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Abstract: This study examines the feature screening problem for ultrahigh-dimen-

sional data with responses missing at random. A two-step procedure is proposed

to screen important features. The first step screens the significant covariates asso-

ciated with the missing indicators via the fused mean-variance filter. The second

step screens the important predictors associated with the response by fusing the

distance correlation and a nonparametric imputation technique. The proposed fea-

ture screening procedure has the following merits: (i) it is model free, because it

does not depend on a special model structure or distribution assumption; (ii) it

avoids resampling on the conditional function of the missing value because a kernel

smoothing technique is adopted to implement the nonparametric conditional mean

imputation; (iii) it is not sensitive to a misspecification of the propensity score

function because it does not impose a special model on the respondent probability.

Under some regularity conditions, the sure screening property is shown. A modi-

fied maximum ratio criterion is proposed to select the tuning parameter. Simulation

studies are conducted to investigate the finite-sample performance of the proposed

feature screening procedure. Finally, an example is used to illustrate the proposed

methodologies.

Key words and phrases: Distance correlation, missing at random, nonparametric

imputation, sure screening property, ultrahigh dimensional data.

1. Introduction

Ultrahigh-dimensional data are often encountered in fields of modern scien-

tific research such as signal processing, biomedical imaging and functional mag-

netic resonance imaging, and finance. Here, the number of candidate predictors

p may increase at an exponential rate of the sample size n, while only a small

number of predictors contribute to the response when there is sparsity among

the candidate predictors. Under the “larger p smaller n” data framework, var-

ious penalized variable selection procedures have been developed to reduce the

dimensionality to a number below the sample size by effectively distinguishing
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important predictors. For example, see the lasso (Tibshirani (1996)), smoothly

clipped absolute deviation (SCAD) (Fan and Li (2001)), adaptive lasso (Zou

(2006)), and minimax concave penalties (Zhang (2010)). The aforementioned pe-

nalized variable selection methods may not perform well for ultrahigh-dimensional

data, owing to the simultaneous challenges of computational expediency, statis-

tical accuracy, and algorithmic stability (Fan, Samworth and Wu (2009)).

To accommodate these challenges, various feature screening procedures have

been developed for ultrahigh-dimensional data. For instance, Fan and Lv (2008)

proposed a sure independence screening (SIS) procedure and an iterated sure in-

dependence screening (ISIS) procedure to select active predictors by ranking the

marginal correlations for a linear model with Gaussian covariates and responses.

Fan and Song (2010)presented a more general version of independent learning by

ranking the maximum marginal likelihood estimates or the maximum marginal

likelihood itself in generalized linear models. Fan, Feng and Song (2011) devel-

oped a nonparametric independence screening (NIS) method for sparse ultrahigh-

dimensional additive models. Chang, Tang and Wu (2013) presented a marginal

empirical likelihood-based independence feature screening procedure for linear re-

gression models. The aforementioned methods depend on the considered models.

To this end, several model-free feature screening approaches have been proposed

in recent years, including the sure independent ranking and screening (Zhu et

al. (2011)), robust ranking correlation-based screening (Li et al. (2012)), dis-

tance correlation-based screening (DC-SIS) (Li, Zhong and Zhu (2012); Zhong et

al. (2016)), mean-variance sure independence screening (MV-SIS) (Cui, Li and

Zhong (2015)), fused Kolmogorov filter screening (Mai and Zou (2015)), con-

ditional quantile sure independence screening (Wu and Yin (2015)), conditional

sure independence screening based on the Cramer-von Mises statistic (Wang et al.

(2017)), and fused mean-variance filter (Yan et al. (2018)). The aforementioned

feature screening procedures focus mainly on complete-data problems. However,

in many fields, such as medical, social, and economic studies, some subjects

have missing responses or predictors, perhaps owing to an unwillingness of some

sampled subjects to answer sensitive questions, a loss of information caused by

uncontrollable factors, or subjects that schedule intermittent visits or drop out

of the study (Little and Rubin (2002)).

To address these issues, there is a growing body of literature on feature

screening for ultrahigh-dimensional data with missing data. For example, Lai

et al. (2017) studied a model-free feature screening procedure for ultrahigh-

dimensional data with responses missing at random (MAR), based on the in-

verse probability weighted (IPW) method. Here, the Kolmogorov filter method
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is adopted to screen the active predictors under an unknown propensity score

function assumption. However, their method depends heavily on the specifica-

tion of the unknown propensity score function, which is rather difficult to specify

correctly or estimate efficiently in the presence of ultrahigh-dimensional predic-

tors. To address this issue, Wang and Li (2018) proposed the missing indicator

imputation screening approach and a Venn diagram-based screening procedure

for ultrahigh-dimensional data with responses MAR. However, their method may

not work well in some cases because missing values are imputed using the miss-

ing indicator value. Recently, Tang, Xia and Yan (2019) developed a feature

screening method based on the profile marginal kernel-assisted estimating equa-

tions imputation technique in ultrahigh-dimensional partially linear models with

responses MAR, which is a model-based method. The MV-SIS method was de-

veloped for the case in which the response variable is fully observed categorical

data, rather than missing indicators, and the predictors are continuous. The DC-

SIS method was proposed for a completely observed response and predictors, and

cannot be used directly to screen features in the presence of missing responses and

ultrahigh-dimensional predictors, owing to the “curse of dimensionality” issue in

estimating the distribution function of a missing response. To the best of our

knowledge, few studies apply the MV-SIS and DC-SIS methods to the missing

data problem when simultaneously screening important features associated with

missing indicators and responses.

To solve the aforementioned problems, we propose a novel two-step feature

screening procedure by incorporating the ideas of the MV-SIS and DC-SIS meth-

ods for ultrahigh-dimensional data with responses MAR. The first step is to

screen the significant covariates associated with the missing indicators using the

fused mean-variance filter (Cui, Li and Zhong (2015) to measure the dependence

between the missing indicators and the covariates by regarding the former as

responses. Based on these selected significant covariates, the second step screens

the important predictors associated with the response by developing a modified

distance correlation between the marginal distributions of the predictor and the

response variable with a missing value, and nonparametrically imputing the con-

ditional distribution function of the response. This step differs significantly from

the DC-SIS procedure because it requires that we nonparametrically impute the

missing responses, which may suffer from the well-known “curse of dimensional-

ity” issue. To address this issue, a modified maximum ratio criterion for selecting

the tuning parameter is proposed. The proposed tuning parameter selection pro-

cedure can choose a smaller model size than the procedures do in Huang, Li and

Wang (2014) and Ni and Fang (2016). The proposed feature screening procedure
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has the following merits. First, the proposed procedure is model free, because it

does not require specifying a regression model of the response on the predictors.

Second, it works well without resampling on the conditional distribution of the

missing value in that the kernel smoothing technique is applied to implement the

nonparametric conditional mean imputation. Third, it is robust to a heavy-tailed

distribution of the response variable or to outliers of the response, because only

the marginal distribution function of the response is used to construct the utility

for screening the significant predictors. Fourth, it is robust to a misspecification

of the propensity score function in that a special model for respondent proba-

bility is not required. Fifth, the modified tuning parameter selection procedure

effectively addresses the “curse of dimensionality” issue. Sixth, it possesses the

sure screening properties under some regularity conditions.

