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In this supplement, we provide definition of some distributions used for the priors and the
concept of ergodicity in Section [SI] Notes on prior distributions are included in Section [S2}
Section [S3] contains proofs of theorems, and Section [S4] derives various full conditional posterior
densities used in Algorithm [T] of the main text. Section [S5] presents an expectation conditional
maximization algorithm for maximum a posteriori estimation in Bayesian quantile envelope
model, and Section [S6] proposes an extension of Algorithm [I]to handle Tobit censored responses.

Additional simulations and data analysis are available in Section @
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S1 Definitions

S1.1 Definitions of distributions

In this section, we introduce some distributions used in prior construction

and augmented data in Section [3.2] of the main article.

Definition 1. Let I',,,(-) be the multivariate gamma function of dimension
m, v be a real number with v > m — 1, and ¥ be a fixed m X m positive
definite matrix. Then a random matrix U € R™*™ is said to follow an m-
dimensional inverse Wishart distribution with parameters ¥ and v, denoted
by U ~ IW,, (¥, v), if its density function is given by:

|‘I’|V/2
2em/AT,, (v]2)

1

Definition 2. A random matrix U € R™*™2 jg said to follow a matrix nor-

mal distribution with mean U, and covariance matrices B and C, denoted

by U ~ MN,,, m, (U, B, C), if U has density

1

B —ma/2 C —m1/2
|B] ] exp {—2 trace {B’1 (U-Uy)C' (U - Uo)T}} ;

(27T)(m1m2)/2

where Uy € R™>*™2 and B € R™>*™ and C € R™*™2 are positive

definite matrices.
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Definition 3. A random variable U is said to have a generalized inverse
Gaussian distribution with parameters a > 0, § > 0 and x € R, denoted by
U ~ GIG (o, B, k), if the density of U is proportional to v~ exp{—(a/u+

pu)/2}1{u > 0}, where 1(-) denotes the indicator function.

S1.2 A brief note on Harris ergodicity

As mentioned in Section of the main text, Harris ergodicity of a Markov
chain Monte Carlo algorithm guarantees that for any starting point, not
just those outside of some pathological set of measure zero, the algorithm
converges to its stationarity. Harris ergodicity consists of three properties of
a Markov chain, namely, ¢-irreducibility, Harris recurrence and aperiodicity.
Below we define these properties (Meyn and Tweedie, 2012; [Roberts and

Rosenthal, 2006).

Definition 4. Let (X,,)7°, be a Markov chain with state space X and n-
step transition probabilities P™(z,-). Given a nonzero measure ¢ on X, the
Markov chain (X)), is called ¢-irreducible if for any point x € X and
any measurable set A with ¢(A) > 0 there exists an integer n such that

Pr(x,A) > 0.

Definition 5. Let (X,,)2, be a ¢-irreducible Markov chain with state space

X and stationary probability distribution 7. Then (X,)32, is said to be
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Harris recurrent if for all A C X with w(A) > 0 and for any starting point

r € X, P(X, € A infinitely often in n | Xy = x) = 1.

Definition 6. Let (X,,)22, be a ¢-irreducible Markov chain with transi-
tion probabilities P(x,-) on a state space X with o-algebra F, and with
stationary probability distribution 7. The period of (X,)%, is defined
as the largest positive integer D for which there exist disjoint subsets
Ay, Ag, ..., Ap € F with w(A;) > 0, such that P(z, A;11) = 1forall x € A;
(1<i<D-1),and P(z,A) =1forallz € Ap. If D =1, then the chain

is aperiodic.

S2 Notes on prior distributions

S2.1 Choice of prior distributions

For all parameters except for A, we considered standard conjugate prior
distributions. The parameter A defines a subspace without resorting to
any manifold structure (Cook, Forzani and Su, 2016). For A, we use a
matrix normal prior, a straightforward generalization of the multivariate
normal distribution, for two main reasons. First, the matrix normal family
provides simple parametric distributions for unrestricted Euclidean random

matrices wherein prior dependencies between rows and between columns of
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the random matrix can be entirely expressed through the prior covariance
matrices. In the examples considered in the paper we specified these prior
covariance parameters to be scalar multiples of the identity matrix, which
ensures prior independence. Second, the prior mode of the matrix normal
distribution is identical to the prior mean, which facilitate straightforward
incorporation of subjective prior information to the model. In particular,
if a priori information on the most likely envelope subspace (which can be
easier to interpret than the mean envelope subspace) is available, one can
identify this subspace with a Euclidean matrix A, following the process
described in the paper, and set Ay as the prior mode of the matrix normal
prior distribution.

It is of note however that the form of the prior distribution for A
does not substantially alter the sampling steps of all the other parameters
presented in the proposed MCMC algorithm. The prior density of A only
affects the Metropolis step for sampling from the conditional distribution
of A. The effect is small unless a very strong prior is assumed. Thus,
other matrix variate distributions, such as a matrix t-distribution, could
in principle be used as an alternative prior for A without substantially

affecting the MCMC sampler.
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S2.2 Comments on the prior distributions in Khare et al. (2017)

We choose not to use the prior specification in Khare et al.| (2017 because it
depends on the model structure. The Bayesian envelope model constructed
in Khare et al.| (2017) was in the context of multivariate (response) linear
regression, where the envelope structure was imposed on the multivariate
response. This model structure was utilized in the choice of the prior dis-
tributions in [Khare et al.| (2017)) such that conjugacy is obtained for all the
model parameters except for (I',T'y). Moreover, although (I",T'y) does not
enjoy the conjugacy, its conditional posterior distribution can be sampled
through a generalized matrix Bingham distribution. Now we are in a differ-
ent model, the quantile regression, where the response is univariate and the
envelope structure was imposed on the predictors instead of the responses.
If we adopt the same prior specification as in Khare et al| (2017), we may
lose the conjugacy of the parameters. In addition, the conditional posterior
distribution of (I',T'y) would be more complicated in our case and could

not be sampled through a generalized matrix Bingham distribution.



S3. PROOFS OF THEOREMS

S3 Proofs of Theorems

Proof of Theorem [i]

To prove Theorem (1| we will show that the posterior density is integrable
with respect to the Lebesgue measure on the parameter space. We shall
denote by [ f(t) dt an appropriate Lebesgue integral, and by 1, an n-
component vector with all entries being equal to 1. The complete-data log

posterior density is given by

logﬂ- (/'I’T,YJ o,1x,1, A7 le 927 Z|X7W)

n n n
= const. — §loga — §log\ﬂl\ - Elog ||

1
2072

[{W — pryly — (X = 1) Flf(A)n}T D™

{W - :uT,Y]-n - <X - ]-nlJ’I;() FIT(A)T]}}

- ;trace {(X=1.0%) (T1:(A)Q T (A)T + T2,(A4)Q; 'To, (A)")

(%~ 1)

Uy 1 7 \T T
-5 logo — 2077 (n -TI,(A) e) M (n T, (A) e)
1
—(a+logo —bjo — Mnglongly
1 — Va +p — Ur + 1 1 _
~ 5 trace (Ql 1\111> - 5 log Q] — 5 trace (92 1\112)

- ;trace (K (A-A)L " (A-A)")
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n

1 1&

—nlogo — =Y _Z;— =) log Z;. (S3.1)
7 i=1 233

The following equalities will be used in the integral of the posterior

density with respect to p.y, px, and 1. This first equality is

1
2072

[{W — ey, — (X = Lipk) FlT(A)'n}T D!

{W - :uT,Y]-n - (X - 171.“”1);) Fl‘r(A>n}}

1

= og2 [{W — oy Ly — (X = L% (A} D72 (Ppoim, + Qpovm, )

D12 {W — ey 1, — (X — ]—nl-l'j;() FlT(A)nH

= —2022 [{W — pry 1y — (X — ln,ﬂ)}) FlT(A)n}T D 2Py 1y,

_Dfl/2 {W — ,U/T7Y]‘” — (X - ]-nl'l”l;f) FlT(A)n}}

1
2072

{W = e = (X = k) DA} D72 Qs
D2 {W — oy, — (X = 1,p% ) T1r(A)n}]

g (S ) (72 = e = T (A (K2 - ax)}

T

(W2 = iy = W T1r(A)T (X2 — i)}
1

~ 9gp8 Wee = X..L1-(A)n) D™ (W, — X..T'i,(A)n), (93.2)

where Pp-1/2; is a projection matrix onto span(D~'/21,), W = ﬁ r
" i=1 /41 i

_ . B -
Xz = m i:l%iXi ERP W,, =W-Wgl, and X,, =X -1,X,.
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The second inequality is

e (5 L) (T (AR £ T (07T (£ L))
= —; trace {n (F1T(A)QI1F1TT + F2T(A)QEIF2TT) (Y - NX) (7 - NX)T}
— ;trace (Ql_lrlT(A)TXZXCI‘IT(A))

- ;trace (2T (A)XIX,To, (A)) (S3.3)

where X, = X — lnYT. In addition, we have

1
202

{(W., = X, Ti(A)m)" D (W, — X, T (A))
+(n-Ti(A)e)" M (n-Ti(4)e)}

1 (1 1
== — I (A'X,.D'X, T, (A + —M
A (Shamea L

1 1
—2n’ <2F1T(A)TXzTCD‘1WZC + QMI‘lT(A)Te>}
oy oy

1 1 T -1 1 T T
_ 5 (WWZCD WZC + 0_7726 FlT(A)MrlT(A) e

1 v

=5 (=B ) " A (n = A, i)

