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Abstract: The particle-based rapid incremental smoother (PARIS) is a sequential
Monte Carlo technique that allows for efficient online approximations of expec-
tations of additive functionals under Feynman-Kac path distributions. Under
weak assumptions, the algorithm has linear computational complexity and limited
memory requirements. It also comes with a number of nonasymptotic bounds and
convergence results. However, being based on self-normalized importance sampling,
the PARIS estimator is biased. This bias is inversely proportional to the number
of particles, but has been found to grow linearly with the time horizon, under
appropriate mixing conditions. In this work, we propose the Parisian particle Gibbs
(PPG) sampler, which has essentially the same complexity as that of the PARIS, but
significantly reduces the bias for a given computational complexity at the cost of
a modest increase in the variance. This method is a wrapper, in the sense that
it uses the PARIS algorithm in the inner loop of the particle Gibbs algorithm to
form a bias-reduced version of the targeted quantities. We substantiate the PPG
algorithm with theoretical results, including new bounds on the bias and variance,
as well as deviation inequalities. We illustrate our theoretical results using numerical
experiments that support our claims.
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1. Introduction

Feynman—Kac formulae play a key role in many models used in statis-
tics, physics, and many other fields; see Del Moral| (2004), Del Moral (2013)
and |Chopin and Papaspiliopoulos (2020)), and the references therein. Let
{(Xn, X,) fnen be a sequence of measurable spaces and define, for every n € N,
Xom = [1n_oXm and Xo.,, = Qo _ X,. For a sequence {M,},en of Markov
kernels M, : X, x X,11 — [0,1], an initial distribution 7, € M;(&Xp), and a
sequence {g, }nen of bounded measurable potential functions g, : X, — R,, a
sequence {7o., }nen of Feynman—Kac path measures is defined by

Yo:n (A)

e neN, 1.1
’YO:n(XO:n) ( )

nO:n . XO:n > A —
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where »
Yon - XO:n =] A — /]lA(:CO:n) no(dl'()) H Qm(xm,dmerl)a (12)
m=0
with
Qum 2 Xon X Xpg1 2 (2, A) = g () M, (2, A) (1.3)

being unnormalized kernels. By convention, 79,9 := 719. Note that each ., is a
probability measure, whereas 7., is not normalized. For every n € N*, we also
define the marginal distribution 7, : X, 3 A — 19.,(Xo.n_1 X A). In the context
of nonlinear filtering in general state-space hidden Markov models(HMMs), no.,
and 7, are, the joint smoothing and filter distribution, respectively, at time
n; see Del Moral (2004)), |(Cappé, Moulines and Rydén (2005) and |Chopin and
Papaspiliopoulos| (2020)).

For most problems of practical interest, the Feynman—Kac path or marginal
measures are intractable, and so is any expectation associated with the same.
As a result, considerable research has been devoted to developing Monte Carlo,
or particle, approximations of such measures. A particle filter approximates

the marginal distribution flow {n,} by a sequence of occupation measures,

neN
associated with a swarm of particles %[ffl}fv:l, n € N, where each particle £, is a
random draw in X,,. Particle filters revolve around two operations: a selection
step, which duplicates or sorts out particles with large or small importance
weights, respectively, and a mutation step, which randomly evolves the selected
particles in the state space. An alternating and iterative application of selection
and mutation results in a swarm of N particles that are both serially and spatially
dependent. Feynman—Kac path models can also be interpreted as laws associated
with a certain type of Markovian backward dynamics; this interpretation is useful,
for example, for the smoothing problem in nonlinear filtering (Douc et al.| (2011);
Del Moral, Doucet and Singh| (2010)). Several convergence results have been
established for particle filters, as the number N of particles tends to infinity; see
for example, Del Moral| (2004)), Douc and Moulines (2008), Del Moral (2013) and
Chopin and Papaspiliopoulos| (2020). In addition, a number of nonasymptotic
results have been obtained for these methods, including bounds on their bias
and L, error, as well as exponential concentration inequalities and propagation
of chaos estimates. Extensions to the backward interpretation can also be found
in Douc et al.| (2011) and Del Moral, Doucet and Singh/ (2010).

In this work, we focus on the problem of recursively computing smoothed
expectations

T]O:nhn — /hn(:EOn) nO:n(dl‘O:n)? n e N?

where we introduce the vector notation xg.,, = (g, ..., Zn) € Xom = Xo X -+ X X,
for additive functionals h,, of the form
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n—1

hn(£0:n) = ilm(:cm:m—&-l); Zo:n c XO:n- (14)
0

3
Il

In nonlinear filtering problems, such expectations appear in the context of
maximume-likelihood parameter estimation, for instance, when computing the
score function (the gradient of the log-likelihood function) or the expectation—
mazximization (EM) surrogate; see |Cappé| (2001), |Andrieu and Doucet| (2003),
Poyiadjis, Doucet and Singhl (2005)), |Cappé| (2011) and |Poyiadjis, Doucet and
Singh! (2011)). In Olsson and Westerborn| (2017)), the authors propose an efficient
particle-based rapid incremental smoother (PARIS), with linear computational
complexity in the number of particles under weak assumptions and limited
memory requirements, that samples on-the-fly from the backward dynamics
induced by the particle filter. An interesting feature is that it requires two or
more backward draws per particle to cope with the degeneracy of the sampled
trajectories and remain numerically stable in the long run, with an asymptotic
variance that grows only linearly with time.

In this paper, we propose a method to reduce the bias of the PARIS estimator
of Mo.nhyn. The idea is to mix the PARIS with a version of the particle Gibbs
algorithm with backward sampling (Andrieu, Doucet and Holenstein (2010);
Lindsten, Jordan and Schon| (2014)); Chopin and Singh| (2015)); Del Moral, Kohn
and Patras| (2016); Del Moral and Jasra (2018)) by introducing a conditional
PARIS algorithm. This leads to the Parisian particle Gibbs (PPG) algorithm, from
which we derive an upper bound on the bias that decreases inversely proportion-
ally to the number of particles and exponentially fast with the iteration index
(under assumptions guaranteeing that the particle Gibbs sampler is uniformly
ergodic).

The remainder of the paper is structured as follows. In Section 2 we discuss
the Feynman—Kac model, along with its backward interpretation, and introduce
the particle Gibbs sampler. Our presentation is inspired by [Del Moral, Kohn
and Patras (2016]), but differs in that it avoids the use of quotient spaces of
Del Moral, Kohn and Patras| (2016) and the extension of the distribution to the
particle ancestral indices of |Andrieu, Doucet and Holenstein (2010). In Section
3, we introduce the PARIS algorithm and its conditional version, and show how it
can be coupled with the particle Gibbs method with backward sampling, yielding
the PPG algorithm. In Section 4, we present the central result of this study,
namely, an upper bound on the bias of the PPG estimator as a function of the
number of particles and the iteration index of the Gibbs algorithm. In addition,
we provide an upper bound on the mean-squared error (MSE). In Section 5, we
provide numerical experiment to illustrate our results. In Section 6, we present
the most important and original proofs. Finally, the supplementary material
contain pseudocode and additional technical proofs, respectively.
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Notation. Let Ry = [0,00), R% = (0,00), N := {0,1,2,...}, and N* =
{1,2,3,...} denote the sets of nonnegative and positive real numbers and the
same for integers, respectively. We denote by I the N x N identity matrix. For
any quantities {a,},_ , we denote vectors as ., == (@m,...,a,), and for any
(m,n) € N? such that m < n, we let [m,n] = {m,m +1,...,n}. For a given
measurable space (X, X)), where X is a countably generated o-field, we denote by
F(X) the set of bounded X/B(R)-measurable functions on X. For any h € F(X),
we let ||hl|o = sup,cx [A(x)] and osc(h) = sup, . ex2 [R(z) — h(z')| denote the
supremum and oscillator norms, respectively, of h. Let M(X) be the set of o-finite
measures on (X, X), and M;(X) C M(X) be the probability measures.

