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S1 Proof of Theorem 3.1

In this section, we provide the proof of Theorem in the paper which will
follow from a succession of supporting concentration results. We will bring
in some established results and then give some additional lemmas with proof
to show Lemma through which we will demonstrate Theorem (3.1]later.

Before giving out the auxiliary results, we define some frequent nota-
tions first. For a real matrix H, we let ||H|., denote the infinity norm,
trace(H) denote the trace, and rg denote the rank of the matrix H. We
denote =< as the symbol for asymptotic equivalence in order. We write

X € 8G(o) if X is sub-Gaussian with parameter o.
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Besides, we define some matrices commonly used in our proof. From
(2.1) we define IT = XXT as the connection probability matrix. Write IT =
S (I, (T u, (I1)T where A\ (II)’s are the eigenvalues ordered by its
absolute magnitude and u; (II), . .., u,, (IT) are the corresponding eigenvec-
tors, and let Upp = [uy(IT), . . ., uy(IT)], and Sy = diag{ |\ (IT)], ..., [Aa(II)| }.
Let W1 XW3 be the singular value decomposition of UfjUn. We define

the maximum expected degree as §(II) = max;<,, i1, IL;.

S1.1 Established bounds

To prove the final conclusion we will need some concentration results from
the literature. We state a tight bound on the spectral norm of M —IT which

is a natural variant of Theorem 7 in Lu and Peng| (2013).

Proposition S1.1. Let M € R™*™ be the adjacency matriz of an independent-
edge graph with matriz of edge probabilities I1. Let 6(I1) = max;<y, Z;il IT;;

and suppose §(II) > log*t®(ny) for some positive constant a. Then
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S1.2 Guarantee of orthogonality

Lemma S1.1. Let B be the solution of the following optimization

. . 1 .
B — gm{ IB - PA(WoQoY)|2+ AofalBll. + (1 a>||B||%}},

B ning

then B € N(X).

Proof. For any B not orthogonal to X, B = P<B + P4B, then

1 ~
o IB —Pg(WoQoY)|7+ XofalB. + (1 - o)|B%}
1 1 1 PN 2
— mHPﬁB +PgB-Pg(WoQoY)|7
+Xo{al|PgB + PgB|. + (1 — o)|PgB + P¢B|%}
1 ~
= IPx(B-WoQo Y|+ [PxBI:
+ho{al|PgBll. + [[PgBll. + (1 — a)[PgBIl% + [P B|/%}
1 ~
> - IPgB — P (WoQoY)|? + Aa{alPB|. + (1 — o) ||P£B|7}.

The loss function is always smaller when we replace B by P)%(B for any

given B, where P}%B is orthogonal to X. Therefore, B € N'(X). O

S1.3 Additional technical lemmas

In this subsection, we will show some technical lemmas to prove the Lemma
and Theorem 3.1} The following lemmas follow closely with the theorems

in Tang et al.| (2017), except we apply a tighter bound.
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Lemma S1.2. Assume Condition holds. Let M ~ RDPG(X). Then

[UnUnm — WiW, || = O, {dn; *5(ID) },

||W1W2TSM — SHW1W;FHF =0, [max {d%nf2§2(ﬂ), dlog%(nl)}] ,
and
W, WISZ, — SZW, W =0, [ma {d%n;%?(ﬂ), dn; % logh m)}].

Proof. Since W;XW3 is the singular value decomposition of Uf;Upy, then
we define the principle angles between column spaces of Uy and Uypg to be

the diagonal matrix
®(Uqy, Un) := diag [cos™ ' {o1(UUm)}, . .., cos™ {oa(UpUm)} ,

where 0;(UfUn ) is the ith largest singular values of Uj;Upy. Then by

Lemma 1 in |Cai and Zhang (2018)), we have
|UMU%; — UnUg|lr = V2| sin @ (U, Un) || (S1.1)

Furthermore, with the conditions being satisfied, Theorem 2 in Yu,

Wang and Samworth| (2014) implies that

2/d||M — 11

) (S1.2)

[sin @ (U, Um)|r <
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Since IT is symmetric and has rank d, then by definition, o4(IT) = A\4(IT),
where o4(IT) and A\y(II) are the dth largest singular value and eigenvalue
respectively. Since Condition |(C5){(b) implies that \;'(XTX) = A\, }(IT) =

O,(n"), then by (S1.1), , and Proposition , we can get

[UmUpy — UnUnpllr

=

= 0, [max {d%nfléé(ﬂ),d%nfllog(nl)é

]

- 0, {d%n;laa(m} . (S1.3)

where the second equality is due to Condition [(C5)(c).
Since for any matrix A € R"*" and B € R"*"3 we let the singular

value decomposition of A be UXV?T, then we have

IAB|r = [[USV'B|r

= /trace{(UXVTB)TUXZVTB} = \/trace(BTVETEVTB)

= =V B|r

niy n3

- \ Z Z(EVTB)%

i=1 j=1

niy n3 n2

= \ Z Z{Z Yik(VIB)k;}?

niy n3

= [ D0 [0i(A) Licmingu may (VTB) 2

i=1 j=1
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i=1 j=1

< J > {omax(A)(VTB);}

= Omax(A) \l > Y (VTB)

i=1 j=1

= 2|2JZZ<VTB>%

i=1 j=1
= HE||2HVTB||F = ||Z||2\/trace(BTVVTB) = [|X|]2/trace(BTB)
= H2||2HB||F

= [|[A]2[|B]F. (S1.4)

Then we have

UL Unm — W WY |5
= [Wi(Z-D)W,|r
< Wil2|Z = I)|# W3 [|2

= [E-Ir

: J > (1= o (U U))?