1 1 _ 1 T X 1+~

(S3.4)
(T1-(A)TXI, DX, Ty, (A) + M) and

A 1
where A, = p—

fin = 72 (T1,(A)TXLD7'W.. + MT,(A)"e).
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Using equations [S3.2], [S3.3] and [S3.4] we first integrate the posterior with

respect to p,y, px and n,

S T

=1

{MT,Y -Wyz— (.UX — Y)T I‘lr(A)"?H dpiry

N2 19 (<1 —i/2
= <27w ) ot/ <,Zl Zz) ,
/eXP [—;n (kx - 7>T (T1r(A)Q;'T1,(A)" + Ta (A)2;' T2, (A)")
(Y - NX)} dpx

= (2m)"% | V2|, |20 P2,

1 v o N\T % v 1.
/exp [_2 (77 - Anl,un) A, (77 - Anlﬂn)} dn
= 20 A V2 = (2m)"7 7 A 72

— (2m)"/2 6"/ (7)1 (A) XD KT (A) + M|

Ur uT/2 Ur —
< (2n) /2 (72) o /2|M| /2

Thus we have

log (/// T (MT’Y’ Hx,n,0, Ql? 927 A7 Z) d,u‘r,Ydlfl'an)

12 1 "1
< const. — iizzllogZi— Elog (ZZ>

=1

1 (& -1
_< Z@)_(?m —i—a—i—l)loga
o\ 2
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1 1 T -1 T T ~TN—1~
— E {b + 2772 (WZCD ch +e FlT(A)MrlT(A) e — ’unA"T l,Ln)

1
= P log |6 —  trace [ (@, + T, (A)TXTX.T,(4))

—u, 1
_ V2+];U log |€2,] — 9 trace {951 (‘112 + F2T(A)TXZXCF27(A)”

— ;trace {K‘l (A—A)L'(A- Al)}

where A, = T'1,(A)TXL D'X.. T}, (A)+M and fi,, = T, (A)"X. D 'W, .+
MI‘lT(A)Te.

To integrate with respect to Z;, we have
ii —1/2 ﬁZA —1/2eX _liz_
= Zi il "o =

n 1/2 /n ~1/2
= < — (H ZZ-> exp (— Z Zi> n~1/?
i1 Z; i=1 i=1

n 1/(2n) n —1/2 1.
S (H Zz) H Z,L> exp (— Z Zl> nil/Q

i=1

_

Q

Q

1 n
exp (— Z Zi> n~12,
7 i=1
The inequality holds by the relationship between geometric mean and har-

monic mean. For each 1,

ntl 1 Tt : 1
Z7 exp (_UZZ-> dzi = [ o ¢ exp(—t)dt = o' T <n2; >
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Therefore, we have

log (/// T (prys x50, 80, 822, A, Z) dMT,Yd.UandZ)
< const. — (n + a) log o

1
- {b + o (WODTW. + €Ty (A)MTT e — iEA,! )}

r 1 _
_n ;“ log €] — 5 trace [277 (¥, + T (A) X X.T'11(4))]
- Wr 1 _
- ”2“;“ log |2 — J trace [ (2 + T2 (4)"XIX.Ta (A))]
1
~ 5 trace [K_l (A—A)L ' (A- Al)}

Let H=WI.D'W,.+e'T,(A)MT.(A)Te— ,uTA Yiy. Then the non-
negativity of H can be argued as follows (Khare et al.; 2017). Define the

positive semi-definite matrices

V\\/ZCD*WZC WZCD*XZCIHT(A)
H, =
r,(AXID'W,., T (A)TXI DX, (A)
T
W D-1/2 WL pD-1/2
_ = and
I (A)TXE D12 I, (A)TXE D12
e I‘17—<A)MI‘17—(A)T€ e FlT(A)M
H, =
MT . (A)le M
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T
e'T . (A)M'?e e'T . (A)M'?e

M1/2 M1/2
so that

WI D'W,. 4+ e'T,,MIT e WID'X,I,+e'T,,M
11& ﬁ—_fié -

"X’ D'W..+ MTTe  TITX! DX, Iy, + M

174> zc 174> zc

WI.D'W. +e'T',MI' e [}

[in A

is also positive semi-definite. This implies that the schur complement of
A;l =TI, (A)"XI. DX, I'1;(A) + M is non-negative. Thus H is non-
negative. Consequently, b+ H/(2v?) is positive, and hence
1 1
/a_”_a exp |[—— b+ — (WZTCD_IWZC
o 22
+€' Ty, (A)MT 1. (A) e — i) A, i) }| do
1 T -1
=T(n+a—1) {b+ 77 (WL.D™'W.,,
e —(n4+a—1)
+e'T,MTT e - MZ;Anl,un)}

<T(n+a—1) b-mraD),
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Hence, we have

log (/ te /7T (HT,Y? Kx,1,0, 917 927 A> Z) dﬂT,YduandZdo—)

V1 +u
< const, — + =T

log || — ;trace Q7" (W) + T (A)XIX,T,(A))]

_Vg—l—p—uT
2

- ;trace [K_l (A-A)L'(A- Al)} :

log || — ;trace (1 (@ + T2 (A) XX To (A) )]

The above upper bound, being a constant multiple of the product of inverse
Wishart and matrix normal densities, is clearly integrable. This completes

the proof. O

Proof of Theorem 2

The data augmentation Metropolis within Gibbs sampler given in Algo-
rithm 1 and its generalization to cases u, = 0 and u, = p block-wise
updates the 7 4 u, parameter blocks vy, ux,n, 0,Q1,Q9, Z,a4,--- ,a,,,
where a; is the ith column of A.

We first show ¢-irreducibility and aperiodicity. Note that the Metropo-
lis step, if present (i.e., if 1 < u, < p), has a strictly positive acceptance
probability everywhere, since both the proposal and the target conditional

posterior densities of the columns {a;} are positive everywhere on the sup-
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port of {a;}. Furthermore, the Gibbs steps, when viewed as Metropolis
steps with identical proposal and target densities, also have positive (viz.,
one) acceptance probabilities. If A is the Lebesgue measure, B is a Borel
set on the parameter space, and T'(-, -) is the Markov transition function of
the chain for Algorithm 1, then T'(z, B) > 0 whenever A\(B) > 0 for any
z € RUXRP x R¥ x RY x SUrtr 5 §P7r)X0mur)  mn o Rp-ur)xur (see e.g.,
Geyer}, 1998, Section 3.1.9). This ensures that the sampler is A-irreducible.
This also implies that every measurable set with positive Lebesgue measure
can be accessed through the Markov chain in a single step from any point,
ensuring aperiodicity (see, e.g., [Duttay, 2012).

We now prove Harris recurrence. Note that when u, € {0,p}, the
Metropolis step does not arise, and the MCMC algorithm turns into a Gibbs
sampler. This, together with the ¢-irreducibility of the sampler ensures
Harris recurrence when u, = 0 or p (Roberts and Rosenthal, [2006, Corollary
13). We therefore focus on the cases when u, € {1,...,p—1}, i.e., when the
algorithm does contain a Metropolis step. Then, we need to show that the
unnormalized posterior density of p,y, px,n, o, 1,2, A, Z given X, Y is
Lebesgue integrable with respect to any 1 < k < 7 + u, elements of the
set {pry,bx, M,0,2,Q2,Z,ay,--- ,a,,} (Roberts and Rosenthal, |2006]

Corollary 19).
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The unnormalized joint posterior density is

f (ﬂﬂY? n ux, Za g, Qla 927 A‘Xa Y)

= €eXp [_ 2 {W - MT,Y]-n - (X - ]-TLIJ’§> FlT(A)n}T D_l

207y
{W — ,UT,Y]-n — (X - 1n“7_;() I‘IT(A)n}}

g~ (nt5+5+atl) exp (_b>
o

exp {—; trace (X — 1pk ) (T Q7T + Top 2, 'T7) (X — 1,p% )

o [yt - ta7)” 20 (-] f 2 o ()

g

T

n+vy+ur+1

1 _
Q7 2z exp [—2 trace (Ql 1‘111”

n+V2+p ur+1

1
||~ exp [—2 trace (921\112)}

exp {—; trace {K_l (A—A) L (A— AO)T} :

(S3.5)
Our goal is to prove the integrability of f (uryv.m, px,Z, 0,1, Q2, AIX,Y)
with respect to any 1 < k < 7+ u, parameter blocks. Note that

1
207y

> [{W — ey 1y — (X = 1pk) FlT(A)n}T D™
{W - :U’T,Yln - <X - 171/1'7;() FIT(A)/’?}:|

o 12<2": >{W try —n'Ty (A)T (Xz—ux)}2

207% \;

1
1
- 20_,72 (W XZCFI’T(A)TI)T D_l (W XZCFIT(A)T’)
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= _20172 (Zzn:l Zi) {W — piry — ' T1(A)" (YZ - NX)}2 . (S3.6)

and

- ; trace { (% — Luak) (DT, + 10,08 (% - 1upk) )
=~ {n (ix = X) " (P02 TT + 10,0571 (0 - X))
- ;trace (Ql_lI‘lTTXCTXcl"lT) - ;trace <Q;1F57XZXCFQT)

< (- X) T (D0 T (A) 4 T 0 T (A)7) (x — X).

