ROBUST RECOMMENDATION VIA SOCIAL NETWORK ENHANCED MATRIX COMPLETION

Jingxuan Wang ${ }^{1}$, Haipeng Shen ${ }^{2}$ and Fei Jiang ${ }^{1}$
${ }^{1}$ University of California, San Francisco and ${ }^{2}$ University of Hong Kong

Supplementary Material

S1 Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1 in the paper which will follow from a succession of supporting concentration results. We will bring in some established results and then give some additional lemmas with proof to show Lemma 3.1, through which we will demonstrate Theorem 3.1 later.

Before giving out the auxiliary results, we define some frequent notations first. For a real matrix \mathbf{H}, we let $\|\mathbf{H}\|_{\infty}$ denote the infinity norm, trace (\mathbf{H}) denote the trace, and $r_{\mathbf{H}}$ denote the rank of the matrix \mathbf{H}. We denote \asymp as the symbol for asymptotic equivalence in order. We write $X \in \mathcal{S G}(\sigma)$ if X is sub-Gaussian with parameter σ.

Besides, we define some matrices commonly used in our proof. From (2.1) we define $\boldsymbol{\Pi}=\mathbf{X X}^{\mathrm{T}}$ as the connection probability matrix. Write $\boldsymbol{\Pi}=$ $\sum_{i=1}^{n_{1}} \lambda_{i}(\boldsymbol{\Pi}) \mathbf{u}_{i}(\boldsymbol{\Pi}) \mathbf{u}_{i}(\boldsymbol{\Pi})^{\mathrm{T}}$ where $\lambda_{i}(\boldsymbol{\Pi})^{\prime}$'s are the eigenvalues ordered by its absolute magnitude and $\mathbf{u}_{1}(\boldsymbol{\Pi}), \ldots, \mathbf{u}_{n_{1}}(\boldsymbol{\Pi})$ are the corresponding eigenvectors, and let $\mathbf{U}_{\boldsymbol{\Pi}}=\left[\mathbf{u}_{1}(\boldsymbol{\Pi}), \ldots, \mathbf{u}_{d}(\boldsymbol{\Pi})\right]$, and $\mathbf{S}_{\boldsymbol{\Pi}}=\operatorname{diag}\left\{\left|\lambda_{1}(\boldsymbol{\Pi})\right|, \ldots,\left|\lambda_{d}(\boldsymbol{\Pi})\right|\right\}$. Let $\mathbf{W}_{1} \boldsymbol{\Sigma} \mathbf{W}_{2}^{\mathrm{T}}$ be the singular value decomposition of $\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}$. We define the maximum expected degree as $\delta(\boldsymbol{\Pi})=\max _{i \leq n_{1}} \sum_{j=1}^{n_{1}} \Pi_{i j}$.

S1.1 Established bounds

To prove the final conclusion we will need some concentration results from the literature. We state a tight bound on the spectral norm of $\mathbf{M}-\boldsymbol{\Pi}$ which is a natural variant of Theorem 7 in Lu and Peng (2013).

Proposition S1.1. Let $\mathbf{M} \in \mathbb{R}^{n_{1} \times n_{1}}$ be the adjacency matrix of an independentedge graph with matrix of edge probabilities $\boldsymbol{\Pi}$. Let $\delta(\boldsymbol{\Pi})=\max _{i \leq n_{1}} \sum_{j=1}^{n_{1}} \Pi_{i j}$ and suppose $\delta(\boldsymbol{\Pi})>\log ^{4+a}\left(n_{1}\right)$ for some positive constant a. Then

$$
\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}=O_{p}\left[\max \left\{\delta^{\frac{1}{2}}(\boldsymbol{\Pi}), \delta^{\frac{1}{4}}(\boldsymbol{\Pi}) \log \left(n_{1}\right)\right\}\right] .
$$

S1.2 Guarantee of orthogonality

Lemma S1.1. Let $\widehat{\mathbf{B}}$ be the solution of the following optimization
$\widehat{\mathbf{B}}=\underset{\mathbf{B}}{\operatorname{argmin}}\left\{\frac{1}{n_{1} n_{2}}\left\|\mathbf{B}-\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\lambda_{2}\left\{\alpha\|\mathbf{B}\|_{*}+(1-\alpha)\|\mathbf{B}\|_{F}^{2}\right\}\right\}$,
then $\widehat{\mathbf{B}} \in \mathcal{N}(\widehat{\mathbf{X}})$.

Proof. For any \mathbf{B} not orthogonal to $\widehat{\mathbf{X}}, \mathbf{B}=\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}+\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}$, then

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\left\|\mathbf{B}-\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\lambda_{2}\left\{\alpha\|\mathbf{B}\|_{*}+(1-\alpha)\|\mathbf{B}\|_{F}^{2}\right\} \\
= & \frac{1}{n_{1} n_{2}}\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}+\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}-\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}(\mathbf{W} \circ \widehat{\mathbf{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2} \\
& +\lambda_{2}\left\{\alpha\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}+\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}\right\|_{*}+(1-\alpha)\left\|\mathbf{P}_{\hat{\mathbf{x}}}^{\perp} \mathbf{B}+\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}\right\|_{F}^{2}\right\} \\
= & \frac{1}{n_{1} n_{2}}\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}(\mathbf{B}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\left\|\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}\right\|_{F}^{2} \\
& +\lambda_{2}\left\{\alpha\left\|\mathbf{P}_{\widehat{\mathbf{X}}}^{\perp} \mathbf{B}\right\|_{*}+\left\|\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}\right\|_{*}+(1-\alpha)\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}\right\|_{F}^{2}+\left\|\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{B}\right\|_{F}^{2}\right\} \\
\geq & \frac{1}{n_{1} n_{2}}\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}-\mathbf{P}_{\hat{\mathbf{x}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\lambda_{2}\left\{\alpha\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}\right\|_{*}+(1-\alpha)\left\|\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}\right\|_{F}^{2}\right\} .
\end{aligned}
$$

The loss function is always smaller when we replace \mathbf{B} by $\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}$ for any given \mathbf{B}, where $\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp} \mathbf{B}$ is orthogonal to $\widehat{\mathbf{X}}$. Therefore, $\widehat{\mathbf{B}} \in \mathcal{N}(\widehat{\mathbf{X}})$.

S1.3 Additional technical lemmas

In this subsection, we will show some technical lemmas to prove the Lemma 3.1 and Theorem 3.1. The following lemmas follow closely with the theorems in Tang et al. (2017), except we apply a tighter bound.

Lemma S1.2. Assume Condition (C5) holds. Let $\mathbf{M} \sim R D P G(\mathbf{X})$. Then

$$
\begin{gathered}
\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}=O_{p}\left\{d n_{1}^{-2} \delta(\boldsymbol{\Pi})\right\} \\
\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}=O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-2} \delta^{2}(\boldsymbol{\Pi}), \operatorname{dlog}^{\frac{1}{2}}\left(n_{1}\right)\right\}\right]
\end{gathered}
$$

and

$$
\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}=O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-\frac{5}{2}} \delta^{2}(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right]
$$

Proof. Since $\mathbf{W}_{1} \boldsymbol{\Sigma} \mathbf{W}_{2}^{\mathrm{T}}$ is the singular value decomposition of $\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}$, then we define the principle angles between column spaces of $\mathbf{U}_{\boldsymbol{\Pi}}$ and $\mathbf{U}_{\mathbf{M}}$ to be the diagonal matrix

$$
\boldsymbol{\Phi}\left(\mathbf{U}_{\boldsymbol{\Pi}}, \mathbf{U}_{\mathbf{M}}\right):=\operatorname{diag}\left[\cos ^{-1}\left\{\sigma_{1}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right)\right\}, \ldots, \cos ^{-1}\left\{\sigma_{d}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right)\right\}\right]
$$

where $\sigma_{i}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right)$ is the i th largest singular values of $\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}$. Then by Lemma 1 in Cai and Zhang (2018), we have

$$
\begin{equation*}
\left\|\mathbf{U}_{\mathbf{M}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{F}=\sqrt{2}\left\|\sin \boldsymbol{\Phi}\left(\mathbf{U}_{\boldsymbol{\Pi}}, \mathbf{U}_{\mathbf{M}}\right)\right\|_{F} . \tag{S1.1}
\end{equation*}
$$

Furthermore, with the conditions being satisfied, Theorem 2 in Yu, Wang and Samworth (2014) implies that

$$
\begin{equation*}
\left\|\sin \boldsymbol{\Phi}\left(\mathbf{U}_{\boldsymbol{\Pi}}, \mathbf{U}_{\mathbf{M}}\right)\right\|_{F} \leq \frac{2 \sqrt{d}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}}{\lambda_{d}(\boldsymbol{\Pi})} \tag{S1.2}
\end{equation*}
$$