The rest of this paper is organized as follows. Section 2 introduces a new

feature screening approach by fusing the nonparametric conditional mean impu-

tation and the MV-SIS and DC-SIS procedures. A modified tuning parameter

selection procedure is also presented in this section. Section 3 investigates the

theoretical properties for the proposed feature screening approach under some

regularity conditions. Simulation studies are conducted to investigate the finite-

sample performance of the proposed methodologies in Section 4. An example is

used to illustrated the proposed methodologies in Section 5. A brief discussion

is given in Section 6. All technical details are provided in the Supplementary

Material.

2. Feature Screening Approach

2.1. Distance correlation in the presence of responses MAR

Let Y be a response variable with support Ωy, and X = (X1, . . . , Xp)
> be a

p-dimensional predictor vector. Let F (y|X) = Pr(Y ≤ y|X) be the conditional

distribution function of Y given X. Without specifying a regression model, we

define the index sets of the active and inactive predictors as

M = {k : F (y|X) functionally depends on Xk, for some y ∈ Ωy},
I = {k : F (y|X) does not functionally depend on Xk, for any y ∈ Ωy},

respectively. The above definition indicates that Xk is an active predictor if

k ∈ M, whereas Xk is an inactive predictor if k ∈ I. Denote XM = {Xk :

k ∈ M} and XI = {Xk : k ∈ I} as the sets of important and unimportant

predictors, respectively. Here, it is assumed that the dimensionality satisfies

p = o{exp(nα)}, for some constant α > 0, but the cardinality of M, denoted
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as |M|, satisfies |M| = o(n). In this framework, our main purpose is to screen

important predictors XM using some appropriate method.

The DC-SIS procedure (Li, Zhong and Zhu (2012)) is equivalent to the

marginal Pearson correlation learning for a normal linear regression with nor-

mally distributed predictors, it is more effective than the marginal Pearson cor-

relation learning in the presence of a nonlinear relationship between two random

vectors, it is model free and possesses the sure screening property, and its imple-

mentation does not involve any numerical optimization algorithm. As such, we

consider screening features associated with the response using the DC-SIS proce-

dure. Following Li, Zhong and Zhu (2012) and Zhong et al. (2016), the marginal

distance correlation between the marginal distribution functions Fk(Xk) of Xk

and F (Y ) of Y can be defined as

ωk = dcorr2{Fk(Xk), F (Y )} =
dcov2{Fk(Xk), F (Y )}

dcov{Fk(Xk), Fk(Xk)}dcov{F (Y ), F (Y )}
, (2.1)

for k = 1, . . . , p, where Fk(x) = E{I(Xk ≤ x)}, for k = 1, . . . , p, and F (y) =

E{I(Y ≤ y)}, in which I(·) denotes an indicator function. Furthermore, dcov(u, v)

represents the marginal distance covariance between two random variables u and

v, and is defined as dcov2(u, v) = S1 +S2−2S3, where S1 = E{||u− ũ|| · ||v− ṽ||},
S2 = E{||u − ũ||}E{||v − ṽ||}, and S3 = E{E(||u − ũ|| |u)E(||v − ṽ|| |v)}, in

which (ũ, ṽ) is an independent copy of (u, v). In general, Fk(Xk) and F (Y ) are

unknown and can be empirically estimated by F̂k(Xk) = (1/n)
∑n

i=1 I(Xik ≤
Xk) and F̂n(Y ) = n−1

∑n
i=1 I(Yi ≤ Y ), respectively, for the collected sample

{(Xi, Yi) : i = 1, . . . , n}, where Xi = (Xi1, . . . , Xip)
>. In this case, ωk can be es-

timated by the following sample distance correlation between Fk(Xk) and F (Y ):

ω̂k = d̂corr
2
{Fk(Xk), F (Y )} =

d̂cov
2
{Fk(Xk), F (Y )}

d̂cov(Fk(Xk), Fk(Xk))d̂cov{F (Y ), F (Y )}
, (2.2)

for k = 1, . . . , p, where d̂cov
2
{Fk(Xk), F (Y )} = Ŝk1 + Ŝk2− 2Ŝk3, in which Ŝk1 =

n−2
∑n

i=1

∑n
j=1 |F̂k(Xik) − F̂k(Xjk)| · |F̂n(Yi) − F̂n(Yj)|, Ŝk2 = n−4{

∑n
i=1

∑n
j=1

|F̂k(Xik)− F̂k(Xjk)|} ·{
∑n

i=1

∑n
j=1 |F̂n(Yi)− F̂n(Yj)|}, and Ŝk3 = n−3

∑n
i=1

∑n
j=1∑n

l=1 |F̂k(Xik) − F̂k(Xlk)| · |F̂n(Yj) − F̂n(Yl)|. Li, Zhong and Zhu (2012) sug-

gested selecting a set of important predictors with large ω̂k. Thus, the important

predictors can be indexed as

M̂ = {k : ω̂k ≥ cn−υ for 1 ≤ k ≤ p}, (2.3)
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for some prespecified thresholds c > 0 and 0 ≤ υ < 1/2.

When Yi is subject to missingness, the above DC-SIS procedure cannot be

used directly to select the important predictors. To this end, a new feature

screening approach is developed to simultaneously select the important predictors

associated with Y and the important covariates associated with the missingness

data mechanism, as follows.

Let δi = 1 if Yi is observed, and δi= 0 if Yi is missing. Throughout this paper,

it is assumed that δi and δj are independent, for any i 6= j, and δi depends only on

Xi, such that Pr(δi = 1|Xi, Yi) = Pr(δi = 1|Xi), for i = 1, . . . , n, which indicates

that the missingness data mechanism is MAR (Little and Rubin (2002)). In the

ultrahigh-dimensional setting, we further assume that only a small number of

covariates in Xi contribute to the missing indicator δi. Again, without specifying

a parametric model for Pr(δ = 1|X), we define the index sets of the important

and unimportant covariates associated with Pr(δ = 1|X) as

Mδ = {k : Pr(δ = 1|X) functionally depends on Xk},
Iδ = {k : Pr(δ = 1|X) does not functionally depend on Xk},

respectively, which shows that Xk has an important effect on the missing Y when

k ∈Mδ, whereas Xk is not associated with the missing Y when k ∈ Iδ. Similarly,

XMδ
= {Xk : k ∈ Mδ} and XIδ = {Xk : k ∈ Iδ} represent the sets of important

covariates associated with the indicator δ and the unimportant covariates that

are not associated with the indicator δ, respectively. Thus, the propensity score

function can be written as

π(Z) = Pr(δ = 1|X,Y ) = Pr(δ = 1|X) = Pr(δ = 1|Z), (2.4)

where Z = (Z1, . . . , Zsδn)>, Zj = Xk for some k ∈ Mδ, and sδn is the cardinality

of Mδ.

Note that when the response variable Y is subject to MAR, the sample

distance correlation defined in Equation (2.2) is not available, because F̂n(Y )

cannot be evaluated for the missing Y . To address the issue, in what follows, a

nonparametric mean imputation approach is developed to estimate F (Y ) under

the assumption given in Equation (2.4).

