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Abstract: Robust product recommendation enables internet platforms to boost their

business. However, in practice, the user–product rating matrix often has many miss-

ing entries. Social network information generates new insights about user behaviors.

To fully use such information, we develop a novel approach, called MCNet, that

combines the random dot product graph model and low-rank matrix completion to

recover missing entries in a user–product rating matrix. Our algorithm improves

the accuracy and the efficiency of recovering the incomplete matrices. We study the

asymptotic properties of the estimator. Furthermore, we perform extensive simula-

tions and show that MCNet outperforms existing approaches, especially when the

data have small signals. Moreover, MCNet yields robust estimation under misspec-

ified models. We apply MCNet and its competitors to predict the missing entries

in the user–product rating matrices of the Yelp and Douban movie platforms. The

results show that, in general, MCNet gives the smallest testing errors among the

comparative methods.

Key words and phrases: Low-rank estimation, matrix completion, missing data,

random dot product graph, social network.

1. Introduction

Uncovering true user ratings on products is critical for internet platforms such

as Yelp, Facebook, and Amazon, because they help to promote their business.

These platforms use estimated ratings to recommend products to users with the

highest willingness to pay, thus maximizing their revenue. Such data sets are often

arranged in matrix form, where the rows and columns correspond to users and

products, respectively. However, typically, many entries are missing, because not

every product has been exposed to all users. The ratings of these missing entries

are crucial to the recommendation strategies of the products on the platforms.

Many matrix completion algorithms have been developed to recover miss-

ing entries in a user–product rating matrix, often adopting low-rank estimation

frameworks. Srebro, Rennie and Jaakkola (2005) developed a matrix factoriza-
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tion algorithm by assuming the underlying rating matrix has a finite known rank

and the data are missing completely at random. Recht, Fazel and Parrilo (2010)

cast the matrix completion as a constrained convex optimization problem, and

recovered the matrix by minimizing its nuclear norm. Similar convex relaxations

are adopted by Candes and Plan (2010) and Koltchinskii, Lounici and Tsybakov

(2011) under different noise settings, and an imputation method, SoftImpute,

was developed to accommodate matrices with growing ranks (Mazumder, Hastie

and Tibshirani (2010)). Recently, Negahban and Wainwright (2011), Koltchin-

skii, Lounici and Tsybakov (2011), and Fan, Wang and Zhu (2017) rigorously

studied the statistical properties of low-rank matrix estimation under the linear

regression setting. Klopp (2014) and Elsener and van de Geer (2018) consid-

ered using the Huber loss for the robust estimation of the low-rank matrix. Fan,

Gong and Zhu (2019) further extended the low-rank matrix estimation under

the nonlinear model framework. In addition, a nonconvex relaxation method,

called TopN, was proposed by Kang, Peng and Cheng (2016). Furthermore, deep

learning methods have been proposed in the recommendation system literature

to recover missing matrix entries (Liu and Wu (2017); Zhang et al. (2019)). In

particular, Wang, Wang and Yeung (2015) developed a deep learning framework

incorporating content information to address the matrix completion problem.

In addition to the user–product rating matrix, auxiliary covariates, such as

users’ demographics and products’ attributes, are often collected on internet plat-

forms. These covariates provide additional information that is not explained by

the ratings matrix itself (Feuerverger, He and Khatri (2012)). Incorporating this

information has been shown to improve both the accuracy and the precision of

estimations (Abernethy et al. (2009); Shi, Larson and Hanjalic (2014)). Chiang,

Hsieh and Dhillon (2015) and Xu, Jin and Zhou (2013) illustrated the theoretical

guarantees on matrix recovery with covariate information under noiseless set-

tings. Furthermore, Mao, Chen and Wong (2019) showed that considering users’

features reduces the matrix estimation error under missing-at-random settings,

where the probability of observation is independent of the unobserved target ma-

trix, given the covariates (Rubin (1976)). Zhu, Shen and Ye (2016) proposed a

partial latent model that combines user and item covariates in a linear regression

setting with l1 and l2 penalties. Moreover, by allowing high-dimensional features,

Robin et al. (2018) introduced a sparse low-rank estimation to recover the rating

matrix and the feature effects simultaneously.

In addition to the explicit features collected on the platforms, the social

network contains rich information about the associations among users. The net-

work implicitly tells how much information can be taken from the other users.
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This information has been translated into penalty terms in matrix completion

(Ma et al. (2011); Yu, Pan and Li (2011); Liu and Aberer (2013)) to reflect

the intuition that the closer two users are, the more information must be taken

from each other to recover their missing ratings. Rao et al. (2015) developed a

graph Laplacian method that uses network information to assist the matrix com-

pletion. Yu et al. (2021) introduced a penalized collaborative filtering method,

called NetRec, that allows users to share information with their connections in

the network. In addition, Dai et al. (2019) developed a smooth recommendation

system based on the latent factor model that jointly incorporates social network,

product network, and user–product-specific covariates using kernel weighting.