Since $\boldsymbol{\Pi}$ is symmetric and has rank d, then by definition, $\sigma_{d}(\boldsymbol{\Pi})=\lambda_{d}(\boldsymbol{\Pi})$, where $\sigma_{d}(\boldsymbol{\Pi})$ and $\lambda_{d}(\boldsymbol{\Pi})$ are the d th largest singular value and eigenvalue respectively. Since Condition (C5)(b) implies that $\lambda_{d}^{-1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)=\lambda_{d}^{-1}(\boldsymbol{\Pi})=$ $O_{p}\left(n_{1}^{-1}\right)$, then by S1.1 , S1.2 , and Proposition S1.1, we can get

$$
\begin{align*}
& \left\|\mathbf{U}_{\mathbf{M}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{F} \\
= & O_{p}\left[\max \left\{d^{\frac{1}{2}} n_{1}^{-1} \delta^{\frac{1}{2}}(\boldsymbol{\Pi}), d^{\frac{1}{2}} n_{1}^{-1} \log \left(n_{1}\right) \delta^{\frac{1}{4}}(\boldsymbol{\Pi})\right\}\right] \\
= & O_{p}\left\{d^{\frac{1}{2}} n_{1}^{-1} \delta^{\frac{1}{2}}(\boldsymbol{\Pi})\right\} . \tag{S1.3}
\end{align*}
$$

where the second equality is due to Condition (C5)(c).
Since for any matrix $\mathbf{A} \in \mathbb{R}^{n_{1} \times n_{2}}$ and $\mathbf{B} \in \mathbb{R}^{n_{2} \times n_{3}}$, we let the singular value decomposition of \mathbf{A} be $\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$, then we have

$$
\begin{aligned}
\|\mathbf{A B}\|_{F} & =\left\|\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right\|_{F} \\
& =\sqrt{\operatorname{trace}\left\{\left(\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right)^{\mathrm{T}} \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right\}}=\sqrt{\operatorname{trace}\left(\mathbf{B}^{\mathrm{T}} \mathbf{V} \boldsymbol{\Sigma}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right)} \\
& =\left\|\boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right\|_{F} \\
& =\sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left(\boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{i j}^{2}} \\
& =\sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left\{\sum_{k=1}^{n_{2}} \boldsymbol{\Sigma}_{i k}\left(\mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{k j}\right\}^{2}} \\
& =\sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left[\sigma_{i}(\mathbf{A}) 1_{\left\{i \leq \min \left(n_{1}, n_{2}\right)\right\}}\left(\mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{i j}\right]^{2}}
\end{aligned}
$$

$$
\begin{align*}
& \leq \sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left\{\sigma_{\max }(\mathbf{A})\left(\mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{i j}\right\}^{2}} \\
& =\sigma_{\max }(\mathbf{A}) \sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left(\mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{i j}^{2}} \\
& =\|\boldsymbol{\Sigma}\|_{2} \sqrt{\sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{3}}\left(\mathbf{V}^{\mathrm{T}} \mathbf{B}\right)_{i j}^{2}} \\
& =\|\boldsymbol{\Sigma}\|_{2}\left\|\mathbf{V}^{\mathrm{T}} \mathbf{B}\right\|_{F}=\|\boldsymbol{\Sigma}\|_{2} \sqrt{\operatorname{trace}\left(\mathbf{B}^{\mathrm{T}} \mathbf{V V}^{\mathrm{T}} \mathbf{B}\right)}=\|\boldsymbol{\Sigma}\|_{2} \sqrt{\operatorname{trace}\left(\mathbf{B}^{\mathrm{T}} \mathbf{B}\right)} \\
& =\|\boldsymbol{\Sigma}\|_{2}\|\mathbf{B}\|_{F} \\
& =\|\mathbf{A}\|_{2}\|\mathbf{B}\|_{F} . \tag{S1.4}
\end{align*}
$$

Then we have

$$
\begin{aligned}
& \left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
= & \left\|\mathbf{W}_{1}(\boldsymbol{\Sigma}-\mathbf{I}) \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
\leq & \left\|\mathbf{W}_{1}\right\|_{2}\|\boldsymbol{\Sigma}-\mathbf{I}\|_{F}\left\|\mathbf{W}_{2}^{\mathrm{T}}\right\|_{2} \\
= & \|\boldsymbol{\Sigma}-\mathbf{I}\|_{F} \\
= & \sqrt{\sum_{i=1}^{d}\left(1-\sigma_{i}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right)\right)^{2}} \\
\leq & \sum_{i=1}^{d}\left\{1-\sigma_{i}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right)\right\}^{2} \\
\leq & \sum_{i=1}^{d} 1-\sigma_{i}^{2}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \\
= & \left\|\sin \boldsymbol{\Phi}\left(\mathbf{U}_{\boldsymbol{\Pi}}, \mathbf{U}_{\mathbf{M}}\right)\right\|_{F}^{2}
\end{aligned}
$$

$$
\leq \frac{4 d\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}^{2}}{\lambda_{d}^{2}(\boldsymbol{\Pi})}
$$

where the second equality is due to $\mathbf{W}_{1}, \mathbf{W}_{2}$ are orthogonal matrix, the last inequality is from (S1.2). Therefore, we have

$$
\begin{equation*}
\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}=O_{p}\left\{d n_{1}^{-2} \delta(\boldsymbol{\Pi})\right\} \tag{S1.5}
\end{equation*}
$$

Let $\boldsymbol{\Gamma}=\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}$. Since $\mathbf{U}_{\boldsymbol{\Pi}}$ has orthonormal columns, then we can rewrite $\boldsymbol{\Gamma}$ as $\left\{\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\} \mathbf{U}_{\mathbf{M}}$. Then $\boldsymbol{\Gamma}$ can be regarded as the orthogonal projection of $\mathbf{U}_{\mathbf{M}}$ onto the column space of $\mathbf{U}_{\boldsymbol{\Pi}}$. And we have for any $\mathbf{W} \in \mathbb{R}^{d \times d}$,

$$
\begin{aligned}
& \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\|_{F}^{2} \\
= & \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\|_{F}^{2} \\
= & \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}^{2}+\left\|\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\|_{F}^{2} \\
& +2\left\langle\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}, \mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\rangle \\
= & \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}^{2}+\left\|\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\|_{F}^{2} \\
\geq & \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}^{2} \\
= & \left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}^{2} \\
= & \|\boldsymbol{\Gamma}\|_{F}^{2}
\end{aligned}
$$

where the third equality is due to

$$
\left\langle\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}, \mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\rangle
$$

$$
\begin{aligned}
= & \operatorname{trace}\left[\left\{\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\}^{\mathrm{T}}\right. \\
& \left.\left\{\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}\right\}\right] \\
= & \operatorname{trace}\left[\left\{\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\} \mathbf{U}_{\boldsymbol{\Pi}}\left\{\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{W}\right\} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}\right] \\
= & \operatorname{trace}(\mathbf{0}) \\
= & 0
\end{aligned}
$$

By taking $\mathbf{W}=\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}$ we can get

$$
\begin{align*}
\|\boldsymbol{\Gamma}\|_{F} & \leq\left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F} \\
& =\left\|\left(\mathbf{U}_{\mathbf{M}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right) \mathbf{U}_{\mathbf{M}}\right\|_{F} \\
& \leq\left\|\mathbf{U}_{\mathbf{M}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{F}\left\|\mathbf{U}_{\mathbf{M}}\right\|_{F} \\
& =\sqrt{d}\left\|\mathbf{U}_{\mathbf{M}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{F}, \tag{S1.6}
\end{align*}
$$

then from S1.3 we have $\|\boldsymbol{\Gamma}\|_{F}=O_{p}\left\{d^{3 / 2} n_{1}^{-2} \delta(\boldsymbol{\Pi})\right\}$.
Since

$$
\begin{aligned}
& \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{M} \mathbf{U}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \boldsymbol{\Pi} \mathbf{U}_{\mathbf{M}} \\
& -\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}
\end{aligned}
$$

$$
\begin{aligned}
& +\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \boldsymbol{\Pi} \mathbf{U}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \\
& +\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
= & \left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \\
& +\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}+\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}},
\end{aligned}
$$

then we can get

$$
\begin{aligned}
& \left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
\leq & \left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}\left(\left\|\mathbf{S}_{\mathbf{M}}\right\|_{F}+\left\|\mathbf{S}_{\boldsymbol{\Pi}}\right\|_{F}\right)+\left\|\mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\|(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}\|_{F} \\
& +\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\left\|\mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\left\|\mathbf{U}_{\mathbf{M}}\right\|_{F} \\
\leq & \left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}\left(\left\|\mathbf{S}_{\mathbf{M}}\right\|_{F}+\left\|\mathbf{S}_{\boldsymbol{\Pi}}\right\|_{F}\right)+\left\|\mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F} \\
& +\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\left\|\mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}\left\|\mathbf{U}_{\mathbf{M}}\right\|_{F} \\
\leq & \sqrt{d}\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}\left(\|\mathbf{M}\|_{2}+\|\boldsymbol{\Pi}\|_{2}\right)+\sqrt{d}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F} \\
& +d\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F} \\
\leq & \sqrt{d} \| \mathbf{W}_{1} \mathbf{\mathbf { W } _ { 2 } ^ { \mathrm { T } } - \mathbf { U } _ { \boldsymbol { \Pi } } ^ { \mathrm { T } } \mathbf { U } _ { \mathbf { M } } \| _ { F } (\sqrt { \| \mathbf { M } \| _ { 1 } \| \mathbf { M } \| _ { \infty } } + \sqrt { \| \boldsymbol { \Pi } \| _ { 1 } \| \boldsymbol { \Pi } \| _ { \infty } })} \\
& +\sqrt{d}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F}+d\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F} \\
\leq & \sqrt{d}\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}\left(\|\mathbf{M}\|_{\infty}+\|\boldsymbol{\Pi}\|_{\infty}\right)+\sqrt{d}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F} \\
& +d\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F} \\
\leq & C \sqrt{d} \delta(\boldsymbol{\Pi})\left\|\mathbf{\mathbf { W } _ { 1 }} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}+\sqrt{d}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F}
\end{aligned}
$$

$$
\begin{equation*}
+d\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F} \tag{S1.7}
\end{equation*}
$$

where the first inequality is due to the triangular inequality as well as the sub-multiplicativity for Frobenius norm, the second inequality comes from (S1.4), the fourth inequality is due to the Holder's Inequality, the fifth inequality is due to the symmetry of \mathbf{M} and $\boldsymbol{\Pi}$, and the last inequality holds with some positive constant C because of the fact $\mid \delta(\mathbf{M})-$ $\delta(\boldsymbol{\Pi}) \mid=O_{p}\{\delta(\boldsymbol{\Pi})\}$ which is derived by Chebyshev's Inequality with Condition (C5)(c).