Following Cheng and Chu (1996), if the missingness data mechanism model

(2.4) is correctly specified, a nonparametric estimator of F (y) is given as

F̂n(y) =
1

n

n∑
i=1

{
δiI(Yi ≤ y) + (1− δi)F̂1n(y|Zi)

}
, (2.5)
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where Zi = (Zi1, . . . , Zisδn)>, in which Zij = Xik for some k ∈Mδ, and F̂1n(y|Zi)
is a nonparametric regression estimator of F1n(y|Zi) = Pr(Y ≤ y|Zi), which is

defined as

F̂1n(y|Zi) =

∑n
j=1 δjI(Yj ≤ y)K((Zj1 − Zi1)/h1, . . . , (Zjsδn − Zisδn)/hsδn)∑n

j=1 δjK((Zj1 − Zi1)/h1, . . . , (Zjsδn − Zisδn)/hsδn
,

where K(·) is a sδn-dimensionality kernel function, hj = Cjh is the bandwidth,

Cj is a fixed positive constant, for j = 1, . . . , sδn, and h = h0
n → 0 as n → ∞.

It follows from Theorem 2.1 of Cheng and Chu (1996) that the estimator F̂n(y)

defined in Eq. (2.5) is a consistent estimator of F (y). When sδn is large, the

preceding nonparametric estimator of F1n(y|Zi) may perform poorly. In this case,

we can simply use a product of sδn univariate kernel functions with independent

smoothing parameters to replace K(·). In particular, when sδn is diverging, we can

adopt an adaptive kernel estimation to replace F̂1n(y|Zi) (e.g., see Bouř, Kůs and

Franc (2017)). It is impossible to evaluate F̂n(y) using Eq. (2.5) when the index

set Mδ involved is unknown. Hence, it is necessary to identify the index set Mδ

using an appropriate screening approach before evaluating F̂n(y) via Eq. (2.5).

Because δ is a Bernoulli variable, identifying the index set Mδ is equivalent to

a binary discriminant analysis problem. In what follows, a fused mean-variance

filter (Cui, Li and Zhong (2015)) is adopted to distinguish Mδ.

Denote P0 = Pr(δ = 0), P1 = Pr(δ = 1), and Fk(x) = Pr(Xk ≤ x). Let

Fk0(x) = Pr(Xk ≤ x|δ = 0) and Fk1(x) = Pr(Xk ≤ x|δ = 1) be the conditional

cumulative distribution function of Xk given δ = 0 and δ = 1, respectively.

Following Cui, Li and Zhong (2015), we define

ωδk = MV (Xk|δ) = P0

∫
{Fk0(x)−Fk(x)}2dFk(x)+P1

∫
{Fk1(x)−Fk(x)}2dFk(x),

which is zero if Xk is independent of δ. The sample version of ωδk has the form

ω̂δk =
1

n

n∑
j=1

P̂0

{
F̂k0(Xjk)− F̂k(Xjk)

}2
+

1

n

n∑
j=1

P̂1

{
F̂k1(Xjk)− F̂k(Xjk)

}2
,

where P̂0 = n−1
∑n

i=1 I(δi = 0), P̂1 = n−1
∑n

i=1 I(δi = 1), F̂k(x) = n−1
∑n

i=1

I(Xik ≤ x), F̂k0(x) = n−1
∑n

i=1 I(Xik ≤ x, δi = 0)/P̂0, and F̂k1(x) = n−1
∑n

i=1

I(Xik ≤ x, δi = 1)/P̂1. Thus, ω̂δk can be used to select the important covariates

indexed by

M̂δ = {k : ω̂δk ≥ cδn−τδ for 1 ≤ k ≤ p},
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where cδ and τδ are the predetermined thresholds defined in Condition (C2).

However, in many practical applications, it is quite difficult to give the thresholds

cδ and τδ. To this end, we consider the following reduced subset:

M̂∗δ = {k : ω̂δk is among the top dδ largest of all}, (2.6)

where dδ < n is a prespecified positive integer. The above feature screening

procedure is called the MV-SIS procedure, according to which, the number of

ultrahigh-dimensional covariates is reduced to dδ. Under conditions (C1) and

(C2), it follows from Theorem 2.1 of Cui, Li and Zhong (2015) that Pr(Mδ ⊆
M̂δ)→ 1, which shows that using the MV-SIS procedure to select the important

covariates associated with δ has the desirable sure screening property.

Based on the selected subset M̂∗δ , Eq. (2.5) can be rewritten as

F̂n(y) =
1

n

n∑
i=1

{
δiI(Yi ≤ y) + (1− δi)F̂1n(y|Ẑi)

}
, (2.7)

where Ẑi = (Zi1, . . . , Ziŝδn)>, Zij = Xik, for some k ∈ M̂∗δ , and ŝδn is the cardinal-

ity of M̂∗δ .
With the estimated F̂n(y) and ω̂k defined in Eq. (2.2), we can obtain the

selected subset M̂ using Eq. (2.3). Similarly, it is quite difficult to specify the

thresholds c and υ. Again, we use the following criterion to select the significant

predictors:

M̂∗ = {k : ω̂k is among the top dn largest of all}, (2.8)

where dn < n is a prespecified threshold. The preceding feature screening proce-

dure is referred to as the nonparametric mean imputation-based DC-SIS proce-

dure (denoted as ‘DCNI-SIS’).

Remark 1. When the sample values of the mean-variance utility corresponding

to important covariates (i.e., large ω̂δk) are always ranked beyond those corre-

sponding to unimportant covariates with a relatively high probability, the follow-

ing modified tuning parameter selection algorithm can select a relatively small

model size that includes all important covariates. In this case, it is not necessary

to employ the penalized likelihood methods to further reduce the number of co-

variates. Thus, the modified tuning parameter selection algorithm can effectively

address the “curse of dimensionality” issue. However, when ω̂δk corresponding to

important covariates are not always ranked beyond those for inactive covariates,

the cardinal number of subset M̂∗δ may still be quite large, which implies that

there is still a “curse of dimensionality” problem. To this end, the penalized like-
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lihood approaches (e.g., the SCAD and adaptive Lasso methods) may be adopted

to further select important covariates. Thus, the estimated subset M̂∗δ may be

reduced further to the subset M̃∗δ satisfying Pr(Mδ ⊆ M̃∗δ)→ 1 as n→∞.

2.2. The selection of the tuning parameter dδ

In many practical applications, we need to determine an optimal tuning

parameter dδ in Equation (2.6). For simplicity, dδ is abbreviated as d, and d0

represents the true size of the considered model. Fan and Lv (2008) suggested

taking d = bn/ log nc, where the notation bac denotes the integer less than or

equal to a. In this case, for our considered nonparametric mean imputation, there

is still the “curse of dimensionality” problem. To address the issue, Huang, Li

and Wang (2014) proposed an approach for selecting the tuning parameter based

on the maximum ratio criterion, but their method may lead to a much larger d

than d0. To solve this problem, Ni and Fang (2016) modified their approach to

select the tuning parameter. However, this approach may be unstable.

To address the aforementioned issue, we develop a modified approach of Ni

and Fang (2016). Let {t1, . . . , tp} be a permutation of the set {1, . . . , p} such

that ω̂t1 ≥ · · · ≥ ω̂tp , where ω̂tk may represent ω̂k or ω̂δk, for k = 1, . . . , p. In

general, an optimal value of d should be selected based on the following two

conditions: (i) (ω̂tk + ω̂tk+1
)/(ω̂tk+1

+ ω̂tk+2
) should be Op(1) for k 6= d0, and (ii)

(ω̂tk + ω̂tk+1
)/(ω̂tk+1

+ ω̂tk+2
)
P→∞ for k = d0, where

P→ represents convergence in

probability. Thus, similarly to Ni and Fang (2016), we take

d = argmax
1≤k≤p−2

ω̂tk + ω̂tk+1

ω̂tk+1
+ ω̂tk+2

. (2.9)

In this case, d can be selected such that dmin ≤ d ≤ dmax, where dmin ≥ 1 and

dmax < p are two user-specified positive integers. The algorithm for implementing

the aforementioned approach is as follows.