Let (Y,)) be another measurable space. A possibly unnormalized transition
kernel K on X x Y induces two integral operators, one acting on measurable
functions, and the other on measures; specifically, for h € F(X ® ) and v €
M, (X), define the measurable function

Kh:XBxH/h(x,y)K(w,dy)

and the measure

VK:yBAH/K(x,A)V(dx),

whenever these quantities are well defined. Now, let (Z, Z) be a third measurable
space and L be another possibly unnormalized transition kernel on Y x Z; we
then define, with K as above, two different products of K and L, namely,

KL:XxZ5 (x,4) = /L(y,A)K(x,dy)

and
KQL: Xx(Y®Z)> (z,A) »—>//]IA(y,z)K(a:,dy)L(y,dz),

whenever these are well defined. This also defines the ® product of a kernel K
on X x ) and a measure v on X, as well as of a kernel L on Y x X and a measure
@ on Y, as the measures

u®K:X®y9AH//IIA(fv,y)K(fB,dy)V(dm),

LOu: X0y A //]lA(a:,y)L(y,dx)u(dy).

2. Particle Models

In the next sections, we discuss many-body Feynman—Kac models, backward
interpretations, conditional dual processes, and the PARIS algorithm. Our pre-
sentation follows that of Del Moral, Kohn and Patras (2016) closely, but with a
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different definition of the many-body extensions. We restate (in Theorem 1) a
duality formula of |[Del Moral, Kohn and Patras (2016)) relating these concepts.
This formula provides a foundation for the particle Gibbs sampler described in
Section 2.3 and subsequent developments.

2.1. Many-body Feynman—Kac models

In the following, we assume that all random variables are defined on a com-
mon probability space (§2, F,P). The distribution flow {7, }men is intractable, in
general, but can be approximated by using random samples &,, = (£1,...,&N),
for m € N, of particles, where N € N* is a fixed Monte Carlo sample size and
each particle & is an X,,-valued random variable. Such a particle approximation

is based on the recursion 7,41 = ®,,(nn), for m € N, where ®,, denotes the
mapping

D, M(X,,)dn— ——, (2.1)

Ngm

taking on values in M;(X,,;1). In order to describe recursively the evolution
of the particle population, let m € N and assume that the particles &, form
a consistent approximation of 7,,, in the sense that u(&,,)h, where u(§,,) =
Nt vazl d¢i (with &, denoting the Dirac measure located at x) is the occupation
measure formed by &,,, serves as a proxy for n,,h for any n,,-integrable test
function h. (Under general conditions, p(&,,)h converges in probability to n,,
as N — oo; see Del Moral| (2004) and |Chopin and Papaspiliopoulos| (2020),
and the references therein.) Then, in order to generate an updated particle
sample approximating 7,41, new particles &,41 = (§,41,---,&m 1) are drawn
conditionally independently given &, according to

(i) = Y Zi’”(g%w £, ielLN.

Because this process of particle updating involves sampling from the mixture
distribution ®,,(u(&,.)), it can be decomposed into two substeps: selection and
mutation. The selection step randomly chooses the fth mixture stratum with
probability g, (6%)/ Sp—y gm(€L), and the mutation draws a new particle &, +1
from the selected stratum M,,(&,,-). In Del Moral, Kohn and Patras| (2016)),

the term many-body Feynman—Kac models is related to the law of process

{&n}men. For all m € N, let X,, == XV and X, = X®V; then, {&,,}men is

m

an inhomogeneous Markov chain on {X,, },.en, with transition kernels
Mm : Xm X X7n+1 2> (wmyA) — (I)m{u(wm)}®N(A)

and initial distribution ny = n$". Now, denote Xo., = [ _, Xm and X, =

m=0

Q. _o X . (Here, and in the following, we use a bold symbol to stress that a
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quantity is related to the many-body process.) The many-body Feynman—Kac
path model refers to the flows {v,, }men and {1, }men of the unnormalized and
normalized probability distributions, respectively, on {Xg., }men generated by
and for the Markov kernels {M,, },,.en, the initial distribution g, the
potential functions

1 ;

and the corresponding unnormalized transition kernels
QX X X1 3 (T, A) = g (@) Mo (T, A), m €N,

Finally, note that in the previous construction, the Markov property of the
many-body Feynman—Kac model relies on the fact that each potential g,, is a
function of a single state z,, only, as is the case in the standard Feynman—Kac
model framework (Del Morall (2004)), and that the evolution of the particles
follows the model dynamics given in (2.1 (so-called bootstrap particle filtering).
In order to extend this to more general models (such as models where the
potentials are allowed to depend on two consecutive states (Lee, Singh and
Viholal (2020)) or, even more generally, where no structure at all is assumed
for the unnormalized kernels (Gloaguen, Le Corff and Olsson (2022))) and
particle dynamics (such as the auziliary particle filtering framework introduced
in Pitt and Shephard, (1999))), we need to form a Markovian many-body process
with tractable dynamics by furnishing each particle with an importance weight
and an index that records the particle’s ancestor in the previous generation.
However, to avoid this technicality and to allow for a more clear-cut presentation
of the methods and theoretical analysis in the coming sections, we stay within
the framework of the standard Feynman—Kac models and bootstrap-type particle
filters, even though extensions to more general settings may be possible.

2.2. Backward interpretation of Feynman—Kac path flows

Suppose that each kernel @, for n € N, defined in (1.3)), has a transition
density ¢, with respect to some dominating measure A\, ; € M(X,41). Then, for
n € N and n € M, (&), we define the backward kernel

< f]lA(xn)Qn(xn’anrl)n(dxn)
i Xpar X X D (py1, A) — . 2.2
Onn Ko (i A) = T ) () (22

Now, for n € N*, denoting

n—1

— =
Bn : Xn X XO:nfl > (xnaA) = / : '/ﬂA(l'O:nl) H Qm,nm(xm+17dxm)7 (23)

m=0
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we may state the following—mnow classical—backward decomposition of the
Feynman—Kac path measures, a result that plays a pivotal role in the following.

Proposition 1. For everyn € N*, it holds that vo., = V. ®B,, and ng., = 1,QB,,.

Although the decomposition in Proposition 1 is well known (see, e.g., Del
Moral, Doucet and Singh! (2010);|Del Moral, Kohn and Patras| (2016))), we provide
a proof in Section 6.1 for completeness. Using backward decomposition, we can
obtain a particle approximation of a given Feynman—Kac path measure 7., by
first sampling, in an initial forward pass, particle clouds {&,,}" _, from 1o ® M, ®
-+ ® M, _;. Then, in a subsequent backward pass, we sample N conditionally
independent paths {€}. }Y, from B,(&o,...,&,, "), where

]Bn : xO:n X XO:n =

(:130:71,7 A) = / t / ]lA(xO:n) { ]_:[ am,u(mm)(xm-&-ladxM)} M(m7l)(d$n) (2'4)

is a Markov kernel describing the time-reversed dynamics induced by the particle
approximations generated in the forward pass. (Here, and in the following, we
use blackboard notation to denote kernels related to many-body path spaces.)
Finally, u({é&n}f\;l)h is returned as an estimator of 7.,h for any 7o.,-integrable
test function h. This algorithm is referred to as the forward-filtering backward-
simulation (FFBS1i) algorithm in the literature, and was introduced in (Godsill,
Doucet and West/ (2004)); see also |Cappé, Godsill and Moulines| (2007)) and |Douc
et al.| (2011). More precisely, given the forward particles {€,,}" _,, each path &
is generated by first drawing é; uniformly from among the particles &, in the
previous generation, and then drawing, recursively,

N

g;n ~ 57n,u(£m)(é:n+17 ) == Z Qm(§7m mtl) 5 (25)

N &
j=1 Zé:l Qm(Efm Zn+1)

that is, given & 1 €' is picked at random from among &,, based on weights pro-
portional to {g., (&, &%) X,. Note that in this basic formulation of the FFBSi
algorithm, each backward-sampling operation requires the computation of
the normalising constant Zévzl qm (&5, ~fn +1), which implies an overall quadratic
complexity of the algorithm. Still, this heavy computational burden can be eased
by using an effective accept-reject technique, as discussed in Section 2.4.

