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Abstract: The particle-based rapid incremental smoother (PARIS) is a sequential

Monte Carlo technique that allows for efficient online approximations of expec-

tations of additive functionals under Feynman–Kac path distributions. Under

weak assumptions, the algorithm has linear computational complexity and limited

memory requirements. It also comes with a number of nonasymptotic bounds and

convergence results. However, being based on self-normalized importance sampling,

the PARIS estimator is biased. This bias is inversely proportional to the number

of particles, but has been found to grow linearly with the time horizon, under

appropriate mixing conditions. In this work, we propose the Parisian particle Gibbs

(PPG) sampler, which has essentially the same complexity as that of the PARIS, but

significantly reduces the bias for a given computational complexity at the cost of

a modest increase in the variance. This method is a wrapper, in the sense that

it uses the PARIS algorithm in the inner loop of the particle Gibbs algorithm to

form a bias-reduced version of the targeted quantities. We substantiate the PPG

algorithm with theoretical results, including new bounds on the bias and variance,

as well as deviation inequalities. We illustrate our theoretical results using numerical

experiments that support our claims.
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1. Introduction

Feynman–Kac formulae play a key role in many models used in statis-

tics, physics, and many other fields; see Del Moral (2004), Del Moral (2013)

and Chopin and Papaspiliopoulos (2020), and the references therein. Let

{(Xn,Xn)}n∈N be a sequence of measurable spaces and define, for every n ∈ N,
X0:n :=

∏n
m=0 Xm and X0:n :=

⊗n
m=0Xm. For a sequence {Mn}n∈N of Markov

kernels Mn : Xn × Xn+1 → [0, 1], an initial distribution η0 ∈ M1(X0), and a

sequence {gn}n∈N of bounded measurable potential functions gn : Xn → R+, a

sequence {η0:n}n∈N of Feynman–Kac path measures is defined by

η0:n : X0:n ∋ A 7→ γ0:n(A)

γ0:n(X0:n)
, n ∈ N, (1.1)
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where

γ0:n : X0:n ∋ A 7→
∫
1A(x0:n) η0(dx0)

n−1∏
m=0

Qm(xm, dxm+1), (1.2)

with

Qm : Xm ×Xm+1 ∋ (x,A) 7→ gm(x)Mm(x,A) (1.3)

being unnormalized kernels. By convention, η0:0 := η0. Note that each η0:n is a

probability measure, whereas γ0:n is not normalized. For every n ∈ N∗, we also

define the marginal distribution ηn : Xn ∋ A 7→ η0:n(X0:n−1 × A). In the context

of nonlinear filtering in general state-space hidden Markov models(HMMs), η0:n
and ηn are, the joint smoothing and filter distribution, respectively, at time

n; see Del Moral (2004), Cappé, Moulines and Rydén (2005) and Chopin and

Papaspiliopoulos (2020).

For most problems of practical interest, the Feynman–Kac path or marginal

measures are intractable, and so is any expectation associated with the same.

As a result, considerable research has been devoted to developing Monte Carlo,

or particle, approximations of such measures. A particle filter approximates

the marginal distribution flow {ηn}n∈N by a sequence of occupation measures,

associated with a swarm of particles {ξin}Ni=1, n ∈ N, where each particle ξin is a

random draw in Xn. Particle filters revolve around two operations: a selection

step, which duplicates or sorts out particles with large or small importance

weights, respectively, and a mutation step, which randomly evolves the selected

particles in the state space. An alternating and iterative application of selection

and mutation results in a swarm of N particles that are both serially and spatially

dependent. Feynman–Kac path models can also be interpreted as laws associated

with a certain type of Markovian backward dynamics; this interpretation is useful,

for example, for the smoothing problem in nonlinear filtering (Douc et al. (2011);

Del Moral, Doucet and Singh (2010)). Several convergence results have been

established for particle filters, as the number N of particles tends to infinity; see

for example, Del Moral (2004), Douc and Moulines (2008), Del Moral (2013) and

Chopin and Papaspiliopoulos (2020). In addition, a number of nonasymptotic

results have been obtained for these methods, including bounds on their bias

and Lp error, as well as exponential concentration inequalities and propagation

of chaos estimates. Extensions to the backward interpretation can also be found

in Douc et al. (2011) and Del Moral, Doucet and Singh (2010).

In this work, we focus on the problem of recursively computing smoothed

expectations

η0:nhn =

∫
hn(x0:n) η0:n(dx0:n), n ∈ N,

where we introduce the vector notation x0:n = (x0, . . . , xn) ∈ X0:n := X0×· · ·×Xn

for additive functionals hn of the form
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hn(x0:n) :=
n−1∑
m=0

h̃m(xm:m+1), x0:n ∈ X0:n. (1.4)

In nonlinear filtering problems, such expectations appear in the context of

maximum-likelihood parameter estimation, for instance, when computing the

score function (the gradient of the log-likelihood function) or the expectation–

maximization (EM) surrogate; see Cappé (2001), Andrieu and Doucet (2003),

Poyiadjis, Doucet and Singh (2005), Cappé (2011) and Poyiadjis, Doucet and

Singh (2011). In Olsson and Westerborn (2017), the authors propose an efficient

particle-based rapid incremental smoother (PARIS), with linear computational

complexity in the number of particles under weak assumptions and limited

memory requirements, that samples on-the-fly from the backward dynamics

induced by the particle filter. An interesting feature is that it requires two or

more backward draws per particle to cope with the degeneracy of the sampled

trajectories and remain numerically stable in the long run, with an asymptotic

variance that grows only linearly with time.

In this paper, we propose a method to reduce the bias of the PARIS estimator

of η0:nhn. The idea is to mix the PARIS with a version of the particle Gibbs

algorithm with backward sampling (Andrieu, Doucet and Holenstein (2010);

Lindsten, Jordan and Schön (2014); Chopin and Singh (2015); Del Moral, Kohn

and Patras (2016); Del Moral and Jasra (2018)) by introducing a conditional

PARIS algorithm. This leads to the Parisian particle Gibbs (PPG) algorithm, from

which we derive an upper bound on the bias that decreases inversely proportion-

ally to the number of particles and exponentially fast with the iteration index

(under assumptions guaranteeing that the particle Gibbs sampler is uniformly

ergodic).

The remainder of the paper is structured as follows. In Section 2 we discuss

the Feynman–Kac model, along with its backward interpretation, and introduce

the particle Gibbs sampler. Our presentation is inspired by Del Moral, Kohn

and Patras (2016), but differs in that it avoids the use of quotient spaces of

Del Moral, Kohn and Patras (2016) and the extension of the distribution to the

particle ancestral indices of Andrieu, Doucet and Holenstein (2010). In Section

3, we introduce the PARIS algorithm and its conditional version, and show how it

can be coupled with the particle Gibbs method with backward sampling, yielding

the PPG algorithm. In Section 4, we present the central result of this study,

namely, an upper bound on the bias of the PPG estimator as a function of the

number of particles and the iteration index of the Gibbs algorithm. In addition,

we provide an upper bound on the mean-squared error (MSE). In Section 5, we

provide numerical experiment to illustrate our results. In Section 6, we present

the most important and original proofs. Finally, the supplementary material

contain pseudocode and additional technical proofs, respectively.
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Notation. Let R+ := [0,∞), R∗
+ := (0,∞), N := {0, 1, 2, . . .}, and N∗ :=

{1, 2, 3, . . .} denote the sets of nonnegative and positive real numbers and the

same for integers, respectively. We denote by IN the N ×N identity matrix. For

any quantities {aℓ}nℓ=m, we denote vectors as am:n := (am, . . . , an), and for any

(m,n) ∈ N2 such that m ≤ n, we let Jm,nK := {m,m + 1, . . . , n}. For a given

measurable space (X,X), where X is a countably generated σ-field, we denote by

F(X) the set of bounded X/B(R)-measurable functions on X. For any h ∈ F(X),
we let ∥h∥∞ := supx∈X |h(x)| and osc(h) := sup(x,x′)∈X2 |h(x) − h(x′)| denote the

supremum and oscillator norms, respectively, of h. Let M(X) be the set of σ-finite
measures on (X,X), and M1(X) ⊂ M(X) be the probability measures.

Let (Y,Y) be another measurable space. A possibly unnormalized transition

kernel K on X × Y induces two integral operators, one acting on measurable

functions, and the other on measures; specifically, for h ∈ F(X ⊗ Y) and ν ∈
M1(X), define the measurable function

Kh : X ∋ x 7→
∫

h(x, y)K(x,dy)

and the measure

νK : Y ∋ A 7→
∫

K(x,A) ν(dx),

whenever these quantities are well defined. Now, let (Z,Z) be a third measurable

space and L be another possibly unnormalized transition kernel on Y × Z; we
then define, with K as above, two different products of K and L, namely,

KL : X ×Z ∋ (x,A) 7→
∫

L(y,A)K(x, dy)

and

K � L : X × (Y � Z) ∋ (x,A) 7→
∫∫

1A(y, z)K(x,dy)L(y,dz),

whenever these are well defined. This also defines the � product of a kernel K

on X×Y and a measure ν on X, as well as of a kernel L on Y×X and a measure

µ on Y, as the measures

ν � K : X � Y ∋ A 7→
∫∫

1A(x, y)K(x,dy) ν(dx),

L � µ : X � Y ∋ A 7→
∫∫

1A(x, y)L(y,dx)µ(dy).