When the covariate information is not given, the missingness of the matrix

entries is considered to be missing completely at random (Srebro, Rennie and

Jaakkola (2005); Candes and Plan (2010); Koltchinskii, Lounici and Tsybakov

(2011)). This assumption is not appropriate in our setting, because users may

vary significantly in terms of their willingness for rating. The additional network

information generates user-specific features, allowing us to estimate the missing

probability tailored to the individual features. To estimate the user-specific miss-

ing probability, Mao, Wong and Chen (2021) introduced a two-step inverse proba-

bility weighting–based matrix completion framework, where the observation prob-

abilities are estimated using a generalized linear model with a low-rank predictor

matrix. Furthermore, Bi et al. (2017) proposed a singular value decomposition–

based group-specific model to use the between-subject dependency information

from users and items that share similar missingness characteristics.

In this article, we propose a matrix completion social network (MCNet) al-

gorithm that uses social network information to improve the matrix comple-

tion. Specifically, we embed the high-dimensional network structure into a low-

dimensional space using adjacency spectral embedding (Sussman et al. (2012);

Lyzinski et al. (2014); Athreya et al. (2018)), and generate a set of latent posi-

tions that best summarize the distances between the users. We then incorporate

this embedding into the matrix completion model to improve the accuracy of

recovering missing entries in the rating matrix. The theoretical guarantee of the

adjacency spectral embedding has been studied by Oliveira (2009), Lu and Peng

(2013), and Lei and Rinaldo (2015). Sussman, Tang and Priebe (2013) and Lyzin-

ski et al. (2021) formally established the estimation consistency, while Athreya

et al. (2016) and Tang and Priebe (2018) provided the asymptotic normality of

the resulting latent positions.

The contributions of this study are five-fold. (1) We develop a flexible model

incorporating network information to improve the accuracy of matrix recovery.
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(2) We provide an efficient estimation procedure that yields smaller estimation

errors than those of the competing methods proposed by Mazumder, Hastie and

Tibshirani (2010), Kang, Peng and Cheng (2016), and Yu et al. (2021). (3)

Our method is flexible in terms of considering different missing mechanisms,

including covariate-independent and covariate-dependent missingness. (4) We

provide asymptotic upper bounds of the estimation errors. (5) We use simulation

studies and two real-data analyses to show that our algorithm improves both the

accuracy and the efficiency of recovering incomplete matrices.

The rest of the paper is organized as follows. In Section 2, we describe

the MCNet model and the estimation procedure. In Section 3, we provide the

theoretical results. We evaluate the MCNet method and compare it with existing

methods using extensive simulations in Section 4. We apply MCNet to analyze

data from a Douban Movie data set and the Yelp Dataset Challenge in Section

5. Section 6 concludes the paper.

2. Methodology

2.1. Notation

Before presenting the model, we define the notation used throughout the

paper. For an n1 × n2 matrix H, we denote Hik as the i, kth entry, Hi· as

the ith row, and H·k as the kth column. We define λi(H) as the ith largest

eigenvalue of H, and σi(H) =
√
λi(HTH) as the ith largest singular value of

H. In addition, ‖H‖2, ‖H‖max, ‖H‖F , and ‖H‖∗ denote the operator norm,

element-wise maximum norm, Frobenius norm, and nuclear norm, respectively,

of the matrix H. Furthermore, we denote ‖H‖2→∞ as the maximum of the

Euclidean norms for the rows of H; that is, ‖H‖2→∞ = maxi{‖HT
i·‖2}. Then,

〈H1,H2〉 denotes the trace inner product between H1 and H2. Finally, we define

the signal in the matrix H as
∑

ij{Hij −
∑

ij Hij/(n1n2)}2/(n1n2 − 1).

2.2. The MCNet model

Let Mik be the connection indicator such that Mik = Mki = 1 if the ith and

the kth users are connected in the social network. Furthermore, we define M as

the adjacency matrix, with Mik being its i, kth entry, and assume

Pr(M|X) =
∏
i<k(Xi·X

T
k·)

Mik(1−Xi·X
T
k·)

1−Mik , (2.1)

where Xi· ∈ R1×d and X = (XT
1·, . . . ,X

T
n1·)

T ∈ Rn1×d is the latent position

matrix. We say that M follows a random dot product graph (RDPG) distribution
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with the latent position X, denoted by M ∼ RDPG(X).