2.3. Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman-Kac model (1.1H1.2) and
a given trajectory {z,}nen, where z, € X, for every n € N, is defined as the
canonical Markov chain with kernels

Mn[Z7L+1] : Xn X Xn-‘,—l = (wnvA)
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N-—

H

1 i
@ {p(@)}® @0, ® O {u(@,)}2 V] (4),  (26)

=0

for n € N, and initial distribution

N—

H

(" @ 0., 0§ ) (2.7)

=0

As is clear from (2.6H2.7)), given {z, }.en, a realization {€, },en of the dual process
is generated as follows. At time zero, the process is initialized by inserting z, at

_ L
N

a randomly selected position in the vector &, while drawing independently the
remaining elements in the same vector from 7. After this, the process proceeds in
a Markovian manner by, given §,, inserting z,,, at a randomly selected position
in &1, while drawing independently the remaining elements from ®,,(u(&,)).

In order to describe compactly the law of the conditional dual process, we
define the Markov kernel

Cn : XO:n X X[):n 2> (ZO:na A) — nO<ZO> ® MO<ZI> R Mn,1<2n>(A)

The following result elegantly combines the underlying model ([1.1H1.2)), the many-
body Feynman—Kac model, the backward decomposition, and the conditional
dual process.

Theorem 1 (Del Moral, Kohn and Patras| (2016))). For all n € N, it holds that

In Del Moral, Kohn and Patras (2016), each state &, of the many-body
process maps an outcome w of the sample space €2 onto an unordered set of N
elements in X,,. However, we have chosen to let each &, take values in the standard
product space XY | for two reasons. First, the construction of|Del Moral, Kohn and
Patras| (2016) requires sophisticated measure-theoretic arguments to endow such
unordered sets with suitable o-fields and appropriate measures. Second, we see
no need to ignore the index order of the particles, as long as the Markovian
dynamics of the conditional dual process are symmetrized over the
particle cloud. Therefore, in Section 6.2, we include our own proof of duality
for completeness. Note that the measure on Xp., ® Xy., is unnormalized,
but because the kernels B,, and C, are both Markov, normalizing the identity
with 7¥0.n(Xo:n) = Yo:n (Xo.n) immediately yields

B, ®n0:n="n.,QC,. (2.9)

Because the two sides of (2.9) provide the full conditionals, it is natural to
take a data-augmentation approach, and sample the target (2.9) using a two-
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stage deterministic-scan Gibbs sampler (Andrieu, Doucet and Holenstein| (2010);
Chopin and Singh! (2015)). Specifically, assume we generate a state (&o.,[€], Co.n[])
comprising a dual process with an associated path on the basis of £ € N iterations
of the sampler. Then, we generate the next state (&o.,[¢ + 1],(o.n[¢ + 1]) in
a Markovian fashion by first sampling &o.,[¢ + 1] ~ C,((on[4],-), and then
sampling (o[l + 1] ~ B, (&on[¢ + 1],¢). After arbitrary initialization (and
the discard of possible burn-in), this procedure produces a Markov trajectory
{(&o:n[?], Co:nlf]) }een, and under weak additional technical conditions, this Markov
chain admits as its unique invariant distribution. In such a case, the Markov
chain is ergodic (Douc et al.| (2018 Chap. 5)), and the marginal distribution of the
conditioning path (o.,[¢] converges to the target distribution 7,.,. Therefore, for
every h € F(Xow), it holds that limy o L' 30 2(Coml[f]) = Momh, P-a.s.. This
algorithm is given in the discussion in Whiteley| (2010) of the original particle
Gibbs paper (Andrieu, Doucet and Holenstein (2010)); however, the justification
of Whiteley| (2010), involving an extension of the law targeted by the particle
Gibbs sampler to the ancestral indices of particles, differs somewhat from the
one presented here.

2.4. The PARIS algorithm

In the following, we assume that we are given a sequence {h,, },en of additive
state functionals of type . Interestingly, as noted in Cappé| (2011 and
Del Moral, Doucet and Singh! (2010), the backward decomposition allows, when
applied to additive state functionals, a forward recursion for the expectations
{No:nhn}nen. More specifically, using the forward decomposition A, 1 (Zo.py1) =
ho(zo.n) + ﬁn(xn, Z,+1) and the backward kernel B, ;; defined in , we may

write, for x,11 € X411,

Bn+1hn+1($n+l)
— ~
= / Qn,nn (-rnJrla dwn) / {hn(xOn) + hn (-rn? anrl)} Bn(xna de:nfl)
<— ~
- Qn,’qn (Bnhn + hn)(£n+1)7 (210)

which, by Proposition 1, implies that

— ~
770:n+1hn+1 - nn-i-l Qn,nn (Bnhn + hn) (211)

The marginal flow {n,},en can be expressed recursively using the mappings
{®, }nen. Thus, provides, in principle, a basis for an online computation
of {No.nhn}nen. Because the marginals are generally intractable, following Del
Moral, Doucet and Singh (2010)@\7\76 plug particle approximations u(&,,;) and

\Cjn,u(gn) (see (2.5))) of 7,t1 and @, pu(s,.), respectively, into the recursion (2.11)).
More precisely, we proceed recursively, and assume that at time n, we have a
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sample {(£,B)}Y | of particles with associated statistics, where each statistic
B serves as an approximation of B,h,(£'). Then evolving the particle cloud
<Efcording to &€n41 ~ M,(&,, ) and updating the statistics using (2.10), with
Q@ .y, replaced by @, .., yields the particle-wise recursion

S aléh ) ¢ e i .
;L — ; n +h77 n’ ’IZ’L ) 17N I 212
e 421 Ze' L I (&F fm+1) {6 ( H)} el ]] ( )

and, finally, the estimator

(2.13)

§s

N
w(8,)(id) ;IZ

of No.nh,, where we set 3, = (8L,...,8Y), for i € [1, N], and id is the identity
mapping. The procedure is initialized by simply letting 85 = 0, for all i € [[1, N].
Note that provides a particle interpretation of the backward decomposition
in Proposition 1. This algorithm is a special case of the forward-filtering backward-
smoothing (FFBSm) algorithm (see |Andrieu and Doucet| (2003)); |Godsill, Doucet
and West| (2004); Douc et al. (2011); Sarkka (2013)) for additive functionals
satisfying . It allows for online processing of the sequence {no.,hn }nen, but
also has the appealing property that only the current particles &, and statistics
B, need to be stored in memory. However, because each update requires
a summation of N terms, the scheme has an overall quadratic complexity in the
number of particles, leading to a computational bottleneck in applications to
complex models that require large particle sample sizes V.

