ax — Ar+1). Such results can also be found in Bosq

sup [\ — ;] < ’HZ -3
i>1

(1991) and Chapter 4 of Bosq| (2000). Provided [, E[X (¢)]*dt < oo, it is not

hard to prove [, |u(t) — f(t)|dt = Op(n~'/?) and E H’E — fJH’Q = O(n™).
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Therefore, we have

sup |\ — A;| = O,(n~2).

Jj=1
Lemmal[l]is a direct consequence of Lemma 6.1 in|[Hall and Horowitz| (2007).
Lemma 1. If infuz; |A; — \x| > 0, then

o;(t) —di(t) = > (Xj - Ak>1¢k(t) //I [i(s, 1) — (s, t)] &, (s)ox(t) ds dt

ki k#j
+ ;(t) /Z [cﬁj(s) - cbj(s)] ¢;(s)ds.
(S1.1)

Define the event &, by
R !
for some small 6 > 0 and the event F, by
Fy=Fyn) = {3 = M) <200 — M) forall 1< £k <p).

Then we have P(E,) — 1. By using \; — ;11 > 7! in condition (A1)(i),
we have &, C F), for some small § > 0 when n and p are large enough. So
it suffices to derive asymptomatic results when F, holds. Under conditions

(A1) and (A2), it follows that

B { sup 721y — 1311} = 07 (512)

1<<p
whose proof can be found in |Hall and Horowitz (2007)), from page 83 to the

end.
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The following lemma gives a useful uniform consistency result of the
FPC score estimates and is also of independent interest in FPCA. Also see

Proposition 1 of Wong et al.| (2019).

Lemma 2. Under conditions (A1) and (A2), we have, uniformly over 1 <

J<p
- D (@i — d45)” = Op(max{n~"j>7, n~'}), (S1.3)
n
i=1
and
E(z; — &4)* = O(max{n~ "% n~1}). (S1.4)

Proof. We first prove (S1.4). Note that (;\j, ggj) is determined by 3 for all
j. By using Lemma [I| and the orthonormalities of eigenfunctions and FPC

scores, we have, uniformly over 1 < j < p,

)

= Sl(]) + SZl(j) + 52,2(j)'

(S1.5)
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For S5 1(j), by using (S1.2)), we have
B{ sup [7254()105)] | = 0™ (516)
1<j<p
For S5 5(j), given [ E[X(t)]*dt < co, we can obtain

E[X;82,2(j)] = O(n ™). (SL.7)

We now consider Sy (7). Write

UL sl
= 2{//12 [i(s’ t) — (s, t)] b;(s)dr(t) ds dt}2

, (S1.8)
v2{ [ [0, 0 = 56, 0] 6y66) - es(oonte) s
=: S1.1(Jk) + S1.2(jk).
By using E ’HZ — f]H‘Q = O(n™!) and (SL.2)), we have
E {lgigfgp[j—Qsl,g(jk) I(]—"p)]} =0(n™?). (S1.9)
It can be shown that
E {lgsj?&p[()\j)\k)_lSL1(jk) I(]—"p)]} =0(n1). (S1.10)

See Section 5.3 of Hall and Horowitz (2007). Given conditions (Al) and

(A2), a direct calculation yields

n~t osup (A7 IA1?) <enT'p?P0 = o(1). (S1.11)

1<4,k<p
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Combining this with (S1.8)—(S1.10)) yields

—1
Esup ¢ | Y (=M Si(G)IF) p =07,  (S112)
1<i<e | i,
It remains to bound the summation on the left side of (S1.12|), which we
now discuss.

Let py = [j/2] and ps = 2j, where [a] denotes the integer part of a.

From condition (A1), we have, for all j =1,..., p,

N 2= AP 2N

A=) 7 (A= A)? S for <k <p, (51.13)
22
5y _]/\k)2 < ¢, for k > p,, (S1.14)
j
and
)\i cj72a0 Cj2

(A = M)? : (j — k)2j—2(eot) = G — k)2’ for p1 <k <ps, k#J,

(S1.15)

where ¢ > 0 is a constant not depending on j and k. Combing (S1.13[)—
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(S1.15), we have, uniformly over 1 < 5 < p,

D= M)A

ke k)

PN %
= (A — M) ,;m (Aj — A)? k:p1<kz<:p27k¢j (Aj — A)?
AN cj*
< cpy + =t 4 .
' kz A5 (A — A)? Z (j—k)?

k:p1<k<pa, k#j

(S1.16)

<cj+ c/\j_2 Z A7+ cj?
k=p2

<y,
where ¢ is a constant not depending on j. Combining this with (S1.12])

gives

£{ su J215:0) 171

1<5<p

)\2
< sup 8

~1
)\2
2 k )
iy P E sup S.)VI(F
1<j<p [ o bk ()\j — )\k)2 )2] 1( ) ( p)

1<j<p L%J (Aj — A

=0(n™").
(S1.17)
Combining this with (S1.5)— (S1.7) yields, uniformly over 1 < j < p,

E[(z; — 2.,)*1(F,)] = O(max{n~'\;j? n~'}). (51.18)

Condition (A1)(iii) assumes A\; < ¢j~* for all j > 0. Therefore, the proof
of Lemma completes if the factor I(F,) can be removed from the left side.

Since we assumed that all moments of the principal component scores are
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finite, by using Markov’s inequality, it can be shown that P(£,) = 1-O(n™°)
and hence P(F,) =1 — O(n=°) for any ¢ > 0, which completes the proof of
(ST.4).

We now consider (S1.3). By an argument similar to , we can

prove, uniformly over 1 < j < p,

J 5600659 = (6,0 = d5(0) dsdt = 0, n 1), (S1.19)

By using this, we have

<2y [0 - )60 - 3,00 dtr* 2| [t = ooyt

<4 [ 26 000,05) = 6,50 = dy (o) dsat

4= = |15 (t) = 35018 + 2 e — 3
= Op(max{n~'j>7* n~'}),

(S1.20)

which completes the proof of (S1.3]). H

Proof of Lemma [T, We first prove (3.1)). By the construction of 3,, we have
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18, = Boll3
ZbOJ <b _bOp> Z bOJ¢J (S1.21)
J=p+1
<33 Bl 3+ 3(h — ) +3 3 bﬁj-
j=1 Jj=p+1

When F, holds, by using (51.2), we have

pr Elllé; — ;15 1(F, (n pZJ_QC”“)— (n7'p), (S1.22)

where the last equality is due to —2a;+2 < —ap < —1. Simple calculations
yield

Z bgj — O(n_(Qal_l)/(WO‘f’QOﬂ))’ (S1.23)

Jj=p+1

and

(bp — bop)? Z ba; = O(n~ o=/ (eot200)) (S1.24)

j=p+1

Combing (S1.21)-(S1.24), we have
E[ll3, — Boll31(F,)] = O(n~ Gt/ leot2an)), (S1.25)

Therefore, the proof of completes if the factor I(F,) can be removed
from the left side. Since we assumed that all moments of the principal
component scores are finite, by using Markov’s inequality, it can be shown
that P(£,) = 1 — O(n™¢) and hence P(F,) = 1 — O(n~°) for any ¢ > 0,

which complete the proof of (3.1)).
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We now turn to proving (3.2]). Direct calculations yield

00 2
E [(C&.p)TBp — ijboj
j=1

2

p o 2
<cE [ (#.; — x.4)boj | + cE[Z,(b, — bop)]* + cE ( > x.jb0j>
J

- Jj=p+1
i o
< CPZ E(i’.j — x~j>2b8j 4 C(bp B b0p>2 Ei?p L Z bgj E:(,’2]
=t Jj=p+1
P o
< CPZ n_lj_Qal max{jQ_ao, 1} + Cp_2a1+1p—a0 +e Z j—a0—2a1
= Jj=p+1

< Cn—l(p—a0—2a1+4 +p—2a1+2) +Cp_a0_2a1+1 +Cp_a0_2a1+1

<c(n"'p),

where ¢ is a positive constant and the third inequality results from (|S1.4))

in Lemma . From this, (3.2]) follows immediately. O

Proof of Lemma[9. Observing that
50N 7 L, Cw
18, = BII3 = (b; = b;)* < A Y I Ai(by — 1) < —=,
j=1 j=1
(3.4) follows immediately.
We now consider (3.5)). Given {qgj}?:l, let I', be a p X p random matrix

with the (j, k) entry

(Tp)je = A, 2N P i
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Let ||I',[|| be the spectral norm of I',. We have

P
. = 7 Cip
E sup [2](b, — b,)* < sup > N;(b; —b;)* x [[ET,|| < —=[[ET,||.
b,EeBy by€By S n
(S1.26)
By using Lemma [2| we can obtain, uniformly over 1 < j, k < p,
—1/2y—1/2 max{p, PQO/Q}

It is well known that the largest eigenvalue of a semi-positive definite matrix

is not larger than its maximum row sum of absolute values. Therefore, by

using (S1.27) and the orthonormality of FPC scores, it follows that

o /2
IET,|l <1+p x 0(%) = 1+0(1).