Since $\left\{\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\}_{i j}=\sum_{k=1}^{n_{1}} \sum_{l=1}^{n_{1}} U_{\boldsymbol{\Pi}, k i}\left(M_{k l}-\Pi_{k l}\right) U_{\boldsymbol{\Pi}, l j}$, then by Hoeffding's Inequality we can get

$$
\begin{aligned}
\operatorname{Pr}\left(\left|\left\{\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\}_{i j}\right| \geq t\right) & \leq \exp \left(-\frac{t^{2}}{2 \sum_{k=1}^{n_{1}} \sum_{l=1}^{n_{1}} U_{\boldsymbol{\Pi}, k i}^{2} U_{\mathbf{\Pi}, l j}^{2}}\right) \\
& \leq \exp \left(-\frac{t^{2}}{2}\right),
\end{aligned}
$$

thus we have $\left\{\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\}_{i j}=O_{p}\left\{\log ^{1 / 2}\left(n_{1}\right)\right\}$. Therefore we can get

$$
\begin{equation*}
\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}=O_{p}\left\{\log ^{\frac{1}{2}}\left(n_{1}\right)\right\} \tag{S1.8}
\end{equation*}
$$

Combining Proposition S1.1, the bounds (S1.5) and (S1.6) and the bound of $\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}$, we can get $\delta(\boldsymbol{\Pi})\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}-\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}=O_{p}\left\{d n_{1}^{-2} \delta^{2}(\boldsymbol{\Pi})\right\}$, $\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\|\boldsymbol{\Gamma}\|_{F}=O_{p}\left\{d^{3 / 2} n_{1}^{-2} \delta^{3 / 2}(\boldsymbol{\Pi})\right\}$ and $\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}=O_{p}\left\{\log ^{1 / 2}\left(n_{1}\right)\right\}$, thus we can derive from (S1.7) that

$$
\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}
$$

$$
\begin{equation*}
=O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-2} \delta^{2}(\boldsymbol{\Pi}), d \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] . \tag{S1.9}
\end{equation*}
$$

Since for $1 \leq i, j \leq d$,

$$
\begin{aligned}
\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} & =\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}\left\{\lambda_{i}^{\frac{1}{2}}(\mathbf{M})-\lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})\right\} \\
& =\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} \frac{\lambda_{i}(\mathbf{M})-\lambda_{j}(\boldsymbol{\Pi})}{\lambda_{i}^{\frac{1}{2}}(\mathbf{M})+\lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})} \\
& \leq\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} \frac{\lambda_{i}(\mathbf{M})-\lambda_{j}(\boldsymbol{\Pi})}{\lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})} \\
& \leq \lambda_{d}^{-\frac{1}{2}}(\boldsymbol{\Pi})\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}\left\{\lambda_{i}(\mathbf{M})-\lambda_{j}(\boldsymbol{\Pi})\right\}
\end{aligned}
$$

and we know $\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}=\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}\left\{\lambda_{i}(\mathbf{M})-\lambda_{j}(\boldsymbol{\Pi})\right\}$, then we can get $\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{1 / 2}-\mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \leq \lambda_{d}^{-1 / 2}(\boldsymbol{\Pi}) \| \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-$ $\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \|_{F}$. Then, by S1.9) and the fact $\lambda_{d}^{-1}(\boldsymbol{\Pi})=O_{p}\left(n_{1}^{-1}\right)$, we get

$$
\begin{aligned}
& \left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
= & O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-\frac{5}{2}} \delta^{2}(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] .
\end{aligned}
$$

Lemma S1.3. Assume Condition (C5) holds. Let $\mathbf{M} \sim R D P G(\mathbf{X})$. Then there exists an orthogonal matrix \mathbf{O} such that $\|\widehat{\mathbf{X}}-\mathbf{X O}\|_{F}=\left\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right\|_{F}+O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right]$.

Proof. Let's define $\boldsymbol{\Gamma}_{1}=\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}, \boldsymbol{\Gamma}_{2}=\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{1 / 2}-$ $\mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}$, and $\boldsymbol{\Gamma}_{3}=\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}=\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}+\boldsymbol{\Gamma}_{1}$. Since
$\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \boldsymbol{\Pi}=\boldsymbol{\Pi}$ and $\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}=\mathbf{M} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-1 / 2}$, then we can get

$$
\begin{aligned}
& \widehat{\mathbf{X}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \\
& =\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right) \\
& =\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\left(\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right)-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}} \\
& +\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =\left(\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right) \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =M \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathrm{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathrm{M}} \mathbf{S}_{\mathrm{M}}^{\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathrm{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}+\boldsymbol{\Pi} \mathbf{U}_{M} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\left(\boldsymbol{\Pi} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right)+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}} \\
& -\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathrm{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}+(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}} \\
& +\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}} \\
& +\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathrm{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}+\boldsymbol{\Gamma}_{1} \mathrm{~S}_{\mathbf{M}}^{\frac{1}{2}}+\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} \\
& =(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}+(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right) \\
& -\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}+\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathbf{M}^{-\frac{1}{2}}}
\end{aligned}
$$

$$
\begin{equation*}
+\boldsymbol{\Gamma}_{1} \mathrm{~S}_{\mathrm{M}}^{\frac{1}{2}}+\mathrm{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2} . \tag{S1.10}
\end{equation*}
$$

Let $\lambda_{i}(\cdot)$ denote the i th largest eigenvalue. Then Weyl's Inequality implies

$$
\lambda_{d}(\boldsymbol{\Pi})+\lambda_{n_{1}}(\mathbf{M}-\boldsymbol{\Pi}) \leq \lambda_{d}(\mathbf{M}) \leq \lambda_{d}(\boldsymbol{\Pi})+\lambda_{1}(\mathbf{M}-\boldsymbol{\Pi}) .
$$

Since $\boldsymbol{\Pi}, \mathbf{M}$ and $\mathbf{M}-\boldsymbol{\Pi}$ are symmetric, then $\|\mathbf{M}-\boldsymbol{\Pi}\|_{2} \geq\left|\lambda_{1}(\mathbf{M}-\boldsymbol{\Pi})\right|$ and $\|\mathbf{M}-\boldsymbol{\Pi}\|_{2} \geq\left|\lambda_{n}(\mathbf{M}-\boldsymbol{\Pi})\right|$, thus

$$
\lambda_{d}(\boldsymbol{\Pi})-\|\mathbf{M}-\boldsymbol{\Pi}\|_{2} \leq \lambda_{d}(\mathbf{M}) \leq \lambda_{d}(\boldsymbol{\Pi})+\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}
$$

By Condition (C5) and Proposition S1.1, we can get

$$
\begin{equation*}
\lambda_{d}(\mathbf{M}) \asymp \lambda_{d}(\boldsymbol{\Pi}) . \tag{S1.11}
\end{equation*}
$$

Since $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}=\sqrt{\sum_{i=1}^{d}\left|\lambda_{i}^{-1}(\mathbf{M})\right|} \leq \sqrt{d\left|\lambda_{d}^{-1}(\mathbf{M})\right|}$, then by S1.11 we can get $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}=O_{p}\left\{d^{1 / 2} n_{1}^{-1 / 2}\right\}$. And by Weyl's Inequality we have

$$
\begin{aligned}
\left\|\mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right\|_{F} & =\sqrt{\sum_{i=1}^{d}\left|\lambda_{i}(\mathbf{M})\right|} \\
& \leq \sqrt{\sum_{i=1}^{d} \lambda_{i}(\mathbf{\Pi})+\lambda_{1}(\mathbf{M}-\mathbf{\Pi})} \\
& \leq \sqrt{d\left\{\lambda_{1}(\mathbf{\Pi})+\|\mathbf{M}-\mathbf{\Pi}\|_{2}\right\}} \\
& =\sqrt{d\left(\|\boldsymbol{\Pi}\|_{2}+\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\right)} \\
& \leq \sqrt{d\left(\sqrt{\|\mathbf{\Pi}\|_{1}\|\mathbf{\Pi}\|_{\infty}}+\|\mathbf{M}-\mathbf{\Pi}\|_{2}\right)} \\
& =\sqrt{d\left(\|\boldsymbol{\Pi}\|_{\infty}+\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\right)}
\end{aligned}
$$

$$
=\sqrt{d\left\{\delta(\boldsymbol{\Pi})+\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\right\}}
$$

where the third inequality is due to the Holder's Inequality, the third equality is due to the symmetry of Π, and the last equality comes from the definition of $\delta(\boldsymbol{\Pi})$ and the fact that elements $\boldsymbol{\Pi}$ are nonnegative. Therefore, from Proposition S1.1 we can get $\left\|\mathbf{S}_{\mathbf{M}}^{1 / 2}\right\|_{F}=O_{p}\left\{d^{1 / 2} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}$.