2. Particle Models

In the next sections, we discuss many-body Feynman–Kac models, backward

interpretations, conditional dual processes, and the PARIS algorithm. Our pre-

sentation follows that of Del Moral, Kohn and Patras (2016) closely, but with a
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different definition of the many-body extensions. We restate (in Theorem 1) a

duality formula of Del Moral, Kohn and Patras (2016) relating these concepts.

This formula provides a foundation for the particle Gibbs sampler described in

Section 2.3 and subsequent developments.

2.1. Many-body Feynman–Kac models

In the following, we assume that all random variables are defined on a com-

mon probability space (Ω,F ,P). The distribution flow {ηm}m∈N is intractable, in

general, but can be approximated by using random samples ξm = (ξ1m, . . . , ξ
N
n ),

for m ∈ N, of particles, where N ∈ N∗ is a fixed Monte Carlo sample size and

each particle ξim is an Xm-valued random variable. Such a particle approximation

is based on the recursion ηm+1 = Φm(ηm), for m ∈ N, where Φm denotes the

mapping

Φm : M1(Xm) ∋ η 7→ ηQm

ηgm
, (2.1)

taking on values in M1(Xm+1). In order to describe recursively the evolution

of the particle population, let m ∈ N and assume that the particles ξm form

a consistent approximation of ηm, in the sense that µ(ξm)h, where µ(ξm) :=

N−1
∑N

i=1 δξim (with δx denoting the Dirac measure located at x) is the occupation

measure formed by ξm, serves as a proxy for ηmh for any ηm-integrable test

function h. (Under general conditions, µ(ξm)h converges in probability to ηm
as N → ∞; see Del Moral (2004) and Chopin and Papaspiliopoulos (2020),

and the references therein.) Then, in order to generate an updated particle

sample approximating ηm+1, new particles ξm+1 = (ξ1m+1, . . . , ξ
N
m+1) are drawn

conditionally independently given ξm according to

ξim+1 ∼ Φm(µ(ξm)) =
N∑
ℓ=1

gm(ξ
ℓ
m)∑N

ℓ′=1 gm(ξ
ℓ′
m)

Mm(ξ
ℓ
m, ·), i ∈ J1, NK.

Because this process of particle updating involves sampling from the mixture

distribution Φm(µ(ξm)), it can be decomposed into two substeps: selection and

mutation. The selection step randomly chooses the ℓth mixture stratum with

probability gm(ξ
ℓ
m)/

∑N
ℓ′=1 gm(ξ

ℓ′

m), and the mutation draws a new particle ξim+1

from the selected stratum Mm(ξ
ℓ
m, ·). In Del Moral, Kohn and Patras (2016),

the term many-body Feynman–Kac models is related to the law of process

{ξm}m∈N. For all m ∈ N, let Xm := XN
m and Xm := X�N

m ; then, {ξm}m∈N is

an inhomogeneous Markov chain on {Xm}m∈N, with transition kernels

Mm : Xm ×Xm+1 ∋ (xm, A) 7→ Φm{µ(xm)}�N(A)

and initial distribution η0 = η�N
0 . Now, denote X0:n :=

∏n
m=0 Xm and X 0:n :=⊗n

m=0 Xm. (Here, and in the following, we use a bold symbol to stress that a
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quantity is related to the many-body process.) The many-body Feynman–Kac

path model refers to the flows {γm}m∈N and {ηm}m∈N of the unnormalized and

normalized probability distributions, respectively, on {X 0:m}m∈N generated by

(1.1) and (1.2) for the Markov kernels {Mm}m∈N, the initial distribution η0, the

potential functions

gm : Xm ∋ xm 7→ µ(xm)gm =
1

N

N∑
i=1

gm(x
i
m), m ∈ N,

and the corresponding unnormalized transition kernels

Qm : Xm ×Xm+1 ∋ (xm, A) 7→ gm(xm)Mm(xm, A), m ∈ N.

Finally, note that in the previous construction, the Markov property of the

many-body Feynman–Kac model relies on the fact that each potential gm is a

function of a single state xm only, as is the case in the standard Feynman–Kac

model framework (Del Moral (2004)), and that the evolution of the particles

follows the model dynamics given in (2.1) (so-called bootstrap particle filtering).

In order to extend this to more general models (such as models where the

potentials are allowed to depend on two consecutive states (Lee, Singh and

Vihola (2020)) or, even more generally, where no structure at all is assumed

for the unnormalized kernels (1.3) (Gloaguen, Le Corff and Olsson (2022))) and

particle dynamics (such as the auxiliary particle filtering framework introduced

in Pitt and Shephard (1999)), we need to form a Markovian many-body process

with tractable dynamics by furnishing each particle with an importance weight

and an index that records the particle’s ancestor in the previous generation.

However, to avoid this technicality and to allow for a more clear-cut presentation

of the methods and theoretical analysis in the coming sections, we stay within

the framework of the standard Feynman–Kac models and bootstrap-type particle

filters, even though extensions to more general settings may be possible.

2.2. Backward interpretation of Feynman–Kac path flows

Suppose that each kernel Qn, for n ∈ N, defined in (1.3), has a transition

density qn with respect to some dominating measure λn+1 ∈ M(Xn+1). Then, for

n ∈ N and η ∈ M1(Xn), we define the backward kernel

←−
Qn,η : Xn+1 ×Xn ∋ (xn+1, A) 7→

∫
1A(xn)qn(xn, xn+1) η(dxn)∫

qn(x′
n, xn+1) η(dx′

n)
. (2.2)

Now, for n ∈ N∗, denoting

Bn : Xn ×X0:n−1 ∋ (xn, A) 7→
∫
· · ·
∫
1A(x0:n−1)

n−1∏
m=0

←−
Qm,ηm

(xm+1, dxm), (2.3)
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we may state the following—now classical—backward decomposition of the

Feynman–Kac path measures, a result that plays a pivotal role in the following.

Proposition 1. For every n ∈ N∗, it holds that γ0:n = γn�Bn and η0:n = ηn�Bn.

Although the decomposition in Proposition 1 is well known (see, e.g., Del

Moral, Doucet and Singh (2010); Del Moral, Kohn and Patras (2016)), we provide

a proof in Section 6.1 for completeness. Using backward decomposition, we can

obtain a particle approximation of a given Feynman–Kac path measure η0:n by

first sampling, in an initial forward pass, particle clouds {ξm}nm=0 from η0�M0�
· · · �Mn−1. Then, in a subsequent backward pass, we sample N conditionally

independent paths {ξ̃i0:n}Ni=1 from Bn(ξ0, . . . , ξn, ·), where

Bn : X0:n ×X0:n ∋

(x0:n, A) 7→
∫
· · ·
∫
1A(x0:n)

{
n−1∏
m=0

←−
Qm,µ(xm)(xm+1, dxm)

}
µ(xn)(dxn) (2.4)

is a Markov kernel describing the time-reversed dynamics induced by the particle

approximations generated in the forward pass. (Here, and in the following, we

use blackboard notation to denote kernels related to many-body path spaces.)

Finally, µ({ξ̃i0:n}Ni=1)h is returned as an estimator of η0:nh for any η0:n-integrable

test function h. This algorithm is referred to as the forward-filtering backward-

simulation (FFBSi) algorithm in the literature, and was introduced in Godsill,

Doucet and West (2004); see also Cappé, Godsill and Moulines (2007) and Douc

et al. (2011). More precisely, given the forward particles {ξm}nm=0, each path ξ̃i0:n
is generated by first drawing ξ̃in uniformly from among the particles ξn in the

previous generation, and then drawing, recursively,

ξ̃im ∼
←−
Qm,µ(ξm)(ξ̃

i
m+1, ·) =

N∑
j=1

qm(ξ
j
m, ξ̃

i
m+1)∑N

ℓ=1 qm(ξ
ℓ
m, ξ̃

i
m+1)

δξjm ; (2.5)

that is, given ξ̃im+1, ξ̃
i
m is picked at random from among ξm based on weights pro-

portional to {qm(ξjm, ξ̃im+1)}Nj=1. Note that in this basic formulation of the FFBSi

algorithm, each backward-sampling operation (2.5) requires the computation of

the normalising constant
∑N

ℓ=1 qm(ξ
ℓ
m, ξ̃

i
m+1), which implies an overall quadratic

complexity of the algorithm. Still, this heavy computational burden can be eased

by using an effective accept–reject technique, as discussed in Section 2.4.