(83.7)

Consequently,

f (H’T,Y7n7’J’X7zvo-7 917927A|X7 Y) S fo (MT,Yvnal-l’X)Z)O-a QlaQQaA|Xa Y)

where

fO (MT,Y7 n ux, Zu g, Qh 927 A‘X7 Y)

—exp |- (zn: Zl> (W2 = pry —=n'To(A)" (X4 - “’X)}Q]

| 207 \(T Zi

exp —;n (ux —X) (1000 'TL + T, 9, 'TS) (px — X)]

1

exp |— 2077

(n — FlT(A)Te)T M (n - I‘lT(A)Te)]
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n 1 Z

f7% exp (2] tossvnn
o

n+vy+tur+1

1
Q|77 2 exp [—2 trace (911\1'1)}
ntvotp—ur+l

1
Q| 2 exp [—2 trace (92_1\1’2)}

exp [—; trace {K‘l (A— Ay L' (A- Ao)T}] exp (—i) ;

and it will be enough to show the integrability of fo (try,m, px,Z,0,

Q,Q,, AIX)Y).
Note that
L (vL)w (A7 (X | <1
exp —2072 ;ZZ { 7z = fry — 10 ' (A) ( Z—NX>} > 1
and
/exp[ ( > Z — MHry —"7TF17(A)T (YZ - “X>}21 d,u’r,Y

w\»—t

e (51)

(i)

The last inequality is obtained from the relationship between harmonic

l\)\b—l

< (2%7 n_l)
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mean and geometric mean. Therefore, for all p,y
fO (ﬂf,Y? n, K1x, Za g, Qla 927 A‘Xa Y) <a fl(O) (777 EXx, Za g, Qla 927 A‘Xa Y)
and

/fO (MT,Y) n,ux, Zu g, Qla QQ: A‘Xa Y) dMT,Y

<a 1(1) (777 Hx, Z? g, Ql? 927 A|X7 Y) )
1
where ¢; = 1+ (2my?n™1)? and for £ =0, 1,

fl(g) (777 Hx, Z7 g, Qla QQa A|Xa Y)

e[y o X (BT a2 - X)
o - (1= T (AVe) M (- (A

n .
H Z;(%*%) exp (_Z”> o (B tatl=5) exp (—b>
i=1 g ’
n+vqytur+1 1
|Ql|_1f exp {—2 trace (ﬂfl‘Iﬁ)]
_ ntvotp—ur+l

1
|2 2 exp {—2 trace (921\112)]

exp [—; trace { K1 (A — Ag) L™ (A — AO)T}] (< ).

It will therefore suffice to show that fl(g) (n,pux,Z,0,2,Q, AIX,Y) is in-
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tegrable with respect to any 1 < k < 6+4u, members of the set {n, ux,Z, o,
Ql; 927 a,:--, a’u-r}‘

Observe that

T

s (T4

M (77 — FlT(A>T€> <1

I

exp [—

and

/eXp l— 20_172 (n — FlT(A)Te)T M (?7 — F1T(A)Te)] dn

Hence, we have

fl(g) ("77 125.& Z‘7 g, 917 927 A‘X7 Y) < o f2(£70) (IJ'Xu Z7 g, le 927 A‘Xv Y) )
and
/fl(g) (777 Mx, Zv g, Ql) 927 A|X7 Y) d77 S C2 f2(£71) (IJ’Xa Za g, Qla QQ? A|X7 Y) )

where ¢y = 1 + ((2m)"" 4?7 |M|71)? and for ¢ = 0, 1,

) (ux, Z, 0,9, Qs AX,Y)
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1 —\7 —
= exp |~ (1x — X)" (T T + Tor' T ) (x - X))
ﬁ Z;(%*i) exp <_Zz> o (B tat1-(5+557)) exp (_b>
. g g

_ntvitur+1 _ ntvotp—ur+1

1
|€2] 2 exp [—2 trace (Ql_l\Ifl)} |25 2

1 1
exp {—2 trace (92_1\112)} exp {—2 trace {K_l (A—Ay) L' (A- AO)T}

(< 00).

Next, we show that f2(§’o (ux,Z,0,21,2, A|XY) is integrable with re-
spect toany 1 < k < 54w, elements of the set {pux,Z,0,Q1,Qs, a1, ,a,, }.

We have
exp [~5n (ix = X)" (D00 + 1005 TL) (ux - X)| < 1
and

/exp {—;” (HX - Y)T (FlerlrfT + F2TQQ_1F;) (MX - X)} dpx

[NJ4S]

= [ ]2|Q|? (27071
Therefore,

S (ux,Z, 0,2, AX,Y) < ¢35 £ (Z, 0,91, 0y, AX,Y) |
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and
/ f2(£7<) (ru’Xa Z7 g, le QQ’ A|X7 Y) d:u‘X < C3 féé,é,l) (Z> g, le 927 A’X7 Y) 5
where c3 = 1 + (27m_1)§ and for A = 0,1,

(&N (7, 0, 0y, s, AX,Y)

- ﬁ 77575 exp (_Zi> (B I— (S5 oy (_b>
- o o

=1
n+vy+ur+1— 1
|| e exp |—= trace (Ql_l\Ill)
2
ntvotp—urtl— 1
1, T [—2 trace (921\112)}

exp {—; trace {K_l (A—A) L' (A- AO)T} (< o0)

It is enough to show that féf’c’/\) (Z,0,8,8, A|X,Y) is integrable with
respect to any 1 < k < 4+wu, elements of the set {Z, o, Q1, Q2, a1, ,a,._}.

Now, for all Z,
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D BT S L G S R
_{U i F<2+2n>} _{F<2+2n ot

Again we have for k = 0,1,

ok

)-

FN(Z, ., AIX,Y)

£
-

n —(
<o (H Zi) FE (501 0y AIX,Y),
=1

[NIES

and
/ [N, 0,00, 9, AIXY) dZ < ¢4 f15 (0,90, 9, AIXY)
where ¢y =1 + {F (% + %) }TL’

f££7C7A7H) (07 Qla QQ? A’X7 Y)

n T uUT KN [ad b
= O_—(n+§+u7+a+1—(g+€7+7+7£)) exp <—
o

n4+vi+ur+1—X 1 _

||~ 2 exp [—2 trace (Ql 1\111)}
n+v: —ur - 1

‘QQ‘—4+ A exp [—2 trace (Qz_l\llg)}

exp {—; trace {K’l (A—A) L' (A- AO)T}} (< 00).

Consequently, it is enough to show that fi(g’c’k’”) (0,€21,€, AIX,Y) is Lebesgue

integrable with respect to any 1 < k < 3+u, elements of the set {0, Q1, Q,
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ay, -0, }for &N k=0,1.

The proof is completed by noting that ff’c’)"”) (0,2,5, AIX,Y) is a
constant multiple of the product of inverse gamma (o|a, b), inverse Wishart
(Q4|¥y, n+ 14 — A), inverse Wishart (Q2|Ws, n + 12 — A), and matrix nor-

mal (A|Ag, K L) densities, where

Proof of Theorem [3]

Arguments similar to those provided in the proof of Theorem [2| estab-
lishes ¢-irreducibility and aperiodicity of the algorithm. To show Harris
recurrence, without loss of generality, suppose that the first m responses
are censored, i.e., Yi,---,Y,, = 0, and the rest n — m responses are not
censored (n —m > 1). Let the latent (imputed) data corresponding to
Yi, -,V be Yy, -+ Y Define (Y5,,)" = (Y7, Y) T, (Yonanm)' =
Yo, Yo) ' X = (X, - X)) T € RPN XDy = (X, X)) €

RP*(=m) “and X7 = (X7,

1:m>

X{mﬂ)m)T € RP*™. We define Zi.m, Zmni1)m,

Z, W7, and W, 1), similarly. At each iteration, the MCMC sampler

1:m>

blockwise updates the following 8 + u, parameters (or latent data) blocks:
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{Yimv Zv Hry, Hx, 7,0, Qla QQa a,--- 7a’u7—}-

The joint unnormalized posterior density of the parameters and the

latent data is given by:

f (/’LT,Yv Hx,T,0, Qla 927 A7 Yim‘xa Y(m-}—l):n)

— exp [_2;2 (Wi = ey Lo — (Xim — Lupty) rh(A)n}T Dl

{Wim - MT,Ylm - (Xlsm - 1m.u‘§) Fl‘r(A)nH

P {W(m-i-l):n - MT,Yln—m - (X(m-i-l):n - 1n—mll'7);‘) FIT(A)U}T

D(;,brl)m {W(m+1):n - ,uT,Y]-n—m - (X(m-f—l):n - 1n—mp'7_;() I‘1T(A)"7H

exp [—; trace (X — 1pk ) (T1- Q7 'TT, + T, 2, 'T5) (X — 1nu§)T
oo [y (1 Ttare) M (T tae)

n 1 Zz n ur 1

H Z Zexp (-2 O_f(n+5+7+a+ )
o

n+u1+u7—+1

1
Q77 2 exp {—Qtrace (QfllIll)]

_ ntvotp—ur+1

1
|| 2 exp {—2 trace (921\112)]

exp [—; trace {K_l (A—A) L (A AO)T}] exp <—3> ;

and we will need to show that f (,uﬂy, pux,n,o,Q, Q0 A YT X, Y(mﬂ)m)

is integrable with respect to any 1 < k < (8 + u,) elements of the set

{YTITTN Z7 Hry, Ux, 7], O, Qla QQ; ai,: - 7a'u7—}-
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Out of these 287¥7 integrals, the 27+ integrals that do not integrate out
Y3, are all finite for each Y7, € R™ where R™ = (—o00,0)™. (We have al-
ready proved this in Theorem . Here we can simply take (W%, T W(m+1)mT)T
to be W in . The D in is taken to be a diagonal matrix with
the first m diagonal elements from D)., and the next n —m elements from