In addition, let Yik be the rating for product k by user i, and we assume

Yik = A0ik + εik, (2.2)

where {εik, i = 1, . . . , n1, k = 1, . . . , n2} are independent mean zero random er-

rors. We assume that Y and M are independent when X is given. Let A0

be the matrix with the i, kth entry being A0ik, and we further decompose the

information in A0 as

A0 = Xβ0 + B0. (2.3)

Here, β0 ∈ Rd×n2 is the unknown parameter matrix of interest, and B0 ∈ Rn1×n2

is an unknown low-rank matrix with columns that are orthogonal to the col-

umn space of X so that PXB0 = 0, where PX = X(XTX)−1XT. The low-

rank assumption is commonly used in the matrix factorization literature (Sre-

bro, Rennie and Jaakkola (2005); Recht, Fazel and Parrilo (2010); Candes and

Plan (2010); Koltchinskii, Lounici and Tsybakov (2011)), and assumes there are

a few latent factors explaining most of the data. This assumption allows in-

formation to be borrowed across all observed entries in Y. Furthermore, we

assume B0 is orthogonal to the column space of X to ensure the model is iden-

tifiable. To see that, suppose PXB 6= 0. It is easy to see that Xβ0 + B0 =

X{β0 + (XTX)−1XTB0} + P⊥XB0, where P⊥X = I − X(XTX)−1XT. Now,

{β0+(XTX)−1XTB0} is an unknown parameter, because β0 and B0 are both un-

known. Furthermore, P⊥XB0 is orthogonal to X. Therefore, for any B0, Xβ0+B0

can be decomposed into a linear combination of X and a matrix orthogonal to

the column space of X. This assumption is also used in Mao, Chen and Wong

(2019).

2.3. MCNet estimation

When Y and X are fully observed, β0 and B0 are the minimizers of

E‖Y −Xβ −B‖2F .

Because each user only rates a subset of the products, Y contains missing entries.

Let Wik = 1 if the product k has a rating from user i, and θik be the true

probability of the i, kth entry being observed. Let W,Ω0 be matrices with the

i, kth entry being Wik and θ−1ik , respectively. Then, we consider the risk function

L(β,B) = E‖Y ◦W ◦Ω0 −Xβ −B‖2F ,
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where ◦ is the Hadamard product. Under Conditions (C1) and (C3) in the next

section, β0 and B0 are the minimizers of L(β,B) because E(Y ◦W ◦Ω0|X) =

XTβ0 +B0 and the partial derivative of E‖Y ◦W ◦Ω0−Xβ−B‖2F with respect

to β and B are zeros when β = β0 and B = B0. In addition, because X and B0

are orthogonal, it is easy to see that

L(β0,B0) = E‖Xβ0 −PX(W ◦Ω0 ◦Y)‖2F
+E‖B0 −P⊥X(W ◦Ω0 ◦Y)‖2F .

In the above equation, β0 and B0 are in two separate loss functions, which allows

us to estimate β0 and B0 separately.

However, in general, X is unobservable. We estimate it using the rela-

tion in (2.1), as follows. Because M is a square matrix, we can write M =∑n1

i=1 λi(M)uiu
T
i , where λi(M) are the eigenvalues ordered by absolute magni-

tude, and u1, . . . ,un1
are the corresponding eigenvectors. Let UM = (u1, . . . ,ud)

and SM = diag{|λ1(M)|, . . . , |λd(M)|}, where the hyperparameter d can be pre-

scribed by the eigenvalue ratio test (Ahn and Horenstein (2013)). That is,

d = argmax
q

log(Vq−1/Vq)

log(Vq/Vq+1)
,

where Vq is the sum of the first q largest absolute eigenvalues of M. We then

obtain the estimator X̂ = UMS
1/2
M using an adjacency spectral embedding that

gives a continuous representation of the nodes in a social network as vectors in a

low-dimensional space.

We replace X in L(β,B) by the adjacency spectral embedding X̂, and obtain

the estimators as

β̂ = argmin
β∈Rd×n2

{
1

n1n2
‖X̂β −PX̂(W ◦ Ω̂ ◦Y)‖2F + λ1‖β‖2F

}
(2.4)

and

B̂ = argmin
B∈N (X̂)

{
1

n1n2
‖B−P⊥

X̂
(W ◦ Ω̂ ◦Y)‖2F (2.5)

+ λ2{α‖B‖∗ + (1− α)‖B‖2F }
}
,

where N (X̂) is the space orthogonal to the one spanned by X̂, and Ω̂ is an

element-wise consistent estimator for Ω0. In (2.4), the term ‖β‖2F leads to a

ridge regression problem. In (2.5), the nuclear term ‖B‖∗ has a thresholding
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effect over singular values because it is equivalent to the l1-norm penalty of the

vector of singular values. The Frobenius term ‖B‖2F = trace(BTB) =
∑n1∧n2

i σ2i
corresponds to the l2-norm penalty of the singular values. The convex regulariza-

tion leads to an elastic-net regularization of the singular values (Zou and Hastie

(2005); Sun and Zhang (2012)). The parameter α controls the balance of the

two penalties. The strong convex Frobenius penalty is introduced to improve the

finite-sample performance (Sun and Zhang (2012); Mao, Chen and Wong (2019))

and stability under highly corrupted data (Li, Chen and Li (2012); Kim, Lee and

Oh (2015)).