2.3. Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman–Kac model (1.1–1.2) and

a given trajectory {zn}n∈N, where zn ∈ Xn for every n ∈ N, is defined as the

canonical Markov chain with kernels

Mn[zn+1] : Xn ×X n+1 ∋ (xn, A)
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7→ 1

N

N−1∑
i=0

[
Φn{µ(xn)}�i � δzn+1

� Φn{µ(xn)}�(N−i−1)
]
(A), (2.6)

for n ∈ N, and initial distribution

η0⟨z0⟩ :=
1

N

N−1∑
i=0

(
η�i
0 � δz0 � η

�(N−i−1)
0

)
. (2.7)

As is clear from (2.6–2.7), given {zn}n∈N, a realization {ξn}n∈N of the dual process

is generated as follows. At time zero, the process is initialized by inserting z0 at

a randomly selected position in the vector ξ0, while drawing independently the

remaining elements in the same vector from η0. After this, the process proceeds in

a Markovian manner by, given ξn, inserting zn+1 at a randomly selected position

in ξn+1, while drawing independently the remaining elements from Φn(µ(ξn)).

In order to describe compactly the law of the conditional dual process, we

define the Markov kernel

Cn : X0:n ×X 0:n ∋ (z0:n, A) 7→ η0⟨z0⟩�M0⟨z1⟩� · · ·�Mn−1⟨zn⟩(A).

The following result elegantly combines the underlying model (1.1–1.2), the many-

body Feynman–Kac model, the backward decomposition, and the conditional

dual process.

Theorem 1 (Del Moral, Kohn and Patras (2016)). For all n ∈ N, it holds that

Bn � γ0:n = γ0:n � Cn. (2.8)

In Del Moral, Kohn and Patras (2016), each state ξn of the many-body

process maps an outcome ω of the sample space Ω onto an unordered set of N

elements in Xn. However, we have chosen to let each ξn take values in the standard

product space XN
n , for two reasons. First, the construction of Del Moral, Kohn and

Patras (2016) requires sophisticated measure-theoretic arguments to endow such

unordered sets with suitable σ-fields and appropriate measures. Second, we see

no need to ignore the index order of the particles, as long as the Markovian

dynamics (2.6–2.7) of the conditional dual process are symmetrized over the

particle cloud. Therefore, in Section 6.2, we include our own proof of duality (2.8)

for completeness. Note that the measure (2.8) on X0:n � X 0:n is unnormalized,

but because the kernels Bn and Cn are both Markov, normalizing the identity

with γ0:n(X0:n) = γ0:n(X0:n) immediately yields

Bn � η0 : n = η0:n � Cn. (2.9)

Because the two sides of (2.9) provide the full conditionals, it is natural to

take a data-augmentation approach, and sample the target (2.9) using a two-
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stage deterministic-scan Gibbs sampler (Andrieu, Doucet and Holenstein (2010);

Chopin and Singh (2015)). Specifically, assume we generate a state (ξ0:n[ℓ], ζ0:n[ℓ])

comprising a dual process with an associated path on the basis of ℓ ∈ N iterations

of the sampler. Then, we generate the next state (ξ0:n[ℓ + 1], ζ0:n[ℓ + 1]) in

a Markovian fashion by first sampling ξ0:n[ℓ + 1] ∼ Cn(ζ0:n[ℓ], ·), and then

sampling ζ0:n[ℓ + 1] ∼ Bn(ξ0:n[ℓ + 1], ·). After arbitrary initialization (and

the discard of possible burn-in), this procedure produces a Markov trajectory

{(ξ0:n[ℓ], ζ0:n[ℓ])}ℓ∈N, and under weak additional technical conditions, this Markov

chain admits (2.9) as its unique invariant distribution. In such a case, the Markov

chain is ergodic (Douc et al. (2018, Chap. 5)), and the marginal distribution of the

conditioning path ζ0:n[ℓ] converges to the target distribution η0:n. Therefore, for

every h ∈ F(X0:n), it holds that limL→∞ L−1
∑L

ℓ=1 h(ζ0:n[ℓ]) = η0:nh, P-a.s.. This

algorithm is given in the discussion in Whiteley (2010) of the original particle

Gibbs paper (Andrieu, Doucet and Holenstein (2010)); however, the justification

of Whiteley (2010), involving an extension of the law targeted by the particle

Gibbs sampler to the ancestral indices of particles, differs somewhat from the

one presented here.

2.4. The PARIS algorithm

In the following, we assume that we are given a sequence {hn}n∈N of additive

state functionals of type (1.4). Interestingly, as noted in Cappé (2011) and

Del Moral, Doucet and Singh (2010), the backward decomposition allows, when

applied to additive state functionals, a forward recursion for the expectations

{η0:nhn}n∈N. More specifically, using the forward decomposition hn+1(x0:n+1) =

hn(x0:n) + h̃n(xn, xn+1) and the backward kernel Bn+1 defined in (2.3), we may

write, for xn+1 ∈ Xn+1,

Bn+1hn+1(xn+1)

=

∫ ←−
Qn,ηn

(xn+1,dxn)

∫ {
hn(x0:n) + h̃n(xn, xn+1)

}
Bn(xn,dx0:n−1)

=
←−
Qn,ηn

(Bnhn + h̃n)(xn+1), (2.10)

which, by Proposition 1, implies that

η0:n+1hn+1 = ηn+1

←−
Qn,ηn

(Bnhn + h̃n). (2.11)

The marginal flow {ηn}n∈N can be expressed recursively using the mappings

{Φn}n∈N. Thus, (2.11) provides, in principle, a basis for an online computation

of {η0:nhn}n∈N. Because the marginals are generally intractable, following Del

Moral, Doucet and Singh (2010), we plug particle approximations µ(ξn+1) and←−
Qn,µ(ξn) (see (2.5)) of ηn+1 and

←−
Qn,µ(ηn), respectively, into the recursion (2.11).

More precisely, we proceed recursively, and assume that at time n, we have a
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sample {(ξin, βi
n)}Ni=1 of particles with associated statistics, where each statistic

βi
n serves as an approximation of Bnhn(ξ

i
n). Then evolving the particle cloud

according to ξn+1 ∼ Mn(ξn, ·) and updating the statistics using (2.10), with←−
Qn,ηn

replaced by
←−
Qn,µ(ξn), yields the particle-wise recursion

βi
n+1 =

N∑
ℓ=1

qn(ξ
ℓ
n, ξ

i
n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n , ξ

i
n+1)

{
βℓ
n + h̃n(ξ

ℓ
n, ξ

i
n+1)

}
, i ∈ J1, NK, (2.12)

and, finally, the estimator

µ(βn)(id) =
1

N

N∑
i=1

βi
n (2.13)

of η0:nhn, where we set βn := (β1
n, . . . , β

N
n ), for i ∈ J1, NK, and id is the identity

mapping. The procedure is initialized by simply letting βi
0 = 0, for all i ∈ J1, NK.

Note that (2.13) provides a particle interpretation of the backward decomposition

in Proposition 1. This algorithm is a special case of the forward-filtering backward-

smoothing (FFBSm) algorithm (see Andrieu and Doucet (2003); Godsill, Doucet

and West (2004); Douc et al. (2011); Särkkä (2013)) for additive functionals

satisfying (1.4). It allows for online processing of the sequence {η0:nhn}n∈N, but
also has the appealing property that only the current particles ξn and statistics

βn need to be stored in memory. However, because each update (2.12) requires

a summation of N terms, the scheme has an overall quadratic complexity in the

number of particles, leading to a computational bottleneck in applications to

complex models that require large particle sample sizes N .

To avoid the computational burden of this forward-only implementation of

FFBSm, the PARIS algorithm Olsson and Westerborn (2017) updates the statistics

βn by replacing each sum (2.12) with the Monte Carlo estimate

βi
n+1 =

1

M

M∑
j=1

{
β̃i,j
n + h̃n(ξ̃

i,j
n , ξin+1)

}
, i ∈ J1, NK, (2.14)

where {(ξ̃i,jn , β̃i,j
n )}Mj=1 are drawn randomly from among {(ξin, βi

n)}Ni=1 with

replacement, by assigning (ξ̃i,jn , β̃i,j
n ) the value of (ξℓn, β

ℓ
n) with probability

qn(ξ
ℓ
n, ξ

i
n+1)/

∑N
ℓ′=1 qn(ξ

ℓ′

n , ξ
i
n+1), and the Monte Carlo sample size M ∈ N∗ is

much smaller than N (say, less than five). Formally,

{(ξ̃i,jn , β̃i,j
n )}Mj=1 ∼

{
N∑
ℓ=1

qn(ξ
ℓ
n, ξ

i
n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n , ξ

i
n+1)

δ(ξℓn,βℓ
n)

}�M

, i ∈ J1, NK.