D, 11).-) So, we need to show that the remaining 27+ur integrals that do

integrate out Y7, are all finite as well. Note that

[, exp [—20172 {Wi, = el = (Xim = Lupk) Tir(A)m} Dy,

(Wi~ L — (Xiw — Lupdy) Tin(A)n}] dvs,

1 . 2] .
= exp l— > 20727, (Yi —0Z; — pry — (X, — uX)TI‘lTTI) ] dYi.,,

R™ i—1

= (277)m/27m0m/2 H Zil/2 H {1 — Q(0Z1 — pry — (Xi — ux)TFlT(A)n)}

=1 i=1
< (2m)™2ymem2 ] 2. (S3.8)

=1

Hence, using (S3.8)), we have

/Rm f (:U’T,Y7 Hx, Z7 n,o, Qb 927 AJ Yim|X7 Y(m+1):n) dYIm

S (27T)m/2,ym

1

exp [_2072 {W(m+1):n — Hryln—m — (X(mﬂ):n N 1"—m“7;f) F”(A)n}T
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D(_riﬂ):n {W(mﬂ):n — My lp—m — (X(m+1):n - 1n—m#§() FIT(A)WH

exp {—; trace (X — 1ok ) (T Q' T, + T, Q5T ) (X - 1nu§)T

exp [— s (n=Ti(A)e) M (n- FlT(A)Te)]

207

Z n— m uq— b
H exp (_) H Z eXp ( ) —(n+ +¥7 a+1) exp <_>
o o

i=m+1

_ n+vy+ur+1

|2 | 2 exp

1 -
—3 trace (91 1‘1&)}
n+vo+p—ur+1 1
[0 i— exp [—2 trace (Q;l\:[12>:|
1
exp {—2 trace {K’l (A—A) L' (A- AO)T}}

= g (:uT,Y7 125.¢) Z’7 n,o, Qla 927 A’X7 Y(m—i—l):n) .

Using similar results as in (S3.6)) and (S3.7)),

g (,UT,Ya Ex, Za n, o, Qla QZ) A’X7 Y(m—l—l):n)

1 "1 e
< Co exp |:—2 ( Z Z) {W(erl):n - MrYy

207 \ i Zmia

—n' T, (A)" (727(7”*1):" N HX)}Q}

1

exp |50 (mx = X)" (Tuf T, 4 T 'TL) (- X) |

exp l 9 172 ("7 - F1T(A)T6)T M ("7 - F1T<A)T6)]
Tex

( ) H Z exp ( Zi ) g~ (g fat]) exp (_b>
i=1 g g

i=m+1
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_ n+vy+ur+1

1
|| 2 exp [—2 trace (QfllIll)]
n4+vo+p—ur+1 1
Q| At exp [—2 trace (Qz_l\I’2>:|
1
exp [—2 trace {K’l (A-A) L' (A- AO)T}]

= OO fO (MT,Yv rx,1,0, Ql) 927 A7 Z|X7 Y(Tn-‘rl):n) 5

where Cy = (27)™/24™. Using similar arguments as used in the proof of

Theorem 2| we have

fO (/’LT,Y7 Hx, 7, Z? g, Qh 927 A’X7 Y(m—i—l):n)

<oy O Z,0,Q, Q, AIX, Y

=~ V1 fl KX, 7], 4,0,381, 842, | y L (m+1)n
/fO (MT,Yv I5.& 77727 g, Qla QQa A|X, Y(m-}-l):n) dMT,Y

< Cl fl(l) (/J’X7 n, Z7 g, Ql? 927 A|X7 Y(m-‘y—l):n) )
where C; = 1+ (277%(n —m)~1)/2 and for £ =0, 1,

fl(g) (“X7 Ir’a Za g, Qla 927 A‘Xa Y(m+l):n>

= exp [—;n (HX - Y)T (1“1791‘11“13 + F2792_1I€7) (HX - X)}

s (T e) M (A

Hew ()

exp l_
Z

L —(i__ &
H ZZ (2 2(n7m)) eXp <_>

i=m+1 o
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n—_m T b
o ("5 +“7+a+1—§)exp (_
o

_ n+vy+ur+1

1
|| 2 exp [—2 trace (Qflqll)]
_ntvotp—ur+1

1
|25 2 exp [—2 trace (QQ_I\P2>]

1
exp [—2 trace {K’l (A— Ay L (A- AO)T} .

Further,

fl(g) (IJ’XJTI7Z70-)QhQQ7A|X7 Y(m—&-l):n)
< CQ f2(£’0) (IJ’X7 ZJ g, Ql; QQ; AlX, Y(m—i—l):n)
© Z,0,Q, 0, A|X, Y d
fl KX, 1, £,0,381, 842, | y L (m+1):n ) 7]

< 02 f2(£71) (IJ’X’ Za a, Qla 927 AlX, Y(m—f—l):n) )
where Cy = 1+ ((2m)% 2" | M|~1)¥/2 and for ¢ = 0, 1,

£159 (MX, Z,0,81, 8, A|X, Y(m+1);n>
= o[~ (px = X) " (D02 'TL + 12,05 TE) (x - X))

H exp (_) H Zi (2 2(717771)) exp (_)
i=1 o

i=m+1 o

o (S a1 (54 457)) exp (_b>
o

_ntvitur+l

1
|| > exp [—2 trace (QlllIll>]



Minji Lee, Saptarshi Chakraborty and Zhihua Su

_ ntvotp—ur+1

1
|| 2 exp [—2 trace (QZ_I\IJ2>]

exp [—; trace {K‘l (A—A) L' (A- AO)T}] < 0.

We keep following this procedure as that in the proof of Theorem [2| and

have

f2(§7<) (lJfXa Z’ o, 917 QQ, A|X7 Y(m—&-l):n)
< C?, f?Eg’C’O) (Zv g, Qla QQJ A|X= Y(m"’l):") ’
/ A5 (x, Z, 0, R0, iy AIX, Y (syn) diix

< s (50 (2, 0,90, D, AIX, Y gy )
where C5 = 1 + (27n~1)P/? and for A = 0, 1,
fég’g)\) (Z7 g, 917 927 A|X7 Y(771—‘,—1)%)

= 1exp <_a> H Z (2 2(n7m))exp (_a>

1=m+1

o (I a1 (54 457)) exp <_b>
o

n+4vy+ur — 1
||~ e exp | —= trace (Ql_l‘lll)
2
ntvg+p—urtl- 1
19|~ Fratpour i exp {—2 trace (921\112)}

< OQ.

exp {—; trace {K‘l (A— Ay L (A AO)T}
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Note that

m Zz n 1 ¢ Zz n 1 E
H exp <_> H Zl (2 2(n7m)) exp <_> S H Zl (2 2(n m))
i=1 g o

i=m-+1 i=m-+1

Since —(% — 2(n5_m)) = % + 2(n§_m) — 1 and % + 2(n§_m) > 0, we have

O Z; e -G Zi
/Hexp <—> H {ZZ» G m))exp (—)}dZ
i=1 07 i=m+1 o

S e N S R
-7 (a+( )> {F<2+2(n—m)>}
Y PO S | G
‘{F<2+2<n—m>>} o

Then,

f?E&C’)\) (Z, g, 917 927 A|X7 Y(m—}—l):n)
g ~(5= 3ty
S C4 ( H Zz : ) ) fié»g/\»()) (07 Qlu 927 A’X7 Y(m—i—l):n) )
i=m+1

/ FEN (20,0, Q, AIX, Y iryn) dZ

<y ff’c’M) (Ua 1,0, A|X, Y(m+1):n> )
where Cy =1+ {F (% + ﬁ) }nim, and for k =0, 1,

f4(f7<7>\ﬁ) (0-, ﬂh QQ, A|X, Y(m-i—l):n)
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— o~ (I a1 (S S4T e S 4 5 exp (_b>

n+vy4ur+1—XA 1 _
Q" 2 exp {—2 trace (Ql 1\111)]
n—+v: —ur - 1
|QQ|—4+ e exp [—2 trace (92_1\112)]

1
exp {—2 trace {K’l (A-A) L' (A- AO)T} .

Since (§+ 57+ wm + MT 4+ 5) < (L4 m+ 4+ 25m),

o~ (PG a1 (§+ S5 e HIT L 50) exp (_b>

< Uf(nfmflJraJrl) exp (_b>
> o]’

and the right hand side is a constant multiple of an inverse gamma (n —
m — 1+ a, b) density. The remainder of the proof is similar to the proof of

Theorem 2 O

S4 Derivations of Full Conditional Distributions

Derivations for various full conditional posterior densities for the parameters

in Algorithm 1 are provided as follows.
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1. For pry,

g(MT,Y“*l’Xa n,o, 917 927 A)

:Qiﬂ{ww—mﬂan—(X—cuuﬁ)rh@Mn}éD”
W — oy L — (X — Luk) Tir(A)n)

- 2;2 {W = oy ly = (X = Lpk) Tir(A)n} D72 (Ppiiy, + Qpovyay, )
D™V2IW — oy 1, — (X~ 1L,u%) Ti(A)n)

= 5o {W = oL = (K= 1ak) (A} D 2P,

D12 {W — pryl, — (X — ]-nl*l’j;(> FIT(A)U}

+ term indep. of yiy

! <Xn: Zl> Wz = ey —n"T1(A)" (X7 - px)}

207 \i 33

T

{WZ — Hry — 77TF1T(A)T (YZ - MX)}

+ term indep. of yy

1<i;>@w—wr%m~xa%mmmf

207\ Zi

{MT,Y Wz — (MX - XZ)Trlr(A)n}

+ term indep. of p;y,

where Pp-1/2; is a projection matrix onto span(D~'/21,), W, =
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S 1z =l 7

" L X, € RP. Thus we have

n Wi _ 1
and Xy = —<— >
@ Z Dioy V2 =L 2

— — \T 1 2
/LT’Y’reSt ~ N WZ + (IJ:X — XZ) I‘h-(A)’r], nil/ZU’)/
=1 4

2. For pux,

g(,‘l’X|luT,Y7 n,o, Qla QQ? A)

2072

: [{W — eyl — (X = 1pk) FlT(A)n}T D™

(W= eyl — (X = Lipk ) Ti(A)n}]

- ;trace { (X - 1nﬂj);) (F].Tﬂl_lr,{'r + F27Q2_1F2TT) (X — 1nu§)T} .