Step 1: Calculate d(1) = argmax1≤k≤dmax
{(ω̂tk + ω̂tk+1

)/(ω̂tk+1
+ ω̂tk+2

)}.

Step 2: For m = 1, 2, . . ., if d(m) < dmin, calculate d(m+1) = argmaxd(m)+1≤k≤dmax

{(ω̂tk + ω̂tk+1
)/(ω̂tk+1

+ ω̂tk+2
)}.

Step 3: Repeat step 2 until d(m) ≥ dmin, and choose d = d(m).

Intuitively, the above procedure is expected to work well, because the mod-

ified algorithm is more robust than that given in Ni and Fang (2016). In prac-

tical applications, similarly to Ni and Fang (2016), we may take dmax as n or

O(n/ log n), which is a commonly used value in the feature screening literature.



1178 XIA AND TANG

To be conservative, we may take dmin = 2, 5, or even larger. However, the above

procedure may select some inactive predictors. To solve this problem, one can

again use the regularization method to select the active predictors.

3. Theoretical Properties

Now, we discuss the theoretical properties of the proposed DCNI-SIS proce-

dure. To this end, we first introduce some conditions.

(C1) There are two positive constants c1 and c2 such that c1 ≤ min{P0, P1} ≤
max{P0, P1} ≤ c2, where Pt = Pr(δ = t) for t = 0, 1.

(C2) There are two positive constants cδ > 0 and 0 ≤ τδ < 1/2 such that

mink∈Mδ
ωδk ≥ 2cδn

−τδ .

(C3) The probability density function f(Z) is bounded away from ∞ on the

support Z of Z, and has bounded partial derivatives (within the compact

support of Z) up to order two.

(C4) The propensity score function π(Z) = Pr(δ = 1|Z) satisfies mini π(Zi) ≥
D0 > 0 a.s. for some positive constant D0, and has bounded partial deriva-

tives (within the compact support of Z) up to order two.

(C5) Function K(·) is an sδn-dimensionality kernel function of order κ satisfying∫
K(u1, . . . , usδn)du1 · · · dusδn = 1,

∫
uljK(u1, . . . , usδn)du1 · · · dusδn = 0 for any

1 ≤ l < κ, and
∫
uκjK(u1, . . . , usδn)du1 · · · dusδn 6= 0 for any j = 1, . . . , sδn,

where sδn is the dimension of Z. In particular, consider K(·) =
∏sδn
i=1Ki(·).

For ∀i ∈ {1, . . . , sδn}, the kernel function Ki(·) is the probability density

function such that (i) it is bounded and has compact support; (ii) it is

symmetric with σ2 =
∫
ω2Ki(ω)dω < ∞; and (iii) Ki(ω) ≥ D1 for some

constant D1 > 0 in some closed interval centered at zero.

(C6) For j = 1, . . . , sδn, hj = Cjh is the bandwidth in which Cj is some fixed

positive constant, and h = O{n−θ/(sδn+2)} for some 0 < θ ≤ 1.

(C7) There are two positive constants, c > 0 and 0 < υ < 1/3, such that

mink∈M ωk ≥ 2cn−υ.

Condition (C1) ensures that the proportions of δ = 0 and δ = 1 are neither

too small nor too large, and is used in Shao, Yu and Zhou (2016). Condition

(C2) requires that the minimum true signal cannot be too small and its order is

n−τδ , which allows the minimum true signal to degenerate to zero as n→∞, and
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is used in Cui, Li and Zhong (2015). Conditions (C1) and (C2) ensure that all

the important covariates associated with the missing indicator δ can be selected

by the DCNI-SIS procedure with probability tending to one. Conditions (C3)–

(C6) are widely adopted in the nonparametric and missing data literature (Tang,

Zhao and Zhu (2014)). Condition (C7) is employed to ensure that the values

of the marginal DCNI-SIS utility corresponding to the active predictors cannot

be too small. Condition (C7) is used in the ultrahigh-dimensional data analysis

literature (Li, Zhong and Zhu (2012)).

Based on the aforementioned conditions, we obtain the following theorem.

Theorem 1. Suppose that Conditions (C1)–(C7) and Mδ ⊆ M̂δ hold. For any

υ/2 < α < 1/2 − υ and 0 ≤ υ − α < θ ≤ 1, and c2 ≤ c3n
−α with c3 > 0, there

exist positive constants m1, m2, and m3 such that

Pr

(
max

1≤k≤p
|ω̂k − ωk| ≥ cn−υ

)
≤ O (pJn) , (3.1)

where Jn = exp
{
−m1n

1−2(υ+α)
}

+ n2−α exp
{
−m2n

1−2(υ−α)
}

+ n exp(−m3n
α).

In particular, we have

Pr(M⊆ M̂) ≥ 1−O
(
snJn

)
, (3.2)

which indicates that Pr(M ⊆ M̂) → 1 as n → ∞, where sn is the cardinality of

M.

Theorem 1 shows that the DCNI-SIS procedure has the desirable sure screen-

ing property. Thus, we have extended the DC-SIS procedure to ultrahigh-dimensional

data with responses MAR.

4. Simulation Studies

In this section, simulation studies are conducted to investigate the finite-

sample performance of the proposed feature screening procedure. The following

criteria are used to evaluate the performance of the procedure: AMS (i.e., the

average number of model sizes); CF (i.e., the proportion that all the true active

predictors are exactly selected among 500 replications); OF (i.e., the proportion

that all the true active covariates are exactly selected, and at least one inactive

covariate is selected among 500 replications); UF (i.e., the proportion that the

true active covariates are not completely selected among 500 replications); CPj
(i.e., the proportion that the true active predictor Xj is selected into the submodel

with size bn/ log(n)c among 500 replications); CPa (i.e., the proportion that all
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the true active predictors are selected into the submodel with size bn/ log(n)c
among 500 replications); and MMS (i.e., the minimum model size needed to

include all the true active predictors). In general, an SIS procedure is regarded

as better than other SIS procedures if the MMS value of the former is closer to

the true model size than are those of the latter, the CF, CPj , and CPa values of

the former are larger than those of the latter, and the AMS, OF, and UF values

of the former are smaller than those of the latter. We consider the following

three experiments with (p, n) = (1000, 200), and set the screening size as dn =

bn/ log(n)c.
For comparison, we evaluate the results for the SIS (Fan and Lv (2008)),

SIRS (Zhu et al. (2011)), DC-SIS (Li, Zhong and Zhu (2012)), DF-SIS (Wu and

Yin (2015)), MC-SIS (Wang et al. (2017)), BMI procedures (e.g., MI-I, MI-S, and

V-D methods) applying the DC-SIS method to select the predictors associated

with Y (Wang and Li (2018)), and the complete-case (CC) analysis method with

the fixed screening size dn under several different missingness data mechanism

models.