The resulting procedure, summarized in Algorithm 1, allows for online processing

with constant memory requirements, because it only needs to store the current

particle cloud and the estimated auxiliary statistics at each iteration. Moreover,
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when the Markov transition densities of the model can be uniformly bounded,

that is, there exists, for every n ∈ N, an upper bound σ̄n > 0 such that for

all (xn, xn+1) ∈ Xn × Xn+1, mn(xn, xn+1) ≤ σ̄n (a weak assumption satisfied

for most models of interest), then we can generate a sample (ξ̃i,jn , βi,j
n ) by

drawing, with replacement and until acceptance, candidates (ξ̃i,∗n , β̃i,∗
n ) from

{(ξin, βi
n)}Ni=1 based on the normalized particle weights {gn(ξℓn)/

∑
ℓ′ gn(ξ

ℓ′

n )}Nℓ=1

(obtained as a by-product in the generation of ξn+1), and accepting the same

with probability mn(ξ̃
i,∗
n , ξin+1)/σ̄n. Because this sampling procedure bypasses

the calculation of the normalizing constant
∑N

ℓ′=1 qn(ξ
ℓ′

n , ξ
i
n+1) of the targeted

categorical distribution, it yields an overall O(MN) complexity of the algorithm;

see (Douc et al. (2011)) for details.

Increasing M improves the accuracy of the algorithm at the cost of additional

computational complexity.

As shown in Olsson and Westerborn (2017), there is a qualitative difference

between the cases M = 1 and M ≥ 2, and the latter is required to keep the PARIS

numerically stable. More precisely, in the latter case, it can be shown that the

PARIS estimator µ(βn) satisfies, as N tends to infinity while M is held fixed, a

central limit theorem (CLT) at the rate
√
N , with an n-normalized asymptotic

variance of order O(1−1/(M −1)). As is clear from this bound, using a large M

only wastes computational work, and setting M to two or three typically works

well in practice.

3. The PPG Sampler

We now introduce the PPG algorithm. For all n ∈ N∗, let Yn := X0:n × R and

Yn := X0:n � B(R). Moreover, let Y0 := X0 × {0} and Y0 := X0 � {{0}, ∅}. An

element of Yn is always denoted by yn = (x0:n|n, bn). The PPG sampler includes,

as a key ingredient, a conditional PARIS step, that recursively updates a set of Yn-

valued random variables υi
n := (ξi0:n|n, β

i
n), for i ∈ J1, NK. Let (υn)n∈N denote the

corresponding many-body process, with each υn := ((ξ10:n|n, β
1
n), . . . , (ξ

N
0:n|n, β

N
n ))

taking on values in the space Yn := YN
n , which we furnish with a σ-field Yn :=

Y�N
n . The space Y0 and the corresponding σ-field Y0 are defined accordingly.

For every n ∈ N, we write ξ0:n|n = (ξ10:n|n, . . . , ξ
N
0:n|n) for the collection of paths in

υn, and ξn|n = (ξ1n, . . . , ξ
N
n ) for the collection of end points of the same.

In the following, we let n ∈ N be a fixed time horizon, and describe in detail

how the PPG approximates η0:nhn iteratively. In short, at each iteration ℓ, and

given an input conditional path ζ0:n[ℓ], the PPG produces a many-body system

υn[ℓ+1] by using a series of conditional PARIS operations. Then, an updated path

ζ0:n[ℓ+1], which serves as input at the next iteration, is generated by picking one

of the paths ξ0:n|n[ℓ+ 1] in υn[ℓ+ 1] at random. At each iteration, the produced

statistics βn (in υn) provide an approximation of η0:nhn, according to (2.13).
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More precisely, given a path ζ0:n[ℓ], the conditional PARIS operations are

executed as follows. In the initial step, ξ0|0[ℓ+1] are drawn from η0⟨ζ0[ℓ]⟩ defined
in (2.7), and υi

0[ℓ + 1] ← (ξi0|0[ℓ + 1], 0), for all i ∈ J1, NK; then, recursively, for
m ∈ J0, nK, assuming access to υm[ℓ+ 1], we

(1) generate an updated particle cloud ξm+1[ℓ+1] ∼Mm⟨ζm+1[ℓ]⟩(ξm|m[ℓ+1], ·),

(2) pick at random, for each i ∈ J1, NK, an ancestor path with associated

statistics (ξ̃i,10:m[ℓ+ 1], β̃i,1
m [ℓ+ 1]) from among υm[ℓ+ 1] by drawing

(ξ̃i,10:m[ℓ+ 1], β̃i,1
m [ℓ+ 1]) ∼

N∑
s=1

qm(ξ
s
m|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N

s′=1 qm(ξ
s′

m|m[ℓ+ 1], ξim+1[ℓ+ 1])
δυs

m[ℓ+1],

(3) pick at random, for each i ∈ J1, NK, with replacement, M − 1 ancestor

particles and associated statistics {(ξ̃i,jm [ℓ + 1], β̃i,j
m [ℓ + 1])}Mj=2 at random

from {(ξsm|m[ℓ+ 1], βs
m[ℓ+ 1])}Ns=1 according to

{(ξ̃i,jm [ℓ+ 1], β̃i,j
m [ℓ+ 1])}Mj=2

∼
(

N∑
s=1

qm(ξ
s
m|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N

s′=1 qm(ξ
s′

m|m[ℓ+ 1], ξim+1[ℓ+ 1])
δ(ξs

m|m[ℓ+1],βs
m[ℓ+1])

)�(M−1)

,

(4) set, for all i ∈ J1, NK, ξi0:m+1|m+1[ℓ + 1] ← (ξ̃i,10:m[ℓ + 1], ξim+1[ℓ + 1]) and

υi
m+1[ℓ+ 1]← (ξi0:m+1|m+1[ℓ+ 1], βi

m+1[ℓ+ 1]), where

βi
m+1[ℓ+ 1]←M−1

M∑
j=1

(
β̃i,j
m [ℓ+ 1] + h̃m(ξ̃

i,j
m [ℓ+ 1], ξim+1[ℓ+ 1])

)
.

This conditional PARIS procedure is summarized in pseudocode in Algorithm 2

in Section B.

In addition to recursively propagating the statistics {βm[ℓ+ 1]}nm=0 to form

the final estimator, this scheme also recursively propagates the trajectories

{ξ0:m|m[ℓ+ 1]}nm=0 used as a pool of candidates for the updated conditional path

ζ0:n[ℓ+1]. Once we have the set υn[ℓ+1] of trajectories and associated statistics

formed using n recursive conditional PARIS updates, we draw an updated path

ζ0:n[ℓ+1] from µ(ξ0:n|n[ℓ+1]) (i.e., uniformly among the elements of ξ0:n|n[ℓ+1]).

As a result, the updated conditional path ζ0:n[ℓ + 1] and the statistics βn[ℓ + 1]

are statistically intertwined conditionally on the conditional dual particle process

underpinning the algorithm. The main reason for this is to avoid computational

waste. By letting the updated conditional path ζ0:n[ℓ+1] be formed by reusing the

backward samples from those generated to form the statistics βn[ℓ+ 1] included

in the estimator, our procedure optimizes available computational resources. The

full PPG is summarized in pseudocode in Algorithm 3 in Section B.
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The following Markov kernels play an instrumental role in the following. For

a given path {zm}m∈N, the conditional PARIS update in Algorithm 2 defines an

inhomogeneous Markov chain on the spaces {(Ym,Ym)}m∈N with kernels

Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m, dxm+1)Sm(ym,xm+1, A), m ∈ N,

where

Sm : Ym × Xm+1 ×Ym+1 ∋ (ym,xm+1, A) (3.1)

7→
∫
· · ·
∫
1A

({(
(x̃i,1

0:m, x
i
m+1),

1

M

M∑
j=1

(
b̃i,jm + h̃m(x̃

i,j
m , xi

m+1)
))}N

i=1

)

×
N∏
i=1

 N∑
ℓ=1

qm(x
ℓ
m|m, x

i
m+1)∑N

ℓ′=1 qm(x
ℓ′

m|m, x
i
m+1)

δyℓ
m
d(x̃i,1

0:m, b̃
i,1
m )

×
{

N∑
ℓ=1

qm(x
ℓ
m|m, x

i
m+1)∑N

ℓ′=1 qm(x
ℓ′

m|m, x
i
m+1)

δ(xℓ
m|m,bℓm)

}�(M−1)

d(x̃i,2
m , b̃i,2m , . . . , x̃i,M

m , b̃i,Mm )

.

In addition, we introduce the joint law

Sn : X0:n ×Yn ∋ (x0:n, A)

7→
∫
· · ·
∫
1A(yn)S0(Jx0,x1, dy1)

n−1∏
m=1

Sm(ym,xm+1,dym+1), (3.2)

where we define J := IN �(0, 1)⊺.