For the first term, we have

2072

n

(5 [ om0

{MT,Y — Wy — nTI‘lf(A)T (/J,X — YZ) H + term indep. of px

Pt ——

-9 (MX — YZ>T ', (A)n (MT,Y — WZ>} + term indep. of px

1
2072

n 1 _—
(Z Z) {BXT1mn T px — 2p5 T T X
i=1 ~?

—2ui T (A)n (MT,Y - WZ)} + term indep. of px.
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For the second term, we have

~  trace [ (000 T8, 4+ 10,05 T ) (X = o) (X — pax) ')
= 0 (i (D (AT (A) + T (A)9 T (A)) ix
—2p% (T4, (A)Q'T1,(A)" + T2 (A4)Q; ' T2, (A)T) X}

+ term indep. of px.

So,

log 7 (px |rest)

! [ug; {1 (z Zl> Ty (A T7(A)

2
07" \i=1

+nT1 (A)Q7'T1,(A)" + Ty, (A)Q; ' T2 (A)" ) px

1 1 X w
—ouk {m (Z z) T (A)n (07 T1 (A X, + prry — W)
i=1 “°

+n (T1,(A)Q'T1,(A)" + Tor(A)Q;'Tor(A)") X}

+ term indep. of px.

Then,
t~N|[A! L (s~ 2 r T X w
px|rest ~ i 0772 ; 7 1M (”7 12Xzt ey — Z)

(P T T X ).

204
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where A, = -1y (S0, 1) ToonnTT 40 (T1Q'TT, + To, Q5 'TE,).

oy? \~i=1 Z;

3. For n,

glpry, px, o, Q1,0 A)

~ g [{W = ot = (5= L) P (1) D
(W= oyl — (X - Lu%) Tu(A)n)]
N 20172 (n—Tu(4)€) M (n—Ti(4)e)
- _20172 n’ {rlTT (x- 1nu§)T D™ (X = Lupk ) Ty + M} n

T
_277T {F{‘r (X B 1HU§) D! (W — piry1,) + MrlTTe}

+ term indep. of n.

So, we have

n|rest ~
N LA-l{rT (X = 1,p4%) DM (W = p1ry1,) + MT e}, A
27 17 nlx Hry Ln 17€ (1 )

oy m

where A, = %’yQ {FlTT (X — 1np,§)TD_1 (X — ln,ug() .+ M}

4. For o,

log 7 (o|rest)
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(3”+”T+ +1>1
=—|—=—+—= ogo
g T T &

-2 [b + ; Zit o { (W = oty = (X = 1% T ()

272
D_1 (W - MT,Y]-n — (X — 1nllz7);'> FIT(A)T’>

+(n-Tw(A)"e) M(n- I‘lT(A)Te)} |

So, we have

3w, R
a|rest~IG<2n+uQ+a, b),

where

b

b+ an Z; + 2172 {(W — peyly = (X = Lipk) rlm)TD*1

i=1

(W — iy L — (X~ 1L,4%) Tirm) + (n—The) M (n- Fffe)}

5. For Q,
Qu[rest ~ I, (\Ill + T (X - Lopd) " (X = Lopk) Turs 1+ n> .

6. For Q,,

Qolrest ~ IW,_,, (‘Ilg + F;FT (X — 1nu:§(>T (X — 1nu§) Ly, o+ n) )
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7. For A,

log 7 (Alrest) = log H(A)

1

T 2092 {{W — vy — (X = Lpk) F”(A)n}T

D! {W — fryl, — (X - lnﬁ&) FlT(A)'n}]

- ;t {(%— tupk) (i T, + T T (- 1)}

s (n T (a)e) M (- T (4)7e)
_ ;trace [K'(A-A)L ' (A-A)"}. (54.9)

S5 Algorithm for maximum a posteriori estimation

A conditional expectation maximization algorithm (Meng and Rubinl, [1993))
can be formulated based on the conditional distributions provided in Algo-
rithm [1] for maximum a posteriori (MAP) estimation of the parameters in
the BEQR. At each iteration, the algorithm would first impute the latent
data Z;’s by its full conditional mean. Then given the imputed data Z;, the
algorithm would blockwise maximize the model parameters. The full con-
ditional posterior distributions of Z;’s are independent generalized inverse
Gaussian whose expectations can be written using modified Bessel func-

tions of the second kind, and thus can be efficiently numerically evaluated.



S5. ALGORITHM FOR MAXIMUM A POSTERIORI ESTIMATION

The full conditional posterior densities of all model parameters except A
are standard, and their (conditional) modes are available in closed forms.
The full conditional distribution of A, although not standard, is smooth,
and hence can be maximized via a gradient based optimization technique

such as Newton’s method.

Algorithm S5.1. Computation of the MAP estimators of the BEQR pa-

rameters {i,y, x,n, 2, Qa, 0, A}

Iterate between the following steps until convergence.

Step-1 For i = 1,...,n, impute the latent variables

Z - \/m1K3/2( m1m2)
Z \/m2K1/2 ( mlmZ)
where K (-) is a modified Bessel function,

(Y~ iy — "T0 (A (X, — ix))

0% 4+ 2+
7( +7), and mo =

my = =~ 5 =
oy oy

2

Also set 17[\@ =Y, - 07,
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Step-2 Calculate

A = argmax {—; trace [K_l (A—A) L' (A- AO)T}
R(p—ur)xXur
rm+n+u,+1
N 2
e +n+p—u;,
2

log [®; + I"{T (X - 1n.u’§)T (X - 1n“§> |

1 log |‘I’2 + F; (X - 1n“1);>T <X - ln“j);) FQT|} )

and update Ca, Da, I'1;(A), and T'y,;(A) as follows

I, | _ —AT
C;= s DA = )
A I, ..
— —-1/2 N =~ emmes \—1/2
I.(A)=C;(C5C;) ", and Ts(A) = Dy (D4 D.)
Step-3 Compute
(i) Ay = Wz +0"T1r(A) (x — Xz).
(i) px = A,L E,, where
_ 1 (1 B —
Zux = 5 > > | Dir(A)n (AT (A X, + firy — W)
=1 “1

+n (D1 (A)Q'TT (A) + 1o (A)Q, 'TE (A4)) X

1 (1 DR
Aux = =5 (Z Z) T, (A)nn' T (A)

=1 %1

+n (D1 (A)Q'TT () + T (A)Q,'T5 (A))



S6. MCMC SAMPLER FOR SAMPLING FROM THE POSTERIOR OF THE
BEQR WITH TOBIT CENSORED RESPONSES

(iif) 7 = =LA, {TF, (X - 1,4%) D™ (W — firy1,) + MTT e},

A, = {I‘lTT(Z) (X - 1.4%) D7 (X - 1,4%) Tu (A) + M} .

n 3772
(iv) & = b/(a@ — 1), where @ = (3n)/2 + u,/2 + a and

~ noo_ 1 ~ — T
b=b+> 2t 5 {(W —firy Ly — A" T1(A) (X — Lyjix)) D!
=1
D™ (W= jiry1l, — 7'Ti(A)" (X - 1,fix))

+ (7~ T1(A)e) M (7~ TL(Ae)}
() Q= { @0+ TLA) (X - %) (X - 1%) TorlA) | /01 +

n+u, +1).

(vi) @ = {0y TL(A) (X - 1%) (5= 1%) Tar(A)} /(02 +

n+p—u,+1).

S6 MCMC sampler for sampling from the posterior

of the BEQR with Tobit censored responses

Algorithm S6.1. One iteration of the data augmentation Metropolis-

within-Gibbs sampler.
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Step 1 (Censored Data Imputation). For each censored Y; (i.e., ¥; = 0) draw

Yi* ~ TN(_oo,O] (,UT,Y + nTrlr(A>T (Xz - MX) + 07, ZN’YZ) )

and for the remaining i’s, set Y;* = Y;. Here TN4(u,0?) denotes a
truncated normal (u, 0?) distribution which is truncated to lie on a set

A C (=00, 00).

Step 2 (Data Augmentation). Generate independent 7, ..., Z, with

2
(V7 =ty =0'T (AT (X —px)} 024292 1

Z’i ~ GIG 5 5
oy? oy? 2

Then update W; =Y —0Z;, fori =1,...,n.

Step 3 Generate ji;y ~ N (WZ + 0Ty (A)T (NX — YZ) ; szlﬂw?),

i=1 Z;

where




S6. MCMC SAMPLER FOR SAMPLING FROM THE POSTERIOR OF THE
BEQR WITH TOBIT CENSORED RESPONSES

Step 4 Generate px ~ N (A‘l = A;;), where X = 11X/n,

X THX)

— 1 1 — —
Zux =~ <§ jZ> i (A)n (' Ti(A) Xy + prry — W)
7T \i=1 4

+n (T1-(A)Q'T1-(A)T 4 T (A)Q, T (4)) X,

1 1
Apx = — (; Zz) L1, (A’ T, (A)"

+n (T1-(A)Q7 T (A)T 4 Ty (A)Q;'T] (A)) .