To avoid the computational burden of this forward-only implementation of
FFBSm, the PARIS algorithm |Olsson and Westerborn| (2017) updates the statistics
B, by replacing each sum with the Monte Carlo estimate

. 1S
e = 37 2B+ ha(@ 6} i€ [LN], (2.14)

Jj=1

where {(£59, 7))} M M, are drawn randomly from among {(&),08;)}Y, with
replacement, by assigning (€97, 547) the value of (££,4%) with probability
Gn(E8, €0 Sp_1 an(€X €0 )), and the Monte Carlo sample size M € N* is
much smaller than N (say, less than five). Formally,

N 0 ¢ oM
(€59, Bi7 )L {Z Nqn(ﬁn,£n+1) )5(&%,%)} , 1 €[1,N].

=1 Ze/ 1Qn( 5 nt1

The resulting procedure, summarized in Algorithm 1, allows for online processing
with constant memory requirements, because it only needs to store the current
particle cloud and the estimated auxiliary statistics at each iteration. Moreover,
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when the Markov transition densities of the model can be uniformly bounded,
that is, there exists, for every n € N, an upper bound &,, > 0 such that for
all (z,,Tn01) € Xo X Xpy1, Mp(Tp,xny1) < 0, (a weak assumption satisfied
for most models of interest), then we can generate a sample (£9,857) by
drawing, with replacement and until acceptance, candidates (£-*,5%*) from
{(&1,8°)}X, based on the normalized particle weights {g,(£%)/ >, gn (65N,
(obtained as a by-product in the generation of &,1), and accepting the same

with probability m.,(£,*,&),,)/G,. Because this sampling procedure bypasses

the calculation of the normalizing constant Zé\le an( f;’,g:; 4+1) of the targeted
categorical distribution, it yields an overall O(M N) complexity of the algorithm;
see (Douc et al. (2011)) for details.

Increasing M improves the accuracy of the algorithm at the cost of additional
computational complexity.

As shown in Olsson and Westerborn| (2017)), there is a qualitative difference
between the cases M = 1 and M > 2, and the latter is required to keep the PARIS
numerically stable. More precisely, in the latter case, it can be shown that the
PARIS estimator u(3,) satisfies, as N tends to infinity while M is held fixed, a
central limit theorem (CLT) at the rate v/N, with an n-normalized asymptotic
variance of order O(1—1/(M —1)). As is clear from this bound, using a large M
only wastes computational work, and setting M to two or three typically works
well in practice.

3. The PPG Sampler

We now introduce the PPG algorithm. For all n € N*, let Y,, := Xy., X R and
Vo = Xo.n ® B(R). Moreover, let Y, := Xo x {0} and )y == Xy ® {{0},0}. An
element of Y,, is always denoted by y,, = (Z¢:njn, bn). The PPG sampler includes,
as a key ingredient, a conditional PARIS step, that recursively updates a set of Y-
valued random variables v}, := (&, 85,), for i € [1, N]. Let (v,)nen denote the
corresponding many-body process, with each v,, = ((fé:n‘n, Ba)s s (Enpm B)
taking on values in the space Y,, := YX which we furnish with a o-field Y,, =
Y®N. The space Y, and the corresponding o-field Y, are defined accordingly.
For every n € N, we write £o.njn = (§0.jns - - - > §ginjn) fOr the collection of paths in
U, and &, = (&), ..., &Y) for the collection of end points of the same.

In the following, we let n € N be a fixed time horizon, and describe in detail
how the PPG approximates 1.,h, iteratively. In short, at each iteration ¢, and
given an input conditional path (y.,[¢], the PPG produces a many-body system
v,,[¢+1] by using a series of conditional PARIS operations. Then, an updated path
Co-n[€+ 1], which serves as input at the next iteration, is generated by picking one
of the paths &o.,,[¢ + 1] in v, [¢ + 1] at random. At each iteration, the produced
statistics 3, (in v,) provide an approximation of 7g.,h,,, according to (2.13]).
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More precisely, given a path (o.,[¢], the conditional PARIS operations are
executed as follows. In the initial step, &ojo[¢+ 1] are drawn from 1,((o[¢]) defined
n ([2.7), and vi[¢ + 1] + (&ol€ + 1],0), for all i € [1, N]; then, recursively, for
m € [0,n], assuming access to v,,[¢ + 1], we

(1) generate an updated particle cloud &,,41[€+1] ~ M, (Cns1[€]) (&mpm[€+1],-),

(2) pick at random, for each ¢ € [1,N], an ancestor path with associated
statistics (€50,[¢ + 1], 8210 + 1]) from among v,,[¢ + 1] by drawing

i q?Yl(§m|m[£ +1], m+1[€ +1])

6+ 1L B+ 1) ~ "
(Soiml Bl D S w1 6 [+ 1))

[e+1]

(3) pick at random, for each i € [1, N], with replacement, M — 1 ancestor
particles and associated statistics {(¢5/[¢ 4 1], B5/[¢ + 1])}}., at random
from {(&3,,,,[¢ + 1], B5,[€ 4 1]) }1L, according to

{(&571e + 1), BLT [0 + 1))},

; Q(M—1)
( el S 1) Oes, (611,55, (641 )
- & (611,85, [641]) 5
Zs:l S €[+ 1] €y [0+ 1))

(4) set, for all i € [1,N], &, 1jmall + 1] < (Eomll + 1,60 [¢ +1]) and
Uﬁnﬂw +1] « (fo m+1|m+1[£ + 1], m+1[£ + 1), Where

ol 1] M- 1Z<B”£+1]+h €10+ 10,6l +1D))

j=1

This conditional PARIS procedure is summarized in pseudocode in Algorithm 2
in Section B.

In addition to recursively propagating the statistics {3,,[¢ + 1]}",_, to form
the final estimator, this scheme also recursively propagates the trajectories
{&oimm[l + 1]}, _, used as a pool of candidates for the updated conditional path
Co-n [l +1]. Once we have the set v, [¢ + 1] of trajectories and associated statistics
formed using n recursive conditional PARIS updates, we draw an updated path
Con [€+1] from pu(&onn [ +1]) (i.e., uniformly among the elements of &g.,j,, [ +1]).
As a result, the updated conditional path (p.,[¢ + 1] and the statistics 3,[¢ + 1]
are statistically intertwined conditionally on the conditional dual particle process
underpinning the algorithm. The main reason for this is to avoid computational
waste. By letting the updated conditional path (., [¢+1] be formed by reusing the
backward samples from those generated to form the statistics 3,[¢ + 1] included
in the estimator, our procedure optimizes available computational resources. The
full PPG is summarized in pseudocode in Algorithm 3 in Section B.
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The following Markov kernels play an instrumental role in the following. For
a given path {z,, }men, the conditional PARIS update in Algorithm 2 defines an
inhomogeneous Markov chain on the spaces {(Y,., Ym)}men with kernels

Ym X ym+1 > (ymaA) — /Mm<zm+1>(xm|m)dmm+1) Sm(ymamm+1)A)7 m e N7

where
Sm : Ym X Xerl X ym+1 > (ymymerlaA) (31)
3 1 - 7 7 N
— / /]lA xO mo m+1) M Z (bmJ + h’ ( m ) M—&-l)) )}i—l
j=1 N

Al Qo (T 1)
< I1 Z 5, d(Ft,, bl

i=1 \ (=1 Zz/ 1 G (@ m\ma$m+1)

N q ( JZ‘ ) ®(M—1)

m\Lm|ms m+1 7 7 ~i 7

x {Z | T b;ﬂ)} d(F02, B2, . FhM M)
=1 ZZ’ 1qm( m‘m?xnl-‘rl)

In addition, we introduce the joint law

Sn : XO:n X yn > (mO:na A)

n—1

o [ [ 1atw) So@en,wndys) [T Sul@mnidyn), (32

m=1

where we define J := Iy ®(0,1)T.