The estimation in (2.4) leads to

β̂ = (X̂TX̂ + n1n2λ1I)−1X̂T(W ◦ Ω̂ ◦Y). (2.6)

From (2.5), B̂ can be obtained using the one-step first-order scaled singular-value-

thresholding operator based on the algorithm introduced in Cai, Candès and Shen

(2010). We show that B̂ is guaranteed to be orthogonal to the column space of

X̂ in Section S1.2 of the Supplementary Material. Now, because X̂ converges

to X in the Frobenius norm asymptotically (shown in the next section), B̂ is

orthogonal to the column space of X asymptotically. Finally, we estimate A0 by

Â = X̂β̂ + B̂. We illustrate the estimation procedure in Algorithm 1.

Algorithm 1 MCNet algorithm.

1. Estimate X by adjacency spectral embedding X̂ = UMS
1/2
M

2. Estimate β0 by β̂ = (X̂TX̂ + n1n2λ1I)−1X̂T(W ◦ Ω̂ ◦Y)

3. Estimate B0 by B̂ = UDn1,n2,λ2,αVT, where UDVT is the singular value

decomposition of P⊥
X̂

(W ◦ Ω̂ ◦ Y), Dn1,n2,λ2,α = diag{(D1,1 − n1n2λ2α/2)+/

(1 + n1n2λ2(1− α)), . . . , (Dn1∧n2,n1∧n2
− n1n2λ2α/2)+/(1 + n1n2λ2(1− α))},

and t+ = t ∨ 0

4. Return Â = X̂β̂ + B̂

3. Main Results

We define d(H1,H2) = ‖H1 − H2‖F /
√
d1d2 for d1 × d2 matrices H1,H2.

Because XXT = XOOTXT for an orthogonal matrix O, X and, in turn, β are

only identifiable up to an orthogonal transformation. We show the convergences

of β̂ to OTβ0, B̂ to B0, and Â to A0 by establishing the upper bounds of

‖β̂·j − OTβ0,·j‖2, d(B̂,B0), and d(Â,A0), respectively. First, we present the

technical conditions needed for our analysis.

(C1) For all i and j, εij is an independent random error with zero mean. There
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exist positive constants cσ and η such that maxi,j E|εij |l ≤ l!c2σηl−2/2 holds,

for any integer l ≥ 2.

(C2) There exist positive constants a1, a2, and a3 such that

‖A0‖max ≤
√

log(n1 + n2)a1

‖A0‖2→∞ ≤ a2
√
n2

‖AT
0 ‖2→∞ ≤ a2

√
n1

‖β0‖max ≤ a3.

(C3) For all i and j, the observation indicator Wij independently follows the

Bernoulli distribution with parameter θij := Pr(Wij = 1|Xi,·, Yij) = Pr(Wij =

1|Xi,·) ∈ (0, 1). In addition, Wij is independent of εij .

(C4) (a) There exists a lower bound θL ∈ (0, 1) such that θij ≥ θL, for all i, j; θL
can vanish when n1, n2 → ∞. (b) For all i and j, |θ̂ij − θij | = Op(n

−1/2
1 )

and θ̂ij is independent of {εij}.

(C5) (a) The true latent position matrix X has rank d. (b) n−11 XTX → Sx as

n1 → ∞, ‖Sx‖2 < ∞, and λd(Sx) ≥ c0, where c0 is a positive constant.

(c) maxi≤n1

∑n1

j=1 Πij > log4+a(n1), for some positive constant a, where

Π = XXT.

Conditions (C1)–(C4) are standard conditions discussed in Mao, Chen and

Wong (2019) to achieve estimation consistency when incorporating covariate in-

formation in matrix completion. Condition (C3) assumes that the missingness

follows either covariate-independent or covariate-dependent missingness mecha-

nisms. Under covariate-independent settings (Koltchinskii, Lounici and Tsybakov

(2011); Recht (2011)), we estimate the observed probability by
∑

ijWij/(n1n2).

Under the covariate-dependent missingness, if θL in Condition (C4) is bounded

from below, we can use the standard logistic regression

logit(θij) = τ0j + Xi·τj (3.1)

to generate root-n consistent estimators for the observed probabilities. If θL
vanishes as n1 and n2 go to infinity, we can use a zero-inflated binomial regres-

sion to generate root-n consistent estimators (Diallo, Diop and Dupuy (2017);

Hall (2000)). Condition (C5) is a global convex condition that guarantees the

consistency of recovering the latent position in the random dot product model.
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Lemma 1. Assume Condition (C5) holds. Then, there is an orthogonal matrix

O ∈ Rd×d such that ‖X̂OT −X‖F = Op(n
1/4
1 ).