Step 5 Generate n ~ N (ﬁo, A;l), where

Ap = 022 {F17<A)T (X - 1nﬂ§)TD71 (X - 1n,u,7;() I (A)+ M} )
Mo = Ul,yzAnl {1, (X = 1,4%) DH (W = p1,y1,) + MT],e}.

3 - ~
Step 6 Generate o ~ IG (Qn + % +a, b), where

~ n 1 T
h=b+ > Zit 5 {(W = oyt = (X = Lpd )T (A)n) D!
i=1

(W — iy L — (X = L§)Tim) + (n —TTe) M (n- FlTTe)} :

Step 7 Generate

Q) ~ IW,, (W) + T (A)T(X = 1,057 (X = Lipk)Ti(A), v +n).

Step 8 Generate
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Qy ~ IW,, (¥ + TE(A)(X = 1,p%)T(X = 1,u%)To, (A), 12+ 7).

Step 9 Generate a Markov chain realization for A with stationary density pro-
portional to H(A), the full conditional posterior density of A (see ((S4.9),

with Y; replaced by Y;*).

Let a; € RP7" denote the j-th column of A, j =1,...,u,. Given the
tuning parameter £ > 0, for j =iy, ..., 4,, where {i,... 4, } denotes

a random permutation of {1,...,u,}, perform the following:

(a) Generate a} ~ N,_,, (a;, £°I,_,,). Replace the j-th column of A
by a} and denote A* the resulting matrix. Compute p (A, A*) =
exp [H(A*) — H(A)]
(b) Perform a Bernoulli experiment with probability of success min(1, p (A, A*)).

If a success is obtained, update a} to a;; otherwise retain a;.

(c) After updating A, update C4, D4 and X x.

Remark 1. Algorithm can account for the two degenerated cases
u, = 0 and u, = p as follows: when u, = 0, A does not exist and we have

n =0,T5(A) =1, and Xx = Q. Thus the steps involving n, €; and

A (|Step 5, |Step 7| and [Step 9| respectively) are not required. On the other

hand, when u, = p, the BETQR reduces to the BTQR: A does not exist,

I',(A) = I, and ¥x = €4, and the steps involving A and €25 ([Step 8| and
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Step 9)) are not needed. In each case, Algorithm (1| becomes a full Gibbs

sampler.

S7 Additional Simulations and Data Analysis

S7.1 Comparison between the BEQR and bayesQR estimators

The estimation variance and MSE of the bayesQR estimator are also cal-
culated in the same way as for the BQR or BEQR estimators. Table
summaries the ratios of the estimation variance and MSE of the bayesQR
estimator versus the BEQR estimator for each element in 3,. Compared
with Table [1| of the main text, we notice that the ratios are similar, which
indicates that bayesQR estimator has about the same estimation variance
and MSE as the BQR estimators. The BEQR is also more efficient in es-
timation compared to either the BQR estimator or the bayesQR estimator.
For illustration, the comparison between the BEQR and bayesQR estimators

on estimation variance and MSE of the second element in 3, is displayed

in Figure [1}
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7=0.1 7=0.5
n Ratioy Ratiops Ratioy Ratiops
50 | 2.11 (1.82,2.92) 3.40 (2.07, 8.34) | 2.07 (1.83, 3.23) 3.07 (1.91, 5.64)
100 | 2.08 (1.67,2.57) 2.76 (1.97, 7.48) | 1.96 (1.35, 2.77) 2.29 (1.60, 4.67)
200 | 2.02 (1.73,2.43) 2.47 (1.67,4.13) | 1.90 (1.56, 2.41) 2.04 (1.65, 2.94)
400 | 1.91 (1.64, 3.02) 2.05 (1.60, 3.40) | 1.95 (1.47,2.65) 1.96 (1.67, 2.80)
800 | 1.98 (1.79, 3.01) 2.09 (1.75, 2.98) | 1.73 (1.51, 2.05) 1.78 (1.57, 2.18)

Table 1: Medians (ranges) of the estimation variance and MSE ratios. Ratioy: Esti-
mation variance ratio of the bayesQR estimator versus the BEQR estimator. Ratiop;:
Mean square error ratio of the bayesQR estimator versus the BEQR estimator.

S7.2 Comparison of the frequentist and Bayesian envelope quan-

tile regression estimators

We first adopt the same simulation setting as in Section of the main
article and generated the data from model (5.1)). Then we computed the
frequentist envelope quantile regression estimator and Bayesian envelope
quantile regression estimator for each of the 200 repetitions. Table [2 sum-
marizes the estimation variances and squared biases for an element in 3.

with 7 = 0.1 and 0.5.

Table 2: The estimation variance and squared bias for an element in 3, with 7 = 0.1
and 7 = 0.5. The subscript “F” and “B” represent the frequentist’s envelope estimator
and Bayesian envelope estimator with true dimension, respectively.

T=0.1 7=0.5
n | Varg Varg Bias%, Biass, Varp Varp Biasy Bias7,
50 | 0.147 0.079 | 6.4 x107% 4.1 x1073[0.082 0.067 | 27x107% 58 x 107 %
100 | 0.064 0.035 | 3.2x107° 22x1072 | 0.031 0.031 | 9.5x10™®> 6.4 x107*
200 | 0.033 0.017 | 9.1 x 1077 1.4x1072% | 0.021 0.017 | 48 x10~* 4.5x107°
400 | 0.015 0.008 | 1.9 x 10=* 1.8 x 1073 | 0.010 0.008 | 2.0 x 10~° 9.6 x 10>
800 | 0.007 0.004 | 9.4x107° 1.6x107% | 0.004 0.004 | 7.7 x107% 5.9 x 1075

For both quantile levels, the Bayesian estimates have larger estimation
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Figure 1: Estimation variances and squared biases of the second element in the BEQR
estimator (solid line) and the bayesQR estimator (dashed line) with 7 = 0.1 (red line),
0.25 (orange line), 0.5 (yellow line), 0.75 (green line), and 0.9 (blue line).

variances and larger MSE than the frequentist estimates. This is caused
by model misspecification. The Bayesian envelope quantile regression (3.3])
assumes that the error o, follows the asymmetric Laplace distribution, while
in the data generation , the error o, follows the normal distribution.

To address this issue, we now keep all the parameter settings to be the
same except that the errors are generated from the the asymmetric Laplace

distribution. In other words, the data is generated from the following model:

For:=1,...,n,

Y = py + 0" T1(A)X; + €ir;
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X; ~ N, (px, Tir (AT, (A)7 + Tor (A) QT2 (A)T),

(S7.10)

where the error ¢, follows an asymmetric Laplace distribution with density

garp(eT)=7(1—1) {6(177)61(6 <0)+e (e > O)} )

Under this setting, the estimation variances and squared biases for an el-

ement in 3, with 7 = 0.1 and 0.5 are displayed in Table [3] The Bayesian

envelope estimators have smaller estimation variances and MSE than the

frequentist envelope estimators in almost all the cases.

Table 3: The estimation variance and squared bias for an element in 3, with 7 = 0.1
and 7 = 0.5. The subscript F and B represent the frequentist’s envelope estimator and
Bayesian envelope estimator with true dimension, respectively.

T=0.1 7=0.5
n | Varg Varg Bias%, Biass, Varp Varp Biasy Bias7,
50 [ 0.109 0.101 [ 3.0x10™®> 3.7x10°° [ 0.041 0.099 | 1.9x10°° 42x1073
100 | 0.041 0.047 | 49x107% 3.3x107* | 0.017 0.046 | 1.7x10™* 4.0x107*
200 | 0.017 0.024 | 1.2x107° 1.4x10"7 | 0.009 0.023 | 1.2x10"8 7.9x 106
400 | 0.007 0.009 | 4.0 x 1075 4.1 x107° | 0.003 0.009 | 9.2 x 1076 2.6 x 10~°
800 | 0.004 0.006 | 7.3x 1077 6.5x107% | 0.002 0.005 | 1.2 x10™% 3.3x10°°

S7.3 Performance of the Bayesian envelope quantile regression

estimator under skewed distribution

To assess our approach under skewed error distributions, we generated the

data from the same model as (5.1)) in the main text, except that € is now
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generated from a skewed normal distribution with a location parameter 0,
a scale parameter 1 and a shape parameter 3 (Azzalini, 2013)) instead of
the normal distribution. To keep the noise level (i.e., the variance of €) the
same as the normal case, we standardized e. The generation of all the other
parameters are kept the same.

The performance of LOOIC in dimension selection was reported in Ta-
ble [l Comparing the results in Table [4 and those under the normal errors
(Table [2| of the main text), it seems that the performance of LOOIC is not
affected by the skewness of the distribution. We further computed the ratios
of the estimation variance and mean squared error (MSE) of the BQR esti-
mator versus the BEQR estimator, and summarized the ratios in Table 5]
Again these ratios are similar to those under the normal errors (Table (1| of
the main text), which indicates that the efficiency gains are stable without
the normality assumption. It is also observed in the frequentist partial en-
velope model (Su and Cook|, [2011)) that the efficiency gains obtained by the
envelope approach are robust to the skewness of the error distribution.

Now we investigate the performance of the BEQR based on a skewed
distribution of X. For fair comparison, we keep the signal level (i.e., the
covariance matrix of X) the same. Then X is generated as E%QZ , where

each element in Z € RP is simulated from skewed normal distribution with a
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Table 4: Number of replications (out of 200) for which a given value of u, is selected

with a skewed distribution on e.