Since for $1 \leq i, j \leq d$,

$$
\begin{aligned}
\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} & =\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}\left\{\lambda_{i}^{-\frac{1}{2}}(\mathbf{M})-\lambda_{j}^{-\frac{1}{2}}(\boldsymbol{\Pi})\right\} \\
& =\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} \frac{\lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})-\lambda_{i}^{\frac{1}{2}}(\mathbf{M})}{\lambda_{i}^{\frac{1}{2}}(\mathbf{M}) \lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})} \\
& \leq\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j} \frac{\lambda_{j}^{\frac{1}{2}}(\boldsymbol{\Pi})-\lambda_{i}^{\frac{1}{2}}(\mathbf{M})}{\lambda_{d}^{\frac{1}{2}}(\mathbf{M}) \lambda_{d}^{\frac{1}{2}}(\boldsymbol{\Pi})}
\end{aligned}
$$

and $\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{1 / 2}-\mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}=\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)_{i j}\left\{\lambda_{i}^{1 / 2}(\mathbf{M})-\lambda_{j}^{1 / 2}(\boldsymbol{\Pi})\right\}$, then by S1.11) and Lemma S1.2, we can get $\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-1 / 2}-\mathbf{S}_{\boldsymbol{\Pi}}^{-1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}=$ $O_{p}\left[\max \left\{d^{3 / 2} n_{1}^{-7 / 2} \delta^{2}(\boldsymbol{\Pi}), d n_{1}^{-3 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$. Since we have

$$
\begin{aligned}
& \left\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F} \\
\leq & \|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\left\|\mathbf{U}_{\boldsymbol{\Pi}}\right\|_{2}\left\|\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F},
\end{aligned}
$$

then we can get from Proposition 51.1 that

$$
\begin{align*}
& \left\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}-\mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F} \\
= & O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-\frac{7}{2}} \delta^{\frac{5}{2}}(\boldsymbol{\Pi}), d n_{1}^{-\frac{3}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right) \delta^{\frac{1}{2}}(\boldsymbol{\Pi})\right\}\right] . \tag{S1.12}
\end{align*}
$$

Since the bound 51.8 implies $\left\|\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\right\|_{F}=O_{p}\left\{\log ^{1 / 2}\left(n_{1}\right)\right\}$, and we have $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}=O_{p}\left\{d^{1 / 2} n_{1}^{-1 / 2}\right\},\left\|\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{2}=1$, and $\| \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-$ $\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-1 / 2}\left\|_{F} \leq\right\| \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}}\left\|_{F}\right\| \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\left\|_{2}\right\| \mathbf{S}_{\mathbf{M}}^{-1 / 2} \|_{F}$, then we have

$$
\begin{equation*}
\left\|\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}\right\|_{F}=O_{p}\left\{d^{\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right) n_{1}^{-\frac{1}{2}}\right\} \tag{S1.13}
\end{equation*}
$$

Additionally Lemma S1.2 suggests that $\left\|\boldsymbol{\Gamma}_{1}\right\|_{F}=O_{p}\left\{d n_{1}^{-2} \delta(\boldsymbol{\Pi})\right\}$ and $\left\|\boldsymbol{\Gamma}_{2}\right\|_{F}=$ $O_{p}\left[\max \left\{d^{3 / 2} n_{1}^{-5 / 2} \delta^{2}(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$. Since we have $\left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}=$ $O_{p}\left\{d^{1 / 2} n_{1}^{-1} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}$ and

$$
\begin{aligned}
\left\|\boldsymbol{\Gamma}_{3}\right\|_{F} & =\left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}+\boldsymbol{\Gamma}_{1}\right\|_{F} \\
& \leq\left\|\mathbf{U}_{\mathbf{M}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\mathbf{M}}\right\|_{F}+\left\|\boldsymbol{\Gamma}_{1}\right\|_{F},
\end{aligned}
$$

then $\left\|\boldsymbol{\Gamma}_{3}\right\|_{F}=O_{p}\left\{d^{1 / 2} n_{1}^{-1} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}$. Since $\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}=\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}}\left(\mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}}\right)^{-1} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}$
is a projection matrix, then we have $\left\|\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{2}=1$, thus from

$$
\begin{aligned}
\left\|\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}\right\|_{F} & \leq\left\|\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right\|_{2}\left\|(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}\right\|_{F} \\
& =\left\|(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}\right\|_{F} \\
& \leq\|(\mathbf{M}-\boldsymbol{\Pi})\|_{2}\left\|\boldsymbol{\Gamma}_{3}\right\|_{F}\left\|\mathbf{S}_{\mathrm{M}}^{-\frac{1}{2}}\right\|_{F}
\end{aligned}
$$

Proposition S1.1, bounds for $\left\|\boldsymbol{\Gamma}_{3}\right\|_{F}$ and $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}$, we can get that

$$
\begin{equation*}
\left\|\left(\mathbf{I}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{U}_{\boldsymbol{\Pi}}^{\mathrm{T}}\right)(\mathbf{M}-\boldsymbol{\Pi}) \boldsymbol{\Gamma}_{3} \mathbf{S}_{\mathbf{M}}^{-\frac{1}{2}}\right\|_{F}=O_{p}\left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi})\right\} \tag{S1.14}
\end{equation*}
$$

And the bounds on $\left\|\boldsymbol{\Gamma}_{1}\right\|_{F},\left\|\boldsymbol{\Gamma}_{2}\right\|_{F}$ and $\left\|\mathbf{S}_{\mathbf{M}}^{1 / 2}\right\|_{F}$ yield

$$
\begin{equation*}
\left\|\boldsymbol{\Gamma}_{1} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right\|_{F}=O_{p}\left\{d^{\frac{3}{2}} n_{1}^{-2} \delta^{\frac{3}{2}}(\boldsymbol{\Pi})\right\} \tag{S1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathbf{U}_{\boldsymbol{\Pi}} \boldsymbol{\Gamma}_{2}\right\|_{F}=O_{p}\left[\max \left\{d^{\frac{3}{2}} n_{1}^{-\frac{5}{2}} \delta^{2}(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] . \tag{S1.16}
\end{equation*}
$$

Thus by (S1.10) and (S1.12)-(S1.16), we can get that

$$
\begin{aligned}
& \left\|\widehat{\mathbf{X}}-\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
= & \left\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F}+O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] \\
= & \left(\operatorname{trace}\left[\mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}}\left\{(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right\}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right]\right)^{\frac{1}{2}} \\
& +O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] \\
= & \left(\operatorname{trace}\left[\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}}\left\{(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right\}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right]\right)^{\frac{1}{2}} \\
& +O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] \\
= & \left(\operatorname{trace}\left[\left\{(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right\}^{\mathrm{T}}(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right]\right)^{\frac{1}{2}} \\
& +O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] \\
= & \left\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}}\right\|{ }_{F}+O_{p}\left[\max \left\{d n_{1}^{-\frac{3}{2}} \delta(\boldsymbol{\Pi}), d n_{1}^{-\frac{1}{2}} \log ^{\frac{1}{2}}\left(n_{1}\right)\right\}\right] .
\end{aligned}
$$

Since $\mathbf{X}=\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}$ for some orthogonal matrix \mathbf{W}, then there exists an orthogonal matrix $\mathbf{O}=\mathbf{W}^{\mathrm{T}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}$ such that

$$
\begin{equation*}
\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}=\mathbf{X O} \tag{S1.17}
\end{equation*}
$$

which completes the proof.

Remark 1. S1.17 suggests $\mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}=\mathbf{X O}$, then we obtain $\mathbf{O}=$ $\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-1 / 2} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}$.

Lemma S1.4. Assume Condition (C5) holds, let $\mathbf{E}=\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}$ where \mathbf{O} is the orthogonal matrix defined in Lemma 3.1. Then there exists a matrix $\mathbf{R} \in \mathbb{R}^{n_{1} \times d}$ such that

$$
\mathbf{E}=\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}=(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}+\mathbf{R}
$$

where $\|\mathbf{R}\|_{F}=O_{p}\left[\max \left\{d n_{1}^{-3 / 2} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$.
Proof. By LemmaS1.3, there exists an orthogonal matrix \mathbf{O} such that $\| \widehat{\mathbf{X}}-$ $\mathbf{X O}\left\|_{F}=\right\|(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{U}_{\boldsymbol{\Pi}} \mathbf{S}_{\boldsymbol{\Pi}}^{-\frac{1}{2}} \|_{F}+O_{p}\left[\max \left\{d n_{1}^{-3 / 2} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$. Therefore, there exist a matrix \mathbf{R} which satisfies that its Frobenius norm is of $O_{p}\left[\max \left\{d n_{1}^{-3 / 2} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$ such that

$$
\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}=(\mathbf{M}-\boldsymbol{\Pi}) \mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}+\mathbf{R} .
$$

Proof of Lemma 3.1.

Proof. Let $\mathbf{E}=\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}$ and $\mathbf{G}=\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}$. Since by Lemma S1.4, for all i, j, we have $E_{i j}=R_{i j}+\sum_{k=1}^{n_{1}}(M-\Pi)_{i k} G_{k j}$, then we have $\left(E_{i j}-R_{i j}\right)^{2}=$
$\left\{\sum_{k=1}^{n_{1}}(M-\Pi)_{i k} G_{k j}\right\}^{2}$. By (2.1) we have

$$
\begin{aligned}
E\left\{\left(E_{i j}-R_{i j}\right)^{2}\right\} & =E\left[\left\{\sum_{k=1}^{n_{1}}\left(M_{i k}-\Pi_{i k}\right) G_{k j}\right\}^{2}\right] \\
& =E\left\{\sum_{k=1}^{n_{1}}\left(M_{i k}-\Pi_{i k}\right)^{2} G_{k j}^{2}\right\}+2 E\left\{\sum_{k<l}\left(M_{i k}-\Pi_{i k}\right) G_{l j}\right\} \\
& =\sum_{k=1}^{n_{1}} G_{k j}^{2} E\left\{\left(M_{i k}-\Pi_{i k}\right)^{2}\right\}+2\left\{\sum_{k<l} G_{l j} E\left(M_{i k}-\Pi_{i k}\right)\right\} \\
& =\sum_{k=1}^{n_{1}} G_{k j}^{2} E\left\{\left(M_{i k}-\Pi_{i k}\right)^{2}\right\} \\
& =\sum_{k=1}^{n_{1}} G_{k j}^{2} \Pi_{i k}\left(1-\Pi_{i k}\right),
\end{aligned}
$$