The kernel Sn can be viewed as a superincumbent sampling kernel that

describes the distribution of the output υn generated by a sequence of PARIS

iterations when the many-body process {ξm}nm=0 associated with the underlying

particle filter is given. This allows us to describe the PPG alternatively as follows:

given ζ0:n[ℓ], draw ξ0:n[ℓ+1] ∼ Cn(ζ0:n[ℓ], ·); then, draw υn[ℓ+1] ∼ Sn(ξ0:n[ℓ+1], ·)
and pick a trajectory ζ0:n[ℓ + 1] from ξ0:n|n[ℓ + 1] at random. The following

proposition, establishes that the conditional distribution of ζ0:n[ℓ + 1] given

ξ0:n[ℓ + 1] coincides, as expected, with the particle-induced backward dynamics

Bn.

Proposition 2. For all n ∈ N∗, N ∈ N∗, x0:n ∈ X0:n, and h ∈ F(X0:n),∫
Sn(x0:n, dyn)µ(x0:n|n)h = Bnh(x0:n).

Finally, we define the Markov kernel induced by the PPG, as well as the

extended probability distribution targeted by the same. For this purpose, we

introduce the extended measurable space (En,En), with
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En := Yn × X0:n, En := Yn � X0:n.

The PPG described in Algorithm 3 defines a Markov chain on (En,En) with the

Markov transition kernel

Kn : En × En ∋ (yn, z0:n, A)

7→
∫∫∫

1A(ỹn, z̃0:n)Cn(z0:n,dx̃0:n) Sn(x̃0:n, dỹn)µ(x̃0:n|n)(dz̃0:n).

Note that the values of Kn defined above do not depend on yn, but only

on (z0:n, A). For any given initial distribution ξ ∈ M1(X0:n), let Pξ be the

distribution of the canonical Markov chain induced by the kernel Kn and the

initial distribution ξ. In the special case where ξ = δz0:n , for some given path

z0:n ∈ X0:n, we use the short-hand notation Pδz0:n
= Pz0:n . In addition, denote by

Kn : X0:n ×X0:n ∋ (z0:n, A)

7→
∫∫∫

1A(z̃0:n)Cn(z0:n, dx̃0:n) Sn(x̃0:n,dỹn)µ(x̃0:n|n)(dz̃0:n)

the path-marginalized version of Kn. By Proposition 2, it holds that Kn = CnBn,

which shows thatKn coincides with the Markov transition kernel of the backward-

sampling-based particle Gibbs sampler discussed in Section 2.3.

Finally, in order to prepare for the statement of our theoretical results on the

PPG, we need to introduce the following Feynman–Kac path model with a frozen

path. More precisely, for a given path z0:n ∈ X0:n, define, for every m ∈ J0, n−1K,
the unnormalized kernel

Qm⟨zm+1⟩ : Xm ×Xm+1 ∋ (xm, A) 7→
(
1− 1

N

)
Qm(xm, A) +

1

N
gm(xm) δzm+1

(A)

and the initial distribution η0⟨z0⟩ : X0 ∋ A 7→ (1− 1/N)η0(A)+ δz0(A)/N . Given

these quantities, define, for m ∈ J0, nK, γm⟨z0:m⟩ := η0⟨z0⟩Q0⟨z1⟩ · · ·Qm−1⟨zm⟩ ,
and its normalized counterpart ηm⟨z0:m⟩ := γm⟨z0:m⟩/γm⟨z0:m⟩1X0:m

. Finally, we

introduce, for m ∈ J0, nK, the kernels

Bm⟨z0:m−1⟩ : Xm ×X0:m−1 ∋ (xm, A)

7→
∫
· · ·
∫
1A(x0:n−1)

n−1∏
m=0

←−
Qm,ηm⟨z0:m⟩(xm+1,dxm)

and the path model η0:m⟨z0:m⟩ := Bm⟨z0:m−1⟩� ηm⟨z0:m⟩.
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4. Main Results

4.1. Theoretical results

In this section, we establish our main result, namely, the exponentially

contracting bias bound stated in Theorem 2. This result is proved under the

following strong mixing assumptions, which are standard in the literature (see

Del Moral (2004); Douc and Moulines (2008); Del Moral (2013); Del Moral, Kohn

and Patras (2016)):

Assumption 1 (Strong mixing). For every n ∈ N, there exist
¯
τn, τ̄n,

¯
σn, and

σ̄n in R∗
+ such that

(i)
¯
τ ≤ gn(xn) ≤ τ̄n for every xn ∈ Xn,

(ii)
¯
σn ≤ mn(xn, xn+1) ≤ σ̄n for every (xn, xn+1) ∈ Xn:n+1.

Under Assumption 1, define, for every n ∈ N,

ρn := max
m∈J0,nK

τ̄mσ̄m

¯
τm

¯
σm

(4.1)

and, for every n ∈ N and N ∈ N∗ such that N > Nn := (1+5ρ2nn/2)∨2n(1+2ρ2n),

κN,n := 1− 1− (1 + 5nρ2n/2)/N

1 + 4n(1 + 2ρ2n)/N
. (4.2)

Note that κN,n ∈ (0, 1), for all N and n, as above.

Theorem 2. Assume Assumption 1. Then, for every n ∈ N, there exist cbiasn ,

cmse
n , and ccovn in R∗

+ such that for every M ∈ N∗, ξ ∈ M1(X0:n), ℓ ∈ N∗, s ∈ N∗,

and N ∈ N∗ such that N > Nn,∣∣∣Eξ [µ(βn[ℓ])(id)]− η0:nhn

∣∣∣ ≤ cbiasn

(
n−1∑
m=0

∥h̃m∥∞

)
N−1κℓ

N,n, (4.3)

Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

2
]
≤ cmse

n

(
n−1∑
m=0

∥h̃m∥∞

)2

N−1, (4.4)∣∣∣Eξ [(µ(βn[ℓ])(id)− η0:nhn) (µ(βn[ℓ+ s])(id) − η0:nhn)]
∣∣∣

≤ ccovn

(
n−1∑
m=0

∥h̃m∥∞

)2

N−3/2κs
N,n. (4.5)

The constants cbiasn , cmse
n , and ccovn are given explicitly in the proof. Because we

focus on the dependence on N and the index ℓ, we make no attempt to optimize

the dependence of these constants on n in our proofs; nevertheless, we believe

that it is possible to prove, under the stated assumptions, that this dependence is

linear. The proof of the bound in Theorem 2 is based on four key ingredients. The
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first is the following unbiasedness property of the PARIS under the many-body

Feynman–Kac path model.

Theorem 3. For every n ∈ N, N ∈ N∗, and ℓ ∈ N∗,

Eη0:n
[µ(βn[ℓ])(id)] =

∫
η0:nCnSn(dbn)µ(bn)(id)

=

∫
η0:nSn(dbn)µ(bn)(id) = η0:nhn.

The proof of Theorem 3 is found in Section 6.3. The second is the uniform

geometric ergodicity of the particle Gibbs with backward sampling established in

Del Moral and Jasra (2018).

Theorem 4. Assume Assumption 1. Then, for every n ∈ N, (µ, ν) ∈ M1(X0:n)
2,

ℓ ∈ N∗, and N ∈ N∗ such that N > Nn, ∥µKℓ
n − νKℓ

n∥TV ≤ κN,nnN
ℓ, where κN,n

is defined in (4.2).

As a third ingredient, we require the following uniform exponential con-

centration inequality of the conditional PARIS with respect to the frozen-path

Feynman–Kac model defined in the previous section.

Theorem 5. For every n ∈ N, there exist cn > 0 and dn > 0 such that for every

M ∈ N∗, z0:n ∈ X0:n, N ∈ N∗, and ε > 0,∫
CnSn(z0:n,dbn)1 {|µ(bn)(id)− η0:n⟨z0:n⟩hn| ≥ ε}

≤ cn exp

(
− dnNε2

2(
∑n−1

m=0 ∥h̃m∥∞)2

)
.

The proof of Corollary 5 is found in Section C.2, and is based on arguments

similar to those used in the proofs of Olsson and Westerborn (2017, Thm. 1)

and Douc et al. (2011, Thm. 5) in the framework of the conditional dual process.

Corollary 5 implies, in turn, the following conditional variance bound.

Proposition 3. For every n ∈ N, M ∈ N∗, z0:n ∈ X0:n, and N ∈ N∗,

∫
CnSn(z0:n, dbn) |µ(bn)(id)− η0:n⟨z0:n⟩hn|2 ≤

cn
dn

(
n−1∑
m=0

∥h̃m∥∞

)2

N−1.

Using Corollary 3, we deduce, in turn, the following bias bound, the proof is

postponed to C.4.