7=0.1 7=0.5
Selected u, | 1 2 3 4 5|1 2 3 4 5
50 3 102 55 37 3|0 142 29 28 1
100 3 143 35 18 1|0 139 35 25 1
200 0 165 25 10 0|0 145 31 21 1
400 0 173 13 14 0|0 160 18 20 2
800 0 167 15 18 0|0 142 29 28 1

Table 5: Medians (ranges) of the estimation variance and MSE ratios with a skewed
distribution on e. Ratioy: Estimation variance ratio of the BQR estimator versus the
BEQR estimator. Ratioys: MSE ratio of the BQR estimator versus the BEQR estimator.

7=0.1 7=0.5
n Ratioy Ratiops Ratioy Ratiops
50 | 1.59 (1.40, 2.43) 1.59 (1.40, 2.43) | 1.73 (1.54, 2.40) 1.74 (1.49, 2.57)
100 | 1.81 (1.53, 3.36) 1.82 (1.55, 3.38) | 1.94 (1.54, 3.11) 1.94 (1.56, 3.09)
200 | 1.75 (1.49,2.80) 1.74 (1.51, 2.58) | 1.89 (1.58, 2.55) 1.94 (1.57, 2.53)
400 | 1.89 (1.72, 3.57) 1.89 (1.72, 3.52) | 1.92 (1.35, 2.82) 1.97 (1.37, 2.75)
800 | 1.87 (1.52,2.96) 1.87 (1.53,2.95) | 1.73 (1.54, 2.40) 1.74 (1.49, 2.57)

location parameter 0, a scale parameter 2 and a shape parameter 3, and then
standardized to have variance 1. Generation of other parameters remain the
same as the previous setting, except that the error ¢; was generated from a
standard normal distribution as in the main text.

The dimension selection results of LOOIC were summarized in Table [6]
and ratios of the estimation variance and MSE of the BQR estimator versus
the BEQR estimator were displayed in Table[7] Compared to the case where
X was normally distributed, LOOIC tends to overestimate w, for both
quantile levels. In contrast to underestimation, overestimation is a smaller

issue since it does not provide bias. The only issue with overestimation



S7. ADDITIONAL SIMULATIONS AND DATA ANALYSIS

is that we may not achieve as much efficiency gains as we should have.
However, Table [7| shows that the envelope approach still yields substantial
efficiency gains, and the gains are similarly to the case where X is normally
distributed, which shows that overestimation issue does not cause the loss

of much efficiency gains in this case.

Table 6: Number of replications (out of 200) for which a given value of u, is selected
with a skewed distribution on X.

7=0.1 7=0.5
Selected u, | 1 2 3 4 5|1 2 3 4 5
50 3 77 91 29 0|2 92 8 26 O
100 13 70 98 16 3|1 79 93 24 3
200 12 70 104 14 0|2 90 94 14 O
400 1 68 113 16 2|1 94 82 21 2
800 0 8 101 11 2|0 102 81 16 1

Table 7: Medians (ranges) of the estimation variance and MSE ratios with a skewed
distribution on X. Ratioy: Estimation variance ratio of the BQR estimator versus the
BEQR estimator. Ratioys: MSE ratio of the BQR estimator versus the BEQR estimator.

7=0.1 7=0.5

n Ratioy Ratiops Ratioy Ratiops

50 | 1.56 (1.24, 3.73) 1.54 (1.24, 3.54) | 2.23 (1.56, 4.27) 2.21 (1.56, 4.16)

100 | 1.83 (1.36, 2.69) 1.84 (1.36, 2.65) | 1.95 (1.43, 3.70) 1.92 (1.44, 3.73)

200 | 1.85(1.38,3.86) 1.80 (1.36, 3.84) | 2.28 (1.59, 4.59) 2.27 (1.59, 4.59)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

400 | 2.20 (1.42, 3.85) 2.20 (1.44, 3.73) | 2.76 (1.81, 4.87) 2.75 (1.81, 4.86
800 | 2.36 (1.76, 4.27) 2.34 (1.73, 4.07) | 2.47 (1.80, 3.71) 2.45 (1.84, 3.72

Finally, we examined the performance of the BEQR with a skewed
distribution for both X and e. The error ¢ was generated from a skewed
normal distribution in the same way that produced Tables [4 and 5] And
X was generated in the same way that produced Tables [6] and [7]] The

generation of the other parameters was kept the same.
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The performance of LOOIC for 7 = 0.1 and 0.5 was recorded in Table
and the ratios of the estimation variance and MSE of the BQR estimator
versus the BEQR estimator were summarized in Table[9] Note that as in the
last setting, LOOIC tends to overestimate u,.. However, the envelope ap-
proach still achieves efficiency gains as shown in Table [0} and the efficiency

gains are about the same when both € and X are normally distributed.

Table 8: Number of replications (out of 200) for which a given value of u, is selected
under skewed distributions for both ¢ and X.

7=0.1 7=0.5
Selected u, | 1 2 3 4 5|1 2 3 4 5
50 8 70 100 21 1|5 99 77 13 6
100 9 9 77 17 1|7 8 87 25 1
200 6 103 79 12 0|3 97 8 20 O
400 3 114 70 13 0|0 100 8 17 3
800 0 122 61 17 0|0 97 79 23 1

Table 9: Medians (ranges) of the estimation variance and MSE ratios under skewed
distributions for both € and X. Ratioy: Estimation variance ratio of the BQR estimator
versus the BEQR estimator. Ratioy;: MSE ratio of the BQR estimator versus the BEQR
estimator.

7=0.1 7=0.5

n Ratioy Ratioy Ratioy Ratioy

50 | 1.78 (1.53, 3.43) 1.79 (1.53, 3.34) | 2.04 (1.58, 3.71) 2.03 (1.57, 3.60)

100 | 1.85 (1.63, 3.00) 1.82 (1.61, 3.00) | 2.13 (1.49, 3.26) 2.10 (1.49, 3.26)

200 | 2.25 (1.75, 4.06) 2.26 (1.75, 3.98) | 2.16 (1.69, 4.52) 2.11 (1.69, 4.47)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

400 | 2.60 (1.82, 3.87) 2.62 (1.82, 3.87) | 3.12 (1.72, 5.26) 2.95 (1.70, 4.76

800 | 2.48 (1.91, 4.42) 2.47 (1.92, 4.43) | 2.33 (1.71, 3.56) 2.35 (1.60, 3.29
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S7.4 Efficiency gains affected by censored data

In order to investigate the effect of the censored response on the efficiency
gains obtained from envelope approach, we generated the data from the
same model as in (5.1]), i.e., the model for uncensored response. All the
model parameters in were also generated in the same way. We censored
the response at zero, which leads to approximately 20% of responses being
censored.

We kept the sample sizes same as the uncensored case, and computed
the estimation variance of the BTQR and BETQR estimators. The results
of estimation variances for an element in 3, with 7 = 0.1,0.25,0.5,0.75,
0.9 are summarized in Figure ] The ratios of the estimation variance
and MSE of the BTQR estimator versus the BETQR estimator for each
element in 3, with 7 = 0.1 and 0.5 are recorded in Table[I0] By comparing
Table and Table [1| in the main text, we notice that envelope approach
achieves similar efficiency gains as with uncensored data. Take the eighth
element in 3, for a close look, with sample size 200 and 7 = 0.1, the
estimation variance of the BEQR estimator is 0.061 and that of the BQR
estimator is 0.144. With censored data, the estimation variance of the
BETQR estimator is 0.092 and that of the BTQR estimator is 0.287. This

indicates the estimation variance increases with the censored responses for
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both the BQR and BEQR. However, the envelope approach still preserves

the efficiency gains with censored data.

7=0.1 7=0.5

n Ratioy Ratiops Ratioy Ratiops

50 | 1.58 (1.23,2.10) 1.58 (1.29, 2.10) | 1.74 (1.53, 2.93) 1.74 (1.52, 2.92)

100 | 1.66 (1.31,2.15) 1.63 (1.32,2.15) | 1.91 (1.48, 3.79) 1.91 (1.48, 3.79)

200 | 1.68 (1.41, 3.05) 1.66 (1.40, 2.92) | 1.94 (1.73, 2.67) 1.96 (1.72, 2.69)
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

400 | 2.10 (1.68, 3.11) 2.06 (1.66, 3.11 1.95 (1.68, 2.81 1.95 (1.68, 2.80

800 | 2.19 (1.80, 3.13) 2.11 (1.71, 2.97) | 1.94 (1.64, 2.31) 1.94 (1.64, 2.30

Table 10: Medians (ranges) of the estimation variance and MSE ratios. Ratioy: Esti-
mation variance ratio of the BTQR estimator versus the BETQR estimator. Ratiop;:
Mean square error ratio of the BTQR estimator versus the BETQR, estimator.

S7.5 Efficiency gains affected by censoring levels

To address the effect of the percentage of censored data, we generated the

data from the model

Y = py +0'TT (A)X; + (54 o7 X))e;;

X; ~ N, (px, T1r(A)T 1 (A)T + Top (AT (A7), i=1,....n.

We set p = 8. The envelope dimension u, was fixed at 3 for all 7 (0 <
7 < 1). The entries of A were generated from the student’s ¢ distribution
with 4 degrees of freedom. The matrices £2; and €2, are diagonal matrices.
The diagonal elements of €2 were 5, 15, and 30 and those of €25 were 1,
1.1, 1.2, 1.3, and 1.4. All entries in i were 3, and each entry of pux was 1.