The kernel S,, can be viewed as a superincumbent sampling kernel that
describes the distribution of the output wv, generated by a sequence of PARIS
iterations when the many-body process {&,,}",_, associated with the underlying
particle filter is given. This allows us to describe the PPG alternatively as follows:
given (y.,[¢], draw €., [0+1] ~ C,,((o.n[4], -); then, draw v, [(+1] ~ S, (&o.n[(+1],-)
and pick a trajectory (o.,[¢ + 1] from &o.,n[¢ + 1] at random. The following
proposition, establishes that the conditional distribution of (o.,[¢ + 1] given
&o.n [l + 1] coincides, as expected, with the particle-induced backward dynamics
B, .

Proposition 2. For alln € N*, N € N*, &, € Xo.,, and h € F(X.,,),
/Sn(wO:na dyn) M(wo:n\n)h = IB%’nh(wo:n)‘
Finally, we define the Markov kernel induced by the PPG, as well as the

extended probability distribution targeted by the same. For this purpose, we
introduce the extended measurable space (E,,, £,,), with
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En = Yn X XO:n) Sn = yn ® XO:n'

The PPG described in Algorithm 3 defines a Markov chain on (E,, &,) with the
Markov transition kernel

Kn : En X gn > (yn;ZO:naA)
— /// ]]-A(gnv 20:11) (Cn(ZO:'ru d{i:O:n) Sn(iO:'rw dgn) M({i:OnM)(déOn)

Note that the values of K, defined above do not depend on y,, but only
on (zo.,A). For any given initial distribution { € M;(Xy.,), let P be the
distribution of the canonical Markov chain induced by the kernel K, and the
initial distribution £. In the special case where & = §,,,, for some given path

Zo:n € Xoun, We use the short-hand notation P5, =P In addition, denote by

Kn : XO:n X XO:n =] (ZO:nvA)
— /// ]lA(go:n) (Cn(ZO:nv di‘O:n) Sn(i'o:na d’gn) M(ﬁzOn\n)(déon)

the path-marginalized version of K,,. By Proposition 2, it holds that K,, = C,B,,,
which shows that K, coincides with the Markov transition kernel of the backward-
sampling-based particle Gibbs sampler discussed in Section 2.3.

Finally, in order to prepare for the statement of our theoretical results on the
PPG, we need to introduce the following Feynman—Kac path model with a frozen
path. More precisely, for a given path zg., € Xo.,, define, for every m € [0,n — 1],
the unnormalized kernel

Qm<zm+l> . Xm X Xerl > (xva) — (1 - ]1]—) Qm(xmv A) + %gm('rm) 5Zm+1(A)

and the initial distribution 7g(zo) : Xy 2 A+ (1 —1/N)no(A) +0.,(A)/N. Given
these quantities, define, for m € [0,n], Y (z0.m) = 1M0(20)Qo(z1) - - - Qum—1(2m)
and its normalized counterpart 1,,(zo.m) = Ym{(20:m)/Vm{Z0:m)1x,.,,- Finally, we
introduce, for m € [0, n], the kernels

Bm<ZO:m—1> : Xm X XO:m—l > (:EmuA)

n—1
%
= /"'/]IA(‘TO:n—l) H Qm,nm<20;m>($m+l7dxm)

m=0

and the path model 7., (20.m) = Bm{Z0:m—-1) ® Mm{Z0:m)-
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4. Main Results
4.1. Theoretical results

In this section, we establish our main result, namely, the exponentially
contracting bias bound stated in Theorem 2. This result is proved under the
following strong mixing assumptions, which are standard in the literature (see
Del Moral| (2004); | Douc and Moulines| (2008)); |[Del Moral (2013)); Del Moral, Kohn
and Patras| (2016))):

Assumption 1 (Strong mixing). For every n € N, there exist T, Ty, On, and
on in R such that

(i) T < gn(wn) < 7 for every x, € Xy,
(i1) o, < My (2, Tpni1) < T, for every (T, Tni1) € Xpma1-
Under Assumption 1, define, for every n € N,

TmOm

Pn = max
me[0,n] T, O,

(4.1)

and, for every n € Nand N € N* such that N > N,, := (1+5p2n/2)V2n(1+2p32),

1—(1+5np2/2)/N
L=1— n . 4.2
o, 1+ 4n(1+ 202)/N (42)

Note that ky, € (0,1), for all N and n, as above.

Theorem 2. Assume Assumption 1. Then, for every n € N, there exist cb*,
cee, and ¢ in RY such that for every M € N*, £ € My (Ay.,,), £ € N*, s € N*,
and N € N* such that N > N,

B [1(8[) (1) = o

bws <Z||hmHOO>N 1HNTL7 (4.3)
e [(U(BI0)() — o] < 1 (Z ufzm”m) N )

m=0

\Eg (BA10) () = Tosurn) (Bl + 8])(id) = osnlen)]|

n—1
< cou (Z ||h Hoo) B/QK?Vn (45)

The constants %@, ¢™*¢ and c® are given explicitly in the proof. Because we
focus on the dependence on N and the index ¢, we make no attempt to optimize
the dependence of these constants on n in our proofs; nevertheless, we believe
that it is possible to prove, under the stated assumptions, that this dependence is
linear. The proof of the bound in Theorem 2 is based on four key ingredients. The
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first is the following unbiasedness property of the PARIS under the many-body
Feynman—Kac path model.

Theorem 3. For everyn € N, N € N*, and { € N*,

By, (1B 0)G)] = [ 10,050 (db,) (b))
— [ 0080 (db.) 1(0,)() = i

The proof of Theorem 3 is found in Section 6.3. The second is the uniform
geometric ergodicity of the particle Gibbs with backward sampling established in
Del Moral and Jasra, (2018)).

Theorem 4. Assume Assumption 1. Then, for everyn € N, (u,v) € M (Xp.,)?,
¢ e N*, and N € N* such that N > N,,, |uK} — vK!|rv < knn.nN*, where k.,
1s defined in .

As a third ingredient, we require the following uniform exponential con-
centration inequality of the conditional PARIS with respect to the frozen-path
Feynman—Kac model defined in the previous section.

Theorem 5. For every n € N, there exist c, > 0 and d,, > 0 such that for every
M € N*, zo., € Xon, N € N*, and € > 0,

[ a8 b1 {1B) ) = )] > <}

d,Ne?
<cpexp| — — = 5 |
22 m=o hmll0)
The proof of Corollary 5 is found in Section C.2, and is based on arguments
similar to those used in the proofs of |Olsson and Westerborn| (2017, Thm. 1)

and Douc et al.| (2011, Thm. 5) in the framework of the conditional dual process.
Corollary 5 implies, in turn, the following conditional variance bound.

Proposition 3. For everyn € N, M € N*, 2p.,, € X, and N € N*,

n—1 2
. Cn 7 —
/(CnSn(ZO:nvdbn) |/~’L(bn)(1d) - nO:n<ZO:n>hn|2 S di (Z ||h’mH00> N 1‘
n m=0

Using Corollary 3, we deduce, in turn, the following bias bound, the proof is
postponed to C.4.

Proposition 4. For every n € N, there exists 2 > 0 such that for every
M € N*, 2., € Xoin, and N € N*,

n—1
<er (Sl )
m=0

‘ / oS (2om, db) (b)) — T (20 Vm
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A fourth and last ingredient in the proof of Theorem 2 is the following bound
on the discrepancy between the additive expectations under the original and
frozen-path Feynman—Kac models. This bound is established using novel results
in \Gloaguen, Le Corftf and Olsson (2022). More precisely, because for every
meN, (z,2) € X3, N € N*, and h € F(X,,,1), using Assumption 1,

1 1
@ {2)(z) = Quh(@)] < S llgmlloclPlloc < 5 TmllAlloc,

applying |Gloaguen, Le Corff and Olsson! (2022, Thm. 4.3) yields the following.