Substituting this into (S1.26) completes the proof of (3.5]). n

S2 Auxiliary Lemmas

We first give some auxiliary lemmas about kernel estimators with functional
predictors. Lemma [3| provides the uniform convergence for s;(u | b,, h)
and s,(U(b,) | by, h), which is very useful for kernel estimators. By using
Lemma [3] we can obtain Lemmas {7 which provide the rates of con-

vergence for the estimators of the nonparametric parts. Lemma [§ is a

direct generalization of Lemma A.1 in Wang et al. (2010) with diverging
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p. Lemma [J gives the rates of convergence for the variance parts of the
estimators 7 and 7.

Before proceeding further, we introduce some useful notations. For
two set of random variables Z,, and Z; and a constant r > 0, we write
Zn=0.(2Z) it E(|Z,/Z]|") = O(1) as n — 0o. The notation o, is defined

in a similar way. Recall

UL(8) = / X,(8) — u()B(t) dt , Ti(b,) = / () — A1) (67 y(0)) i

si(u| by, h) = %Z(Ui(bp) — W) K, [Ui(b,,) - u} 1=0,1,....

i=1
Civen a new observation X, the notations U(j3) and U(b,) are defined in a

similar way. We also write

n

st | foy ) = = S (Ui(Bo) — ) KU () — . 1= 0, 1,....

n <
=1

and
u) = { [1x0 - ute)ao ' xeal

Recall that fz,(-) is the probability density function of U(/3y). When the
the argument u ¢ U(fy), the value for n(u) (or n'(u)) should be interpreted
as that of an extended version of 1 (or n’) such that condition (A6)(i) holds

on the whole real line.
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Lemma 3. Suppose that conditions (A1)-(A5) hold except for condition
(A4)(iii). Then we have, for any integers | > 0 and r > 1, there exists a

constant ¢ > 0 such that

sup |Sl(u | bp, h) - hlylfﬂo(u)| _ OT(TL*C). (85.1)

(wbp)e(®xB,)  max{ fa,(u), dn}ht

Given a sequence {v,}5°, define the sequence of sets A,(v,) = {X € A, :
1X —plle < vp}. If v, = O(R*n(er=1/2/(@0F201)) “then we also have, for any

integers | > 0 and r > 1, there exists a constant ¢ > 0 such that

510 (b,) | by 1) = Wurfs UGB _ () (o) g
(Xﬁbp)E(SEg})(vn)pr) max{ f5,(U(Bo)), dn} 1! =0,(n"°). (S5.2)

Proof. We first prove (S5.1). As we assumed n'~“hd,, — oo in condition
(A4)(ii), equation (S5.1)) follows if we can prove that, for any integers [ > 0

and r > 1, there exists a constant ¢ > 0 not depending on n such that

[s1(u | by, h) — si(u | Bo, )l

sup =0,(n" 9, S5.3

(w,bpe®xB,)  max{fg,(u), d,} R’ (™) (55.3)
|si(u | Bo, h) — Esi(u | Bo, h) logn

= 4

f}éﬁ (max{fﬁo (u), dn})l/th O, nh |’ (S5.4)

and

sup |Esi(u | o, h) — bl fs,(u)] = 0,(n"°). (S5.5)

u€R max{fﬁo (U), dn}hl

Note that (S5.5)) is a direct consequence of condition (A5)(iii). So we only

need to prove ([S5.3) and ([S5.4)).
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We begin the proof of (S5.4]) by truncation. Define

l
Gl o 0 = (P KO -, =01, (550
and
G ] Bo, 1) = Glu | o, DNT:(B0)| < (s5.7)

where {a,} is a positive constant sequence to be determined. By using

Markov’s inequality, we can obtain that, for any integer s > 1,

E {sup 1Gi(u | Bo, 1) — é(u | Bo, l)’}

u€R

< E{I[|Ui(Bo)| > an]} x sup |Gi(w | Bo, DI

(S5.8)
< a,”E|Ui(Bo)|* x h™"
<ca,’h™",
where ¢ is a constant only depending on s. Write
S| Bo, h) =hn™ > " Glu| Bo, D). (S5.9)
i=1
Then we have
E {sug h7ts;(w | Bo, h) — 5i(u | Bo, h)]}
ue
1 " . '
= FE {SUEZ |G | Bo, 1) — Gi(u | Bo, l)|}
R =1 (S5.10)

< %ZE {sug 1Gi(u | Bo, 1) — Cilu | Bo, l)‘r}
i=1 ue

= O(a;*h™).
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Therefore, by taking

ap = h—dn, (8511)
and s = r + 1, it follows that
|si(u| Bo, h) — 5 (u | Bo, h)| logn
=0, ) S5.12
W a0, dop e \V (5512
Write
@0 = [—an — h, A, + h] HU(ﬁo) (8513)

Then we have §;(u | By, h) = 0 on u € R\ ©g. Therefore, in view of (S5.12)),

to prove ([S5.4)), it suffices to prove

|si(u | Bo, h) —Esi(u| Bo, h)| \/@
5361)30 (max{fg,(u), d,})/2hl Or ( - > : (S5.14)

Given some § > 0, define

@1 == {u | fﬁo(u) Z (1 + 5>dn}, and @2 == @0 \ @1. (8515)

We shall prove ([S5.14)) by showing that

qup 210 B0 1) = EsiCu | Bo, b)) Q_( log n

u€O (maX{fﬁo(U)a dn})l/zhl nh )’ 0= 61 and 62'

(S5.16)
We first prove (S5.16|) with © = ©,. By using condition (A5)(iii), there

is a constant ¢ not depending on £ such that

up MELCEC | . D)

P R (85.17)
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From this, equation (55.16)) holds with © = ©; if we can prove

:07< log">. (95.18)

n

sup (u | /80, ) ECZ(U | /80, l)
[E G (u ] Bo, D]

The main idea is to cover the set ©; with intervals [uy — 7y, ugx + 73]
From condition

E=1,2 N, centered at u;, € ©; with lengths 2r,,.

(A5)(ii), we have
sup lu| = O(logn). (S5.19)
{u:fpy (u)=(140)dn}

Therefore, the cover number N,, = O(r,,*logn). Observe that

(U | ﬁoa ) EQ(U | ﬁoa l)

sup
uedr | i [E Cf(u | Bo, 1)]1/2
- 1 ) 7 y l
< max sup |: Gi(u | Bo, 1) . Giug | Bo, 1) :|
1§k§./\/'n ue[uk Tn, uk+7‘n]["|@1 =1

n

EQ U | Bo, ) o ECz‘(Uk | Bo, l) }
V2 B (uk | Bo, DIV?

M

(u
[EC(u| Bo, DIV2  [ECG(ug | Bo, 1)]Y/?

+ max sup
1<k<Nn UE[up—Tn, up+rn]NO1 i—1 ECQ u | ﬁ(]’
Q Uk | 50, EC’L(ukJ ’ 507 )
L Z B | o, )7
= Sg + S4 + 55.