In Lemma 1, we employ the Hoeffding Concentration Theorem and assume

the probability of Mij = 1 is strictly greater than zero for all i, j. The lemma

is based on Lemma S1.3 in the Supplementary Material, which is equivalent to

Lemma 50 in Athreya et al. (2018) and Theorem A.5 in Tang et al. (2017) under

Condition (C5) that the eigenvalues of the probability matrix Π grow linearly

with n1. This bound allows us to achieve the root-n convergence of β̂ to the

truth.

Theorem 1. Assume that Conditions (C1)–(C5) hold and λ1 = o(n−12 ). Then,

there exist an orthogonal matrix O and a constant c such that ‖β̂·j−OTβ0,·j‖2 =

Op[max{n−1/21 logc(n1)θ
−1
L , n−11 δ1/2(Π)}], for each j = 1, . . . , n2.

Theorem 1 gives the parametric convergence rate for β̂·j to the truth up to

an orthogonal transformation. The fact that X̂ instead of the true X was used

in the loss function does not inflate the asymptotic errors. Furthermore, it is

easy to see that d(β̂,OTβ0) = Op[max{n−1/21 logc(n1)θ
−1
L , n−11 δ1/2(Π)}] because

β̂ − β0 has a finite rank. The proof is provided in the Supplementary Material.

Lemma 2. Assume Conditions (C1)–(C5) hold and λ1 = o(n−12 ). Then,

d2(X̂β̂,Xβ0) = Op

{
max

(
log2c(n1)δ(Π)

n21θ
2
L

,
δ2(Π)

n31
,
‖β0‖2F
n
1/2
1 n2

)}
.

Lemma 2 is a direct consequence of Lemma 1 and Theorem 1, and is necessary

to establish the convergence of Â.

Lemma 3. Assume Conditions (C1)–(C5) hold, α ∈ (0, 1], and λ2 ≥ {2cY logc(n1)
θ−1L + a2}/

√
n1n2α2 + 2‖B0‖2/(n1n2α) for any positive constant cY . Then,

d2(B̂,B0) = Op
[
max

{
λ2α‖B0‖∗, λ2(1− α)‖B0‖2F

}]
.

Lemma 3, together with Lemma 2, leads to the following.

Theorem 2. Assume Conditions (C1)–(C5) hold and λ1 = o(n−12 ). Further-

more, for any given cY > 0, we assume λ2 ≥ {2cY logc(n1)θ−1L + a2}/
√
n1n2α2 +

2‖B0‖2/(n1n2α). Then,

d2(Â,A0)

= Op

[
max

{
log2c(n1)δ(Π)

n21θ
2
L

,
δ2(Π)

n31
,
‖β0‖2F
n
1/2
1 n2

, λ2α‖B0‖∗, λ2(1− α)‖B0‖2F

}]
.
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Remark 1. Compared with the state-of-the-art SoftImpute algorithm (Mazumder,

Hastie and Tibshirani (2010)), d2(Â,A0) of MCNet grows with ‖β0‖F , ‖B0‖∗,
and ‖B0‖F , while that of SoftImpute increases with ‖A0‖∗ and ‖A0‖F , as shown

in Corollary 1 of Koltchinskii, Lounici and Tsybakov (2011). In general, ‖A0‖∗ ≥
‖B0‖∗ and ‖A0‖F is greater than both ‖β0‖F and ‖B0‖F . Hence, MCNet im-

proves the estimation accuracy by incorporating the social network information.

Compared with the most recent social network collaborative filtering method

NetRec Yu et al. (2021), Theorem 2 shows that the estimation error of the social

network structure, that is, X̂, does not contribute to d2(Â,A0). On the other

hand, for NetRec, its d2(Â,A0) increases with the additional bias induced by the

social network penalty, as shown in Theorem 3.1 of Yu et al. (2021). This implies

that, when the signal in A0 is relatively small compared with this social network

bias, NetRec will perform poorly, whereas MCNet will still provide satisfactory

results. We demonstrate this point using simulations in Section 4.2.

4. Simulations

We evaluate the convergence of MCNet, and compare it with that of Soft-

Impute by Mazumder, Hastie and Tibshirani (2010), TopN proposed by Kang,

Peng and Cheng (2016), and the NetRec method proposed by Yu et al. (2021).

4.1. Performance as the signal-to-noise ratio varies

We fix d = 10 and choose n1 = n2 = 500 to 2,000 with a step size of 250.

Each entry of X is generated from a beta distribution with parameters (1.5, 1).

We then scale each entry by a chosen constant to ensure maxi,j Xi·X
T
j· = 0.9.