Proposition 5. Assume Assumption 1. Then, there exists ¢ > 0 such that for
everyn € N, N € N, and zp., € Xo:p,

n—1
’770:n<20:n>hn - Uo:nhn’ S CN71 Z Hhm”oo-

m=0

In addition, we assume sup, .y ||in]lcc < oo yields an O(n/N) bound in
Proposition 5.

Finally, by combining these ingredients, we are now ready to present a proof
of Theorem 2.

Proof of Theorem 2. Write, using the tower property,

Ee [1(Bn [4) (id)] = E¢ [Eq,., (g [1(8 [0]) (id)]] = / EK,C,iS,(dby,) p(by) (id).
Thus, by the unbiasedness property in Theorem 3,

B 1408 [4)()] — o
= | [ €RIC500,) ) 0) — [ €500, b))

< (8, — ol e ([ €200 016

where, by Theorem 4, [[EK] — njo.u|lrv < kY ,,. Moreover, to derive an upper
bound on the oscillation, we consider the decomposition

osc ( / C,S0 (- db,) u(bn)(id)>
<2 (| [ €.8t1b) (b)) = o,

—+ ”770n<>hn - 770:7LhnHOO> 3
where the two terms on the right-hand side can be bounded using Proposition
5 and Proposition 4, respectively. This completes the proof of (4.3). We now
consider the proof of (4.4)). Writing
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Ee [(1(8a4)(id) = mosnn)?]
— [ €KL dz0) €080zt db) ((B)() )

we establish (4.4) using Corollary 3 and Proposition 5. Finally, WE consider
(4.5). Using the Markov property, we obtain

Ee [(1(Bnl))(id) = 10 ) (1(Bnl€ + s])(id) = 70:0 /1]
= E¢ [(1(Bal) (id) = mo:ntin) (Eco..10[1(Buls]) (id)] — mo:nhin)]

from which we may deduce (4.5)) using (4.3)) and (4.4)).
4.2. The roll-out PPG estimator

In light of the previous results, it is natural to consider an estimator
formed by an average across successive conditional PPG estimators { (8, [¢])}sen-
To mitigate the bias, we remove a “burn-in” period, with length k; chosen
proportionally to the mixing time of the particle Gibbs chain {(.,,[¢]}sen+. This
yields the estimator

k

Wk .3 (Bn) = (k= ko)™ >~ u(Balf)(id). (4.6)

l=ko+1

The total number of particles underlying this estimator is C' = (N — 1)k. We
denote by v = (k—kg)/k the ratio of the number of particles used in the estimator
to the total number of sampled particles.

As a final main result, we provide bounds on the bias and the MSE of the
estimator . The proof is postponed to Section C.2.

Theorem 6. Assume Assumption 1. Then, for every n € N, M € N*, £ €
M; (Xo.n), £ € N*, s € N*, and N € N* such that N > N,

) n—1 B K/ko
Belllt s ()] — ] < €2 5 ol A
|Ee [Tty 1,5 (Pn)] = 100 1] <7;)|| I ) G - (4.7)
Ee | (Ion (hn) = Tlonhn)’|
n—1 2 . B
- cmse 9ccov N 1/2(1 o HNn) 1
= homloo | = . : 18
‘<§;” ”) N (k= ho) (48)

Setting the burn-in ky in the roll-out estimator is nontrivial. However,
because the estimator converges for any choice of kg, including the trivial choice
ko = 1, we can view this algorithmic parameter as an opportunity for the user to
optimize the implementation of the algorithm. For given (NN, k), the choice of kg
involves a classical trade-off between bias and variance; indeed, for fixed (N, k),
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the bias upper bound decreases with kq proportionally to li'f\?ﬂ (k — ko)
whereas the MSE upper bound increases with ky proportionally to 1/(k—ky).
These bounds suggest that we should take ky = [k(1 — ¢71)] if we are willing to
bound the MSE increase of the roll-out estimator by a factor £ with respect to the
PARIS. However, the bias reduction is not easily quantified, because it depends
mainly on the mixing rate xy, of the PPG chain, and we only have access to
upper bounds on this rate that are, in general, too conservative.

5. Numerical Results

In this section, we evaluate numerically the proposed PPG sampler in the
context of general state-space HMMs. Given measurable spaces (X, X) and (Z, 2),
an HMM is a bivariate (possibly inhomogeneous) Markov chain {(X,,, Z) }men
taking values in the product space (X x Z, X ® Z). In such a model, the process
{X., }nen, referred to as the state sequence, is assumed to be itself a (possibly
inhomogeneous) Markov chain, specified by some initial distribution x and some
sequence {M, },eny of Markov kernels. The state sequence is latent and only
partially observed through the observation process {Z,,}men. Conditionally on
the state sequence, the observations are assumed to be independent; furthermore,
the conditional marginal distribution of each Z,, is assumed to depend only on the
corresponding state X,, and to have a density ¢,,(X,,,-) with respect to some
dominating measure. HMMs are used in numerous scientific and engineering
disciplines; see |Andrieu and Doucet| (2002), |(Cappé, Moulines and Rydén| (2005)
and |Chopin and Papaspiliopoulos (2020). Inference in HMMs typically involves
computing conditional distributions of unobserved states, given observations. Of
particular interest are the sequence of filter distributions, where the filter at
time m € N, denoted as 7,,, is defined as the conditional distribution of X,
given Zy.., = (Zo,...,Zm), and the joint-smoothing distributions, where the
joint-smoothing distribution at time m, denoted as 7q.,,, is defined as the joint
conditional distribution of the states Xo.,, = (Xo, ..., X,n), given the observations
Zo.m- Consequently, 7, is the marginal of 7., with respect to the last state X,,.
Given a sequence {z,, }men of fixed observations, {n.,m }men forms a Feynman—
Kac model (see Section 1), with Markov kernels {M,, } ,en and potential functions
Im = 9g(+ 2m), for m € N, on X.

We now evaluate the proposed algorithm numerically for two HMMs: (i) a
linear Gaussian state-space model (for which the filter and the joint-smoothing
distribution flows are available in a closed form), and (ii) the stochastic volatility
model proposed in Hull and White, (1987). The PPG algorithm used in this section
is given in Algorithm 3 (in Section B).

Linear Gaussian state-space model (LGSSM). We first consider an LGSSM

Xerl = AXm + Q6m+17 Zm = BXm + Rgma m e Na (51)
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Figure 1. Output of the PPG roll-out estimator for the LGSSM (left panel) and the StoVol
model (right panel). The curves describe the evolution of the bias with increasing k for
different batch sizes N.

where {€,, }men+ and {(,, }men are sequences of independent standard normally
distributed random variables. The matrices A, ), B, and R are assumed to
be known 5 x 5 matrices (see Appendix A.1 for the precise values). In this
framework, we aim to compute the expectation of the one-lag state covariance
ho(Zom) = an_:lo T,x) o under the joint-smoothing distribution 7., for ob-
servations generated by simulation under the given parameters with n = 103.
In the LGSSM case, the disturbance smoother (see Cappé, Moulines and Rydén
(2005, Algo. 5.2.15)) provides the exact values of 7., h,,, which allows us to assess
numerically the bias of the PARIS and PPG estimators.

In this setting, we calculate the bias for batch sizes N € {10, 25, 50, 100, 500}
and an increasing number k of iterations by averaging the PPG estimator over
10* independent runs. Figure la shows the bias of the PPG estimates of the first
diagonal entry of the one-lag covariance. For each batch size N, we estimate and
display the regression function k +— e®*? to illustrate the exponential decrease
of the PPG bias, which is consistent with Theorem 2.