(S5.20)

Since K is defined on a compact support and satisfies the Lipschitz

condition of order 1, we have

T'n
BB D, 50 D =G D1 = O (). 552
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and
2 . 2 _ T_n
15&55\6‘” UE[“k*T‘S}’}‘EJﬂ‘n]ﬁel |CZ (u | 607 l) Cz (Uk | 507 l)| O<h3> (85.22)
Note that
Gi(u | Bo, 1) Cilug | Bo, 1)

[E¢E(ul Bo, DIV [EC (| fo, D]
[E ¢ (ur | Bo, 1) =BG (u | Bo, D]Gi(u | Bo, 1)
[E ¢ (u | Bo, DIV2[E G (u | Bo, DIVA{IECE(w | Bo, DIV + [E G (uk | Bo, D]V}

1
E CZ(uk | Bo, D)]Y/? [Gi(u | Bo, 1) — Ci(ug | Bo, 1)]-

T
(S5.23)

So if we take

= d2h% e, (S5.24)

where €, = y/(logn)/n, then we have

5?,:0(,/105”), and 54:0< 105”). (S5.25)

It remains to bound S;5. By using condition (A5)(iii), there is a constant

¢ not depending on k such that

[Giur | fo, ) = EG(ux | o, DI _ ¢
[E CE(W | Bo. l)]l/Z - h1/2d111/2'

(S5.26)
Obviously,
Var([Ci(ug | Bo, 1)] < EC(ux | Bo, ). (S5.27)

Since N, grows at a rate of at most n¢ for some ¢ > 0 not depending on

n, by applying the Bernstein inequality for independent variables (see, for
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example, Chapter 2 of |Wainwright| (2019))), there exists a sufficiently large

C such that

P[S5 Z O€n]

22
< 2N, exp (e, 7
2+ (2/3)(c/h12d,/ ") Ce,

-1
2Cc [logn

< _ 2

< 2N, expq —C*(logn) (2—1——3 “nhdn>

< 2N~ 3 = o(1),

(S5.28)

which implies that S5 = O,(¢,,). In addition, from ([S5.28)), the sequence

|S5/en|", n =1, 2,... is uniformly integrable for any integer r > 1. There-
fore,
1
S = OT( b Og") (S5.29)
n

holds for any integer » > 1. This, together with (S5.20|) and (S5.25)), proves
(S5.18)) with © = ©;.
Recall that fg,(u) < (1+ 6)d,, on O4. Therefore, to prove (S5.16|) with

© = 0O,, it suffices to show

sup | 342G | o, 1)~ B | o, D)
=1

uEO2

B logn
—Or( nh>' (S5.30)

This part of the proof is quite similar to that with © = ©; and so is omitted.

In summary, we have proved (S5.16)). From this, ((S5.14]) and therefore
(1S5.4)) follow.
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We now turn to (S5.3)). Define

~ l
Glu| by, 1) = (W) Ky(Ui(b,) —u), 1=0,1,....  (S5.31)

Since K is defined on a compact support and satisfies the Lipschitz condi-

tion of order 1, we can obtain

|Cz(u | bp’ l) - Cz(ﬁ() | bp7 l)|

IA
o o

{L|U:(by) —ul < h] + T[|Us(Bo) — ul < B} x max{h™"|Ui(b,) — Ui(Bo), 2}

LU (o) — ul < 2h] + 1[|Ui(by) — Ui(Bo)| > h]} x max{h™'|Ui(b,) — Ui(50), 2},

>

(S5.32)

where ¢ > 0 is a constant not depending on n. From this, we have

si(u | by, h) — si(u | Bo, h)|
max{fﬂo( ), d }hl

_ }Zm u | By 1) = Gl | By, 1)

nmax{fﬁo

= nhmax{fgo(u) dn} ZI \Us(Bo) — u| < 2h] max{h’1|Ui(bp) —Ui(Bo)l, 2}

‘U Ui(Bo)| > h]

(95.33)
We first consider the asymptotic properties of U;(b,) — Ui(Bo). As we

assumed that all moments of the FPC scores are finite, it follows that

E[U;(b,) — Ui(B0)”" = O[(p/n)'] (55.34)
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for any integer » > 1 from (3.2) in Lemmall] By using the Cauchy—Schwarz
inequality, the Minkowski inequality and (S1.4) in Lemma 2] we also have,
uniformly over b € B,, for any integer r > 1,

E {sélg[ffi(i?p) - ﬁi(bp)]2r} = {Sup Z 1/231)\;/2 bj — b; )]}

beB, i

VA
=
1
Mﬁ
>
S
=
SN
| S
3
X
1
w0
==t
T
gy
>
<
—
S
|
=
o
_
3

< {Z[E(Ajlﬁj)r]l/’“} X (%) (p*/n")
(95.35)

Combining the above two results yields

E {ggg |Ui(b,) — Ui(ﬁo)l’"} =O(p" /n""?) (55.36)

for any integers r > 1.
Note that p/(n'/2h) = o(n™®) by condition (A4)(i). By using the
Minkowski inequality and Markov’s inequality, we can obtain

{supz [0(5,) — Ui(B0) >h]}

beB, 5

r

A 1/r e
sup |01(b,) — Uy (%) >h” = 0|n() "] = o)

beB,

n

93

=1

El

(85.37)

by taking s large enough. From this, by using (nhd,)™' = o(n~) in
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condition (A4)(ii), it follows that, for any integer r > 1,

E [sup 57] =o(n™) (S5.38)

beB,

for some ¢ > 0.
It remains to bound Sg. Let K be a kernel function satisfying condition

(A3) such that K (u/2) > 1 for u € [~1,1]. By using (S5.4) and (S5.5), we

can obtain

7 :=su ! Y ; —u
m(u) = ue]llg {nh max{fgo(u), dn} ZIHUZ(BO) | < Qh]}

1 — - \Ui(Bo) — ul _
< sup {nh o (), 0} ZK[ T } - o
(85.39)

for any integer r > 1. By using (S5.36|) and condition (A4)(i), we have

Bl s [S
(u, bp)E(RXBp)

<cE {m(u) [ sup sup maX{h_IWi(bp) = Ui(Bo), 2}] }

b,eB, 1<i<n

< B {m(u) x n’cl/Q}r

+ (2¢)"E {[m(u)]r x 1| sup sup |Ui(bp) —U;(By)| > hn—c1/2] }

byeB, 1<i<n

1/2
= O(n=2"/2) + O(1) x {nP sup |Uy(b,) — Ur(Bo)] > hn—61/2] }

b,eB)y

s/2
= O0(n~ "% + 0 {”1/2<W> ] |

(S5.40)
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for any integer s > 1, where the last equality results from Markov’s inequal-

ity. By taking s large enough, we have, for any integer r > 1,

r

E [ sup 1Ss|| = O(n="/?). (S5.41)
(U"bp

)JERXBp)

Now ([S5.3)) follows by plugging this and (S5.38]) into (S5.33]), which com-
pletes the proof of (S5.1)).
It remains to prove (S5.2). In view of (S5.1)), equation (S5.2)) follows if

we can prove, for any integer r > 1,

max{ fg, (U(bp))a dn}

max{ fz,(U(Bo)), dn} :

sup = o,(1). (S5.42)

(X, bp) €( Az (v0) X Bp)

By using condition (A5)(iii) and (S1.25)), it is easy to verify

max{fgo(U(bp))7 dn}

max{ f3,(U(Bo)), dn} !

sup
(X bp)€(Az (vn) X Bp)

I[F,] = o(1).  (95.43)

Now ([S5.42)) follows from P(F,) = 1—-O(n~°) for any ¢ > 0, which completes

the proof of (55.2]). O

Lemma 4. Under the assumptions in Lemma[3, we have, for any integers

r,s>1,

sup [Z W (U(by) | b,)[" x [max{ f, (U (o)), da}) ™"

(X, bp)€(Az(vn) xBp) | 121

gTL(u | bp7 h) )T:| —r+17 —r+1
o (21O W) N ety
(gdm b, 1) ( )

(S5.44)
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and

sup [Z\Wnk p) | Bp)[" x [max{ f5,(U(o)), dn}]"™"

(X, bp)e(Az(vn)xBp) | 1.

< (i) | =

(S5.45)

Proof. By using Lemma [3] this lemma can be proved by direct calculations.
The manipulation is not particularly difficult. Part of this proof is similar

to that of Lemma |5 so we shall not reproduce here. O]

Lemma 5. Under the assumptions in Lemma 4] and condition (A6)(i), we

have, for any 6 > 0 and integer r > 1 ,

3 ( ’ bp7 h
U(b E Wk U (b
77( ( p)) gdn( ( ) ’ ] ( k( p))

x If5(U(Bo)) = (1 +8)dn] = Oy (h7),

sup
(X bp)€(Az (vn) X Bp)

(S5.46)

~

sup
(X, bp)€(Az (vn) X Bp)

(b _9(( |bp’h* U.(b
(00~ SO LS 010, Bln(Cite)

X 1 fa(U(Bo)) = (14 0)dn] = O, (h7),

(S5.47)
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and

. U(B) | b,, h*) <«
sup n/(U(bp>) . g ( A( P) | P *)
(X, bp) E(Aq (v0) X Bp) 9a,(U(by) | by, h*) 1=

X 1 fa (U(Bo)) < (14 0)dn] = Op(1).