Furthermore, we generate Mij = Mji, for i 6= j, from a Bernoulli distribution

with success rate Xi·X
T
j·, and generate each entry in β0 from a mean zero normal

distribution with variance d/n2. Moreover, we define B0 = P⊥XU0V
T
0 d/
√
n1n2,

where U0 ∈ Rn1×10 and V0 ∈ Rn2×10 are matrices with standard normal entries.

Let A0 = Xβ0+B0 and Y = A0+ε, where ε is an error matrix with independent

mean zero normal entries. The standard deviations of the errors are chosen to

achieve 1, 0.5, 0.2, 0.1, and 0.05 signal-to-noise ratios.

We adopt two types of missing mechanisms. In Model I, we consider covariate-

independent missingness with θij = 0.2 uniformly across all i, j. In Model II, the

missing probability follows the logistic model in (3.1), where the regression pa-

rameters τ0j and τj are selected to achieve 20% missing rates in Y, on average.

We select the tuning parameters λ1, λ2, and α using the error perturbation

method introduced in Yu et al. (2021) in the simulations. More specifically,
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Table 1. Square root of the area under the d2(Â,A) curves with standard errors (in
parentheses). The best results among the algorithms are indicated by the bold font.

Model I Model II

SNR SNR

0.05 0.1 0.2 0.5 1.0 0.05 0.1 0.2 0.5 1.0

MCNet 2.70 2.44 2.43 2.09 1.80 2.59 2.41 2.43 2.09 1.80

(0.04) (0.03) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02) (0.02) (0.01)

SoftImpute 21.36 14.14 6.28 3.10 2.08 26.53 16.79 7.44 3.41 2.06

(0.39) (0.17) (0.10) (0.04) (0.03) (0.44) (0.20) (0.11) (0.05) (0.03)

TopN 26.63 13.52 7.14 3.77 2.97 33.00 16.64 8.60 4.13 2.98

(0.32) (0.16) (0.08) (0.04) (0.04) (0.38) (0.19) (0.10) (0.05) (0.04)

NetRec1 13.43 7.68 4.76 2.75 1.97 18.88 10.27 5.87 3.04 1.96

(0.30) (0.16) (0.09) (0.04) (0.03) (0.36) (0.19) (0.11) (0.04) (0.03)

NetRec2 21.33 8.64 4.88 2.78 1.98 26.50 11.12 5.98 3.07 1.97

(0.39) (0.20) (0.10) (0.04) (0.03) (0.44) (0.22) (0.11) (0.05) (0.03)

given A0, we generate ε using a normal distribution and calculate d(Â,A0) after

the estimation. We repeat the procedure K times and obtain the average of

d(Â,A0) as the residual mean squared error (RMSE). Then, we select the tuning

parameters that yield the smallest RMSE, on average. The same procedure is

adopted to select the tuning parameters in the SoftImpute, TopN, and NetRec

procedures.

We evaluate the convergence of MCNet, and compare the RMSEs from MC-

Net, SoftImpute, TopN, and NetRec. Figure 1 and Figure 2 show the results when

the entries are missing according to Model I and Model II, respectively. They

indicate that the convergence rates of d(β̂,OTβ0), d(X̂OT,X), and d(B̂,B0) are

consistent with the theoretical rates derived in Theorem 1, Lemma 1, and Lemma

3, which are shown as the dashed curves. Here, the specific form of the orthogo-

nal matrix O is described in the online Supplementary Material. The results also

suggest that MCNet has smaller d(Â,A0) compared with those from SoftImpute,

TopN, and NetRec. The advantages are more obvious when the signal-to-noise

ratio becomes smaller. Moreover, we summarize the square root of the area un-

der the d2(Â,A0) curves under different settings in Table 1, which shows that

MCNet outperforms SoftImpute, TopN, and NetRec in all settings with a smaller

area under the curve, on average.

4.2. Performance as the noise level varies

We compare MCNet, SoftImpute, TopN, and NetRec under the models with

various noise levels σij , and provide guidelines for choosing among the four meth-
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Figure 1. The estimation convergence under model I from 100 simulations. Column 1
shows the comparisons of d(Â,A0) between five comparative methods. Columns 2–4

show d(β̂,OTβ0), d(X̂OT,X), and d(B̂,B0), respectively.

ods in practice. The parameters d,β0,B0 and X are assumed to be the same as

those in Section 4.1. We choose n1 = n2 = 500 to 2,000 with a step size of 500.

We generate the observation matrix using Y = A0+ε, where ε is an error matrix

with entries from an independent zero mean normal distribution, with standard

deviations varying from 0.2 to 1.6 with a step size of 0.2. Figure 3 shows that
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Figure 2. The estimation convergence under model II from 100 simulations. Column
1 shows the comparisons of d(Â,A0) between five comparative methods. Columns 2–4

show d(β̂,OTβ0), d(X̂OT,X), and d(B̂,B0), respectively.