Figure 2a displays, for a given budget C' = 5 x 103, the bias of the estimates
of Mo.,h, using the PARIS and the PPG for different batch sizes N and different
numbers k = C/N of iterations and burn-in periods ky = |k/2]|. The red line
corresponds to zero (no bias), and the empirical means are given by black-
dashed lines. An extended comparison comprising different choices of k, and
different budgets C' is provided in Section A. In order to estimate the bias for
each algorithmic configuration, we average 10° independent replications of the
corresponding estimator. Moreover, to assess the precision of the resulting bias
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Figure 2. PARIS and PPG bias dispersions for the LGSSM and StoVol model as a function
of the mini-batch size N for fixed computational budgets C = Nk of 5 x 103 (LGSSM)
and 10 (StoVol model) and with kg = |27'k] burn-in steps.

estimator, we repeat this procedure 10? times, and present the bias estimates
in a box plot. This enables us to form an idea of whether the PPG provides a
statistically significant improvement in terms of bias. In this example, whatever
the choice of the batch size is, the PPG bias is significantly reduced compared
with the bias of the PARIS estimator. We further observe that a larger k leads to
smaller bias.

Stochastic volatility (StoVol). As a second example, consider the stochastic
volatility model

X
Xm+1 = d)Xm + Oc€m+t1, Zm = ﬂexp <2>C’m7 me N) (52)

where {€,,}men- and {(n}men are as in the previous example, and the model
parameters ¢, 3, and o, are set to 0.975, 0.63, and 0.16, respectively. The
reference value is calculated by running the PARIS with 5 x 10* particles. In
this setting, we repeated the experiments of the previous example for the same
additive functional and number n = 10% of observations, produced by simulation
under the parameters above. The computational budget was set to C' = 103. As
in the LGSSM example, the bias decay with respect to the iteration index k is
displayed in Figure 1b, and the comparison with the PARIS is shown in Figure
2b. The comments from the previous example apply to this StoVol model context
as well. More in-depth numerical assessments of the proposed PPG estimator are
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found in Section A.2. In particular, in Section A.2.1, we compare our estimator
with the Rhee-Glynn-type estimator with ancestor sampling proposed by |Jacob,
Lindsten and Schon| (2020), showing that the variance of the latter is significantly
larger than that of the PPG for a given computational effort.

6. Proofs
6.1. Proof of Proposition 1

Using the identity

n—1
Qo+ Qn_1lx, = H O .
m=0

and that each kernel @,, has a transition density, write, for h € F(A}.,),

n—1
Tlm[q”b( ) m+1)] )\'rn+1(dxnn+1)
Tlo: nh / /h wOn de’O) H < anm]leJrl
( qm(l‘mvl'erl) )
nm Qm xm+1)]
/ /h Ton) N (dy) H (2 G (s T 1) (6.1)

N[ @ (5 Ty 1)]
(Qono ®Qn 1nﬂ1®77n>h

m=0

m=0

which establishes the proof.

6.2. Proof of Theorem 1
Lemma 1. Foralln €N, x, € X,,, and h € F(X,;1 ® X, 11),

[ M@ 2000 Qu@n d) @)z
— [[ 1@nss 20 @) Qu(d2) Mo )@ ds). (62)
In addition, for all h € F(Xo ® Xp),
[ oz mldao) o) @) = [ o,z (o) @z midzo). (63)

Proof. Because pu(x,) Q,(dz,11) = gn(x,) Op(p(x,))(dz,41), we may rewrite
the right-hand side of (6.2)) as

/ h xn—i—ly Zn—i—l) (xn)Qn(dZn+1> <Zn+1>(a:n7 dxn—i—l)
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N§; / W@ i1, 20e) o (1)) (A2 41)

x (%( (@) 8.,y ® B (pe(@0)* V) (dw )

N
- gn n Z / e / h((xiwrl? R :C:;rll, Zn-&-lvxiikllv tee 7$r]:]+1)7 Zn-&-l)
i=1
P, (u(xn))(dzn41) HQ) n+1)

22

= gu(@)y > / W@ i, 2 1) Moy (@, A,
On the other hand, note that the left-hand side of can be expressed as
/ / A1 1) Qul@s Air) (@) (A2
Z [ @) Mo o), (6.4)

which establishes the identity. The identity is established along similar
lines.

We establish Theorem 1 by induction. Thus, assume that the claim holds for
n, and show that for all h € F(X.,11 ® Xont1),

/ h(mO:nJrly ZO:nJrl) 70:n+1 (dmO:nJrl) ]BnJrl (m01n+17 dZO:n+1)
= / h(iBO:n+17Zo:n+1)’Yo:n+1(dZO:n+1)Cn+1(2’o;n+1,dxo;n+1)- (6-5)

To prove this, we process, using definition (2.4]), the left-hand side of (6.5
according to

/ h(wo:n+17 Zo:n+1) ’Yo;n+1(dwo:n+1) Bn+1(x0:n,+17 dZo:n+1)

_ / / o (AZ0:m) B (Z0m; d200m)

X/ B(xO:nH,Zo:nH)Qn(wmd$n+1)ﬂ(wn+1)(dzn+1)a (6-6)

where we define the function

Qn(zna Zn+1)h(m01n+17 Z01n+1)
() [qn (- 2n11)]

B(xoerh ZO:nJrl) =
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Now, applying Lemma 1 to the inner integral and using

N(:Bn)Qn(dzn-H) = N(mn)[Qn('v Zn-H)] )‘n+1(dzn+1)

yields, for every x., and zg.,,

// B(wo:n-&-l: 20:n+1) Qn(xn, dxn+1) u(wn+1)(dzn+1)
= // B(mo:n+17 ZO:nJrl) H(mn)Qn (dszrl) Mn<zn+1> (mn) dmn+1)
- // h(xO:n—Q—l; zO:TL-‘rl) Qn(zna dzn+1) Mn<zn+1>(xna dxn+1)-

Inserting the previous identity into and using the induction hypothesis yields

// M®oin+1, Zoint1) Yorn+1(dToin+1) Bogr (Toin+1, d2oin+1)
- / / Yo (20m) Co (20, Ao

X// M @011, 20m+1) @ (2ns A2ni1) My (2051 ) (@, A1)
= // M ®o:n+1, Zoint1) Yon+1(dZ0imt1) Crgr (20im+1, dToin41),

which establishes (6.5)).

6.3. Proof of Theorem 3

First, define, for m € N,

P2:<m> : Ym X merl > (ymaA) = / Mm(mm\mvdmerl) Sm(ymvmm+17‘4)'

(6.7)
For any given initial distribution ¥y € M1(Y), let Pio be the distribution of the
canonical Markov chain induced by the Markov kernels { P,, } ,en and the initial
distribution 1. With a slight abuse of notation we write, for n, € M; (X)), Pﬁ)
instead of Py, . ., where we define the extension 3[no)(4) = [ La(Jzo) no(dxo),
for A € Y,. We preface the proof of Theorem 3 with some technical lemmas and
a proposition.