Experiment 1. This experiment is designed to investigate the finite-sample per-

formance of the proposed DCNI-SIS method under the assumption that E(Y |X)

is linear in some components of X = (X1, . . . , Xp)
>. Here, we generate the re-

sponse Y from the following linear regression model: Y = X>β + ε, where β =

(β1, . . . , βp)
> = (2.5, 2.0, 4.0, 2.0, 0.0, . . . , 0.0)>, which indicates that X1, . . . , X4

are active predictors and X5, . . . , Xp are inactive predictors, and X = (X1, . . . ,

Xp)
> is generated from a multivariate normal distribution with mean zero and

covariance matrix Σ = (σij), in which σij = 0.5|i−j|. To demonstrate that the pro-

posed DCNI-SIS procedure does not depend on the distribution of the predictors,

X1 and X4 are replaced by those generated from the normal distribution N(0, 2).

This is robust to outliers of the response. We add 5% of outliers generated from

the distribution U(70, 90) for the response. In addition, to illustrate that the pro-

posed DCNI-SIS procedure is independent of the distribution of ε, we consider

the following three settings: (E1) ε ∼ N(0, 1); (E2) ε ∼ t(3), where t(3) repre-

sents the t-distribution with three degrees of freedom; and (E3) ε ∼ Cauchy(0, 1),

where Cauchy(0, 1) denotes the Cauchy distribution with location and scatter pa-

rameters being zero and one, respectively. It is assumed that X is completely

observed, while Y is subject to missingness.

To create missing data for Y , the missing indicator δ is generated from a

Bernoulli distribution with probability π = Pr(δ = 1|Z), specified by

(i) logit(π) = α0+α1X3, where (α0, α1) = (−1.0, 4.0), logit(a) = log{a/(1−a)};
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(ii) π = 0.15 if X2 +X3 < 0, and 0.85 otherwise;

(iii) logit(π) = α0 + α1X3 + α2Y , where (α0, α1, α2) = (−1.1, 4.0, 0.01).

Scenario (i) describes a MAR mechanism specified by a logistic regression model,

and indicates Z = X3, that is, the number of important covariates associated

with the missing indicator δ is one. Scenario (ii) represents a MAR mechanism

nonparametrically specified, and implies Z = (Z1, Z2)>= (X2, X3)>, that is, the

number of important covariates associated with the missing indicator δ is two.

Scenario (iii) denotes a nonignorable missing data mechanism and prescribes a

selection bias case, which is used to investigate the robustness of the proposed

DCNI-SIS procedure to the misspecification of π. This scenario implies Z = X3,

that is, the number of important covariates associated with the missing indicator δ

is one. The average missing proportions among 500 replications corresponding to

the three missingness data mechanisms (i), (ii) and (iii) are about (56.3%, 55.8%,

56.2%), (50.4%, 49.9%, 49.9%), and (56.6%, 56.2%, 56.7%) for error distributions

(E1), (E2), and (E3), respectively.

For the 500 data sets generated from each of the above nine settings (i.e.,

three error distributions × three missingness data mechanisms), the MV-SIS and

DCNI-SIS procedures are used to screen the important covariates associated with

δ and the active predictors in the considered linear regression model, respectively.

To estimate the distribution function of Y in the presence of missing Y , we take

the kernel function K(·) =
∏sδn
j=1Kj(·) with Kj(zj) = 0.75(1− z2

j )+, and set the

bandwidth as hj = Cj σ̂zjn
−1/5, where Cj = 1, and σ̂zj is the standard deviation

of the observations {Zij : i = 1, . . . , n; j = 1, . . . , sδn}.
The results for screening the important covariates in the propensity score

function are given in Table 1, where ‘MV-TM’ and ‘MV-T’ represent the MV-SIS

approaches with dmin = 1 for scenarios (i) and (iii) or dmin = 2 for scenario (ii),

respectively, and dδ is determined by the modified tuning parameter selection

method introduced in Section 2.2 and the algorithm introduced in Ni and Fang

(2016). Table 1 shows that the MV-TM method behaves better than the MV-T

method, because the former has larger CF values and smaller OF values than the

latter, and the AMS values for the former are closer to the true model size than

are those of the latter, regardless of the error distributions and missingness data

mechanisms.

The results for identifying active predictors are presented in Table 2, where

‘DCNI-TM’ and ’DCNI-T’ represent the DCNI-SIS procedures with dmin = 4 and

dn determined by the modified tuning parameter selection method introduced in

Section 2.2 and the algorithm introduced in Ni and Fang (2016), respectively.
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Table 1. Performance of MV-SIS procedure for screening covariates in propensity score
function in Experiment 1.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ Cauchy(0, 1)

Case Method AMS CF OF UF AMS CF OF UF AMS CF OF UF

(i) MV-TM 1.002 0.998 0.002 0.000 1.008 0.992 0.008 0.000 1.004 0.996 0.004 0.000

MV-T 1.048 0.952 0.048 0.000 1.060 0.940 0.060 0.000 1.034 0.966 0.034 0.000

(ii) MV-TM 2.000 1.000 0.000 0.000 2.000 1.000 0.000 0.000 2.000 1.000 0.000 0.000

MV-T 2.004 0.996 0.004 0.000 2.002 0.998 0.002 0.000 2.006 0.994 0.006 0.000

(iii) MV-TM 1.010 0.992 0.008 0.000 1.010 0.990 0.010 0.000 1.010 0.990 0.010 0.000

MV-T 1.060 0.942 0.058 0.000 1.052 0.948 0.052 0.000 1.066 0.934 0.066 0.000

Note: “MV-TM” and “MV-T” represent the MV-SIS approaches with dδ determined by the modified
tuning parameter selection method introduced in Section 2.2 and the algorithm introduced in Ni and
Fang (2016), respectively.

Table 2. Performance of the DCNI-SIS procedure in identifying active predictors in
Experiment 1.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ Cauchy(0, 1)

Case Method AMS CF OF UF AMS CF OF UF AMS CF OF UF

(i) DCNI-TM 5.066 0.506 0.274 0.220 4.860 0.508 0.220 0.272 5.582 0.322 0.282 0.396

DCNI-T 5.312 0.438 0.352 0.210 5.258 0.450 0.306 0.244 5.952 0.270 0.372 0.358

(ii) DCNI-TM 4.526 0.704 0.186 0.110 4.514 0.718 0.164 0.118 4.844 0.508 0.228 0.264

DCNI-T 4.718 0.660 0.244 0.096 4.600 0.678 0.226 0.096 5.080 0.462 0.310 0.228

(iii) DCNI-TM 5.038 0.474 0.272 0.254 4.910 0.478 0.232 0.290 5.510 0.274 0.268 0.458

DCNI-T 5.362 0.426 0.328 0.246 5.126 0.428 0.308 0.264 6.064 0.236 0.350 0.414

Note: “DCNI-TM” and “DCNI-T” represent the DCNI-SIS approaches with dn determined by the
modified tuning parameter selection method introduced in Section 2.2 and the algorithm introduced in
Ni and Fang (2016), respectively.

Table 2 shows that the DCNI-TM method behaves better than the DCNI-T

method in that the former has larger CF values and smaller OF values than the

latter, and the AMS values for the former are closer to the true model size than

are those of the latter, regardless of the error distributions and missingness data

mechanisms.

The results for CP1, . . . , CP4 and CPa in identifying active predictors with

fixed dn = bn/ log(n)c are reported in Table 3. Table 3 indicates that the DCNI-

SIS procedure outperforms the other feature screening procedures, because the

former has the largest CPa value of the 10 feature screening methods, regardless

of the error distributions and missingness data mechanisms.