War[U(B,) | b,]0(Uk(by))

(S5.48)

Proof. We first prove (55.46)). To simplify notations, write u = U (b,) and

U = ﬁk(bp). Define

H(u, w) = n(u) —nlur) —n'(w)(u — u). (55.49)
Note that
ankuyb)_mm ZWnku|b)(u—uk)—0. (S5.50)

By a simple calculation, we have,

o) = SRS Wt bt
gl b ) — | b ) o[ B )
S by T g T,
) Ge(u | by)n(uy) ' (w)(nh®) TR Gk(u | by) (u — uy)
gdn(u | bp’ h) gdn(u | bpv h)
)Y G| b H ) g ]y ) ga(u ] By B)
- 90, (u | By ) T by W
= SS + Sg.
(35.51)

We first consider Sy. Noting that n has a bounded derivative, by using
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, we have,
E { sup [So I[fg,(u) = (1 + 5)dn]lr}

b,eB,

(S5.52)
= O(log" n) E sup {I[g(u | by, h) < vad2] 1[f3,(w) = (1 + 8)d,]}.

byEBy

By using Lemma [3) we can obtain that, there is a ¢ > 0 such that for any

integer s > 2,

{‘gn<u ’ bpa h) - V2f520(u>’
sup

(X, bp)€(Ax (v0) ) va f5,(w)

x I fg,(u) > (1 + 5)dn]} = O4(n™).
(95.53)

From this, we can obtain

Ebsgg {I[gn(u | by, h) < ad2]1[fs,(u) > (1 +6)dn]} = O(n™ ). (S5.54)

for any C' > 0 by taking s large enough. Therefore, it follows that, for any

integer r > 1,

E{ sup {ISo|" x I[fs,(u) > (1 + (5)dn]}} = o(h?"). (S5.55)
(X, bp)e(AxxBp)

We now turn to Sg. An elementary calculation yields

> lu | Bo) H (ug, u)
k=1

= so(u | By, h) ZH(uk, w)Kp(up —u) — s1(u | Bo, h) Y  H(ug, u)(ug —w)Kp(ug — u).
k=1 k=1
(S5.56)
From condition (A6)(i), we have
| H (ug, w)] < (ur, —u)* sup |n"(u)]. (55.57)

uEZ;{(bp)
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From this, by an argument similar to the proof of (S5.2) in Lemma [3 we

have, for [ = 0 and 1 and any integer s > 1,

sup H (ug,, w)|(up—u) Kp(up—u) = O4(1).
(X, by)€(As (vn) xBp) WIZT max{fgo , d }Z| ’ smu) Ko lw—) ®)
(S5.58)
Combining this with (S5.1) of Lemma [3| we have
E sup 1Ss|" + = O(h*"). (S5.59)
(X, bp)€(Az (vn) xBp)
It is easy to show, for any positive integer r,
E [ sup  {[Ss + So" x [ fg (u) = (14 5)dn]}]
(X, bp)e(AzxBp)
<2 'E sup {I18s]" x 1 fa,(u) > (1 + 5)dn]}] (S5.60)
(X, bp)e(AzxBp)

1R [ sup {ISol” X I[fsy(u) = (1 +6>dn1}].

(X, bp)e( Az xBp)

This, together with (S5.51)), (S5.55) and (S5.59), completes the proof of

(S5.46]).
We now consider (S5.47). Again, write u = U(b,) and uj, = Uy(b,).

Note that

anku|b ) =0 and anku|b Up — u) Z{nku|b (S5.61)
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By direct calculations, we have

by, h)
/ Wo(u | b,)
lu) - gczHUIbp,h"‘Z (u ] b))

_ Gan ([ by, h) = gu(u | by, h) , gn(u| by, h) Dt S (u | by) (wr — w)

A A AR OT T SE KA S ST
() Sy & Bynfu) | () (nh?) S | by)
QNdn(U | bp7 h) gdn(u | bpv h)
NS b o) H k) gy, B) gl by, 1)
gdn<u | bpv h) 9d., (u | bp? h)

n'(u).

(S5.62)

The reminder of the proof is quite similar to that of ((S5.46)) and is omitted.

The proof ([S5.48) is simple by using (S5.62)) and is also omitted. [

Lemma 6. Under the assumptions in Lemma |5, we have,

sup Z Z\Wnk ) [b,)] < [1(Ui(b,)) = n(U(A0))]

b,eB)

(S5.63)
% gn( l( >|bpvh) -0
<gdn< Ui(by) | b, >)] )
bsgg Z [Z (Wi (Ui(by,) | by)| X [ <Uk(bp)> - U(Uk(ﬁo))]
T ) (S5.64)
% gn(Ui(bp> | bpv h) — O (pnc
<gdn<a<bp> b, h)) )
sup [Z [Woar(Di(by) | 0,)] % [n(0(b,)) = n(U(50))]
rorisl Le=l , (S5.65)
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and

for any ¢ > 0 not depending on n.

Proof. We only prove (S5.63) and (S5.64)), the proof of (S5.65)) and ([S5.66))

is similar. From (S5.36]), by using Markov’s inequality, we have

P([X]ls > n) <n™P (S5.67)
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for any ¢, D > 0. Direct calculations yield

sup Z [Z (Wok(Ti(By) | B)| x [1(0(by)) = n(U(50))]

y <9n< Uilb, >rbp,h>>]
94, (Ui(bp) | by, h)
—~ < ( )\b) -
< su X Uk(bp) ) = n(Uk(Bo))
prgp;k 1 \/K Uk(b )] [77( ) !

gn<Ul( P)| D5 ) " 17y o
’ <9dn(l7i(bp)|bp, h)) ;K[h (Ui(by) = Uk(by))]

n

< sup Z [n(Ak(bp)> n(Ur(Bo) ]

byEBy 47

Wnk< < > | b,)
RN ~ Ui(b,))]

gn<Ui(bp) | by, h) N
" <gdn(Ui(bp) | b,, h)) x nhmax{ fg,(Ui(by)), dn} x O(1)

= sup 3 [n(0(6) — n0(50)] 10Xl < 1] % OypalV) + 01(1)
pELP =1

= O,(p)

(S5.68)
where the first inequality can be obtained by using the Cauchy—Schwarz
inequality, the second inequality results from in Lemma 7 and the
third equality can be shown by an similar argument to that of in
Lemma [4] and using ([S5.67). Now follows by using Lemma [2|

By using Holder’s inequality, the proof of is straightforward, so

we omit here. O
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Lemma 7. Under the assumptions in Lemmal5 and condition (A6)(ii), we

have, uniformly over 1 < j <p,

ln ) gnUkﬁoyﬂg, ) . | 2_0
n;{&[ 2 1gd (U (Bo) | Bo. 1) m[Uk(ﬁoH@o]p][Uk(ﬁo)]} = 01(1),

(S5.69)
where pj(u) = n'(u)ng;(u).
Proof. From condition (A5)(iii), we have, uniformly over 1 < i < k < mn, if
Ui(Bo) — Ur(Bo)| < h, then

1 1
max o (Vs (B0 d} — max o (WalBo), doy L Ho)- - (85.70)

Note that P[fs,(u) < (14 0)d,] = O(d,logn) holds for any ¢ > 0 not
depending on n. Similar to (S5.1) of Lemma (3| we can obtain that there

exists a ¢ > 0 such that

h) — bt
ek |Sl<1;n|ai?[’fﬁo)(u), CZ{Z(?(U)' = 0,(n"%), (85.71)

for any integer r > 1. By using condition (AG6), it is not hard to verify

- lZ{ -y ol 5.1 m[Uk<5o)\ﬁo]pj[Uk(ﬁo)]}

1<i<n N 4= “—~ 9a, (Ux(Bo) | B, h)
X 1 f5,(Ui(Bo)) < (1 +0)dn] = 01(1).