Lemma 2. For alln € N and (f,11, an) € F(X,.11)?,
’Yn+1(fn+1Bn+1hn+1 + fnJrl) = ,Yn{anvaBnhn + Qn(hnfnJrl + fn+1)}'

Proof. Pick arbitrary ¢ € F(X,,.,41) and, from definition (2.3 and that @,, has

a transition density, write
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[ el 10(dz) Qulan dza)

_ T e T ’Yn(dlrn)qn(xmxrwrl)
—//‘P( nen1) Yo [@n (5 Trg1)] Angr (A1) ol ()]

—
= // Qo(xn:n—i-l) f)/n-i-l(dxn—i-l) Qn,nn (xn—&-la dxn) (68)

Now, by ([2.10)), it holds that

Bn—i—lhn—i-l (xn-l-l)

— ~
= / Qn,nn (xn+17dxn) (hn($n:n+l) + /hn(xOn) Bn($n7d$01n—1)> 5
therefore, by applying with

Sp(xn:n+l) = fn+1(xn+l) <Bn(xn:n+l) + /hn(-:vO:n) Bn(xnade:n—l)> 9
we obtain that
—
77z+1(fn+1Bn+1hn+1) = // Sp(xn:n—&-l) ’Yn—i—l(dxn—&-l) Qn,nn (‘Tn-f—ladxn)
= // @($n;n+1) 7“(d$n) Qn(l‘na dl‘n+1)

= FYn(annJranhn + Qnﬁ”f”Jrl)

Now, the proof is concluded by noting that because v, 1 = V. @n, Vni1 an =
PYnann+1-

Lemma 3. For every n € N*, h,, € F(),), and my € M;(X,), it holds that

E:]::] [hn(vn) | EO\O; C) 7£n|n] = thn(50\07 s 7€n\n)7 PTI;’O-(],.S.

Proof. Pick arbitrary v, € F(X).,). We show that

Eﬁ; [Un(fo\o, cee 7En\n)h‘rb(vn)} = E:]DO [Un(£0\07 v 7€n\n)snhn(50\07 o 7En\n)]7 (69)

from which the claim follows. Using definition , the left-hand side of the

previous identity may be rewritten as

[+ [ walmlawo) TT P s Q) o ()0 - 1)

m=0

n—1

— / . /no(dxow) H Mm(ivm‘m,d$m+1) So(JCUQ‘o,xl,dyl)

m=0
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n—1

X H Sm(yma Lm+1, dym+1) hn(yn)vn(wO\Oa ceey xn\n)
m=0

n—1
:/' ‘/no(dmo) H M, (@, A1) So(Jao, 1, dyr)
m=0
n—1

X H Sm(ym7 Lm+1, dym—i-l) hn(yn)vn(wm e 7a:n)'

m=0

Thus, we conclude the proof by using the definition (3.2) of S,, together with
Fubini’s theorem.

Lemma 4. For every n € N* and h,, € F(Y,,), it holds that

<H gm(£m|m)> hn(vn)] = /’70;nSn(dyn) ho(Yn)-

Proof. The claim of the lemma is a direct implication of Lemma 3; indeed, by

Eno

applying the tower property and the latter, we obtain

(1:[ gm(ﬁmm)> hn(vn)]
(H gm(smm)> Snha(&ojos - - - ,gn,n)l

n—1
= / : /’rlO(da}O) H g'rn(w'm) Mm(w’ma dwm-‘rl) thn(wo:n)
m=0

P
E"ID

_ mwP
- Eno

Proposition 6. For alln € N*, (N, M) € (N*)?, and (f., f,) € F(X,)?,

N
/‘YO:nSn(dyn) <;f Z{b;fn(x:ﬂn) + fn(x;zn)}> = 'Vn(annhn + fn)

Proof. Applying Lemma 4 yields

fwstan (5 St + Rt

_ mP
- E’HU

(ﬁ gm<sm|m>> o DB FulEl) + Ful ;m)}] . (610)

In the following, we repeatedly use the following filtrations. Let F, =
o({vm}m_,) be the o-field generated by the output of the PARIS (Algorithm
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1) during the first n iterations. In addition, let F,, := Fro1 V (&njn)-

We proceed by induction. Thus, assume that the statement of the proposition
holds for a given n € N*, and consider, for arbitrarily chosen (f,i1,fni1) €
F(‘Xn-‘rl)Qa

<H gm(gm\m > Z{sz+1fn+1 n+1|n+1) + fn+1(£n+1\n+1)}‘/—: ]
m=0
= (H gm(gmlm)) Eﬁo |:18n+1fn+1(€n+1|n+1) + fn+1(£n+1|n+l)ﬁ }

m=0

where we use that the variables {B;anﬂ(ffzﬂ‘nﬂ) + fnﬂ(fzﬂ‘nﬂ)}f\’:l are
conditionally independent and identically distributed (i.i.d.) given F,. Note
that, by symmetry,

E',I:O [/Brlprl ‘ fn-‘rl] = /Sn(vn7£n+1|n+17dyn+1) b71L+1

—/ /(HZ oot i) 5(52n,ﬁﬁ)(dfi7j,d5i"j)>
M

Jj=1/4=1 E/ 1qn( nn’€n+1|n+1)

Z (bl I+ (2 7571L+1|7L+1))

_ Z n|n7 £n+1|n+1) <ﬁfL + Bn( i £n+1|n+l)) . (611)

l’ 1 q”( n| n7£n+1\n+1)

Thus, using the tower property,
Eﬁo [6711+1fn+1(§711+1\n+1) ’ }—n] =
N

Qn(gflhumn—i-l)
(I)n nin d n+1 n+1\+4¢n+1 ,
[Pl i) f (e DN T e

(Gt s 20

and, consequently, using definition (2.1)),

(H am €m\m ) [6n+1fn+1(§n+1|n+1) | ‘F]

m=0

= (1:[ gm<£mm)> /&ZQH<£Z|n>$n+1) (6'12)

N L
q”(é-n\'rﬂx""rl)
an—&-l(mn+1) E N "
= D= qn(gflm»xnﬂ)

- (f[ gm<smm>> 2 2 (@St € + Qulhnfuin)(€0,))

(B + A€y 2nsn) ) Awsr (dzs)
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Thus, applying the induction hypothesis,

n 1 N ) )
(H gm(ﬁmm)) N Z Brsrfnv (§;+1n+1)‘|
m=0 i

= Eso (H gm Sm\m > AT Z (5 ann+1(§n|n) + Qn(h fn+1)(£nn))]
= Tn (ann+1Bnhn + Qn(hnfn+1)) . (6-13)

In the same manner, it can be shown that

(H gm(ém\m > Z n+1\n+1 ] = ’Ynann-Q—l' (614)

m=0

Now, by (6.13}H6.14)) and Lemma 2

(H gm(&mlm ) Z{ﬁwdfn—i-l n+1\n+1) + fn+1(£n+1|n+1)}
m=0

- ’Yn (ann+1Bnhn + Qn(hnfn+1 + ann—i—l))

= Yns1 (Far1BnirPngs + faga),

which shows that the claim of the proposition holds at time n + 1.

It remains to check the base case n = 0, which holds trivially, because 3y, = 0
and Byhy = 0 by convention, and the initial particles £y are drawn from 7,. This
completes the proof.

Proof of Theorem 3. The identity [ no.,(d@o.n)S,(Zo.m, db,) p(b,)(id) =
No:mhy, follows immediately by letting f, = 1 and f, = 0 in Proposition 6,
and using that ¥o.,(Xo.n) = Yo:n (Xo:n ). Moreover, applying Theorem 1 yields

[ 10 €251 d0,) B, i)

//n()n (d20m) Con(20mms o) [ Sn(@oums dby) pu(br) (id)
://nO:n(dwOm) (Toums d2o:m) /Sn .., dby,) 1(by,) (id)
. / 10 : 1S, (dby) (b, (id).

Finally, the first identity holds because K,, leaves 7)., invariant.
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Supplementary Material

The supplementary material contains proofs for the technical propositions,
lemmas and theorems as well as additional numerical investigations of different
aspects of the PPG algorithm.
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