The results for the 5%, 25%, 50%, 75%, and 95% quantiles of the minimum

model sizes for the various feature screening methods are presented in Table 4.

Once again, the DNCI-SIS procedure outperforms the other feature screening

procedures in identifying active predictors because all the quantiles of the mini-
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Table 3. Performance of CPj and CPa for various screening methods in identifying active
predictors in Experiment 1.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ Cauchy(0, 1)

Case Method CP1 CP2 CP3 CP4 CPa CP1 CP2 CP3 CP4 CPa CP1 CP2 CP3 CP4 CPa

MI-I 0.994 0.996 1.000 0.882 0.874 0.992 0.998 1.000 0.904 0.896 0.952 0.998 1.000 0.786 0.748

MI-S 0.044 0.998 1.000 0.040 0.002 0.036 0.996 1.000 0.020 0.000 0.030 0.994 1.000 0.034 0.000

V-D 0.996 0.818 0.940 0.884 0.718 0.992 0.788 0.944 0.906 0.690 0.952 0.660 0.872 0.780 0.470

MC-SIS 1.000 0.924 0.982 0.990 0.902 1.000 0.910 0.978 0.988 0.876 1.000 0.840 0.958 0.958 0.770

(i) SIS 0.648 0.362 0.538 0.474 0.122 0.660 0.302 0.498 0.468 0.092 0.452 0.232 0.340 0.350 0.048

SIRS 1.000 0.936 0.988 0.990 0.918 1.000 0.902 0.982 0.988 0.872 0.994 0.842 0.966 0.950 0.776

DF-SIS 0.870 0.264 0.510 0.578 0.088 0.908 0.220 0.440 0.550 0.058 0.684 0.194 0.326 0.420 0.030

DC-SIS 1.000 0.818 0.940 0.942 0.756 1.000 0.786 0.944 0.972 0.738 0.984 0.660 0.872 0.864 0.520

DCNI-SIS 1.000 0.990 1.000 0.980 0.970 1.000 0.990 1.000 0.974 0.964 0.990 0.990 1.000 0.918 0.902

CC 1.000 0.894 0.972 0.980 0.858 1.000 0.856 0.968 0.982 0.818 0.996 0.790 0.928 0.932 0.686

MI-I 0.998 1.000 1.000 0.948 0.946 0.998 1.000 1.000 0.948 0.946 0.966 1.000 1.000 0.876 0.848

MI-S 0.032 1.000 1.000 0.032 0.000 0.022 1.000 1.000 0.032 0.000 0.038 1.000 1.000 0.034 0.002

V-D 0.998 0.722 0.988 0.950 0.686 0.998 0.670 0.964 0.948 0.614 0.966 0.522 0.936 0.876 0.438

MC-SIS 1.000 0.852 0.994 1.000 0.848 1.000 0.792 0.992 0.996 0.780 1.000 0.706 0.976 0.988 0.680

(ii) SIS 0.664 0.334 0.538 0.502 0.094 0.686 0.290 0.544 0.522 0.088 0.472 0.214 0.372 0.374 0.048

SIRS 1.000 0.878 0.998 0.998 0.876 1.000 0.852 0.994 0.998 0.844 1.000 0.780 0.980 0.992 0.760

DF-SIS 0.896 0.168 0.550 0.592 0.054 0.908 0.144 0.540 0.628 0.048 0.740 0.112 0.370 0.482 0.028

DC-SIS 0.998 0.722 0.988 0.976 0.698 1.000 0.670 0.964 0.992 0.65 0.99 0.522 0.936 0.930 0.470

DCNI-SIS 1.000 1.000 1.000 0.990 0.990 1.000 1.000 1.000 0.994 0.994 1.000 1.000 1.000 0.966 0.966

CC 1.000 0.792 0.992 0.994 0.780 1.000 0.736 0.986 0.996 0.722 1.000 0.638 0.958 0.976 0.602

MI-I 0.986 0.996 1.000 0.852 0.836 0.988 0.998 1.000 0.868 0.858 0.936 0.994 1.000 0.722 0.680

MI-S 0.036 0.998 1.000 0.026 0.000 0.032 0.996 1.000 0.020 0.002 0.044 0.99 1.000 0.042 0.000

V-D 0.986 0.758 0.904 0.856 0.622 0.988 0.732 0.922 0.872 0.594 0.936 0.604 0.778 0.718 0.380

MC-SIS 1.000 0.914 0.978 0.982 0.882 1.000 0.882 0.970 0.986 0.842 1.000 0.800 0.912 0.964 0.728

(iii) SIS 0.570 0.280 0.396 0.418 0.060 0.584 0.246 0.360 0.430 0.052 0.406 0.194 0.238 0.298 0.026

SIRS 1.000 0.916 0.980 0.982 0.886 1.000 0.894 0.978 0.986 0.862 1.000 0.830 0.930 0.960 0.760

DF-SIS 0.832 0.212 0.384 0.524 0.044 0.858 0.178 0.318 0.510 0.048 0.642 0.168 0.222 0.330 0.010

DC-SIS 0.996 0.758 0.904 0.934 0.674 1.000 0.732 0.922 0.958 0.668 0.976 0.604 0.778 0.836 0.454

DCNI-SIS 1.000 0.988 1.000 0.960 0.950 1.000 0.992 1.000 0.970 0.962 0.996 0.994 1.000 0.920 0.910

CC 1.000 0.866 0.960 0.970 0.816 1.000 0.834 0.944 0.980 0.774 0.998 0.764 0.876 0.952 0.672

mum model sizes for the former are closest to the true model size of the 10 feature

screening methods. That is, the DCNI-SIS procedure is more efficient in selecting

active predictors than are other feature screening procedures.

Experiment 2. This experiment is designed to investigate the performance of

the proposed DCNI-SIS under the assumption that E(Y |X) is nonlinear in some

components of X. In this experiment, we generate the response Y from the

following regression model:

Y = β1I(X1 > 0) + β2X2X4 + β3| sin(X3)|+ β4X
2
4 + ε,

where β = (β1, . . . , βp)
> = (4, 4.5, 3.5, 2.5, 0.0, . . . , 0.0)>, which implies that

X1, . . ., X4 are active predictors and X5, . . . , Xp are inactive predictors, and

X = (X1, . . . , Xp)
> is generated from a multivariate normal distribution with
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Table 4. The 5%, 25%, 50%, 75%, and 95% quantiles of MMS for various screening
methods in identifying active predictors in Experiment 1.