The sample size n was varied from 150, 300, 600 and 1200.
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Figure 2: Estimation variances of the BETQR (solid line) and the BTQR (dashed line)
estimators with 7 = 0.1 (red line), 0.25 (orange line), 0.5 (yellow line), 0.75 (green line),
and 0.9 (blue line).
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We consider the case where the response is left censored at zero. By
adjusting the value of the intercept, we can obtain different censoring per-
centages. When py = 120, we have 100% uncensored data. When uy = 20,
20% of the data are censored. When py = 10, 33% of data are censored.
When puy = 0, 50% of data are censored. For each case, we compared the
BETQR estimator with true u, and the BTQR estimator. The results of
the estimation variances of BETQR and BTQR estimators are displayed in
Figure [3, and the ratios of the estimation variance and MSE of the BTQR
estimator versus the BETQR estimator were summarized in Table 11| and
Table 121

From Figure [3, we notice that the estimation variance increases when
the percentage of censoring increases for both the BTQR and BETQR es-
timator. But the ratios of the estimation variances and MSE are relatively
stable across different percentages of censoring, as shown in Tables and
. For the smallest sample size (n = 150), the ratio seems to shrink a
little when more data are censored. This maybe because that it is harder
to estimate the envelope subspace when the sample size is small. However,

the envelope approach still achieve substantial efficiency gains for all cases.
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Figure 3: Estimation variances of the BETQR. estimator (dashed line) and the BTQR
estimator (solid line) with 50% censored responses (orange line), 33% censored responses
(yellow line), 22% censored responses (green line), and no censored responses (blue line).
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Table 11: Medians (ranges) of the estimation variance and MSE ratios. Ratioy: Esti-
mation variance ratio of the BTQR versus the BETQR estimator with true u,. Ratiop;:
MSE ratio of the BTQR versus the BETQR estimator with true u..

No censored 20% censored
n Ratioy Ratiop, Ratioy Ratiop,
150 | 5.35 (3.06, 7.80) 4.97 (2.85, 7.61) | 4.70 (2.89, 7.36) 4.62 (2.52, 6.90)
300 | 5.97 (3.69, 9.22) 5.61 (3.37, 7.99) | 6.49 (3.44, 9.14) 6.05 (3.23, 8.21)
600 | 6.18 (3.40, 8.42) 5.54 (3.13, 6.87) | 6.58 (3.59, 9.58) 5.65 (3.35, 8.06)
1200 | 5.78 (3.85, 9.40) 4.4 (2.94, 7.06) | 6.26 (3.51, 9.35) 4.70 (2.71, 7.74)

Table 12: Medians (ranges) of the estimation variance and MSE ratios. Ratioy: Esti-
mation variance ratio of the standard estimator versus the envelope estimator. Ratiop;:
MSE ratio of the standard estimator versus the envelope estimator.

33% censored 50% censored

n Ratioy Ratioys Ratioy Ratioy,

150 | 4.87 (3.22, 7.08) 4.38 (2.53, 6.81) | 3.71 (2.22, 4.01) 3.31 (2.15, 4.90)
300 | 6.56 (3.33, 9.17) 6.18 (3.16, 8.43) | 4.50 (3.23, 7.42)  4.15 (3.10, 7.26)
600 | 7.12 (3.61, 9.49) 5.94 (3.28,8.13) | 6.95 (3.45, 11.31) 5.88 (3.30, 9.53)
1200 | 7.01 (3.87, 8.86) ( ) | 7.64 (3.84, 10.44) 5.60 (2.88, 8.55)

5.04 (2.90, 8.31

S7.6 Additional simulation with censored data

We generated data from with p=8and u, =3 forall 7 (0 <7 <1).
The entries of A were generated from a student’s t distribution with 4
degrees of freedom. The diagonal elements of €2 were 5, 15, and 30 and
those of €5 were 1, 1.1, 1.2, 1.3, and 1.4. The intercept was puy = 20.
Entries in p and px were all 3 and all 1 respectively. The sample size
n was varied from 150, 300, 600 and 1200. We generated 200 datasets
for each sample size. About 20% of the responses had negative values,
they were left-censored at zero. The BETQR and Bayesian Tobit quantile

regression (BTQR, u, = p) point estimators were subsequently computed
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for each dataset. The results for 7 = 0.25, 0.5, 0.75, and 0.9 are shown
for illustration. Figure [4| displays the estimation variances and squared
biases of the BETQR and BTQR estimators for the second element of 3.
Figure [4) shows BETQR has smaller variances than BTQR, illustrating the
estimation efficiency gains achieved by enveloping. The envelope estimator
also has smaller squared biases, thus yielding smaller MSEs compared to
the BTQR estimator. The ratios of the estimation variances and MSEs of
the BTQR to the BETQR estimator, together with the dimension selection
performance of LOOIC are summarized in Table[13|for 7 = 0.9. The results
are similar for other quantile levels. The ratios are strictly bigger than
one, which indicates that the BETQR has a smaller estimation variance
(and MSE) for all sample sizes than the BTQR. LOOIC performs well
with censored data and selects the true u, more often as the sample size
increases. LOOIC again appears to be conservative, overestimating w, more

often than underestimating when it fails to select the true dimension.

Selected u,

n Ratioy Ratiops 2 3 4 5
150 | 1.83 (1.62, 2.59) 1.80 (1.61, 2.58) 13 111 75 1
300 | 3.76 (2.05, 4.72) 3.63 (2.01, 4.47) | 5 158 34 3
600 | 3.72 (2.36, 5.76)  3.65 (2.29, 5.19) | 0 169 31 0

1200 | 4.06 (2.33, 6.26) 3.67 (2.03,4.48) | 0 168 32 0

Table 13: Medians (ranges) of the estimation variance and MSE ratios and number of
replications (out of 200) for which a given value of w, is selected with 7 = 0.9. Ratioy:
Estimation variance ratio of the BTQR estimator versus the BETQR estimator. Ratiop,:
Mean square error ratio of the BTQR estimator versus the BETQR estimator.
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Figure 4: Estimation variances and squared biases of the second element in the BETQR
estimator (solid line) and the BTQR estimator (dashed line) of 3, with 7 = 0.25 (orange
line), 0.5 (yellow line), 0.75 (green line), and 0.9 (blue line).

S7.7 Data analysis

In this section, we provide additional results from the analysis of the LPGA
dataset. Table [14] summarizes the dimension selection results by LOOIC,
the ratios of the credible interval length from the BQR estimator versus the
BEQR estimator, as well as the ratios of credible interval length from the
bayesQR estimator versus the BEQR estimator for quantile levels 0.1, 0.25,
0.5, 0.75 and 0.9. From the ratios in Table [I4 we notice that the BEQR
estimator is more efficient than both the BQR and the bayesQR estimator,
while the bayesQR estimator is the least efficient. The estimates for all

predictor coefficients were plotted in Figure [5] Figure [5] confirms the find-
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ings from Table The bayesQR estimator has especially large variance at
extreme quantile levels. A estimation variance can overwhelm signals from
all predictors. With the bayesQR estimator, all predictors are identified
as insignificant. On the other hand, the efficiency gains from the BEQR
model facilitate the detection of weaker signals, where some insignificant
predictors under the BQR model are identified as significant under BEQR
model. A detailed note on the significance of predictors included aver-
age drive (AD), percent of fairways hit (PFH), percent of greens reached
in regulation (PGRR), average putts per round (APPR), percent of sand
saves (PSS), green in regulation putts per hole (GRPH), average percentile
in tournaments (APT), rounds completed (RC), and average strokes per

round (ASR) at each quantile level was provided in Table

T Uy Ratio Ratiog

0.1 | 2 | 6.33(1.91, 10.4) | 59.69 (13.28, 91.15)
0.25 5 1.24 (1.14, 4.56) 5.26 (4.78, 18.93)
0.5 | 4 | 1.23(0.99, 6.13) | 3.53 (2.72, 16.94)
0.75 | 3 | 2.43 (0.89, 16.3) | 6.65 (2.57, 48.95)
0.9 | 2 | 258 (1.42,10.5) | 9.88 (5.67, 42.93)

Table 14: Dimension selection results by LOOIC and medians (ranges) of length of
95% credible interval ratios of the BQR estimator versus the BEQR estimator. Ratiog
represents ratios of the bayesQR estimator versus the BEQR estimator.
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Figure 5: Point and 95% interval estimates of coefficients of all predictors under BEQR.
(solid lines), BQR (dashed) and bayesQR (dotted) models.
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7=0.1 T=0.25 7=0.5 T=0.75 7=0.9
Var | BEQR BQR | BEQR BQR | BEQR BQR | BEQR BQR | BEQR BQR
AD none none | none none | none  none (+) (+) (+) none
PFH none  none (-) none | none  none | none  none (+) (+)
PGRR | none none | none none | none none | none  none (-) none
APPR (-) none (-) none | none  none | none  none | none  none
PSS none none | none none | none  none (+) (+) (+) (+)
GRPH -) none | none  none (-) none (+) (+) (+) (+)
APT (+) none | none  none | none  none (+) (+) (+) (+)
RC | (4) (0 | (9 (| (5 (+) | (+) none| nome mnome
ASR (-) none (-) (-) none  none (-) none (-) none

Table 15: Significance of predictors under BQR and BEQR: “none” mean the predictor
is identified as non-significant, “(4)” mean the predictor is significant and has a positive
coefficient, and “(-)” means the predictor is significant with a negative coefficient.
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