(S5.72)

Combining (S5.71)) and ([S5.72)), we have, to prove ((55.69)), it suffices to
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show, uniformly over 1 < j <p,

VO o s KnU) — Un(f)) 2

x I[f5,(Ui(Bo)) > (1 +0)d,] = 01(1).
By using condition (A6), it follows that, forall1 < j <pand1 <i <k <mn,

1pi[Uk(Bo)] — p;lUi(Bo)l| < ch (S5.74)

for some ¢ > 0 not depending on 7, 7 and k. By using (S5.70)), (S5.71]) and

(S5.74), equation (S5.73|) can be proved by direct calculations which are

not particularly difficult. Further details are omitted. O]

Lemma 8. Let Vi,..., V, be a sequence of random variables. For a given
Vi, let oy, (Vi) be a function on C,, = {(u, by) € RPT! : ju—ug| < n™, ||b,—
by.oll2 < n®} for constants a1, ay < 0o not depending on n. Assume that

©u,b,(-) satisfies
1 . * *
S e (V) = ey (VO < na, by) — (', Bl (85.75)
i=1

Jor some constants u*, by, and az > 0. Let &, > 0 depend only on n. If

1 1
> QEn} 5 (S5.76)
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for all (u, b,) € C,, then we have

(85.77)

—n?e2 /128
< (n/e,)?E sup 2exp
( / ) {(u bp)€Cn <Zz 1 QOU b, (V)>}

for some ¢ > 0 not depending on n.
Proof. Lemma [8| can be proved by using a symmetrization method. See

Lemma A.1 of [Wang et al. (2010)). O

Lemma 9. Under the assumptions in Lemma [5 and condition (A7), we

have, for any integer r > 1,

u b 1
sup ZM@ax{fﬁo ), d} Wil | byle or< pog”),

(u,bp)E(RxBy) £ Y (U nh
(S5.78)
g (U(b,) | by, h .
(X, A o) ¥5y) ((U(( ))|]b h))W"'“Mb”)’b”]e’“
X, bp)e(Az(vn)XBp 9d,, ,
b=t 9 U00) | B (S5.79)

x yfmax{ £, (U(60), du} = OT< pljji”),

— gn(u) 5 plogn
sup g max ), dp }Woklu | bylex, = O, — ],
(u,bp)E(RxXBy) £ Y (U ) b h* \/ o (), du} Wkl | byle n(h*)?

(S5.80)
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and

(U(b) | b, B*) -~
sup g ( A( p) | p ) Wnk[U<
(X, bp)E(Ax(va)xBp) 173 9d, (U(by) | by, h*)

plogn
X \/max{fﬂo(U(BD))> dn} = OT( n(h*)3>
Proof. We only prove (55.78) and (S5.79)) here. The proof of (S5.80)) and

(S5.81]) are similar.
Note that Wyg[u | bylgn(u | by, h)/ga, (u | by, ) = 0 if u — Ug(b,) >

b,) | byler,
(S5.81)

h. As we assume the density function fs,(u) is sub-exponential, by an
argument similar to that in the proof of Lemma [3] it is not hard to verify,

for any integer r > 1, there exists a § > 0 such that

— gn(u| by, h)
sup - B 7
(u, bp)€((R\[=n?, n3])xBp) 1.1 Ydn (U | bp7 h)

x y/max{ s, (u), d}Woilu | byles = or< pfi”).

Therefore, it suffices to prove

" ga(u]| by, h) —Toen
sup “———— = /max{ f5,(u), dp}Wyi[u | bylex = O,
(uvbp)E([—n(‘,nﬂpr); ga, (u | by, h) \/ {f8o(u), dn} [u | bylex, —

(S5.82)

(S5.83)

for any 6 > 0. Let V; = (e;, )" and

B nh  gn(u| by, h)
Pu, (V) = [ xS ), dJ Wl | byl

(S5.84)

The reminder of the proof of (55.78) is straightforward by using Lemma

and Lemma
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By using (S5.43), equation ([S5.79) holds on F,. Since P(F,) =1 —

O(n~°) for any ¢ > 0, equation ({S5.79) follows. ]

S6 Proof of Theorem [1]

We prove Theorem (1] by showing that under conditions (A1l)—(A8), the

estimating equations (2.13) have a root b, such that
P(b,(b,) € B,(n, C1)) — 1 (S6.1)
for some C < oo, where B,(n, C) is defined in (3.3)). Recall

bop = (Boz, - -, bop)” = (A 2ba, .., A2D,)T (S6.2)

p
ng == BQP(TL, Cg) == {Bp € Rp_l . Z(i)] — Boj)Q == C’gp/n}, (863)

Jj=2

and

B, = B(n, Co) = | ] By(n, C). (S6.4)

0<C<Cy

Our first goal is to show that provided &,, if Bp € B,, for some finite Cy, then
the corresponding b, = b,(b,) lies in B,(n, C;) for some C,; only depending

on Cy. With this, in order to prove ([S6.1)), it suffices to prove

P(b, € By, (n, Co)) — 1 (S6.5)
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for some Cy < oco. In rest of this section we shall drop the superscript p for
simplicity in notations when there is no ambiguity.

For a given b € B, with some C, > 0, direct calculation yields

» 1/2 1/2
[b1(B) — b1(bo)| = <1 - Zi’?}‘jl> < ZbOJ j )

1
- ’Zy =2 b? /\] b(z)J )\J
o 1/2 1/2
(1= 7 (1 — PR )
1 |¢ 1-1 2 2 (3
= W Z)‘j (b] _bOJ 1/2 ZbOJ )‘ )
01 [j5=2 j=

(56.6)

We first consider Sy;(b). Provided &,, simple calculation yields, uniformly

over 1 <j <p,

j—2ao|5\j—1 _ /\]—1’ — O(n_1/2+6), (SG?)
for any 0 > 0. Therefore, by taking ¢ small enough, we have

sup Sy (b) <
BGBQ b

p—1
= O(n~V2H0) Y 200 jma0=2a1 4 (= e0—2a1+1p —1/245 2a0) 0( 2)
, n

(56.8)

For Sy(b), we first observe that, by using (S6.7), it follows that, uni-
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formly over 1 < 5 < p,

A= 211+ o(1)). (S6.9)

J

Now applying the Cauchy-Schwarz inequality yields

P 1/2 P
Sio(b) < 11/2 > (b —by)?| % Z A2 (b + boy)?
b :

01 Lj=2

1/2
Cop 2
,/bmn {Z)\ — boy) +8boj]} x (14 0(1))
_ ng 1 (F
=:cq/ b Sio(b) x (1 +o(1

for some constant ¢ > 0 not depending on n. Note that for b e By,

1/2
X (14 0o(1))

(S6.10)

suplgjgp(éj — Boj)z < Cyp/n. Therefore, we have, for any b € Bs,
20 & b .
Sta(®) < E DTN +8 %A,
j=2 j=2

20 —
2p % Cp2a0+1 +cha0—2a1 +Cpa0—2a1+l

Jj=2

(S6.11)

<

for some ¢ > 0 not depending on Cs. By condition (Al) and (A2), we have

p?@+2/n = o(1) and ay — 20, < —2. So we have S},(b) = O(1), and

sup Sio(b) = 0< 3). (36.12)

BPEBQ n

Substituting this and ((S6.8]) into (S6.6|) yields

sup [by(B) — by (bo)| = o( 3). (S6.13)

BPGBQ n



Y. Huang and Q. Wang

From this, we find that, provided &,, if b € By, then b € B(n, C) holds for
some (] < oo when n is large enough.

Note that provided &,, all the results for b € B in Section remain
valid for b = b(b) with b € B). Before proving (S6.5), we first give some
useful results. As we assumed the density function fz,(+) is sub-exponential,

it is easy to show

E{[max{fs,(u), d,}]~'} = O(logn). (56.14)
Define
N0 (AT Doz, -, A D
Jy=A7 Doz o) | (S6.15)
I,

By direct calculations, we can obtain, for any integer r > 1,

sup ‘Al/Qf(B))H —0,(1), (96.16)

beB,

sup ’Al/Qj(B) B A1/2jw —0, (n(—al+a0/2+1/2)/(a0+2a1)) — o, (n~p 12
beB,
(S6.17)
for some small ¢ > 0, and
sup Y |(b — bo)" T (B)&|” = C204(p). (S6.18)

BEB/Q i=1

By using Lemma [2, we can obtain

NI ay = APy = 0,(n V) (S6.19)
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for any integer » > 1. By using the Cauchy-Schwarz inequality and the

Minkowski inequality, we also have, for r > 2,

E sup |(b— bo)"J" (B)&[*

BEBQ‘
P " P "
< [sup Z(Ej —boj)?| X E |ez? + Z At +px oT(l)]
bl j=2 i=2 (S6.20)

p
< C5 % O [n") x [a(Ex?f>1/2 £ 3N B+ ofp)
j=2

= O(p* /n"),

where the constant on the right side of the second inequality
1 < ’
¢ = sup [— )\j_llv)j(vj — Ejo)] = o(1). (56.21)
Therefore, by using Markov’s inequality, it follows that

sup sup |(b — bo)TJ (b) ;| = 0,(np/v/n) (S6.22)

beB, 1<i<n

for any ¢ > 0.