then we can get

$$
\begin{aligned}
\operatorname{Pr}\left\{\left(E_{i j}-R_{i j}\right)^{2} \geq n_{1}^{-\frac{1}{2}}\right\} & \leq n_{1}^{\frac{1}{2}} E\left\{\left(E_{i j}-R_{i j}\right)^{2}\right\} \\
& =n_{1}^{\frac{1}{2}} \sum_{k=1}^{n_{1}} G_{k j}^{2} \Pi_{i k}\left(1-\Pi_{i k}\right) \\
& \leq \frac{n_{1}^{\frac{1}{2}}}{4} \sum_{k=1}^{n_{1}} G_{k j}^{2} \\
& \leq \frac{n_{1}^{\frac{1}{2}}}{4}\|\mathbf{G}\|_{F}^{2} \\
& =\frac{n_{1}^{\frac{1}{2}}}{4}\left\|\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}^{2} \\
& \leq \frac{n_{1}^{\frac{1}{2}}}{4}\|\mathbf{X}\|_{F}^{2}\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}^{2} \\
& \leq \frac{d^{2}}{c_{0}^{2} n_{1}^{\frac{1}{2}}} \rightarrow 0
\end{aligned}
$$

where the first inequality is due to the Markov's Inequality, the second inequality is due to the fact that $\Pi_{i k} \in[0,1]$, and the last inequality comes
from Condition (C5) and the fact that $\|\mathbf{X}\|_{F} \leq \sqrt{d n_{1}}$, therefore, we can get for all $i, j,\left(E_{i j}-R_{i j}\right)^{2}=O_{p}\left(n_{1}^{-1 / 2}\right)$ thus $\|\mathbf{E}-\mathbf{R}\|_{F}=O_{p}\left(d^{1 / 2} n_{1}^{1 / 4}\right)$. Thus, by Lemma S1.4. we get $\|\mathbf{E}\|_{F}=O_{p}\left[\max \left\{d n_{1}^{-1} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right), d^{1 / 2} n_{1}^{1 / 4}\right\}\right]$ $=O_{p}\left[\max \left\{d n_{1}^{-1} \delta(\boldsymbol{\Pi}), d^{1 / 2} n_{1}^{1 / 4}\right\}\right]$. Since $\delta(\boldsymbol{\Pi}) \leq n_{1}$, then we can get $\|\mathbf{E}\|_{F}=O_{p}\left(n_{1}^{1 / 4}\right)$.

Lemma S1.5. Assume Condition (C5) holds, then there exists an orthogonal matrix \mathbf{O} such that
$\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\|_{F}=O_{p}\left[\max \left\{d^{2} n_{1}^{-3} \delta^{\frac{3}{2}}(\mathbf{\Pi}), d^{2} \log ^{\frac{1}{2}}\left(n_{1}\right) n_{1}^{-2}\right\}\right]$,
and for all vectors $\mathbf{v} \in \mathbb{R}^{n_{1}}$ s.t. $\|\mathbf{v}\|_{2}=1$,

$$
\left\|\left(\mathbf{P}_{\widehat{\mathbf{x}}}-\mathbf{P}_{\mathbf{X}}\right) \mathbf{v}\right\|_{2}=O_{p}\left[\max \left\{n_{1}^{-\frac{1}{4}}, n_{1}^{-2} \delta^{\frac{3}{2}}(\boldsymbol{\Pi}), \log ^{\frac{1}{2}}\left(n_{1}\right) n_{1}^{-1}\right\}\right]
$$

Proof. Let $\boldsymbol{\Delta}=\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}$, by Lemma 11 in Loh and Wainwright (2017), we have

$$
\begin{equation*}
\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F} \leq \frac{\left\|\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F}^{2}\|\boldsymbol{\Delta}\|_{F}}{1-\left\|\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F}\|\boldsymbol{\Delta}\|_{F}} \tag{S1.18}
\end{equation*}
$$

Additionally, since $\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}=\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}$ and $n_{1}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \rightarrow$ \mathbf{S}_{x}^{-1}, then we have

$$
\begin{aligned}
\left\|\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F} & =\left\|\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\|_{F} \\
& =\{1+o(1)\} \frac{1}{n_{1}}\left\|\mathbf{O}^{\mathrm{T}} \mathbf{S}_{x}^{-1} \mathbf{O}\right\|_{F}
\end{aligned}
$$

$$
\begin{align*}
& \leq\{1+o(1)\} \frac{1}{n_{1}}\left\|\mathbf{O}^{\mathrm{T}}\right\|_{2}\left\|\mathbf{S}_{x}^{-1}\right\|_{F}\|\mathbf{O}\|_{2} \\
& \leq d^{\frac{1}{2}}\{1+o(1)\} \frac{1}{n_{1}}\left\|\mathbf{O}^{\mathrm{T}}\right\|_{2}\left\|\mathbf{S}_{x}^{-1}\right\|_{2}\|\mathbf{O}\|_{2} \\
& \left.=d^{\frac{1}{2}}\{1+o(1)\} \frac{1}{n_{1}} \right\rvert\, \mathbf{S}_{x}^{-1} \|_{2} \\
& =d^{\frac{1}{2}}\{1+o(1)\} \frac{1}{n_{1} \sigma_{\text {min }}\left(\mathbf{S}_{x}\right)} \\
& \leq \frac{2 d^{\frac{1}{2}}}{c_{0} n_{1}} \tag{S1.19}
\end{align*}
$$

where the first inequality is due to the sub-multiplicativity for Frobenius norm, the second inequality is due to the norm equivalence, and the third equality comes from the fact that \mathbf{O} is an orthogonal matrix.

Since by definition $\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}=\left(\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\right)^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}=\mathbf{S}_{\mathbf{M}}$ and by S1.17 we have $\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}=\mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}} \mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}$, then we can get

$$
\begin{aligned}
\|\boldsymbol{\Delta}\|_{F} & =\left\|\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right\|_{F} \\
& =\left\|\mathbf{S}_{\mathbf{M}}-\mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}} \mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right\|_{F} \\
& =\left\|\mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}}\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F} \\
& \leq\left\|\mathbf{W}_{2} \mathbf{W}_{1}^{\mathrm{T}}\right\|_{2}\left\|\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F} \\
& =\left\|\left(\mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathbf{M}}-\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}}\right)\right\|_{F}
\end{aligned}
$$

where the third and forth equalities are due to $\mathbf{W}_{1}, \mathbf{W}_{2}$ are orthogonal and the inequality is from S1.4). By Lemma S1.2 we have $\| \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{S}_{\mathrm{M}}-$ $\mathbf{S}_{\boldsymbol{\Pi}} \mathbf{W}_{1} \mathbf{W}_{2}^{\mathrm{T}} \|_{F}=O_{p}\left[\max \left\{d n_{1}^{-1} \delta^{3 / 2}(\boldsymbol{\Pi}), d \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$, then we can get that
$\|\boldsymbol{\Delta}\|_{F}=O_{p}\left[\max \left\{d n_{1}^{-1} \delta^{3 / 2}(\boldsymbol{\Pi}), d \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$. Thus, from S1.18 we get

$$
\begin{align*}
& \left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F} \\
= & O_{p}\left[\max \left\{d^{2} n_{1}^{-3} \delta^{\frac{3}{2}}(\boldsymbol{\Pi}), d^{2} \log ^{\frac{1}{2}}\left(n_{1}\right) n_{1}^{-2}\right\}\right] . \tag{S1.20}
\end{align*}
$$

Since

$$
\begin{aligned}
& \left\|\left(\mathbf{P}_{\widehat{\mathbf{X}}}-\mathbf{P}_{\mathbf{X}}\right) \mathbf{v}\right\|_{2} \\
\leq & \left\|\mathbf{P}_{\widehat{\mathbf{X}}}-\mathbf{P}_{\mathbf{X}}\right\|_{F}\|\mathbf{v}\|_{2} \\
= & \left\|\widehat{\mathbf{X}}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}\right\|_{F} \\
= & \left\|(\widehat{\mathbf{X}}-\mathbf{X O})\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}+\mathbf{X O}\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\} \mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\|_{F} \\
& +\left\|\widehat{\mathbf{X}}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}\left(\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right)\right\|_{F} \\
\leq & \|\widehat{\mathbf{X}}-\mathbf{X O}\|_{F}\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}\right\|_{F}\left\|\mathbf{X}^{\mathrm{T}}\right\|_{F}+\|\mathbf{X}\|_{F}^{2}\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{O}\right)^{-1}\right\|_{F} \\
& +\left\|\widehat{\mathbf{X}}(\widehat{\mathbf{X}} \widehat{\mathbf{X}})^{-1}\right\|_{F}\left\|\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\|_{F},
\end{aligned}
$$

where the last inequality is due to the sub-multiplicativity for Frobenius norm. By definition, we have $\widehat{\mathbf{X}}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}=\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\left\{\left(\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\right)^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\right\}^{-1}=$ $\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{-1 / 2}$ and $\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}=\left\{\left(\mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\right)^{\mathrm{T}} \mathbf{U}_{\mathbf{M}} \mathbf{S}_{\mathbf{M}}^{1 / 2}\right\}^{-1}=\mathbf{S}_{\mathbf{M}}^{-1}$. And we can get from Lemma S1.3 that $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}=O_{p}\left(n_{1}^{-1 / 2}\right)$, from Lemma 3.1 that $\|\widehat{\mathbf{X}}-\mathbf{X O}\|_{F}=O_{p}\left(n_{1}^{1 / 4}\right)$, and S1.20 that $\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\left(\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X O}\right)^{-1}\right\|_{F}=$ $O_{p}\left[\max \left\{d^{2} n_{1}^{-3} \delta^{3 / 2}(\boldsymbol{\Pi}), d^{2} \log ^{1 / 2}\left(n_{1}\right) n_{1}^{-2}\right\}\right]$, then we can get $\left\|\left(\mathbf{P}_{\widehat{\mathbf{x}}}-\mathbf{P}_{\mathbf{x}}\right) \mathbf{v}\right\|_{2}=$ $O_{p}\left[\max \left\{n_{1}^{-1 / 4}, n_{1}^{-2} \delta^{3 / 2}(\boldsymbol{\Pi}), \log ^{1 / 2}\left(n_{1}\right) n_{1}^{-1}\right\}\right]$.