=1

d

> {1-a(URUM)Y?

i=1

d
> 11— 0} (UpUn)

i=1

= | sin ®(Un, Unm) |z

IN

IN
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4d|M — TT|3
oI

where the second equality is due to W1, Wy are orthogonal matrix, the last
inequality is from (S1.2)). Therefore, we have

U Unm — Wi W || = O, {dni?6(TT) } . (S1.5)

Let ' = Upm — UHU%UM. Since Uy has orthonormal columns, then
we can rewrite I' as {I — Up(ULUp) U4} Unm. Then T can be regarded
as the orthogonal projection of Uy onto the column space of Up. And we
have for any W € R4,

[Um — UnW||7
= ||Um — Un(UUn)'UqUy + Un(UgUn) ~'Up Uy — UngW |7
= |[Um — Un(UpUn) 'UUm|7 + [Un(UpUn) "' UgUm — Un W3
+2(Unp — Un(UUn) ' UL Unm, Un(UUn) " 'ULUm — UgW)
= ||[Un — Un(UpUn) 'UgUmlff + [Un(UpUn) ~'UpUsm — Un W7
> [[Um — Un(UpUn) U Uwlf
= |Um — UnULUnm|7

= |7z
where the third equality is due to

(Unm — Un(ULUn) 'UL Uy, Un (UL Un) ' U Uy — UpgW)
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= trace[{Uy — Un(UgUn) 'UL UM}

{Un(UqUn) 'UpUn — UnWH]
= trace[{I — Ug(ULUn) 'UL}Un{(ULUn) 'UL Uy — WU,
= trace(0)

= 0.
By taking W = U} Uy we can get

ITllr < [[Um — UnUpUwmlle
= [|(UnmUpy — UnUgp)Unal
< |[UmUy — UnUg|l#||[Umllr
= Vd|UnUy; - UnUg s, (S1.6)
then from we have ||T||p = O,{d*?n?6(I1)}.
Since
W, WJSy — SpW W3
= (WiW; — UpUnm)Snm + U UniSm — SnWi Wy
= (W, W, — ULUn)Sm + UfMUy; — SpW, W)
= (WW; — ULUp)Sym + UL (M — IT) Uy + ULITUy
—SpW,Wj

= (W, W, — ULUn)Sm + UM — INT + UM — I U UL Uy
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+ULIUy — SpW W3

= (W,W, —ULUn)Sm + Ug(M — IDT + U (M — II) U UL Uy
+SnUnUnm — SuW Wy

= (W,W; — UpUn)Sm — Su(W, W5 — UpUn)

+ULM —IIT + UL(M — II U U Uy,

then we can get

W1 W3Sy — SaW W, ||

IA

IWiW3 — UnUnmllp([Smllr + [Sullr) + | Unllp[|(M — IDT ||

+[U(M — IDUn || 7| Un|| 7| UMl

IN

W, W3 — UL Um| #(|Smllr + [|SullF) + |Un|l#|M — II||s | T||

+||U(M — IT)Ug || ¢ | Un| | Uml| ¢

IA

VWi W3 — UUnmt|[p([|M[l2 + [T]|5) + VM = IT|lo[|T|

+d|[Up(M — ) Unl|»

VAW W3 = UgUna | p(v/[IMIL M + /T[T )

IN

+Vd|[M = T1||3|| T ¢ + d||U(M — TD) Un |

IN

Vd|[WiW3 = UgiUnm|[#(|[M oo + [TT]lo0) + VM = II[lo|| T

+d|[Up(M — II)Unl|

IN

CVAS(I) W, W73 — UL Ul + Vd|M — ||y ||T||
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+d|[Up(M — II)Unl|» (SL.7)

where the first inequality is due to the triangular inequality as well as
the sub-multiplicativity for Frobenius norm, the second inequality comes
from , the fourth inequality is due to the Holder’s Inequality, the
fiftth inequality is due to the symmetry of M and II, and the last in-
equality holds with some positive constant C' because of the fact [6(M) —
d(IT)| = O,{56(IT)} which is derived by Chebyshev’s Inequality with Con-
dition [(C5)|(c).

Since {UF(M —II)Un}i; = > 0, Do Uniwi(Myg — I1iy)Unry, then by
Hoeffding’s Inequality we can get

t2
Pr({UgM — I Un}y| > 1) < exp | — e
. ’ 2 Zk:l =1 Ulgl,kiUlgI,lj

t2
< exp (——> ,
o 2

thus we have {UL(M — IT)Ug }i; = O,{log"/?(ny)}. Therefore we can get

|URM — 1) Un|r = 0, {log(n1)} (51.8)
Combining Proposition , the bounds (S1.5)) and and the bound of
U (M—IT)Un| F, we can get §(IL)[|W: W3 —Up Unml|r = Op{dn,; *6*(IT)},
IM—TT|[2| D] 7 = O, {d*/*ny*6**(I)} and || Uy (M~I1)Unl|r = O,{log"*(n1)},

thus we can derive from (S1.7)) that

W1 W3 Snm — S W W, ||
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= 0, [max {d%nﬁdQ(H),dlog%(nl)H . (51.9)
Since for 1 < 1,7 <d,