Our task now is to prove (S6.5)). Define

3

RB) = |V~ i, (0:0) [ B) |4, (0:(0) [ 0) JT (). (56.23)
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Separating R(b), we have

n

R(b) = Y e (Ui(Bo) " (B)[&; — E(; | Us(Bo))]

=1

+Zez[nd( rb)—n< (80| 77 (B)a

—Zn "By i, (0(6) | b) — i, (C:(5) | B)]
—Zn’(Ui(ﬂo))J( {1, (0:(8) | B) = n(Ui(0))] — e Blas | Ui( o))}
- Z [nd (Cv) | b) = 1(Us(B0))| [, (03(6) | B) = o (Ui(50))] I (B):

(S6.24)
For R;(b), by using (S6.22) and that n has a bounded derivatives in

condition (A6)(i), it is not hard to prove
sup |(b — bo)TRu(B)] = 0,(p) (36.25)
beBs
by utilizing Lemma [§]
Next, for Ry(b), we observe that
Ji(b) | b, 1) <

:nei/UiO g( Wnk bn(Uk(Bo jTi)"ii
Z 1 (Ui(Bo)) — gd((th) > [Ui(b) | bln(Ur(Bo))| 7 (b)
gn(Ui(b) | b, ") T | Blen | FT (B

;; Zg 1o o) VG0 | Bles | I ()3

= Rgl(i)) —+ RQQ(b)

(S6.26)
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For Ry (b), we shall prove

sup |(b — bo)" R (b)| = 0,(p) (56.27)

5632

by utilizing Lemma . Let V; = (e;, &))" and

(S6.28)

As we assumed that the kernel K satisfies the Lipschitz condition of order

1, it is easy to verify (S5.75)). Recall that P(||X||s > n¢) < n~P for any

¢, D > 0. By using (56.22)), Lemma , Lemma@ and (|S6.14]), we have

2
1 & 1 O
sup E —ZSOb(V) < Esup —22802(‘/)
beBy n i=1 beB, |1 i=1
1 — gu(U;(B) | b, h¥)
=— Y Esup |7'(Ui(Bo)) — - b]n(Uk(bo))
p2 ; BEBQ gdn(U |b h* kz

Ccoa2
< I[|| X2 < nc]} x 0("5 ) +o(p~in°)

[

< O(n(h*)2 + nd, logn + (]}9:>2> x O(n~¢) + o(p™'n=%) = o(p~tn"°)

(S6.29)

for some ¢ > 0 by taking ¢ small enough. By using Markov’s inequality,

equation (S5.75)) holds. Now (S6.27)) follows by using (56.29) and applying
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Lemma . For RQQ(B), we shall prove

sup |(b — bo)" Rya(b)| = 0,(p)
beBy

in Section This, together with (S6.26)) and (S6.27)) proves

sup |(b — bo)" Ry(b)| = 0,(p).
beBy

For Rs3(b), we shall show in Section that
sup |(b — bo)" Rs(b) +n(b — bo)" V, (b — bo)| = 0,(p).
beBy
For R4(b), we shall show in Section that
sup |(b — bo)" Ra(b)| = 0,(p).
beBy
For R5(b), we shall show in Section that

sup ](5 — BO)TR5(I})\ = 0,(p).

5682

Now, combining (S6.24)), (S6.25)) and (S6.31)—(S6.34)) yields

sup (b — by)"R(D) = —n(b — by)TV, (b — by) + 0,(p).

BEBQ

(S6.30)

(S6.31)

(56.32)

(S6.33)

(S6.34)

(S6.35)

By condition (A8), the minimum eigenvalue of V,, is bounded away from

zero for all p > 2. Therefore, for an arbitrary ¢ > 0, there exists a Cy not

depending on n such that P{supscz, [(b—bo)T R(b)] < 0} > 1 — & when n is

large enough. With this, (56.5|) follows from Theorem 6.3.4 of Ortega and

Rheinboldt| (2000), which completes the proof.
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S6.1 Proof of (56.30))

We shall prove ((S6.30)) by utilizing Lemma . Let V; = (e;, )" and

on(Vi) = Ze; z gn(Ui(b) | b, 1)

) Wr(Ui(b) | b)ex | (b= bo)"J" (b)a;
P | g (Ti(b) | b, b) e(Ui(b) | b)ex | (b—bo)" I (b)

(S6.36)

To simplify notations, in this section, we write

. 9:(0) _ on(Ui(b) | b, )
Wi (i) = Wor(Ui(b) | b), a e = o) [b ) (96.37)

As we assumed that the kernel K satisfies the Lipschitz condition of
order 1, it is not hard to verify (S5.75)). For (S5.76)), we have, uniformly

over b € Bs,

NN N P IR
‘E{Z P max S (U:0)) day) O

| (11X < ne]
| i @ * O

(i) () ()

by taking ¢ > 0 small enough and r large enough, where the third equality

+0o(1)

can be shown by using Lemmas |3| and 4] and (S5.67)), and the second last
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equality results from Holder’s inequality and (S6.14)). Therefore, by taking

¢ > 0 small enough, we have

2
1 n

sup E [ﬁ Z eo(Vi)| =
i=1

beBy
So (S5.76)) follows for any fixed €, = € > 0. By using Lemma |§|, (156.22)
and ([S6.14]), it is not hard to verify

1 n
E sup [n— > AEm)
i=1

6682

((;C)3> xO(n™ ") =o(n™").  (36.39)

1 & _
= Esup [EZ%(W)I[H&HQ <nf| +o(n")
=1

6682

(56.40)
for some ¢ > 0 small enough. Now (56.30) follows immediately by applying

Lemma 8l

S6.2 Proof of (56.32)

By using ((S5.67)), it is not hard to verify

E {[33(6)]21 { sup || X2 > n} } = o(n) (S6.41)

1<i<n

for any ¢ > 0. From this, without loss of generality, we assume sup; <;,, || Xi|| <
n® where ¢ > 0 does not depend on n and can be arbitrarily small in this
section. Define the event G, = {f,(U;(6o) > (1 + 6)d,} and the event

G; = {infzep, gu(U;(b) | b, h) > 15d2}. By using Lemma , we can obtain

zn: P(Gi\ G)) — 0. (S6.42)
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When g, ( Z( ) | by, ) > 1ad? holds for all b € B), by a first-order Taylor

expansion of 7y, (-) with respect to b, we have

i, (0:0) | B) — i, (0:8) | B) = amn@(bggnb(é»

(b — bo),

(S6.43)

where b* = b + (1 — 0)b, for some @ € [0, 1]. From this, it follows that

Zn (0:(8)) 7 (B)i 1, (0(b) | b) = e, (0:(B) | B)] 1101

+ Zn,(Uz(b)> jT(B)i?Z(b _ Bo)T aﬁ(Ul(b(abg) | b(b)) B
=: R31 + R3y
(S6.44)

holds in probability.