Proof of Theorem 3.1. Since $\lambda_{1}=o\left(n_{2}^{-1}\right)$, then we have

$$
\begin{align*}
& \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}+n_{1} n_{2} \lambda_{1} \mathbf{I}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \\
= & \left(n_{1}^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}+n_{2} \lambda_{1} \mathbf{I}\right)^{-1} n_{1}^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \\
= & \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{1+o_{p}(1)\right\}, \tag{S1.21}
\end{align*}
$$

and since $\left|\widehat{\theta}_{i j}-\theta_{i j}\right|=O_{p}\left(n_{1}^{-1}\right)$, then we have

$$
\begin{equation*}
\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}=\mathbf{W} \circ\left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\} \boldsymbol{\Omega}_{0} \circ \mathbf{Y} \tag{S1.22}
\end{equation*}
$$

Thus, by (2.6), we can get there exists an orthogonal matrix \mathbf{O} such that

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0} \\
= & \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}+n_{1} n_{2} \lambda_{1} \mathbf{I}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0} \\
= & \{1+o(1)\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0} \\
= & \{1+o(1)\}\left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0} \\
= & \left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{A}_{0} \\
= & \left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{A}_{0}\right\} \\
& +\left(\widehat{\left.\mathbf{X}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{A}_{0}+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\left(\widehat{\left.\mathbf{X}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0}}\right.} \begin{array}{rl}
= & \left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{A}_{0}\right\} \\
& +\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0} \\
& +\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0}+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0},
\end{array}\right.
\end{aligned}
$$

where the second equality is due to $\mathrm{S1.21}$ and the third equality comes from (S1.22), then for all j we have

$$
\begin{aligned}
& \widehat{\boldsymbol{\beta}}_{\cdot j}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0, j} \\
= & \left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\} \\
& +\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j} \\
& +\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0, j}+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\left(\widehat{\mathbf{X}} \widehat{\mathbf{X}}^{\mathrm{T}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}
\end{aligned}
$$

Let $\mathbf{D}=\mathbf{X}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)-\mathbf{A}_{0}\right\}$, then $D_{i j}=\sum_{k=1}^{n_{1}} X_{k i} \omega_{k j} Y_{k j} / \theta_{k j}-$ $X_{k i} A_{0, k j}=\sum_{k=1}^{n_{1}} X_{k i}\left(\omega_{k j}-\theta_{k j}\right) A_{0, k j} / \theta_{k j}-X_{k i} \omega_{k j} \epsilon_{k j} / \theta_{k j}$ for $1 \leq i \leq d$ and $1 \leq j \leq n_{2}$. By condition (C1) and (C3) we know that $X_{k i}\left(\omega_{k j}-\right.$ $\left.\theta_{k j}\right) A_{0, k j} / \theta_{k j} \in \mathcal{S} \mathcal{G}\left(\left|A_{0, k j} / \theta_{k j}\right|\right)$ and $X_{k i} \omega_{k j} \epsilon_{k j} / \theta_{k j} \in \mathcal{S G}\left(c_{\sigma} / \theta_{k j}\right)$, then $X_{k i}\left(\omega_{k j}-\right.$ $\left.\theta_{k j}\right) A_{0, k j} / \theta_{k j}-X_{k i} \omega_{k j} \epsilon_{k j} / \theta_{k j} \in \mathcal{S} \mathcal{G}\left(\left|A_{0, k j} / \theta_{k j}\right|+c_{\sigma} / \theta_{k j}\right)$ with zero mean.

Therefore, Hoeffding's inequality gives us

$$
\begin{aligned}
\operatorname{Pr}\left(D_{i j} \geq t\right) & \leq \exp \left\{-\frac{t^{2}}{2 \sum_{k=1}^{n_{1}}\left(\left|A_{0, k j} / \theta_{k j}\right|+c_{\sigma} / \theta_{k j}\right)^{2}}\right\} \\
& \leq \exp \left\{-\frac{t^{2} \theta_{L}^{2}}{2 \sum_{k=1}^{n_{1}}\left(\left|A_{0, k j}\right|+c_{\sigma}\right)^{2}}\right\} \\
& \leq \exp \left\{-\frac{t^{2} \theta_{L}^{2}}{4 \sum_{k=1}^{n_{1}} A_{0, k j}^{2}+c_{\sigma}^{2}}\right\} \\
& \leq \exp \left\{-\frac{t^{2} \theta_{L}^{2}}{4\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty}^{2}+4 c_{\sigma}^{2} n_{1}}\right\} \\
& \leq \exp \left\{-\frac{t^{2} \theta_{L}^{2}}{4\left(a_{2}^{2}+c_{\sigma}^{2}\right) n_{1}}\right\} .
\end{aligned}
$$

Then there exists a constant c such that $D_{i j}=O_{p}\left\{n_{1}^{1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\}$. Since

$$
\begin{aligned}
& \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\} \\
= & \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}\left\{\mathbf{O}^{\mathrm{T}} \mathbf{E}^{\mathrm{T}}+\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, \cdot j}\right\} \\
= & \left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}\left\{\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi})+\mathbf{O}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}}+\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \\
& \left\{\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\} \\
= & \mathbf{S}_{\mathbf{M}}^{-1}\left\{\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi})+\mathbf{O}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}}+\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \\
& \left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\} \\
= & \mathbf{S}_{\mathbf{M}}^{-1}\left\{\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi})+\mathbf{O}^{\mathrm{T}} \mathbf{R}^{\mathrm{T}}\right\}\left\{\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\} \\
& +\mathbf{S}_{\mathbf{M}}^{-1} \mathbf{O}^{\mathrm{T}} \mathbf{D}_{\cdot j},
\end{aligned}
$$

then we have

$$
\begin{aligned}
& \left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \mathbf{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\}\right\|_{2} \\
\leq & \left\|\mathbf{S}_{\mathbf{M}}^{-1}\right\|_{F}\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}\left\|\mathbf{X}^{\mathrm{T}}\right\|_{F}\|\mathbf{M}-\mathbf{\Pi}\|_{2}\left\|\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\|_{2} \\
& +\left\|\mathbf{S}_{\mathbf{M}}^{-1}\right\|_{F}\left\|\mathbf{R}^{\mathrm{T}}\right\|_{F}\left\|\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\|_{2}+\left\|\mathbf{S}_{\mathbf{M}}^{-1}\right\|_{F}\left\|\mathbf{D}_{\cdot j}\right\|_{2} .
\end{aligned}
$$

Now, because we know $D_{i j}=O_{p}\left\{n_{1}^{1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\}$ thus $\left\|\mathbf{D}_{\cdot j}\right\|_{2}=O_{p}\left\{n_{1}^{1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\}$, $\left\|\left(\mathbf{W} \circ \Omega_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, \cdot j}\right\|_{2}=O_{p}\left\{n_{1}^{1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\},\left\|\mathbf{S}_{\mathbf{M}}^{-1}\right\|_{F}=O_{p}\left\{n_{1}^{-1}\right\}$ in

Lemma S1.3. $\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}=O\left(n_{1}^{-1}\right)$ in S1.19, $\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}=O_{p}\left\{\delta^{1 / 2}(\boldsymbol{\Pi})\right\}$ in Proposition S1.1 and condition (C5), and $\|\mathbf{R}\|_{F}=O_{p}\left[\max \left\{d n_{1}^{-1} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$, we have $\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\}\right\|_{2}=O_{p}\left\{n_{1}^{-1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\}$.

Since

$$
\begin{aligned}
& \left\|\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2} \\
= & \left\|\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \mathbf{S}_{\mathbf{M}}^{\frac{1}{2}} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2} \\
\leq & \left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\|_{F}\left\|\mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right\|_{F}\left\|\mathbf{A}_{0, j}\right\|_{2} \\
\leq & \left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\|_{F}\left\|\mathbf{S}_{\mathbf{M}}^{\frac{1}{2}}\right\|_{F}\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty},
\end{aligned}
$$

and we know $\left\|\left(\widehat{\mathbf{X}}{ }^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\|_{F}=O_{p}\left[\max \left\{n_{1}^{-3} \delta^{3 / 2}(\boldsymbol{\Pi}), \log ^{1 / 2}\left(n_{1}\right) n_{1}^{-2}\right\}\right]$ in Lemma S1.20. $\left\|\mathbf{S}_{\mathbf{M}}^{1 / 2}\right\|_{F}=O_{p}\left\{\delta^{1 / 2}(\boldsymbol{\Pi})\right\}$ in Lemma S1.3, and $\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty}=$ $O\left(n_{1}^{1 / 2}\right)$ in condition $(\mathbf{C} 2)$, then $\left\|\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2}=$ $O_{p}\left[\max \left\{n_{1}^{-5 / 2} \delta^{2}(\boldsymbol{\Pi}), \log ^{1 / 2}\left(n_{1}\right) n_{1}^{-3 / 2} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}\right]$.