(WiW3Sg — SEWIW, ), = (Wi W,);

< ;2 (I (Wy WD) (M) — A ()}

and we kIlOW (W1W2TSM — SHW1W2T)1-]- = (W1W2T)U{/\z(M) — )\](H)},
Tgl/2 1/2 T —1/2 T
then we can get |[Wi; W,y Sy — S WiW, ||p < A, 7“(II) | Wi W, Sy —

SuW 1 W | z. Then, by (S1.9) and the fact \;'(II) = O,(n; "), we get
W1 W5 S3; — SEWIW, |11
s 1
= 0, [max{d%nl 25%(11), dn, 2log%(nl)H :
[

Lemma S1.3. Assume Condition holds. Let M ~ RDPG(X). Then

there exists an orthogonal matriz O such that
~ _1 _3 -1 1
IX — XO||r = (M — I)UnSg? ||+ + O, [max {dnl 2 §(11), dn, ? logf(nl)}] .

Proof. Let’s define Iy = UgULUy — UgW, W2, Ty = W, WIS\ —

SI*W, WY, and T's = Uy — UgW, WYL = Uy — UgUL Uy + Ty Since
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UnULIT = IT and UMSllv/[2 = MUMSR/}/Z, then we can get

X — UnSgW, W7

— UmSZ — UgW,WISZ, + Un(W,WT'SZ, — SZW, W)

— UmS% + (UnULUnSE, — UnULUMSZ,) — UnW, WIS,
4+ UnUnT,

— (Um — UgULUn)SE, + T1S2, + Unls

— MUnS,? — UgULUMSZ, + T4S2, + UnT,

— (M - M) UnSyf + TUMSy2 — UnULUwSZ, + T4S2, + UnT,

— (M - M) UnSy? + UnUL(ITUpMSyE — UnS2y) + I1S2, + Unls

— (M - M UnSy7 — UnUL(M — I UnSwg + T4S2, + UnT,

— (I-UgUL)(M — IDUnSng + 1S + UnTs

— (I- UgUL)(M - IDUpSyf — (I — UpUL)(M — U W, WTS,?
_UnUL(M — ) U W, WIS, + (M — I U W, WTS,7 + T,S;,
4 Ul

— (M- IDUgW, WISy — UgUL(M — ) Uy W, WIS,
(I UgUL)(M — IDT3Sy7 + T'SZ, + UnTs

— (M- IDUgSp W, WT 4 (M — IDUg (W, WISy — SW, W)

“UnUL(M — IHUgW, WIS + (I — UgUL)(M — II)T,S7
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1
4TS, + Upls. (S1.10)

Let A\;(-) denote the ith largest eigenvalue. Then Weyl’s Inequality

implies
Ad(IT) + Ay (M = II) < Ag(M) < Ag(IT) + A (M — IT).

Since IT, M and M — IT are symmetric, then |M — II||s > |A(M — IT)|

and [|[M — II||; > [\, (M — II)|, thus
Aa(IT) = [[M — T[] < Ag(M) < Ag(IT) + [|M — IT]J5.

By Condition |(C5)| and Proposition [S1.1, we can get

Since ||Sy; "% || r = \/25’21 IATH M) < \/dmgl(M)y, then by (S1.11) we

can get [|Sy; %[l r = O {d"/?n;"/*}. And by Weyl’s Inequality we have

ISkllr = | )

d

< \ Z)\i(n) + (M —1I)

i=1

< Vd{n (D) + [M —TI||5}

= Vd(|IT]l + M —II]}2)

< \Jaty/ AL + v - 1))

= V(|| + [[M — II]}5)
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= Va{5(IT) + [M — I}

where the third inequality is due to the Holder’s Inequality, the third equal-
ity is due to the symmetry of II, and the last equality comes from the def-

inition of §(II) and the fact that elements IT are nonnegative. Therefore,

—_

from Proposition [S1.1| we can get [|Sy|lr = O, {d"/25YX(IT) }.

Since for 1 <14,5 < d,

_1 _1 1 1
(WiWSSy = SEWiWE)y = (WiW3), (A2 (M) - A () }

and (W, WIS\’ — SIPW W) = (W, W), {\/2(M) — AV2(IT)}, then

J

by (S1.11) and Lemma , we can get ||VV1W2TSK/[1/2 - Sﬁl/2W1W2T||F =

O, [max {d3/2n1_7/252(1_[), dnl_g/Qlogl/z(nl)H . Since we have

(M — I Up(Wi W3S\ — SZWiW3)||p

BT |
< IM = 2| Unl2 (Wi W, Syf — Sp* WiWy)r,
then we can get from Proposition that

(M — I Ug(W ;W3 S,2 — S> Wi W3)||p

_T
2

= 0, [max {dn; 53(1_[),dnfglog%(nl)éé(H)H. (S1.12)
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Since the bound (S1.8) implies |[UR(M — II)Ug||p = O,{log"/*(n1)},

-1/2

and we have ||Sy;"2||r = O,{d"/*n7""*}, [W1WT |2 = 1, and |[Ug UL (M—

I UnW, WISy? || < [UnUZ(M — ID) Ug|| ¢ | W1 WY |2[|Spt”*[| 7, then

we have
|UnUL(M - I UnW W3Sy | = O, {dblogh(n)n; 7} (S1.13)