ε ∼ N(0, 1) ε ∼ t(3) ε ∼ Cauchy(0, 1)

Case Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

MI-I 4 4 6 17 101.4 4 4 6 14 73 4 5 10 38 177.1

MI-S 219.0 495.5 694.5 872.3 978 257.9 500.3 698.5 864.3 975.2 252.0 493.8 728.5 874.3 971

V-D − − − − − − − − − − − − − − −
MC-SIS 4 4 5 13 78.1 4 4 6 15 77.2 4 5 10 32.3 165.2

(i) SIS 15 93.8 272 630.3 904.6 21 113 284.5 625.8 905.2 42.0 230.5 521.5 776 958.1

SIRS 4 4 5 11.3 71 4 4 5 14.3 88.1 4 5 10 32 177.1

DF-SIS 23.0 125 324.5 613.3 917 26.9 175.5 366.5 644.8 914.1 55.0 244.5 482 748.3 949.1

DC-SIS 4 5 11 36.3 203.5 4 5 13 40 188.2 4 10 34 96 427.3

DCNI-SIS 4 4 4 5 26 4 4 4 5.3 26.1 4 4 5 9.3 69.1

CC 4 4 6 19 126.5 4 4 7 21 125.2 4 6 16 48.3 234.1

MI-I 4 4 4 8 39.1 4 4 4 8 39 4 4 6 18 95.1

MI-S 186.5 495.8 701.5 860 976 236.9 510.5 703 863.3 974.1 221.8 505.5 684.5 874.5 974

V-D − − − − − − − − − − − − − − −
MC-SIS 4 4 7 18 148.1 4 4 8 31 175.1 4 6 15 49 281

(ii) SIS 22.9 107.8 293.5 595 915.3 23 114 288.5 584.3 892.2 40.0 232.3 517.5 796.3 963.2

SIRS 4 4 5 15 94.2 4 4 6 18 149.3 4 5 10 35 241.3

DF-SIS 34.9 167.3 372 640 926.1 41.0 201 415 684.5 941.2 68.0 264.5 489 749.3 934.1

DC-SIS 4 5.8 14 54 289 4 6 17 70.3 328.1 4 12 41.5 142.3 550.3

DCNI-SIS 4 4 4 4 9 4 4 4 4 11 4 4 4 6 24.2

CC 4 5 9 33 220.8 4 5 11 45 240.2 4 7 21.5 86 390.1

MI-I 4 4 7 21.3 135.1 4 4 7 18 80.2 4 6 15 53 191.1

MI-S 214.8 481 705 870.8 977 223.0 513.5 722 869 976.1 249.9 478.8 684 853.5 974.1

V-D − − − − − − − − − − − − − − −
MC-SIS 4 4 6 15 100.8 4 4 7 21 108.2 4 6 12 42 206.3

(iii) SIS 31.9 154 390 703.3 940 36.0 187 409 661.5 931.4 73 346.3 605.5 814 972.1

SIRS 4 4 6 15 108 4 4 6 18 121.1 4 5 12 36 238

DF-SIS 45.0 198.5 414.5 714.3 947.1 41.0 239.3 467.5 740 946.2 95.7 349 596 838.5 974.2

DC-SIS 4 6 16 57 243.1 4 7 18.5 57.3 237.2 5 16 45 144.8 397.1

DCNI-SIS 4 4 4 6 35.2 4 4 4 6 25.1 4 4 5 12 59.2

CC 4 4 8 23.3 157.3 4 5 9 32 153.1 4 7 19 63.5 344.5

zero mean and covariance matrix Σ = (σij), with σij = 0.5|i−j|, and ε is inde-

pendently generated as in Experiment 1. It is assumed that X is completely

observed, while Y is subject to missingness.

Similarly to Experiment 1, the missing indicator δ for Y is generated from a

Bernoulli distribution with probability π = Pr(δ = 1|Z) specified by

(i) π = 0.2 if |X3 − 1| ≤ 1, and 0.8 otherwise;

(ii) logit(π) = α0 + α1X2 + α2X3 with (α0, α1, α2) = (−1.0,−4.0,−5.0);

(iii) π = 0.2 if |X3 − 0.02Y − 0.9| ≤ 1.5, and 0.8 otherwise.

Scenarios (i) and (ii) represent MAR mechanisms for the missing response Y .

Scenario (iii) is a nonignorable missing mechanism, and is designed to investigate
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the robustness of the DCNI-SIS procedure to a misspecification of the missing-

ness data mechanism. Thus, the numbers of the important covariates associated

with δ for Scenarios (i), (ii), and (iii) are one, two and one, respectively. The

average missing proportions for Scenarios (i), (ii), and (iii) are about (48.5%,

48.5%, 48.5%), (51.1%, 51.1%, 50.8%), and (60.8%, 60.8%, 60.4%) for the error

distributions (E1), (E2), and (E3), respectively.

For the 500 data sets generated from each of the three error distributions and

missingness data mechanisms, the proposed DCNI-SIS procedure and the other

methods are used to identify the active predictors in the considered nonlinear

regression model and propensity score function. To estimate F (Y ) for missing

Y , we take the same kernel function K(u) as in Experiment 1. The same value

of dmin is taken as that given in Experiment 1. To save space, the results for

identifying the active covariates associated with the missing indicator and impor-

tant predictors associated with the response are reported in Tables S1–S4 of the

Supplementary Material. Tables S1–S4 yield similar observations to those given

in Experiment 1.

Experiment 3. This experiment is designed to investigate the finite-sample

performance of the proposed DCNI-SIS procedure under the assumption that

E(Y |X) has interaction terms on some components of X, andMδ ∩M is empty

or Mδ ⊃ M. In this experiment, we generate the response from the following

regression model:

Y = exp(β1X
2
1 ) + exp(β2X1X2) + exp(β3X2X3) + ε,

where β = (β1, . . . , βp)
> = (3.0, 3.0, 3.0, 0.0, . . . , 0.0)>, and X = (X1, . . . , Xp)

>

and ε are independently generated as in Experiment 2. It is assumed that X is

completely observed, while Y is subject to missingness.

Similarly to Experiment 1, the missing indicator δ for Y is generated from a

Bernoulli distribution with probability π = Pr(δ = 1|Z), specified by

(i) logit(π) = α0 + α1X3 + α2X600, where (α0, α1, α2) = (−1.0,−4.0,−4.0);

(ii) logit(π) = α0 + α1X4 + α2X5, where (α0, α1, α2) = (−1.0,−3.0,−3.0);

(iii) logit(π) = α0 + α1X1 + α2X2 + α3X3 + α4X4, where (α0, α1, α2, α3, α4) =

(−1.0,−4.0,−4.0,−4.0,−4.0).

Scenarios (i)–(iii) describe a MAR mechanism for the missing response Y . Sce-

nario (i) shows that Mδ ∩M is not empty, Scenario (ii) indicates that Mδ ∩M



1186 XIA AND TANG

is empty, and Scenario (iii) implies Mδ ⊃ M. The average missing proportions

corresponding to the three missingness data mechanisms (i), (ii), and (iii) are

about (53.3%, 52.9%, 53.2%), (53.9%, 53.9%, 53.9%), and (49.4%, 49.2%, 48.9%)

for the error distributions (E1), (E2), and (E3), respectively.

Again, for the 500 data sets generated from each of the three distributions

for the random error, together with the three missingness data mechanisms, the

proposed DCNI-SIS procedure and the other methods are used to screen active

predictors in the considered nonlinear model and propensity score function. In

estimating F (Y ) for missing Y , we take the same kernel function K(u) as in

Experiment 1, set the bandwidth as hj = Cj σ̂zjn
−1/5 and Cj = 1 for Scenarios

(i) and (ii), and set hj = σ̂zjn
−1/6 for Scenario (iii). For the MV-SIS method,

we take dmin = 2 for scenarios (i) and (ii), and dmin = 4 for scenario (iii).

For the DCNI-SIS method, we take dmin = 3. To save space, the results are

given in Tables S5–S8 of the Supplementary Material. Tables S5–S8 yield similar

observations to those in Experiment 1, which implies that the proposed DCNI-

SIS procedure can be used to identify linear or nonlinear relationships between a

response and predictors.