Since

$$
\begin{aligned}
& \mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0, j} \\
= & \mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi})+\mathbf{R}^{\mathrm{T}}\right\} \mathbf{A}_{0, j},
\end{aligned}
$$

then we have

$$
\begin{aligned}
& \left\|\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0, j}\right\|_{2} \\
= & \left\|\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\left\{\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}}(\mathbf{M}-\mathbf{\Pi})+\mathbf{R}^{\mathrm{T}}\right\} \mathbf{A}_{0, j}\right\|_{2} \\
\leq & \left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-2}\right\|_{F}\left\|\mathbf{X}^{\mathrm{T}}\right\|_{F}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\left\|\mathbf{A}_{0, j}\right\|_{2}+\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}\left\|\mathbf{R}^{\mathrm{T}}\right\|_{F}\left\|\mathbf{A}_{0, j}\right\|_{2} \\
\leq & \left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-2}\right\|_{F}\left\|\mathbf{X}^{\mathrm{T}}\right\|_{F}\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty}+\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}\left\|\mathbf{R}^{\mathrm{T}}\right\|_{F}\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty}
\end{aligned}
$$

and we know $\left\|\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1}\right\|_{F}=O\left(n_{1}^{-1}\right)$ in S1.19, $\|\mathbf{M}-\boldsymbol{\Pi}\|_{2}=O_{p}\left\{\delta^{1 / 2}(\boldsymbol{\Pi})\right\}$
in Proposition S1.1 and condition (C5), and $\|\mathbf{R}\|_{F}=O_{p}\left[\max \left\{d n_{1}^{-1} \delta(\boldsymbol{\Pi}), d n_{1}^{-1 / 2} \log ^{1 / 2}\left(n_{1}\right)\right\}\right]$, we have $\left\|\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0, j}\right\|_{2}=O_{p}\left\{n_{1}^{-1} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}$.

Since $\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}=\mathbf{S}_{\mathbf{M}}^{-1 / 2} \mathbf{U}_{\mathbf{M}}^{\mathrm{T}} \mathbf{A}_{0, j}$, then $\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2} \leq$ $\left\|\mathbf{S}_{\mathbf{M}}^{-1 / 2}\right\|_{F}\left\|\mathbf{A}_{0}^{\mathrm{T}}\right\|_{2 \rightarrow \infty}$, thus we have $\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2}=O_{p}(1)$. Since

$$
\begin{aligned}
& \left\|\widehat{\boldsymbol{\beta}}_{\cdot j}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0, j}\right\|_{2} \\
\leq & \left\{1+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\right\}\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}}\left\{\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\}\right\|_{F} \\
& +\left\|\left\{\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1}-\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\right\} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2} \\
& +\left\|\mathbf{O}^{\mathrm{T}}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{O}\left\{\widehat{\mathbf{X}}^{\mathrm{T}}-\mathbf{O}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}\right\} \mathbf{A}_{0, j}\right\|_{2}+O_{p}\left(n_{1}^{-\frac{1}{2}}\right)\left\|\left(\widehat{\mathbf{X}}^{\mathrm{T}} \widehat{\mathbf{X}}\right)^{-1} \widehat{\mathbf{X}}^{\mathrm{T}} \mathbf{A}_{0, j}\right\|_{2},
\end{aligned}
$$

then we can get that $\left\|\widehat{\boldsymbol{\beta}}_{\cdot j}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0, \cdot j}\right\|_{2}=O_{p}\left[\max \left\{n_{1}^{-1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}, n_{1}^{-1} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}\right]$.

S2 Proof of Theorem 3.2

In this section, we provide the proof of Lemma $3.2+3.3$ and Theorem 3.2 which will follow from a succession of supporting results in Section S1.

Proof of Lemma 3.2. Under Conditions (C1) (C5), Lemma 3.1 shows that $\left\|\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}\right\|_{F}=O_{p}\left(n_{1}^{1 / 4}\right)$ and Theorem 3.1 exhibits that $\left\|\widehat{\boldsymbol{\beta}}_{\cdot j}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0, j}\right\|_{2}=$ $O_{p}\left[\max \left\{n_{1}^{-1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}, n_{1}^{-1} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}\right]$ for each j, thus $\left\|\widehat{\boldsymbol{\beta}}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right\|_{F}=$ $O_{p}\left[\max \left\{n_{1}^{-1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1} n_{2}^{1 / 2}, n_{1}^{-1} n_{2}^{1 / 2} \delta^{1 / 2}(\boldsymbol{\Pi})\right\}\right]$. Furthermore, we can get
from Lemma S1.3 that $\left\|\mathbf{S}_{\mathbf{M}}^{1 / 2}\right\|_{F}=O_{p}\left\{\delta^{1 / 2}(\boldsymbol{\Pi})\right\}$ thus $\|\widehat{\mathbf{X}}\|_{F}=O_{p}\left\{\delta^{1 / 2}(\boldsymbol{\Pi})\right\}$ because $\|\widehat{\mathbf{X}}\|_{F} \leq\left\|\mathbf{S}_{\mathbf{M}}^{1 / 2}\right\|_{F}$.

Since

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2} \\
= & \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}}\left(\widehat{\boldsymbol{\beta}}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)+\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2} \\
\leq & \frac{2}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}}\left(\widehat{\boldsymbol{\beta}}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right)\right\|_{F}^{2}+\frac{2}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2} \\
\leq & \frac{2}{n_{1} n_{2}}\|\widehat{\mathbf{X}}\|_{2}^{2}\left\|\widehat{\boldsymbol{\beta}}-\mathbf{O}^{\mathrm{T}} \boldsymbol{\beta}_{0}\right\|_{F}^{2}+\frac{2}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \mathbf{O}^{\mathrm{T}}-\mathbf{X}\right\|_{F}^{2}\left\|\boldsymbol{\beta}_{0}\right\|_{F}^{2}
\end{aligned}
$$

where the first inequality is due to the matrix norm sub-additivity, the last inequality is due to the matrix norm sub-multiplicativity and the inequality S1.4, then by the bounds above, we get that $\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2} /\left(n_{1} n_{2}\right)=$ $O_{p}\left[\max \left\{n_{1}^{-2} \log ^{2 c}\left(n_{1}\right) \theta_{L}^{-2} \delta(\boldsymbol{\Pi}), n_{1}^{-3} \delta^{2}(\boldsymbol{\Pi}), n_{1}^{-1 / 2} n_{2}^{-1}\left\|\boldsymbol{\beta}_{0}\right\|_{F}^{2}\right\}\right]$.

Proof of Lemma 3.3. Under Conditions (C1) (C5), we know from the proof of Theorem 3.1 that $\left\|\left(\mathbf{W} \circ \boldsymbol{\Omega}_{0} \circ \mathbf{Y}\right)_{\cdot j}-\mathbf{A}_{0, j}\right\|_{2}=O_{p}\left\{n_{1}^{1 / 2} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}\right\}$. Since $\left|\widehat{\theta}_{i j}-\theta_{i j}\right|=O_{p}\left(n_{1}^{-1}\right)$, then we have $\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}=\mathbf{W} \circ\left\{1+O_{p}\left(n_{1}^{-1 / 2}\right)\right\} \boldsymbol{\Omega}_{0} \circ \mathbf{Y}$. Therefore, there exists positive constant c_{Y} such that

$$
\begin{equation*}
\left\|\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right\|_{F} \leq c_{Y} \sqrt{n_{1} n_{2}} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1} \tag{S2.1}
\end{equation*}
$$

holds with probability 1.

By (2.5, we know from the fact $\widehat{\mathbf{B}}$ is the minimizer that

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{B}}-\mathbf{P}_{\hat{\mathbf{x}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\lambda_{2} \alpha\|\widehat{\mathbf{B}}\|_{*}+\lambda_{2}(1-\alpha)\|\widehat{\mathbf{B}}\|_{F}^{2}(\mathrm{~S} 2.2) \\
\leq & \frac{1}{n_{1} n_{2}}\left\|\mathbf{B}_{0}-\mathbf{P}_{\widehat{\mathbf{\mathbf { x }}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2} .
\end{aligned}
$$

Furthermore, from $\widehat{\mathbf{B}} \in \mathcal{N}(\widehat{\mathbf{X}})$ we get that $\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\widehat{\mathbf{B}}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\|_{F}^{2}=$ $\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\left\|\widehat{\mathbf{B}}-\mathbf{P}_{\widehat{\mathbf{X}}}^{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}$. But for \mathbf{B}_{0} we have $\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}=\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\| \mathbf{B}_{0}-\mathbf{P}_{\widehat{\mathbf{X}}}^{\perp}(\mathbf{W} \circ$ $\widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}) \|_{F}^{2}+2\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle$, then combining S2.2 we have

$$
\begin{aligned}
& \quad \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{x}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\frac{1}{n_{1} n_{2}}\|\widehat{\mathbf{B}}-\mathbf{P} \stackrel{\widehat{\mathbf{x}}}{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\|_{F}^{2} \\
& \quad+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2} \\
& \leq \\
& \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2}+\frac{1}{n_{1} n_{2}}\left\|\mathbf{B}_{0}-\mathbf{P} \frac{\widehat{\mathbf{x}}}{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\|_{F}^{2} \\
& \quad+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2},
\end{aligned}
$$

then

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\widehat{\mathbf{B}}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\|_{F}^{2}+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2} \\
\leq & \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}-\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle \\
& +\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2},
\end{aligned}
$$

then

$$
\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}+\widehat{\mathbf{B}}-\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2}
$$

$$
\begin{aligned}
\leq & \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}-\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{x}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle \\
& +\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2},
\end{aligned}
$$

then

$$
\begin{aligned}
& \quad \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}+\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2} \\
& \quad+\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{B}}-\mathbf{B}_{0}, \widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\rangle+\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2} \\
& \leq \\
& \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\|_{F}^{2}-\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle \\
& \\
& +\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2},
\end{aligned}
$$

then

$$
\begin{align*}
\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2} \leq & \lambda_{2} \alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+\lambda_{2}(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right) \\
& -\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{B}}-\mathbf{B}_{0}, \widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\rangle \\
& -\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle \tag{S2.3}
\end{align*}
$$