Additionally Lemma|S1.2suggests that ||| = O,{dn;?6(I1)} and ||Ts||r =
0, [max {d3/2n1_5/252( ), dny 1/210g1/2( )H Since we have |[Up—Un Uy Unml||r =

O,{d">n*§*/2(I1)} and

ITslr = [[Um — UnUjUn +Tyle

< |Um — UnUpUwmllr + [T |F,

then ||I‘3HF = Op{dl/anlél/Q(H)}. Since I_UHUEI = I_Ul'I(UFIUH)_lUEI

is a projection matrix, then we have ||I — UgUg|2 = 1, thus from

_1
|1 UnUR)(M ~ ISy llr < T~ UnUR[L[[(M — IT3Sy/ |5
_1
= [(M-IDTsSy/ ||

1
< M = TD)|[[Ts[[p[[Spp [ 5
Proposition , bounds for ||T's|| and ||S;/[1/2||F, we can get that

|~ UnUR) (M ~ T8y e = 0, {any 60} (S1.14)
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And the bounds on ||Ty|p, |T2llr and ||Syxe|l# yield
1
ITiSxillr = 0, { @i 253 ()} (51.15)
and
3 -3 ) -1 1
|Unl:|Fr =0, [max {d?n1 26°(I1), dn, 210g2(n1)H . (51.16)

Thus by (S1.10) and (S1.12))-(S1.16|), we can get that
IX — UnSEWiWS |,

— M -~ D) UpS W, WYz + O, [mac {dn; S§(IT), dn %1og%(n1)}]

[N

_1yT _1
_ <trace [W2W1T {(M - H)UHSHQ} (M — II) US> W, WT D

+0, [max {dnl_%é(ﬂ) : dnl_%log% (n1) H

N

17T _1
- (traee [WlwgwgwlT {(M - H)Unsl?} (M — H)UHSH2D
+0, [max {dnl_%é(l_[), dnl_%log% (ny) H
_13T _1 3
_ (trace {{(M ~ US| (M- H)UHSHQD
_3 _1 1
+0, [max {dn1 26(I1), dn, 2log§(n1)H
_1 _3 _1 1
— (M - IDUnS||r + O, [max {dnl 2§(I1), dn, 210g5(n1)}] .
Since X = UHSi-{QW for some orthogonal matrix W, then there exists

an orthogonal matrix O = WTW, ;W1 such that

UnSi*W, W7 = XO, (S1.17)
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which completes the proof. O]

Remark 1. (S1.17) suggests UHS}{2W1W2T = XO, then we obtain O =

(XTX) ' XTUSL W, WY

Lemma S1.4. Assume Condition holds, let E = XOT — X where O
is the orthogonal matriz defined in Lemma[3.1. Then there exists a matriz

R € R™*? such that
E=X0"T-X=M-IDX(X"X)"'+R
where |R||p = O, [max {dnfg/Qé(H), dnfl/Qlogl/Q(nl)}].

Proof. By Lemma there exists an orthogonal matrix O such that H}A(—
X0 = ||(M =T UnSi’ ||+ O |max {dn, ¥ *6(T0), dn; V1og"2(n1) }|.
Therefore, there exist a matrix R which satisfies that its Frobenius norm is

of O, [max {dnﬁ/?é(ﬂ), dn;1/210g1/2(n1)H such that

XOT - X =M -IDX(X"X)"' +R.

Proof of Lemma [3.1]

Proof. Let E = XOT — X and G = X(X"X)"!. Since by Lemma , for

all i,j, we have Eij = RZJ—FZlel(M—H)ZkaJ, then we have (EZ] _Rij)2 =
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{3701 (M —1I),Gy; 2. By (2.1) we have

E{(Ej; - Ry)’} = E {i(Mz‘k -

k=1

- B {Z(Mik — Hik)ZGij} +2F {Z(M,k —
k=1 k<l
= ZG { ik — 1 }+2{ZGU
k<l
— ZG E{(M — y)?}
= Z G (1 — ),
k=1
then we can get
Pr {(Eij — Ry)* > nfﬁ} < nfE{(E; - Ry)*}

IN

IN

<

<

2
Hik)ij}

ZG
ZHGHF
n2 3
X (xTX) 3

%
n _
— XX
d2

- — 0,
2
Comqy

Hik)Glj}

zk)}

where the first inequality is due to the Markov’s Inequality, the second in-

equality is due to the fact that II;; € [0,1], and the last inequality comes
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from Condition and the fact that || X[ < +/dny, therefore, we can get

for all 4, j, (E;j—Ri;)* = Op(nl_l/Q) thus [E—R||r = Op(dl/zni/zl). Thus, by

N

LemmalS1.4} we get ||[E|r = O, [max {dnflé(ﬂ), dny*log"?(ny), d1/2n}/4}]

=0, [max{dnf%(l’[),d”%}”}]. Since §(IT) < ny, then we can get

IE[F = Op(ny™). O

Lemma S1.5. Assume Condition holds, then there exists an orthog-

onal matriz O such that
|(XTX)™! — OT(X™X)'O||r = O, [max {d%;%%(n), d2zog%<n1)n;2}] ,
and for all vectors v.€ R™ s.t. [|v]s = 1,

|(Px = Pr)vlle = Oy [max {my &, ni 26 (X, togh (ma)ny '}

Proof. Let A = XTX — OTX"'XO, by Lemma 11 in [Loh and Wainwright

(2017), we have

I(OTXXO) Al

XTX) ! — (OTXTXO) M. <
IRTR)" — ( )7lr < T oTXTRO AT

. (S1.18)