For Rs;, by using Lemmas 5| and [9] we have, uniformly over 1 < i < n,

sup ‘ndn (U( ) | b) _ ndn< ( ) | b)‘ < 2n(Ui(B)) ‘|‘Op< p:;i:)

beBs

(56.45)
Therefore, by using (| , condition (A6)(i) and Y, I[Gf] = O,(nd,), it

is easy to verify

sup |(b — bo)T Rs1(b)] = 0,(p). (56.46)

BGBQ

For Rss, to simplify notations, in rest of this section, we write

u;(b) = Ui(b(b)), si(i | b) = si(ui(b) | b(b), h), (56.47)
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(i | b) = 7(us(b) | b(B)), 17'(i | b) = 17/ (us(b) | b(b), h), (56.48)

and

Wk (i | B) = Wi (us() | b(b)), Wik (i | b) = Wk (us(B) | b(b), h).
(56.49)
Here we use the notation 7/(- | -, h) and Wy (- | -, h) to emphasize that the
bandwidth is k. Recall that (7(- | ), 7/(- | b)) is the minimizer of

for a given b. Therefore, for a given u;(b), the corresponding minimizer

(7(u;(B) | b), 77 (us (D) | b)) satisfies

n

Z [Yk — (i | B) - ﬁ’(z | B)(“k(i)) - uz(6>>:| Kh(uk(i?)_ui(i’)) = 0. (56.50)

k=1
Taking derivatives with respect to b on both sides yields
on(i | b) 1 SN -

= R3p 1 + R32,2 + R32 3.

(S6.51)

Before proceeding further, we introduce a useful lemma.
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Lemma 10. Under the assumptions in Lemma [ and condition (A6)(ii),
we have that, uniformly over 1 < i <mn, 1 < j <p, and b € B, if G
holds and || X;||2 € Ay(v,) where A, (v,) is defined in Lemma [3, then for

any integer v > 1, there exists a ¢ > 0 such that

ZA*% (Ui(b) — Ui(b))
"fBO (b)) (86.52)

= By | U(B) = UsBo)] + 0,(n”),
and additionally, if condition (A6)(1) also holds, then for any integer r > 1,

there exists a ¢ > 0 such that

ZA 2415 1 (U3 (b) — U (0))(Us (o))
nf50 60 (86.53)

= E[N; e, [ U(Bo) = Ui(B)|n(Ui(Bo)) + 0r(n™°).
Proof. By using ((S6.19)), this lemma can be proved by an argument similar
to that of Lemma The proof is not particularly difficult. So we omit

it. [l

For Rss 1, by using Lemmas [2{ and |10/ and (56.17]), we can obtain, uni-

formly over 1 < i <mn and 13, b* B;,
—(b—by)" T (b")——= Z(fﬁk — &) K (ur, () — s (b)) 1[G N G])
k=1

= (b—by)"J"(z; — E[z | U(By) = Ui(Bo)]) 1[G: N Gi] + 02(+/p/1).

(S6.54)
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By using this, we have

sup

B, b* EB/Q =1

b BT3B B08|3 s B )

;V Z(:&k — @) K, (ug (b) — Uz(i)))] 1[G N G]]

so(i | b%) 1=

(S6.55)

For the term containing ey, 1 < k < n, letting V; = (e;, 1), we claim

sup [= > b (Vi)
B, B*EB/Q i=1

1 n - A=A e ~ iy
= sup | =372 (b— bo) o (Ui(6) I (B): Y | Wi | B)e]
B,B*EB/Q n i=1 p =1

(S6.56)

The proof is straightforward by using Lemma [§| so we omit it here. Com-
bining ((S6.55)) and (S6.56)) yields

sup |(b — by)" Rsy, 1(b) — n(b — by)T V(b — by)| = 0,(p). (S6.57)

BGBQ
For Rss 2, we observe that the asymptotic behavior of )\;1/ 2 8Wnl(i | 5) / ob;
is similar to that of h™'W(i | &)X, (3 — &) for 1 < 4,1 < n and

1 < j < p, which can be verified by direct calculations. Therefore, by using
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Lemma [3| and arguments similar the proofs of Lemmas [3] [6] and [0} we can

obtain, uniformly over b, b* € Bj,

n n

SIb—bo) Rygo? = > {(6 — by)"IT(B*)AY1[G; N G) x O,(n"°h)

=1 =1

x | A Zn: W (n(Ui(Bo)) + e1)

=1 b=b(b*)
= 0p(p).
(56.58)

Therefore, by using Cauchy—Schwarz inequality, it follows that

sup |(b — bo)" Raz,2(b)| = 0,(p) (36.59)
beBs

For Rjy 3, by using a second-order Taylor expansion of 7(-), we have,

uniformly over b € By and 1 < i, k < n, if |(u;(b) — uk(b)| < h, then

N(Us(60)) = n(ux (b)) + ' (ur()) (ui(b) — ug(b)) + O(h?) + O, (pn~"/2+),
(56.60)
for any ¢ > 0 and integer > 1 not depending on n. By substituting this

into the expression of Rj3y 3, we can obtain

sup |(b — by)" Ry, 3(b)| = 0,(p) (S6.61)

beBy
The detailed proof is not particularly difficult by using Lemma [10] and the

results in Section [S21 We omit it here.
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Now ([S6.2)) follows from ((S6.44)), (S6.46)), (S6.51)), (S6.57)), (S6.59) and

(56.61).

S6.3 Proof of (56.33)

To simplify notations, in this section, we write

gn(9) _ gn(Ui(b) | b, h) . A .
94,())  gq,(U:(B) | b, h)’ d Wai(i) = Wi (Ui(b) [ B).  (56.62)

Separating ((S6.33)) yields

S>

S5

RiB) = {Z T ) 2L 0 (U 50)) 8 — o (U 50) B | U(ﬁo»}ek

—~ | < 94, (7)
SN CE PR LD SMOTCAESRCACS)

(S6.63)
By using ([S5.67)), it is not hard to verify
E {[R4(B)]ZI [ sup || X2 > nc} } =o(n) (S6.64)
1<i<n

for any ¢ > 0. From this, without loss of generality, we assume sup; ;,, || Xs|| <
n® where ¢ > 0 is an arbitrarily small constant not depending on n in this

section.

Write Ry (b) = JT(b)A'2R?,(b). Let R}, ; denote the jth component
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of R41(13). Similar to ((S6.62)), in this section, we write

Gn (i) _ 9n(Ui(Bo) | Bo, h)
9a,(1)  9a,(Ui(Bo) | Bo, h)

,and Wi (i) = Wor(Ui(Bo) | Bo). (S6.65)

Then we have

=" ZE [ gn(i? W (D)0 (Ui(Bo))Zi; — 0" (Uk(Bo)) E(zy; | Uk(ﬁo))]

oS8 3290 e oy — P i ]|
< )‘j ;E LZI gdn(i) Wnk( )77 (UZ(ﬁo)) ij gdn(l) Wnk( )77 (UZ(BO)) i
+edt) B [ gin((% W (D)1 (Ui (Bo))zi; — 1" (Uk(Bo)) E(s; | Uk(ﬁo))]
Ry o+ Ri o
(6.66)

For R}, 1, by using (S5.3)—(S5.5) and (55.43) in the proof of Lemma ,
(S5.70) and (S6.19)), it is not hard to prove

Ry, ;1 = o(n). (S6.67)

By some standard computations, it is easy to verify

E {% 2 [ I g O (U B, oy — By Uz-wom] }

- {% ZZ {gn@ Wk (i) (Us(Bo)) A eis — B | Ui(ﬁo))]] } =o(1)

(S6.68)
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From this, by using Lemma [7], we can obtain

Ry o = o(n). (S6.69)

Substituting (S6.67)) and (S6.69) into (S6.72)) yields

E(Rj ;)* =o(n),1<j <p. (56.70)

By using (S6.16|), we can also obtain

:;1;) ‘HJT Al/Q‘H = 0,(1). (S6.71)

Therefore, we have

sup | (b — bo)" Ry (b))

bek, (56.72)
< sup ||b — by|| x sup H‘JT AWM VP X 0,(v/1) = 0,(p).
beBs beBs

We now turn to Ry(b). By using (S56.22) and Lemmas 4| and , we

have

n

Sup Z i (Ui(Bo)) (b — Bo)TjT@)i'z

5682 i=1

[t

< sup sup |(b—by) T (B)&;| x sup |1/ (Ui(Bo))| x sup [n(Us(Bo))]

beB, 1<i<n 1<i<n 1<i<n

X Zl[fﬁo(Ui(BO)) < (1+6)dn] x Op(1>

I[f3,(Us(Bo)) < (1 +0)dy]

ZWnk n(Uk(Bo)) — n(Us(Bo))

= 0,(n"V**p) x 0,(n°) x O,(nd, logn) = o0,(p)

(36.73)
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by taking ¢ small enough. By an argument similar to the proof of (55.46))

in Lemma [5] we can obtain

W (0)n(Ux(Bo)) — n(Ui(Bo)) | U s, (Ui(Bo)) = (1 +0)d,]| = Or(hZ)

(S6.74)

for any integer r > 1. From this, by using the Cauchy-Schwarz inequality,

we have

E {sué) ZU'(Ui(ﬁo))(i’ — bo)"J" (b);
y [gn@ -

9a, (1) £

1[5 (Ui(Po)) > (1 + 5)dn]}

n ) 1/2
<E {§up 3 [n< }(5))(6 - BO)TjT(B)ﬁzi] } x O(n"/?h?)