Proposition 4. For every n ∈ N, there exists c̄baisn > 0 such that for every

M ∈ N∗, z0:n ∈ X0:n, and N ∈ N∗,∣∣∣∣∫ CnSn(z0:n,dbn)µ(bn)(id)− η0:n⟨z0:n⟩hn

∣∣∣∣ ≤ c̄baisn

(
n−1∑
m=0

∥h̃m∥∞

)
N−1.
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A fourth and last ingredient in the proof of Theorem 2 is the following bound

on the discrepancy between the additive expectations under the original and

frozen-path Feynman–Kac models. This bound is established using novel results

in Gloaguen, Le Corff and Olsson (2022). More precisely, because for every

m ∈ N, (x, z) ∈ X2
m, N ∈ N∗, and h ∈ F(Xm+1), using Assumption 1,

|Qm⟨z⟩h(x)−Qmh(x)| ≤
1

N
∥gm∥∞∥h∥∞ ≤

1

N
τ̄m∥h∥∞,

applying Gloaguen, Le Corff and Olsson (2022, Thm. 4.3) yields the following.

Proposition 5. Assume Assumption 1. Then, there exists c > 0 such that for

every n ∈ N, N ∈ N, and z0:n ∈ X0:n,

|η0:n⟨z0:n⟩hn − η0:nhn| ≤ cN−1
n−1∑
m=0

∥h̃m∥∞.

In addition, we assume supn∈N ∥h̃n∥∞ < ∞ yields an O(n/N) bound in

Proposition 5.

Finally, by combining these ingredients, we are now ready to present a proof

of Theorem 2.

Proof of Theorem 2. Write, using the tower property,

Eξ [µ(βn [ℓ])(id)] = Eξ

[
Eζ0:n[ℓ] [µ(βn [0])(id)]

]
=

∫
ξKℓ

nCnSn(dbn)µ(bn)(id).

Thus, by the unbiasedness property in Theorem 3,

|Eξ [µ(βn [ℓ])(id)]− η0:nhn|

=

∣∣∣∣∫ ξKℓ
nCnSn(dbn)µ(bn)(id)−

∫
η0:nCnSn(dbn)µ(bn)(id)

∣∣∣∣
≤
∥∥ξKℓ

n − η0:n
∥∥
TV

osc

(∫
CnSn(·,dbn)µ(bn)(id)

)
,

where, by Theorem 4, ∥ξKℓ
n − η0:n∥TV ≤ κℓ

N,n. Moreover, to derive an upper

bound on the oscillation, we consider the decomposition

osc

(∫
CnSn(·, dbn)µ(bn)(id)

)
≤ 2

(∥∥∥∥∫ CnSn(·, dbn)µ(bn)(id)− η0:n⟨·⟩hn

∥∥∥∥
∞
+ ∥η0:n⟨·⟩hn − η0:nhn∥∞

)
,

where the two terms on the right-hand side can be bounded using Proposition

5 and Proposition 4, respectively. This completes the proof of (4.3). We now

consider the proof of (4.4). Writing
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Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

2
]

=

∫
ξKℓ

n(dz0:n)CnSn(z0:n, dbn) (µ(bn)(id)− η0:nhn)
2
,

we establish (4.4) using Corollary 3 and Proposition 5. Finally, WE consider

(4.5). Using the Markov property, we obtain

Eξ [(µ(βn[ℓ])(id)− η0:nhn) (µ(βn[ℓ+ s])(id) − η0:nhn)]

= Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

(
Eζ0:n[ℓ][µ(βn[s])(id)] − η0:nhn

)]
,

from which we may deduce (4.5) using (4.3) and (4.4).

4.2. The roll-out PPG estimator

In light of the previous results, it is natural to consider an estimator

formed by an average across successive conditional PPG estimators {µ(βn[ℓ])}ℓ∈N.
To mitigate the bias, we remove a “burn-in” period, with length k0 chosen

proportionally to the mixing time of the particle Gibbs chain {ζ0:n[ℓ]}ℓ∈N∗ . This

yields the estimator

Π(k0,k),N(hn) = (k − k0)
−1

k∑
ℓ=k0+1

µ(βn[ℓ])(id). (4.6)

The total number of particles underlying this estimator is C = (N − 1)k. We

denote by υ = (k−k0)/k the ratio of the number of particles used in the estimator

to the total number of sampled particles.

As a final main result, we provide bounds on the bias and the MSE of the

estimator (4.6). The proof is postponed to Section C.2.

Theorem 6. Assume Assumption 1. Then, for every n ∈ N, M ∈ N∗, ξ ∈
M1(X0:n), ℓ ∈ N∗, s ∈ N∗, and N ∈ N∗ such that N > Nn,

∣∣Eξ[Π(k0,k),N(hn)]− η0:nhn

∣∣ ≤ cbiasn

(
n−1∑
m=0

∥h̃m∥∞

)
κk0

N,n

N(k − k0)(1− κN,n)
, (4.7)

Eξ

[(
Π(k0,k),N(hn)− η0:nhn

)2]
≤
(

n−1∑
m=0

∥h̃m∥∞

)2

cmse
n + 2ccovn N−1/2(1− κN,n)

−1

N(k − k0)
(4.8)

Setting the burn-in k0 in the roll-out estimator is nontrivial. However,

because the estimator converges for any choice of k0, including the trivial choice

k0 = 1, we can view this algorithmic parameter as an opportunity for the user to

optimize the implementation of the algorithm. For given (N, k), the choice of k0
involves a classical trade-off between bias and variance; indeed, for fixed (N, k),
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the bias upper bound (4.7) decreases with k0 proportionally to κk0

N,n/(k − k0)

whereas the MSE upper bound (4.8) increases with k0 proportionally to 1/(k−k0).
These bounds suggest that we should take k0 = ⌈k(1− ℓ−1)⌉ if we are willing to

bound the MSE increase of the roll-out estimator by a factor ℓ with respect to the

PARIS. However, the bias reduction is not easily quantified, because it depends

mainly on the mixing rate κN,n of the PPG chain, and we only have access to

upper bounds on this rate that are, in general, too conservative.

5. Numerical Results

In this section, we evaluate numerically the proposed PPG sampler in the

context of general state-space HMMs. Given measurable spaces (X,X) and (Z,Z),
an HMM is a bivariate (possibly inhomogeneous) Markov chain {(Xm, Zm)}m∈N
taking values in the product space (X × Z,X �Z). In such a model, the process

{Xn}n∈N, referred to as the state sequence, is assumed to be itself a (possibly

inhomogeneous) Markov chain, specified by some initial distribution χ and some

sequence {Mn}n∈N of Markov kernels. The state sequence is latent and only

partially observed through the observation process {Zm}m∈N. Conditionally on

the state sequence, the observations are assumed to be independent; furthermore,

the conditional marginal distribution of each Zm is assumed to depend only on the

corresponding state Xm and to have a density gm(Xm, ·) with respect to some

dominating measure. HMMs are used in numerous scientific and engineering

disciplines; see Andrieu and Doucet (2002), Cappé, Moulines and Rydén (2005)

and Chopin and Papaspiliopoulos (2020). Inference in HMMs typically involves

computing conditional distributions of unobserved states, given observations. Of

particular interest are the sequence of filter distributions, where the filter at

time m ∈ N, denoted as ηm, is defined as the conditional distribution of Xm,

given Z0:m := (Z0, . . . , Zm), and the joint-smoothing distributions, where the

joint-smoothing distribution at time m, denoted as η0:m, is defined as the joint

conditional distribution of the statesX0:m = (X0, . . . , Xm), given the observations

Z0:m. Consequently, ηm is the marginal of η0:m with respect to the last state Xm.

Given a sequence {zm}m∈N of fixed observations, {η0:m}m∈N forms a Feynman–

Kac model (see Section 1), with Markov kernels {Mm}m∈N and potential functions

gm := g(·, zm), for m ∈ N, on X.

We now evaluate the proposed algorithm numerically for two HMMs: (i) a

linear Gaussian state-space model (for which the filter and the joint-smoothing

distribution flows are available in a closed form), and (ii) the stochastic volatility

model proposed in Hull and White (1987). The PPG algorithm used in this section

is given in Algorithm 3 (in Section B).

Linear Gaussian state-space model (LGSSM). We first consider an LGSSM

Xm+1 = AXm +Qϵm+1, Zm = BXm +Rζm, m ∈ N, (5.1)
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Figure 1. Output of the PPG roll-out estimator for the LGSSM (left panel) and the StoVol
model (right panel). The curves describe the evolution of the bias with increasing k for
different batch sizes N .

where {ϵm}m∈N∗ and {ζm}m∈N are sequences of independent standard normally

distributed random variables. The matrices A, Q, B, and R are assumed to

be known 5 × 5 matrices (see Appendix A.1 for the precise values). In this

framework, we aim to compute the expectation of the one-lag state covariance

hn(x0:n) :=
∑n−1

m=0 xmx
⊺
m+1 under the joint-smoothing distribution η0:n for ob-

servations generated by simulation under the given parameters with n = 103.

In the LGSSM case, the disturbance smoother (see Cappé, Moulines and Rydén

(2005, Algo. 5.2.15)) provides the exact values of η0:nhn, which allows us to assess

numerically the bias of the PARIS and PPG estimators.