Additionally, since (O*XTXO0O)™! = OT(XTX)"!O and n(XTX)™! —
S, !, then we have
I(0"X*XO0) Y| = [OT(X'X)"O]F

1
= {1+o(1)}—[07S;'0]r
1
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IN

IN

<

1 N
{1+ 0(1)}n—1HOT\|2||S$1||F||O||2
1 1 _
d2{1+ 0(1)}n_1||OTH2HSz1H2||O||2

1 1,
d2{1+0(1)}n—1|5xlﬂ2

1 1
dz{1 Hy—
{ * O( )}nlamzn(sx)
2d2
o (S1.19)

where the first inequality is due to the sub-multiplicativity for Frobenius

norm, the second inequality is due to the norm equivalence, and the third

equality comes from the fact that O is an orthogonal matrix.

Since by definition XTX =

(UmSye)TUpmSY, = Sum and by (S1.17)

we have OTXTXO = WZW?SHWle, then we can get

IAlr = |XTX - OTX™XO|r

= ||Sm — WoW{SpW W, | s

= [WoWT (W, WISy — SaW, W)

< W W |2[[( Wi W, Sy — SeWi W) ||

= [(WiW3Sym — SpW i W3)|lp

where the third and forth equalities are due to Wy, W, are orthogonal

and the inequality is from (S1.4)). By Lemma we have |[W; WISy —

SuW Wi |lr =0, [max {dnl_153/2(1_[), dlog!?(n,) H , then we can get that
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|A]lF =0, [max {dnflé?’/z(ﬂ),dlogl/z(nl)H. Thus, from (S1.18)) we get

I(XTX)™" = (0T XTXO0) |

= 0, [max {dan?’(S%(H),dzlog%(nl)nl_QH : (S1.20)
Since

I(Pg — Px)v:

< [Pg = Px|rlvil

= IXXTX) X =X (XTX) X e

= [I(X = X0)(X™X)'0"X" + X0 {(X"X) ! - (0"X"X0) '} O"X"|
HXXX) (X - 07Xk

IX — XO| p[|(XTX) Y| £ | X[ + [X|2NXTX) ! — (OTXTXO) |5

IN

HIXXTX) |6 X" — OTXT |,

where the last inequality is due to the sub-multiplicativity for Frobenius
" ST OV-1 1/2 1/2\7 /241 _
norm. By definition, we have X(X"X) ™" = UmSyr {(UmSyr ) ' UmSyr } ' =
UpnSy”? and (XTX) ! = {(UnS1)"UmS ! = Syt And we can
get from Lemma that ||S1:/[1/2HF = Op(nl_l/2), from Lemma that
|X = XO|p = O,(n)'"), and ($1.20) that ||(XTX)™ — (OTXTXO0) | p =
O, [max{d?ny3§%/2(IT), d*log"/?(n1)n; %}, then we can get ||(Pg —Px)v|s =

0, [max{n;1/4, ny 26%/2(II), log"?(ny )ny ' 3. =
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Proof of Theorem 3.1. Since A; = o(ny'), then we have
(XTX + nyngA 1) ' XT
= (nl_l)/iT)A( + ng)\lI)_lnl_l)A(T
= (X™X)"'XT {1 +0,(1)}, (S1.21)
and since |§w —0;] = O,(n7"), then we have
WoﬁoY:Wo{l—kOp(n;%)}ngY. (S1.22)

Thus, by (2.6), we can get there exists an orthogonal matrix O such

that
B-0"8,
= (X"X 4+ nina M) I XT(Wo QoY) — 073,
= {1+0o(1)}X™X)'XT(WoQoY)—-0"3,
= {1+oM}H{1+ 0, )} (XTX)IXT(Woy0Y) - 0",
= 1+ op(n;%)} (XTX) XTI (W o Q0 Y) — O (XTX)'X"A,
= {1+ op<n;%>} (XTX)IXT{(W o Qo0 Y) — A}
HXTX) XAy — OT(XTX) XA + O, (n; ) (X X)X T A,
= {140, )} XTR)IRT{(Wo 20 Y) — Ao}
HX™X)' - 0T(X™X)T0}XTA,

_i_OT(XTX)AO{)A(T _ OTXT}AO + Op(nl_%)()A(T)A()’l)A(TAO,
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where the second equality is due to (S1.21]) and the third equality comes

from (S1.22)), then for all j we have

B - OTﬂO J
= {140, } XTR)IK{(Wo oY), — Aoy}
HXTX) ™ - 0T(X"X)'0}X" A,

LOT(XTX)O{XT — OTXT} A, + O, (n; *)(XTX)'XT A,

Let D = XT{<W e} QO ©) Y) — _A.(]}7 then Dz’j = ZZ;I inwij}gj/ij -

XiiAoki = Doty Xui(wry — Oj) Aok /Okj — Xpiwrjer;/Ok; for 1 < i < d

and 1 < j < ny. By condition |(C1)| and |[(C3)| we know that Xj;(wy; —

ij)A07kj/9kj € SQ(|A0,kj/9k]|) and inwkjekj/ékj € Sg(ca/ekj), then in(wkj—
ij)Ao,kj/ij — inwaEkj/ekj S Sg(’A07kj/¢9kj’ + cg/ij) with zero mean.