MCNet outperforms SoftImpute, TopN, and NetRec with a smaller d(Â,A0).

The results are consistent with our finding in Remark 1 of Section 3 that the

performance of the NetRec estimator in Yu et al. (2021) deteriorates, while our

estimator still exhibits satisfactory results when the signal in A0 is small.
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Figure 3. Performance of MCNet method and other methods under models I and II for
100 repetitions.

4.3. Performance as the network density varies

We compare MCNet, SoftImpute, TopN, and NetRec under the models with

various network densities. We fix d = 10 and n1 = n2 = 500. To vary the

density of the social network, we generate entries of X from a beta distribution

with parameters (α, 1), where α varies from 0.3 to 2.1 with a step size of 0.3. We

then scale the entries of X by a chosen constant to make sure maxi,j Xi·X
T
j· = 0.9.

The adjacency matrix is generated from a Bernoulli distribution with success rate



ROBUST RECOMMENDATION VIA MCNET 623

Figure 4. Connection probability. Performance of MCNet and other methods under
model I for 100 repetitions.

XXT. The parameters β0 and B0 are assumed to be the same as those in Section

4.1. Let A0 = c(Xβ0 + B0), where c is a constant chosen to achieve ‖A0‖F =

1,000, and Y = A0 + ε, where ε is an error matrix with independent mean zero

normal entries. The standard deviation of the errors is chosen to achieve a 0.5

signal-to-noise ratio. We only adopt model I for the missing mechanism. That is,

each entry of the observation matrix W is generated from a Bernoulli distribution

with mean 0.2.

Figure 4 shows the resulting d(Â,A0) with 95% confidence intervals versus

the mean density of the social network (mean of Π = XXT). It indicates that

our estimator is better than other comparative methods, with smaller RMSEs,

on average. Furthermore, the advantages over other estimators are move obvious

when the connective rates are higher.

4.4. Robustness of MCNet

We further evaluate MCNet when model (2.1) is violated. We select n1 =

2,000 and n2 = 500, and generate Y from Y = A0 + ε, where A0 = UΣVT

std(UΣVT)−1, with U ∈ Rn1×10, V ∈ Rn2×10 being unitary matrices, Σ being

the diagonal matrix with entries from the beta distribution with shape parame-

ters 1 and 5, and std(UΣVT) being the element-wise standard deviation of the

matrix UΣVT. The errors are generated from a mean zero normal distribution,

with standard deviations varying from 0.2 to 1.6. The entries are missing with

probability 0.95. Furthermore, we generate Mij and Mji from a Bernoulli distri-

bution with the success rate as the i, jth entry of exp(−βT), where T is a matrix

with the i, jth entry equal to ‖A0,i·−A0,j·‖2 and β is selected to allow the mean

number of edges on each node of the network to be eight.



624 WANG, SHEN AND JIANG

Figure 5. Robustness to assumptions. Performance of MCNet and NetRec methods
under model I from 100 simulations.

Figure 5 shows the resulting d(Â,A0) from MCNet and NetRec with their

95% confidence intervals. The results show that when the true model deviates

from the one assumed in MCNet, MCNet still provides satisfactory results. Fur-

thermore, it outperforms NetRec (with the correct model assumption) with a

smaller d(Â,A0) when σij > 2.5.

5. Empirical Study

In this section, we evaluate MCNet on two real data sets: the Douban Movie

data set from Douban.com and processed by Zheng et al. (2017), and the Yelp

data set from the Yelp Dataset Challenge (Yelp (2019)).

5.1. Douban movie data analysis

The data set contains 195,493 ratings from 3,022 users on 6,971 movies. We

select a subset of movies that have at least 10 ratings. Furthermore, two users

are considered as connected if they are friends. The i, jth entry of Y is the rating

from user i on the jth movie, scaled by the total number of ratings received by

the movie. Finally, the data set comprises 3,022 users, 3,810 movies, and 176,656

ratings. There are 1,366 connections in the social network. The sample standard

deviation of observed entries of Y after scaling is 0.08.

We select d using Ahn and Horenstein’s method (Ahn and Horenstein (2013)).

We assume that the missing mechanism follows model I. We randomly split the

users’ ratings and the corresponding missing indicators into training (80%) and

testing (20%) data sets. Within the training steps, we implement five-fold cross-

validation to select the tuning parameters for MCNet, while keeping the social

network connections fixed. We report the RMSE for the observed entries on the
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Table 2. The mean out-of-sample RMSEs over 50 repetitions for the Douban data set.
The minimum value is indicated by the bold font.