In this setting, we calculate the bias for batch sizes N ∈ {10, 25, 50, 100, 500}
and an increasing number k of iterations by averaging the PPG estimator over

104 independent runs. Figure 1a shows the bias of the PPG estimates of the first

diagonal entry of the one-lag covariance. For each batch size N , we estimate and

display the regression function k 7→ eak+b to illustrate the exponential decrease

of the PPG bias, which is consistent with Theorem 2.

Figure 2a displays, for a given budget C = 5× 103, the bias of the estimates

of η0:nhn using the PARIS and the PPG for different batch sizes N and different

numbers k = C/N of iterations and burn-in periods k0 = ⌊k/2⌋. The red line

corresponds to zero (no bias), and the empirical means are given by black-

dashed lines. An extended comparison comprising different choices of k0 and

different budgets C is provided in Section A. In order to estimate the bias for

each algorithmic configuration, we average 103 independent replications of the

corresponding estimator. Moreover, to assess the precision of the resulting bias
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Figure 2. PARIS and PPG bias dispersions for the LGSSM and StoVol model as a function
of the mini-batch size N for fixed computational budgets C = Nk of 5 × 103 (LGSSM)
and 103 (StoVol model) and with k0 = ⌊2−1k⌋ burn-in steps.

estimator, we repeat this procedure 102 times, and present the bias estimates

in a box plot. This enables us to form an idea of whether the PPG provides a

statistically significant improvement in terms of bias. In this example, whatever

the choice of the batch size is, the PPG bias is significantly reduced compared

with the bias of the PARIS estimator. We further observe that a larger k leads to

smaller bias.

Stochastic volatility (StoVol). As a second example, consider the stochastic

volatility model

Xm+1 = ϕXm + σϵϵm+1, Zm = β exp

(
Xm

2

)
ζm, m ∈ N, (5.2)

where {ϵm}m∈N∗ and {ζm}m∈N are as in the previous example, and the model

parameters ϕ, β, and σϵ are set to 0.975, 0.63, and 0.16, respectively. The

reference value is calculated by running the PARIS with 5 × 104 particles. In

this setting, we repeated the experiments of the previous example for the same

additive functional and number n = 103 of observations, produced by simulation

under the parameters above. The computational budget was set to C = 103. As

in the LGSSM example, the bias decay with respect to the iteration index k is

displayed in Figure 1b, and the comparison with the PARIS is shown in Figure

2b. The comments from the previous example apply to this StoVol model context

as well. More in-depth numerical assessments of the proposed PPG estimator are
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found in Section A.2. In particular, in Section A.2.1, we compare our estimator

with the Rhee–Glynn-type estimator with ancestor sampling proposed by Jacob,

Lindsten and Schön (2020), showing that the variance of the latter is significantly

larger than that of the PPG for a given computational effort.

6. Proofs

6.1. Proof of Proposition 1

Using the identity

η0Q0 · · ·Qn−11Xn
=

n−1∏
m=0

ηmQm1Xm+1

and that each kernel Qm has a transition density, write, for h ∈ F(X0:n),

η0:nh =

∫
· · ·
∫

h(x0:n) η0(dx0)
n−1∏
m=0

(
ηm[qm(·, xm+1)]λm+1(dxm+1)

ηmQm1Xm+1

)
(

qm(xm, xm+1)

ηm[qm(·, xm+1)]

)
=

∫
· · ·
∫

h(x0:n) ηn(dxn)
n−1∏
m=0

ηm(dxm) qm(xm, xm+1)

ηm[qm(·, xm+1)]
(6.1)

=
(←−
Q0,η0

� · · ·�
←−
Qn−1,ηn−1

� ηn
)
h,

which establishes the proof.

6.2. Proof of Theorem 1

Lemma 1. For all n ∈ N, xn ∈ Xn, and h ∈ F(X n+1 � Xn+1),∫∫
h(xn+1, zn+1)Qn(xn,dxn+1)µ(xn+1)(dzn+1)

=

∫∫
h(xn+1, zn+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn,dxn+1). (6.2)

In addition, for all h ∈ F(X 0 � X0),∫∫
h(x0, z0)η0(dx0)µ(x0)(dz0) =

∫∫
h(x0, z0)η0⟨z0⟩(dx0) η0(dz0). (6.3)

Proof. Because µ(xn)Qn(dzn+1) = gn(xn) Φn(µ(xn))(dzn+1), we may rewrite

the right-hand side of (6.2) as∫∫
h(xn+1, zn+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn, dxn+1)
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= gn(xn)
1

N

N−1∑
i=0

∫∫
h(xn+1, zn+1) Φn(µ(xn))(dzn+1)

×
(
Φn(µ(xn))

�i � δzn+1
� Φn(µ(xn))

�(N−i−1)
)
(dxn+1)

= gn(xn)
1

N

N∑
i=1

∫
· · ·
∫

h((x1
n+1, . . . , x

i−1
n+1, zn+1, x

i+1
n+1, . . . , x

N
n+1), zn+1)

×Φn(µ(xn))(dzn+1)
∏
ℓ̸=i

Φn(µ(xn))(dx
ℓ
n+1)

= gn(xn)
1

N

N∑
i=1

∫
h(xn+1, x

i
n+1)Mn(xn,dxn+1).

On the other hand, note that the left-hand side of (6.2) can be expressed as∫∫
h(xn+1, zn+1)Qn(xn,dxn+1)µ(xn+1)(dzn+1)

= gn(xn)
1

N

N∑
i=1

∫
h(xn+1, x

i
n+1)Mn(xn, dxn+1), (6.4)

which establishes the identity. The identity (6.3) is established along similar

lines.

We establish Theorem 1 by induction. Thus, assume that the claim holds for

n, and show that for all h ∈ F(X 0:n+1 � X0:n+1),∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1, dz0:n+1)

=

∫∫
h(x0:n+1, z0:n+1) γ0:n+1(dz0:n+1)Cn+1(z0:n+1, dx0:n+1). (6.5)

To prove this, we process, using definition (2.4), the left-hand side of (6.5)

according to ∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1,dz0:n+1)

=

∫∫
γ0:n(dx0:n)Bn(x0:n,dz0:n)

×
∫∫

h̄(x0:n+1, z0:n+1)Qn(xn, dxn+1)µ(xn+1)(dzn+1), (6.6)

where we define the function

h̄(x0:n+1, z0:n+1) :=
qn(zn, zn+1)h(x0:n+1, z0:n+1)

µ(xn)[qn(·, zn+1)]
.
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Now, applying Lemma 1 to the inner integral and using

µ(xn)Qn(dzn+1) = µ(xn)[qn(·, zn+1)]λn+1(dzn+1)

yields, for every x0:n and z0:n,∫∫
h̄(x0:n+1, z0:n+1)Qn(xn,dxn+1)µ(xn+1)(dzn+1)

=

∫∫
h̄(x0:n+1, z0:n+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn, dxn+1)

=

∫∫
h(x0:n+1, z0:n+1)Qn(zn, dzn+1)Mn⟨zn+1⟩(xn,dxn+1).

Inserting the previous identity into (6.6) and using the induction hypothesis yields∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1,dz0:n+1)

=

∫∫
γ0:n(dz0:n)Cn(z0:n,dx0:n)

×
∫∫

h(x0:n+1, z0:n+1)Qn(zn, dzn+1)Mn⟨zn+1⟩(xn,dxn+1)

=

∫∫
h(x0:n+1, z0:n+1) γ0:n+1(dz0:n+1)Cn+1(z0:n+1,dx0:n+1),

which establishes (6.5).

6.3. Proof of Theorem 3

First, define, for m ∈ N,

P2=⟨m⟩ : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm(xm|m, dxm+1)Sm(ym,xm+1, A).

(6.7)

For any given initial distribution ψ0 ∈ M1(Y0), let PPψ0
be the distribution of the

canonical Markov chain induced by the Markov kernels {Pm}m∈N and the initial

distribution ψ0. With a slight abuse of notation we write, for η0 ∈ M1(X 0), PPη0

instead of PPψ0[η0]
, where we define the extension ψ0[η0](A) =

∫
1A(Jx0)η0(dx0),

for A ∈ Y0. We preface the proof of Theorem 3 with some technical lemmas and

a proposition.

Lemma 2. For all n ∈ N and (fn+1, f̃n+1) ∈ F(Xn+1)
2,

γn+1(fn+1Bn+1hn+1 + f̃n+1) = γn{Qnfn+1Bnhn +Qn(h̃nfn+1 + f̃n+1)}.