Therefore, Hoeffding’s inequality gives us

PI‘(Dij Z t)

IA
@
s
i

2 }
{ 23 oy ([ Ao ki /Orsl + co/O;s)?

IN
o
>

i)

B t20% }
23 ki ([Aogs] + ¢5)?

B 202
45705 Ag,kj +c3

IA
@
s
e

IA
@
i
e

1262
AT +4c§n1}

IN
@
i
o

262
4@ + ) } '
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Then there exists a constant ¢ such that D;; = Op{n}/Zlogc(nl)Gil}. Since

(X™X) ' XT{(Wo oY), — Ay}

= (X'X){O"E" + O"X"H{(Wo oY), — Ag;}

= (X"X)"H{O"(X"X)'XT(M —II) + O"RT + O"X"}
{(W @) QO @) Y)j — AQ7.]'}

= Sy {OT(X™X)'XT(M —1I) + O'R™ + O'X"}
{(WoQpoY),; — Ag}

= SM{OT(X'X)"'X'M-II) + O"RTH{(Wo oY), — Ay}

+Sy 0D,
then we have

IXTX) 7KXW 0 Q90 Y),j — Ao, }o
< ISn I CXTX) X M= T [ (W 0 290 Y) 5 = Ao 12

HSnm PR FI(W o Q0 0 Y).; — Ao jll2 + [Syp [l £ 1D 2.

Now, because we know D;; = Op{ni/Qlogc(nl)Hgl} thus | D2 = Op{n}/zlogc(nl)egl},
(W o Q0 0Y),; = Agill = Opfny*log"(m1)8; '}, [ISyillr = Opfn;'} in

Lemma [S1.3} |(X"X)![|r = O(n; ") in (SL.19), [|[M —TT||, = O,{5"/*(IT)}
~1/2

in Proposition|S1.1jand condition|(C5)} and ||R||r = O, [max {dnl_15(H), dn, logl/Q(nl)H :

we have [[(XTX) ' XT{(W o Q0 Y),; — Ag.;}2 = O,{n; /*log"(n1)6;"'}.
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Since

{X™X) ™ — OT(X"X) ' O}X" Ay ;|5
— {(X™X)"' - OT(XTX)'0}SL UL A2
o~y A~ 1
< (XTX) - OT(XTX) O pl|Siyllr | Aojl2

< [XTX)™ = 0F(XTX) ' Ol|p IS5l Pl Ag 200

and we know [|(XTX) "' —OT(XTX)'0|| = O, [max {n;353/2(n), 1og1/2<n1)n;2}]
in Lemma [S1.20] ||Sll\512||p = 0,{0V*(I1)} in Lemma and ||Al|lasee =

O(n*) in condition then [|[{(XTX)™! — OT(X"X)1O}XTA |, =
O, [max {nf5/2(52(ﬂ), log!/?(ny )ny */261/2(10) }] :
Since
OT(X"X)'O{X" - 0TX"} A,
= OT(X'™X) H{(X™X)' X" (M - 1II) + R"}A,
then we have
I0T(X™X) " O{X" — O"X"} A4,
= OT(XTX)TH{(X'X) ' X" (M ~II) + RT} A 4
< X)X P M= T3] Ag,ll2 + 1(XTX) 2[R 2| Ao, 4]l2

< IXEX) 2R IXF IV = T2 [ Ag a0 + IXTX) H AR Pl Ag ll2-oc

and we know [[(X™X)~[p = O(ny") in (SL19), M — 1|, = O,{5"2(I1)}
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in Proposition|S1.1jand condition|(C5)| and ||R||r = O, [max {dnl_l(S(H) dn;*? log!/?(n )H :

we have [|OT(XTX)'O{X"T — OTXT}Ay > = O,{n; '6"/2(I)}.
Since (XTX>_1XTAO7.j = SK/II/2U%‘/IA07.J', then ||(§Z.TX)_1XTAO7.]'H2 S

I1Sn1” | [l Ad |20, thus we have [[(XTX) ™1 XTAg ;2 = Op(1). Since

1B, — 0" B, |1
< {140,m ) IXTR)IRT{(W 0 20 V) — Aol
H{XTR) ™ - 0T(X"X) O} A,
+]OT(XTX)TO{XT = OTX "} A 5 2 + Oyl ) [(XTR) KT Ag 1)

then we can get that || B, —O" B2 = Op[max{n; *log®(n1)6; ', ny 16"/2(I)}].

]

S2 Proof of Theorem 3.2

In this section, we provide the proof of Lemma and Theorem

which will follow from a succession of supporting results in Section [S1]

Proof of Lemma 3.2. Under Conditions |(C1)H(C5), Lemma 3.1 shows that
IXOT = X[ = O,(n /*) and Theorem [3.1] exhibits that ||/3 —0"8 12 =
O,[max{n; *log®(n,)0;", ny '6Y/2(I1)}] for each j, thus |8 — OTB,|r =