Experiment 4. This experiment is designed to investigate the finite-sample

performance of the proposed DCNI-SIS method in the presence of discrete re-

sponses. To this end, we generate the response Y from a binomial distribution

Binomial(5, θ) with the probability θ = exp(a)/(1 + exp(a)), where a = β1X1 +

sin(β2X2+β3X3+β4X4), and β = (β1, . . . , βp)
> = (2.0, 3.0, 2.5, 2.8, 0.0, . . . , 0.0)>,

which indicates that X1, . . . , X4 are active predictors and X5, . . . , Xp are inactive

predictors. Here, X = (X1, . . . , Xp)
> is generated from a multivariate normal

distribution with mean zero and covariance matrix Σ = (σij), with σij = 0.5|i−j|.

It is assumed that X is completely observed, while Y is subject to missingness.

To create missing data for Y , the missing indicator δ is generated from a

Bernoulli distribution with probability π = Pr(δ = 1|Z), specified by

(i) logit(π) = α0 + α1X3 + α1X4, where (α0, α1, α2) = (−1.0,−4.0,−4.0);

(ii) logit(π) = α0 + α1X4 + α2X5, where (α0, α1, α2) = (−1.0,−4.0,−4.0).

Scenarios (i) and (ii) describe a MAR mechanism for the missing response Y .

Scenario (i) shows Mδ ⊂ M, and Scenario (ii) indicates that Mδ ∩M is not

empty. The average missing proportions among 500 replications corresponding

to the two missingness data mechanisms (i) and (ii) are about 52.0% and 51.9%,

respectively. To estimate F (Y ) for missing Y , we take the same kernel function

K(u) as in Experiment 1. The same value of dmin is taken as that given in
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Experiment 3, regardless of the MV-SIS and DCNI-SIS methods. To save space,

the results are given in Tables S9–S12 of the Supplementary Material. Tables

S9–S12 show that the proposed DCNI-SIS procedure can identify relationships

between a response (or indicators) and predictors well in the presence of discrete

responses.

5. An Example

In this section, the cardiomyopathy microarray data set analyzed by Li,

Zhong and Zhu (2012), Zhong et al. (2016), and Wang and Li (2018) is used

to illustrate the proposed DCNI-SIS approach. The main purpose of this study is

to identify the most influential genes for overexpression of a G protein-coupled re-

ceptor (Ro1). As an illustration, we take the Ro1 expression level as the response

variable Y , and the other 6,319 gene expression levels are taken as predictors,

that is, X = (X1, . . . , X6319)>. Only 30 specimens are observed (i.e., n = 30).

Thus, n is rather small and p = 6,319 is sufficiently large. Li, Zhong and Zhu

(2012) identified the most important two genes (i.e., Msa.2134.0 and Msa.2877.0)

using the DC-SIS procedure. In this data set, Y and X are completely observed.

To demonstrate the application of the DCNI-SIS procedure, we artificially as-

sume that Y is MAR, and missing values for Y are generated by the following

propensity score function:

Pr(δ = 1|Y,X) = Pr(δ = 1|Z) =
exp(α0 + α1X1 + α2X268)

1 + exp(α0 + α1X1 + α2X268)
,

where Z = (X1, X268)>, α0 = 0.2, α1 = 9.0, and α2 = 5.0, X1 is the gene

labeled Msa.1.0, and X268 is the gene labeled Msa.11254.0. The average missing

proportion among the 500 replications corresponding to the missingness data

mechanism is about 48.5%.

For this artificially created data set, the proposed DCNI-SIS procedure is

used to identify the significant genes. For comparison, we also consider the SIS

(Fan and Lv (2008)), SIRS (Zhu et al. (2011)), DC-SIS (Li, Zhong and Zhu

(2012)), DF-SIS (Wu and Yin (2015)), MC-SIS (Wang et al. (2017)), BMI pro-

cedures (e.g., MI-I, MI-S, and V-D methods) (Wang and Li (2018)), and CC

method.

Similarly to Experiment 1, we take the kernel function K(·) =
∏sδn
j=1Kj(·) as

Kj(zj) = 0.75(1−z2
j )+, and set the bandwidth as hj = Cj σ̂zjn

−1/5, where Cj = 1

and σ̂zj is the standard deviation of the observations {Zij : i = 1, . . . , n; j =

1, . . . , sδn}. For the given model size d1 = bn/ log(n)c = 8 and d2 = 2bn/ log(n)c =
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Table 5. The selected predictors among 500 repetitions in the real example.

d1 = 8 d2 = 16

Method Msa.2134.0 Msa.2877.0 CPa Msa.2134.0 Msa.2877.0 CPa

MI−I 0.672 0.588 0.588 0.674 0.682 0.644

MI−S 0.000 0.000 0.000 0.000 0.000 0.000

V−D 0.672 0.588 0.588 0.674 0.682 0.644

MC−SIS 0.118 0.966 0.100 0.200 1.000 0.200

SIS 0.012 1.000 0.012 0.064 1.000 0.064

SIRS 0.474 1.000 0.474 0.734 1.000 0.734

DF−SIS 0.000 0.000 0.000 0.000 0.002 0.000

DC−SIS 0.356 0.684 0.244 0.722 0.974 0.706

DCNI−SIS 0.810 0.876 0.690 0.950 0.964 0.914

CC 0.040 0.812 0.030 0.070 0.938 0.070

16, the results for CP1, CP2, and CPa in identifying the active predictors

Msa.2134.0 and Msa.2877.0 are given in Table 5. Table 5 indicates that the

DCNI-SIS procedure outperforms the other feature screening procedures in that

the former has larger CPa values than those of the latter.

6. Conclusion

In the missing data literature, it is common to artificially assume a paramet-

ric or semiparametric model with some prespecified covariates for the considered

missingness data mechanism. However, the plausibility of the posited model

is doubtful. To address this issue, we investigate the feature screening prob-

lem for ultrahigh-dimensional data in the presence of responses MAR. A new

feature screening procedure is proposed to simultaneously select important pre-

dictors associated with the response variable and significant covariates associated

with missing indicators. The procedure uses the nonparametric conditional mean

imputation technique and the distance correlation and mean-variance indexes,

measuring the dependence between two random variables. A modified iterative

algorithm is developed to find the optimal tuning parameter, which works well for

the missingness data mechanism model. The proposed feature screening proce-

dure has the following merits. First, it is model-free, because it does not assume

a regression model for the relationship between the response and the predictors,

and does not require a missingness data mechanism model for the missing indi-

cator. Second, it can be used to screen the nonlinear relationships between the

response and the predictors, and the missing indictor and the covariates. Third,

it is computationally feasible. Fourth, it is robust to a misspecification of the
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propensity score function.

Under some regularity conditions, we show the sure screening property of

the proposed screening procedure. Several simulation studies are conducted to

investigate the finite-sample performance of the proposed screening procedure.

Empirical results show that the proposed screening procedure works well, even

if the missingness data mechanism model is misspecified and the proportion is

high, and is robust to heavy-tailed distributions for the response. An example

from the cardiomyopathy microarray data set illustrates the proposed screening

procedure.

Although we consider the case that the response is MAR, the proposed fea-

ture screening procedure can be extended to missing not at random for the re-

sponse and/or the covariates, which is quite challenging, because the propensity

score function depends on the missing response. In addition, we did not consider

the asymptotic distribution of ω̂k, which is challenging because of the complicated

analytic expression of ω̂k. These topics are left to future research.

Supplementary Material

The online Supplementary Material includes technical proofs and tables.
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