(96.75)

since we assumed nh*/p = o(1) in condition (A4)(iii). Combining ([S6.75))

and (S6.73|) yields

sup |(5 — BO)TR42(B)| = 0,(p) (S6.76)

beB,

This, together with ((S6.63|) and (S6.72)), proves ((56.33)).
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S6.4 Proof of (56.34)

To simplify notations, in this section, we write

N (i) _ ga(Ui(b) | b, P) |
B G R TATITA)

and
T N T T g;:(l) _ gn<Uz(b) | b7 h*)
WorlD) = WurlU(0) 10) 95,(1)  ga, (U;(B) | b, h*)
Define
N - gn(9) 3 .
A0 = 3 W01, 06,
Aa(i) = 3 W )0 U o) — (O]
As(i) = n(Ui(by)) — n(Ui(Bo))
AU 710 R
Al = h=1 gdn(i)Wnk( e
Bi() = Y- L0 (01,) =1 (T,
IR o
Bali) = 3 L) (U Bo) = (U, )

(86.77)

(S6.78)

(86.79)

(S6.80)

(S6.81)

(S6.82)

(S6.83)

(S6.84)
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Bs(i) = 0/ (Ui(b,)) — 1/ (Ui(Bo)), (S6.85)
By(i) =S 90 g e (36.86)
e gp (1) T
C(i) = (b—by)TJ"(b);, (S6.87)
and
D(i) = I[[| Xi[|2 < n], (56.88)

where c is an arbitrarily small constant not depending on n. It is easy to

verify
n 4 4

SN ST A)Ba(i)CG0)[L — D(i)] = o0,(p). (36.89)

i=1 [=1 m=1

Therefore, to prove ([56.34)), it suffices to prove
D Ai)Bu(i)C (i) D(i) = 0p(p); 1, m € {1, 2, 3, 4}. (56.90)
i=1
Here we only prove
ZAl(i)Bm(i)C(i)D(i) = 0,(p), (I, m) = (4, 2) and (4, 4). (S6.91)
i=1

The reminder of the proof of (56.90) is not particularly difficult by using

the results in Section [S2]
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We first consider the case (I, m) = (4, 2). Let

) n (4) .
Z By (i gdn B Wi (i)ep. (S6.92)
We have
1 & ’ 1 «
sup E [EZ%(V;C) <Esup [n— ©5(Vi)
beBs k=1 beBs k=1
S IS B gn (i)
p Ez;espQ kl{zZIBQ()O( P >9dn(i) nk()} (S6.93)

<1, o< . ) < Esup 3 [Bali)?

BEBQ i=1

(i) =

Il
Q

for some ¢ > 0. Then (S6.91)) with (I, m) = (4, 2) follows by applying

Lemma [8

For the case (I, m) = (4, 4), let

=3 ity

It is not hard to verify (S5.75). For (S5.76)), we observe that, uniformly

3

ZM
$
%z
;z
E

@
Q
S

(S6.94)
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over b € By,

= {: : j 5;(())Wnl()€k€lD(i)}
o o) o o]
<c 2.2 g;n(i)Wnk(@)D(l)]
") i) ’
+CE{ > ;[gdn(i)wnk@)gzn(z)Wnlu)D(z)}}

=F [E T 4
- 1
o {Z W) max o U0, o O }

= (i)

(S6.95)

where the second last inequality can be shown by an argument similar to
(S5.68)) and the last equality results from Holder’s inequality and (S6.14)).

By using ((56.18) and taking ¢ small enough, it follows that

1 n
sup E [E > (Vi
=1

beBy

Therefore, ((S5.76]) holds for any fixed ¢, = ¢ > 0. By using Lemma |§|, we
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can obtain

E sup {Zn: Y gn(i? W (i) eg ” 9}(2) an(i)ez] D(Z)}

o | 2 |2 90,0 2 g ()

_ ol p?log”n
= E sup {Z _n2h(h*)3 maX{fg()(Ui(ﬂO))’ d?%}

beBy i=1

B ncp2
~ \wh(r)3d, )’

for any ¢ > 0. So we have

1 ¢ 2 1 np* n'p’ -1, —c
E [ﬁ ; (Vi) | = Exo(nh(h*)?’dn) XO< n =o(p~ n"°) (56.98)
by using condition (A4)(iii) and taking ¢ > 0 small enough. Now given

(I, m) = (4, 4), (56.91)) holds by applying Lemma 8]

x O:(1)

} (36.97)

S7 Proof of Theorem

Separating [, (U(8)) — n(U(Bo))]?, we have
[, (U (8)) = n(U(5o)))?
94, (U(B)

¢ gn(ﬁ(ﬂ)‘ﬂ’h) nW U 6}2 c[n(U —n(U(B))]?
+ {gdn(U(ﬁ)lﬁ, h); WU (B) | Bler ¢+ c[n(U(B)) —n(U(Bo))]

L n0@) 8.0 o :
' {gdn(ff(ﬁ) 51y 2 V0O Al mwm}

=: Re(B) + R7(B) + Rs(B) + Ro(B).

<e {77(0(5)) _ 'fﬁ’ ’;L)) S WlO(8) | mnmkw))}

(S7.1)
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By using Lemma [5] we have

sup Rs(B) = O, (h*). (S7.2)
(X, B)eAz (un)xByp

By using Lemma [0, we have

sup  Re(B) =0, (p log”) (S7.3)

(X7 B)GAZ(Un)XBp nhd;,b

As we assumed that 1 has a bounded derivative, it follows that

sup Rg(B) < c[U(B) = U(Bo))* = Op(n(_2a1+1)/(ao+2a1)ui)‘
(X, B)EAq (un) % Bp
(87.4)

For Ry(3), by using the Cauchy—Schwarz inequality and Lemma[4], we have,

uniformly over (X, 5) € A, (u,) x B,

0B 1.0 ] = e | o . 2
4. (0() | B h)] D WaslD(8) | 303 = Uil )]

1 _ p
= OP(M) Op(p) = O”(nhd’ )

n

Ry(B) <c

(S7.5)
Combining (S7.1)—(S7.5) yields
sup [, (U(8)) = n(U(50)))”
(X, B)EAz (un) x By (S7.6)

plogn C9ay o2

which completes the proof of (3.9).

Observe that E{[max{ f,(U(5)), dn}] " I[X € Ay(uy)]} = O(u,). From
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this, (3.10)) can be proved by a similar argument using (S7.1]). Further de-

tails are not reproduced here.

S8 Proof of Theorem [3

Decomposing 62, we have

5 = =34 S (Ul)) — i, (G

+ 326l (Ui(F0)) — i (Gi() (58.1)
— Ty + Ty +Ts.

From the classical central limit theorem, it follows that
Va(Ty — o) [Var(e2)] "2 % N(0, 1). (S8.2)
By an argument similar to the proof of Theorem [2] it is not hard to show
VnTy = 0,(1). (S8.3)
Similarly to the proof of , we can also obtain
VnTs = o0,(1). (S8.4)
By Slutsky’s Theorem, it follows that

V(62 = o2)(Var(e?)) "2 % N(0, 1). (S8.5)
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From this, to prove (3.11)), it suffices to prove
2

— Var(e?) 5 0. (S8.6)

n

%Z%—EZ@)
i=1

=1

By using the law of large numbers, we can obtain

%Zé—EZ@)

=1

2
s Var(e?).

Therefore, it suffices to show

1 n
= (&l =€) 50, and (S8.7)
n

i=1

3

2 2
1 A2 IR P
[n ;(ei)] [n ;(ei)] 5 0. (S8.8)
Note that (S8.8)) can be proved by using (S8.5). So we only need to prove
(S8.7). Writing é; = Y; — 4, (U(B)) = €+ n(Ui(5o)) — 74, (Ui(B)), equation

(S8.7) can be proved by direct calculations. The details are omitted.
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