O,[max{n; *log®(n, )07 'ny* ny'ny/*6Y/2(I1)}]. Furthermore, we can get
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from Lemma that HSllv/[ZHF = 0,{0Y2(I1)} thus || Xz = O,{6Y2(I1)}

because | X[ < [Syillx-

Since
L IRB - X8,
1T ollF
1 o~ ~ ~
- ||X(5 - OTﬁo) + XOTBO - Xﬁo”?J
ning
2 o~ 2 A
< X(B8— 0" 24— IX0'8, — X3, |2
< KB - OB+ KO, X8,
2 =~ ~ 2 -~
< = X 2 _OT 2 = XOT—X 2 2
< o IRIBIB - OByl + 2118413

where the first inequality is due to the matrix norm sub-additivity, the last

inequality is due to the matrix norm sub-multiplicativity and the inequality
(S1.4), then by the bounds above, we get that Hi@ — XByll%/(niny) =

Op[maxc{n;?log™ (n1)8; >3 (T1), n*8(T0), n; ' *ng | Bo13:}]. =

Proof of Lemma 3.3. Under Conditions|(C1)H(C5)} we know from the proof
of Theorem [3.1fthat |[(Wo&y0Y).;—Ag_ ;|2 = Op{ni/Qlogc(nl)Gzl}. Since
|§l~j —0;j| = O,(ny"), then we have WoQoY = Wo{1+0p(n1_1/2)}90 oY.

Therefore, there exists positive constant cy such that
W o QoY — Aollr < cy/ninglogt(ng)o;! (52.1)

holds with probability 1.
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By 1} we know from the fact B is the minimizer that

1  ~ ~ ~ ~
. B —Px(WoQoY)|[7 + A Bl + Aa(1 — )| B3 (S2.2)
1 ~
< - By — P%(W o Qo Y)[|7 + Aacr|| Byl + Ao(1 — @) || By 13-
1762

Furthermore, from B € ./\/'()A() we get that ||)A(B +B-Wo oY% =
IXB —Px(WoQoY)|?+ B —PL(WoQoY)|2. But for By we have
IXB+Bo—WoQoY|}=|XB-Pg(WoQoY)|%+|By—PL(Wo

QoY)|% +2(XB — Pg(WoQoY),By), then combining ($2.2) we have

1 ) O 2 1 o) 1 P 2
L IRB-P(WoRo V)l + B PE(Wo oY)
+X20|| Byl 4+ A2(1 — @) [|Bo 1%
1 2 O 2 1 1 O 2
< KB - PR(W o fo Y[} + By~ PR(W oo V)
+X20|[ Byl + A2(1 — @) ||By||%,
then
1 e .
— X8+ B —WoQoY|7+ Xa|Byll. + A2(1 — )| Bol|7
1n2
1 a5 N 2 A~ N
< ||X,3+B0—WOQOY||%——<X,8—PX<WOQOY),B0>
nineg ning

+X2at||Boll« + A2(1 — a) | Bol|7,

then

1

ning

|XB+Bo+B—Bo—WoQo Y|+ Xa|Bol. + (1 — )| Bl
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1 s ~ 2 o .
< IXB+By~WoQoY|j - ——(XB-Pg(WoQoY),By)

ning ning

+X20||Boll« + A2(1 — a) | Bol|7,

then
1 o ~ 9 1 = 9
IXB+Bo—WoQoY|r+ —IB - Byl
nineg ning
2 PN ~
+n n <B - B(),X,B + Bo —WoQo Y> + )\QOJHB()H* + )\2(1 - Oé)HBo”%‘
1762
I ~ 2 o Py
< —|XB+By- WooY|} -~ ——(XB - Pg(WofoY)By)
1N ning

+X2at|Boll« + A2(1 — a) || Bol|7,

then

I 5 ~ N
—[B-Bolp < Xoa(|Boll — [IB]l.) + A2(1 = a)([|Bo|[ — || B[7)

ning

(B—Bg,X3+By—WofloY)

ning
2

ning

(XB — P¢(WoQ0oY),By). (52.3)

Then by(S2.3) and with o € (0, 1] and Ay > {2cylog®(n)0; +as}/vV/ninya?+

2||Bol|2/(n1ngec), we have with probability 1 that

1 ~
——|B — By||7
B =Byl
< X {allBoll. = [BIl.) + (1 = o) (IBoll — IBIIF) }
2

(B-—Byp,XB+By—WofoY)

ning
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IN

IA

IN

IN

(XB—Px(WoQoY), By)

ning

Xz {a([Boll. = IBJl.) + (1 = a)(IBo[} — IBII?) |

+

{<]§,WoﬁoY—5§B—BO>+(BO,BO—P)%((WOQOY))}

ning

Xz {a([Boll. = IBIl.) + (1 = a)(IBo [} — IBII?) |

n {<1§,WOQOY—AO+X50>

ning

+<B0,BQ — P;_/E(W ¢] ﬁ oY — Ao) + PXA())}

X {allIBoll. = [BIL.) + (1 = a)(IBol3 — IBIF) }

2 ~ ~
+——{IB.(IW o QoY = Agll> + [ XB,]l:)

ning

+1Boll. {IBo — P£(W o 0 Y — Ao)ll2 + [Pg 2 Acll2} }
%o {a([Boll, = 1BIL.) + (1 a)(IBoll3 — |BI3) }