Proof. Pick arbitrary φ ∈ F(Xn:n+1) and, from definition (2.3) and that Qn has

a transition density, write



PARISIAN PARTICLE GIBBS 1139∫∫
φ(xn:n+1) γn(dxn)Qn(xn,dxn+1)

=

∫∫
φ(xn:n+1)γn[qn(·, xn+1)]λn+1(dxn+1)

γn(dxn)qn(xn, xn+1)

γn[qn(·, xn+1)]

=

∫∫
φ(xn:n+1) γn+1(dxn+1)

←−
Qn,ηn

(xn+1, dxn). (6.8)

Now, by (2.10), it holds that

Bn+1hn+1(xn+1)

=

∫ ←−
Qn,ηn

(xn+1, dxn)

(
h̃n(xn:n+1) +

∫
hn(x0:n)Bn(xn, dx0:n−1)

)
;

therefore, by applying (6.8) with

φ(xn:n+1) := fn+1(xn+1)

(
h̃n(xn:n+1) +

∫
hn(x0:n)Bn(xn,dx0:n−1)

)
,

we obtain that

γn+1(fn+1Bn+1hn+1) =

∫∫
φ(xn:n+1) γn+1(dxn+1)

←−
Qn,ηn

(xn+1, dxn)

=

∫∫
φ(xn:n+1) γn(dxn)Qn(xn,dxn+1)

= γn(Qnfn+1Bnhn +Qnh̃nfn+1).

Now, the proof is concluded by noting that because γn+1 = γnQn, γn+1f̃n+1 =

γnQnf̃n+1.

Lemma 3. For every n ∈ N∗, hn ∈ F(Yn), and η0 ∈ M1(X 0), it holds that

EPη0
[hn(υn) | ξ0|0, . . . , ξn|n] = Snhn(ξ0|0, . . . , ξn|n), PPη0

-a.s.

Proof. Pick arbitrary vn ∈ F(X0:n). We show that

EPη0
[vn(ξ0|0, . . . , ξn|n)hn(υn)] = EPη0

[vn(ξ0|0, . . . , ξn|n)Snhn(ξ0|0, . . . , ξn|n)], (6.9)

from which the claim follows. Using definition (6.7), the left-hand side of the

previous identity may be rewritten as∫
· · ·
∫
ψ0[η0](dy0)

n−1∏
m=0

Pm(ym, dym+1)hn(yn)vn(x0|0, . . . ,xn|n)

=

∫
· · ·
∫
η0(dx0|0)

n−1∏
m=0

Mm(xm|m, dxm+1)S0(Jx0|0,x1,dy1)



1140 CARDOSO, MOULINES AND OLSSON

×
n−1∏
m=0

Sm(ym,xm+1, dym+1)hn(yn)vn(x0|0, . . . ,xn|n)

=

∫
· · ·
∫
η0(dx0)

n−1∏
m=0

Mm(xm, dxm+1)S0(Jx0,x1, dy1)

×
n−1∏
m=0

Sm(ym,xm+1,dym+1)hn(yn)vn(x0, . . . ,xn).

Thus, we conclude the proof by using the definition (3.2) of Sn, together with

Fubini’s theorem.

Lemma 4. For every n ∈ N∗ and hn ∈ F(Yn), it holds that

Eη0

[(
n−1∏
m=0

gm(ξm|m)

)
hn(υn)

]
=

∫
γ0:nSn(dyn)hn(yn).

Proof. The claim of the lemma is a direct implication of Lemma 3; indeed, by

applying the tower property and the latter, we obtain

EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
hn(υn)

]

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
Snhn(ξ0|0, . . . , ξn|n)

]

=

∫
· · ·
∫
η0(dx0)

n−1∏
m=0

gm(xm)Mm(xm,dxm+1) Snhn(x0:n)

=

∫
γ0:nSn(dyn)hn(yn).

Proposition 6. For all n ∈ N∗, (N,M) ∈ (N∗)2, and (fn, f̃n) ∈ F(Xn)
2,∫

γ0:nSn(dyn)

(
1

N

N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)}

)
= γn(fnBnhn + f̃n).

Proof. Applying Lemma 4 yields∫
γ0:nSn(dyn)

(
1

N

N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)}

)

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
nfn(ξ

i
n|n) + f̃n(ξ

i
n|n)}

]
. (6.10)

In the following, we repeatedly use the following filtrations. Let F̃n :=

σ({υm}nm=0) be the σ-field generated by the output of the PARIS (Algorithm
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1) during the first n iterations. In addition, let Fn := F̃n−1 ∨ σ(ξn|n).

We proceed by induction. Thus, assume that the statement of the proposition

holds for a given n ∈ N∗, and consider, for arbitrarily chosen (fn+1, f̃n+1) ∈
F(Xn+1)

2,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)}F̃n

]

=

(
n∏

m=0

gm(ξm|m)

)
EPη0

[
β1
n+1fn+1(ξ

1
n+1|n+1) + f̃n+1(ξ

1
n+1|n+1)F̃n

]
,

where we use that the variables {βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)}Ni=1 are

conditionally independent and identically distributed (i.i.d.) given F̃n. Note

that, by symmetry,

EPη0
[β1

n+1 | Fn+1] =

∫
Sn(υn, ξn+1|n+1,dyn+1) b

1
n+1

=

∫
· · ·
∫ ( M∏

j=1

N∑
ℓ=1

qn(ξ
ℓ
n|n, ξ

1
n+1|n+1)∑N

ℓ′=1 qn(ξ
ℓ′

n|n, ξ
1
n+1|n+1)

δ(ξℓ
n|n,β

ℓ
n)
(dx̃1,j

n ,db̃1,jn )

)

× 1

M

M∑
j=1

(
b̃1,jn + h̃n(x̃

1,j
n , ξ1n+1|n+1)

)

=
N∑
ℓ=1

qn(ξ
ℓ
n|n, ξ

1
n+1|n+1)∑N

ℓ′=1 qn(ξ
ℓ′

n|n, ξ
1
n+1|n+1)

(
βℓ
n + h̃n(ξ

ℓ
n|n, ξ

1
n+1|n+1)

)
. (6.11)

Thus, using the tower property,

EPη0
[β1

n+1fn+1(ξ
1
n+1|n+1) | F̃n] =∫

Φn(µ(ξn|n))(dxn+1) fn+1(xn+1)
N∑
ℓ=1

qn(ξ
ℓ
n|n, xn+1)∑N

ℓ′=1 qn(ξ
ℓ′

n|n, xn+1)

(
βℓ
n+h̃n(ξ

ℓ
n|n, xn+1)

)
,

and, consequently, using definition (2.1),(
n∏

m=0

gm(ξm|m)

)
EPη0

[β1
n+1fn+1(ξ

1
n+1|n+1) | F̃n]

=

(
n−1∏
m=0

gm(ξm|m)

)∫
1

N

N∑
i=1

qn(ξ
i
n|n, xn+1) (6.12)

×fn+1(xn+1)
N∑
ℓ=1

qn(ξ
ℓ
n|n, xn+1)∑N

ℓ′=1 qn(ξ
ℓ′

n|n, xn+1)

(
βℓ
n + h̃n(ξ

ℓ
n|n, xn+1)

)
λn+1(dxn+1)

=

(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
ℓ=1

(
βℓ
nQnfn+1(ξ

ℓ
n|n) +Qn(h̃nfn+1)(ξ

ℓ
n|n)

)
.
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Thus, applying the induction hypothesis,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

βi
n+1fn+1(ξ

i
n+1|n+1)

]

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
ℓ=1

(
βℓ
nQnfn+1(ξ

ℓ
n|n) +Qn(h̃nfn+1)(ξ

ℓ
n|n)

)]
= γn

(
Qnfn+1Bnhn +Qn(h̃nfn+1)

)
. (6.13)

In the same manner, it can be shown that

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

f̃n+1(ξ
i
n+1|n+1)

]
= γnQnf̃n+1. (6.14)

Now, by (6.13–6.14) and Lemma 2,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)}

]
= γn

(
Qnfn+1Bnhn +Qn(h̃nfn+1 +Qnf̃n+1)

)
= γn+1(fn+1Bn+1hn+1 + f̃n+1),

which shows that the claim of the proposition holds at time n+ 1.

It remains to check the base case n = 0, which holds trivially, because β0 = 0

and B0h0 = 0 by convention, and the initial particles ξ0|0 are drawn from η0. This

completes the proof.

Proof of Theorem 3. The identity
∫
η0:n(dx0:n) Sn(x0:n, dbn)µ(bn)(id) =

η0:nhn follows immediately by letting fn ≡ 1 and f̃n ≡ 0 in Proposition 6,

and using that γ0:n(X0:n) = γ0:n(X0:n). Moreover, applying Theorem 1 yields∫
η0:nCnSn(dbn)µ(bn)(id)

=

∫∫
η0:n(dz0:n)Cn(z0:n,dx0:n)

∫
Sn(x0:n,dbn)µ(bn)(id)

=

∫∫
η0 : n(dx0:n)Bn(x0:n, dz0:n)

∫
Sn(x0:n,dbn)µ(bn)(id)

=

∫
η0 : nSn(dbn)µ(bn)(id).

Finally, the first identity holds because Kn leaves η0:n invariant.
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Supplementary Material

The supplementary material contains proofs for the technical propositions,

lemmas and theorems as well as additional numerical investigations of different

aspects of the PPG algorithm.
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