MCNet SoftImpute TopN NetRec1 NetRec2

Mean of RMSEs 0.01187 0.01299 0.01258 0.01225 0.01251

95% CI 0.01162-0.01211 0.01273-0.01324 0.01232-0.01283 0.01190-0.01260 0.01223-0.01279

Figure 6. The testing RMSEs of MCNet and other methods over 50 repetitions.

testing set and compare our method with SoftImpute, TopN, and NetRec. We

repeat the training–testing procedure 50 times and report the testing RMSEs in

Table 2 and Figure 6. The results show that MCNet has a significantly smaller

testing RMSE than those of the competing methods, where its 95% confidence

interval does not overlap with the mean RMSEs from the other methods.

5.2. Yelp data analysis

The data set contains six million reviews from one million users on 192 thou-

sand businesses. We extract the users’ social network connections and their

ratings on restaurants from five cities: Mentor OH, Gastonia NC, Matthews NC,

Laval QC (Canada), and Brampton ON (Canada). Two users are connected

if they are friends. The i, jth entry of Y is the rating from user i on the jth

restaurant, scaled by the total number of reviews received by the restaurant. We

provide some descriptive statistics for the five cities in Table 3.

We use Ahn and Horenstein’s method (Ahn and Horenstein (2013)) to select

d and apply the same training–testing procedures in Section 5.1 to evaluate the

methods. For each city, we repeat the training-testing procedure 50 times. The

results are reported in Table 4 and Figure 7, which show that all methods perform

equivalently because the 95% confidence intervals overlap with each other, while

MCNet has a consistently smaller mean RMSE across all cities. We further

calculate the sample standard deviation of the entries of Y in Table 3, which
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Table 3. Description of the data from five cities. Abbreviations: rstrnts, restaurants;
conns, connections. Standard derivation is the sample standard deviation of observed
entries of Y after scaling.

City No. of users No. of rstrnts. No. of ratings No. of conns. Standard
(n1) (n2) (

∑
ijWij) (

∑
ijMij) deviation

Mentor 2,611 181 4,689 2,334 0.18
Gastonia 3,050 184 5,000 3,422 0.15

Matthews 5,505 207 9,600 13,808 0.13
Laval 1,380 282 2,843 3,064 0.35

Brampton 4,329 546 9,283 12,392 0.25

Table 4. The mean testing RMSEs over 50 repetitions for the five cities. The minimum
value of each column is indicated by the bold font.

Mentor Gastonia Matthews

Mean 95% CI Mean 95% CI Mean 95% CI

MCNet 0.0479 0.0370-0.0588 0.0334 0.0256-0.0411 0.0202 0.0161-0.0243

SoftImpute 0.0507 0.0397-0.0617 0.0354 0.0273-0.0434 0.0217 0.0176-0.0258

TopN 0.0507 0.0397-0.0617 0.0349 0.0269-0.0429 0.0214 0.0173-0.0255

NetRec1 0.0496 0.0388-0.0604 0.0349 0.0269-0.0430 0.0215 0.0175-0.0256

NetRec2 0.0496 0.0388-0.0604 0.0350 0.0269-0.0430 0.0215 0.0175-0.0256

Laval Brampton

Mean 95% CI Mean 95% CI

MCNet 0.2060 0.1729-0.2390 0.0958 0.0831-0.1084

SoftImpute 0.2366 0.2033-0.2700 0.1020 0.0897-0.1144

TopN 0.2351 0.2018-0.2684 0.1004 0.0881-0.1128

NetRec1 0.2235 0.1904-0.2566 0.1005 0.0882-0.1128

NetRec2 0.2213 0.1881-0.2545 0.0996 0.0873-0.1119

suggests that the observed rating in Yelp has larger variation than that in the

Douban data set (sample standard deviation is 0.08). This phenomenon suggests

that when the data variation is large, the methods perform equally, possibly

because the signal is weak and there is not much room for improvement. When

the variation of the observed rating is small, our method performs significantly

better than the other methods.

6. Conclusion

We propose the MCNet method to incorporate social network information

for matrix completion. MCNet generates latent features from a social network

using the random dot product graph model, and the features are used in the
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Figure 7. The testing RMSEs of MCNet and other methods over 50 repetitions.

matrix completion to reduce the estimation errors. The algorithm is evaluated

using extensive simulations and two real data analyses of Douban movie and Yelp

data sets. The results show that MCNet outperforms the SoftImpute, TopN, and

NecRec algorithms and provides robust performance when the signal-to-noise

ratios are small.

In general, incorporating information in Y to estimate X will improve the

estimation accuracy (Yu, Rao and Dhillon (2016)). To achieve this goal, we

could add an additional penalty term ‖M−XXT‖F to the loss function in (2.4)

and (2.5). This enriched loss function will allow us to obtain X̂, β̂, and B̂ in

a single framework. However, this penalty function is nonconvex in X, which

brings difficulties in parameter estimation. This topic is left to future research.

Supplementary Material

The online Supplementary Material contains detailed proofs for Lemmas 1–3

and Theorems 1–2.
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