9 ~ .
+— {||BH*(HW 0Q0oY — Aol + [[Aollr + IBoll2)

ning

+1Boll.(1Bollz + [W o @0 Y — Aollr + | Ao]lr) }

%o {a([Boll, = 1BIL.) + (1 = a)(IBoll3 — |BI3) }
2

+WHBH* {CY\/nanIOgc(nl)le + a2+/ M1 M2 + ||B0||2}
1702

2
t— IBol{[|Boll2 + cyv/minalog®(n)0; " + azy/nins}
1762

o 2cylogt(n1)0; ! + as N 2||Bg
\/ 1Mo nin
{2Cy10gc(n1)91_11 + a9 2||B0||2
+ -
A/ 112 (ANLD)

2220 Boll. + A2 (1 — @) || Bol|%

I2
L[ IBolls 4+ A1 = o)|Bollr

_ m} 1Bl — Ao(1— a)|BJ2



S52. PROOF OF THEOREM 3.2

where the second equality is due to the fact that B € A(X), the second
inequality is due to the trace duality property, the third inequality is due
to the matrix norm sub-additivity and the fact that P)LA( is a projection
matrix, the fifth inequality comes from the high-probability bounds ,
and the last inequality is due to Ay > {2cylog®(n1)0;" + as}/vninaa? +
2||Bol|2/(n1n9ec) that is assumed in the statement of Lemma (3.3
Therefore, we can get ||B — By||%/(nin2) = Opmax{laa||Bol|., A2(1 —

a)||Bol[E}]-

]

Proof of Theorem 3.2. Under Conditions (C5), with a € (0,1], Ay =
o(ngl) and \y > {ZCylogc(nl)Hzl—|—a2}/\/n1n2a2+2||B0||2/(n1n2a), Lemma

3.2l and Lemma [3.3] show that

JREN log®(n1)0(IT) 6*(IT) ||B,lI3
RHX/B - X/BOH% = Op {max ( nQeQ ) ng 5 1/02 F
and
1~
mHB — By||% = Op [max {Xsa|[Boll, A2(1 — @) [|Bo|| 7 }] -
Since

R 1
*(A,Ag) = mHA—AOH%
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1 A~ A
= IXB+B - X3, - Bo|7
nin9

2 A ~
< —|IXB - XBy||7 + IB — By||%,
(ALY
then we have
d*(A, Ag)
log™(ny)é(IT) 0*(IT) ||B,ll7
= Op max 292 y 3 1/02 F,)\QCYHBQH*,)Q(l—CK)HB()H% .
nivy, nT o ny neg

S2.1 Performance as d varies

In this section, we investigate the performance of MCNet, SoftImpute,
TopN, and NetRec when d varies. We fix n; = ny = 500 and vary d
from 1 to 10 by stepwise 1. The parameters 3,, By and X are the same
as those in Section [4.I Then the adjacency matrix is generated from a
Bernoulli distribution with success rate XX*. Let Ay = X3, + By and
Y = Ay + €, where € is an error matrix with independent zero mean nor-
mal entries. The standard deviation of the errors is chosen to achieve 0.5
signal-to-noise ratio. We adopt model I for the missing mechanism with an
80% missing rate.

In Figure , we plot d(A, Ag)/||Agllr with 95% confidence intervals
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versus the dimension d. Figure [1] shows that d(A, Ag)/||Ao||r decreases
along with the decrease of d, which implies the proposed method has better

performance when the latent position matrix is exactly low-rank.

0.0030

00025 1 T —
= 0.0020] mm=mmmmmmmmmmmmmm oo
S e N
000151 =T
g | ==
2 0.0010 1 —— MONet
—--=- Soft-Impute
—-— TopN
0.0005 A NetRecl
=== NetRec2
0.0000 T
2 4 6 8 10

Figure 1: Dimension d. Performance of MCNet and other methods under model I for

100 repetitions.

S3 Robustness to misspecification of d

To evaluate the robustness of our method with respect to the misspecifi-
cation of d, we added one simulation under misspecification of d. In this
simulation, we fix ny = ny = 100 and true d = 10. Each entry of X is
generated from a beta distribution with parameters (3,1). We then scale
each entry by a chosen constant to ensure max; ; X,XJT = 0.95. We gen-
erate M;; = M;;,© # j from a Bernoulli distribution with success rate

XZX;F and generate each entry in 3, from a mean zero normal distribution
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with variance d/ny. Moreover, we define By = PxUyV{d/\/nin, where
Uy € R"*10 and V, € R™*10 are matrices with standard normal entries.
Let Ag = XB,+ By and Y = Aj + €, where € is an error matrix with
independent mean zero normal entries where the standard deviation is cho-
sen to achieve 0.5 signal-to-noise ratio. We adopt the uniform missingness
(Model I) with 6;; = 0.2. When estimating X, we vary the dimension d
from 3 to 50. And we select the tuning parameters using the error pertur-
bation method in Section [£.1] The same procedure is adopted for selecting
tuning parameters in the SoftImpute, TopN, and NetRec procedures and
we replicate the simulation for 100 times. In Figure [2 we plot d(;&, Ay)
with 95% confidence intervals versus the misspecified dimension d. It shows

that our algorithm is insensitive to the selection of d.

0351 —— MCNet
—--— Soft-Impute
.................................... > —— TopN
.50 1
0-50 L J NetRecl
“““““““““““““““““““““““ —-=—- NetRec2
/-o\ o000ttt et t0 e tete 80y ot ee ot S S0ttt teetetoetee
T 045
=
2
0.40 1
0.35
10 20 30 40 50
d

Figure 2: Misspecified dimension d. Performance of MCNet and other methods under

model I for 100 repetitions.
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