Then by 52.3 and with $\alpha \in(0,1]$ and $\lambda_{2} \geq\left\{2 c_{Y} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2}\right\} / \sqrt{n_{1} n_{2} \alpha^{2}}+$ $2\left\|\mathbf{B}_{0}\right\|_{2} /\left(n_{1} n_{2} \alpha\right)$, we have with probability 1 that

$$
\begin{aligned}
& \frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2} \\
\leq & \lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& -\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{B}}-\mathbf{B}_{0}, \widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\mathbf{B}_{0}-\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{2}{n_{1} n_{2}}\left\langle\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{P}_{\widehat{\mathbf{X}}}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}), \mathbf{B}_{0}\right\rangle \\
& =\lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& +\frac{2}{n_{1} n_{2}}\left\{\left\langle\widehat{\mathbf{B}}, \mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{B}_{0}\right\rangle+\left\langle\mathbf{B}_{0}, \mathbf{B}_{0}-\mathbf{P} \stackrel{\stackrel{\rightharpoonup}{\mathbf{X}}}{\perp}(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y})\right\rangle\right\} \\
& =\lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& +\frac{2}{n_{1} n_{2}}\left\{\left\langle\widehat{\mathbf{B}}, \mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}+\mathbf{X} \boldsymbol{\beta}_{0}\right\rangle\right. \\
& \left.+\left\langle\mathbf{B}_{0}, \mathbf{B}_{0}-\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}\left(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right)+\mathbf{P}_{\widehat{\mathbf{x}}} \mathbf{A}_{0}\right\rangle\right\} \\
& \leq \lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& +\frac{2}{n_{1} n_{2}}\left\{\|\widehat{\mathbf{B}}\|_{*}\left(\left\|\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right\|_{2}+\left\|\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{2}\right)\right. \\
& \left.+\left\|\mathbf{B}_{0}\right\|_{*}\left\{\left\|\mathbf{B}_{0}-\mathbf{P}_{\widehat{\mathbf{x}}}^{\perp}\left(\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right)\right\|_{2}+\left\|\mathbf{P}_{\widehat{\mathbf{x}}}\right\|_{2}\left\|\mathbf{A}_{0}\right\|_{2}\right\}\right\} \\
& \leq \lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& +\frac{2}{n_{1} n_{2}}\left\{\|\widehat{\mathbf{B}}\|_{*}\left(\left\|\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right\|_{F}+\left\|\mathbf{A}_{0}\right\|_{F}+\left\|\mathbf{B}_{0}\right\|_{2}\right)\right. \\
& \left.+\left\|\mathbf{B}_{0}\right\|_{*}\left(\left\|\mathbf{B}_{0}\right\|_{2}+\left\|\mathbf{W} \circ \widehat{\boldsymbol{\Omega}} \circ \mathbf{Y}-\mathbf{A}_{0}\right\|_{F}+\left\|\mathbf{A}_{0}\right\|_{F}\right)\right\} \\
& \leq \lambda_{2}\left\{\alpha\left(\left\|\mathbf{B}_{0}\right\|_{*}-\|\widehat{\mathbf{B}}\|_{*}\right)+(1-\alpha)\left(\left\|\mathbf{B}_{0}\right\|_{F}^{2}-\|\widehat{\mathbf{B}}\|_{F}^{2}\right)\right\} \\
& +\frac{2}{n_{1} n_{2}}\|\widehat{\mathbf{B}}\|_{*}\left\{c_{Y} \sqrt{n_{1} n_{2}} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2} \sqrt{n_{1} n_{2}}+\left\|\mathbf{B}_{0}\right\|_{2}\right\} \\
& +\frac{2}{n_{1} n_{2}}\left\|\mathbf{B}_{0}\right\|_{*}\left\{\left\|\mathbf{B}_{0}\right\|_{2}+c_{Y} \sqrt{n_{1} n_{2}} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2} \sqrt{n_{1} n_{2}}\right\} \\
& =\left\{\lambda_{2} \alpha+\frac{2 c_{Y} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2}}{\sqrt{n_{1} n_{2}}}+\frac{2\left\|\mathbf{B}_{0}\right\|_{2}}{n_{1} n_{2}}\right\}\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2} \\
& +\left\{\frac{2 c_{Y} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2}}{\sqrt{n_{1} n_{2}}}+\frac{2\left\|\mathbf{B}_{0}\right\|_{2}}{n_{1} n_{2}}-\lambda_{2} \alpha\right\}\|\widehat{\mathbf{B}}\|_{*}-\lambda_{2}(1-\alpha)\|\widehat{\mathbf{B}}\|_{F}^{2} \\
& \leq 2 \lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}+\lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2},
\end{aligned}
$$

where the second equality is due to the fact that $\widehat{\mathbf{B}} \in \mathcal{N}(\widehat{\mathbf{X}})$, the second inequality is due to the trace duality property, the third inequality is due to the matrix norm sub-additivity and the fact that $\mathbf{P}_{\hat{\mathbf{x}}}^{\perp}$ is a projection matrix, the fifth inequality comes from the high-probability bounds (S2.1), and the last inequality is due to $\lambda_{2} \geq\left\{2 c_{Y} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2}\right\} / \sqrt{n_{1} n_{2} \alpha^{2}}+$ $2\left\|\mathbf{B}_{0}\right\|_{2} /\left(n_{1} n_{2} \alpha\right)$ that is assumed in the statement of Lemma 3.3.

Therefore, we can get $\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2} /\left(n_{1} n_{2}\right)=O_{p}\left[\max \left\{\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}, \lambda_{2}(1-\right.\right.$ $\left.\left.\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2}\right\}\right]$.

Proof of Theorem 3.2. Under Conditions (C1) (C5), with $\alpha \in(0,1], \lambda_{1}=$ $o\left(n_{2}^{-1}\right)$ and $\lambda_{2} \geq\left\{2 c_{Y} \log ^{c}\left(n_{1}\right) \theta_{L}^{-1}+a_{2}\right\} / \sqrt{n_{1} n_{2} \alpha^{2}}+2\left\|\mathbf{B}_{0}\right\|_{2} /\left(n_{1} n_{2} \alpha\right)$, Lemma 3.2 and Lemma 3.3 show that

$$
\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2}=O_{p}\left\{\max \left(\frac{\log ^{2 c}\left(n_{1}\right) \delta(\boldsymbol{\Pi})}{n_{1}^{2} \theta_{L}^{2}}, \frac{\delta^{2}(\boldsymbol{\Pi})}{n_{1}^{3}}, \frac{\left\|\boldsymbol{\beta}_{0}\right\|_{F}^{2}}{n_{1}^{1 / 2} n_{2}}\right)\right\}
$$

and

$$
\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2}=O_{p}\left[\max \left\{\lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}, \lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2}\right\}\right] .
$$

Since

$$
d^{2}\left(\widehat{\mathbf{A}}, \mathbf{A}_{0}\right)=\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{A}}-\mathbf{A}_{0}\right\|_{F}^{2}
$$

$$
\begin{aligned}
& =\frac{1}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}+\widehat{\mathbf{B}}-\mathbf{X} \boldsymbol{\beta}_{0}-\mathbf{B}_{0}\right\|_{F}^{2} \\
& \leq \frac{2}{n_{1} n_{2}}\left\|\widehat{\mathbf{X}} \widehat{\boldsymbol{\beta}}-\mathbf{X} \boldsymbol{\beta}_{0}\right\|_{F}^{2}+\left\|\widehat{\mathbf{B}}-\mathbf{B}_{0}\right\|_{F}^{2}
\end{aligned}
$$

then we have

$$
\begin{aligned}
& d^{2}\left(\widehat{\mathbf{A}}, \mathbf{A}_{0}\right) \\
= & O_{p}\left[\max \left\{\frac{\log ^{2 c}\left(n_{1}\right) \delta(\boldsymbol{\Pi})}{n_{1}^{2} \theta_{L}^{2}}, \frac{\delta^{2}(\boldsymbol{\Pi})}{n_{1}^{3}}, \frac{\left\|\boldsymbol{\beta}_{0}\right\|_{F}^{2}}{n_{1}^{1 / 2} n_{2}}, \lambda_{2} \alpha\left\|\mathbf{B}_{0}\right\|_{*}, \lambda_{2}(1-\alpha)\left\|\mathbf{B}_{0}\right\|_{F}^{2}\right\}\right] .
\end{aligned}
$$

S2.1 Performance as d varies

In this section, we investigate the performance of MCNet, SoftImpute, TopN, and NetRec when d varies. We fix $n_{1}=n_{2}=500$ and vary d from 1 to 10 by stepwise 1. The parameters $\boldsymbol{\beta}_{0}, \mathbf{B}_{0}$ and \mathbf{X} are the same as those in Section 4.1. Then the adjacency matrix is generated from a Bernoulli distribution with success rate $\mathbf{X X}{ }^{\mathrm{T}}$. Let $\mathbf{A}_{0}=\mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{B}_{0}$ and $\mathbf{Y}=\mathbf{A}_{0}+\boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon}$ is an error matrix with independent zero mean normal entries. The standard deviation of the errors is chosen to achieve 0.5 signal-to-noise ratio. We adopt model I for the missing mechanism with an 80% missing rate.

In Figure 1, we plot $d\left(\widehat{\mathbf{A}}, \mathbf{A}_{0}\right) /\left\|\mathbf{A}_{0}\right\|_{F}$ with 95% confidence intervals
versus the dimension d. Figure 1 shows that $d\left(\widehat{\mathbf{A}}, \mathbf{A}_{0}\right) /\left\|\mathbf{A}_{0}\right\|_{F}$ decreases along with the decrease of d, which implies the proposed method has better performance when the latent position matrix is exactly low-rank.

Figure 1: Dimension d. Performance of MCNet and other methods under model I for 100 repetitions.

S3 Robustness to misspecification of d

To evaluate the robustness of our method with respect to the misspecification of d, we added one simulation under misspecification of d. In this simulation, we fix $n_{1}=n_{2}=100$ and true $d=10$. Each entry of \mathbf{X} is generated from a beta distribution with parameters $(3,1)$. We then scale each entry by a chosen constant to ensure $\max _{i, j} \mathbf{X}_{i} \cdot \mathbf{X}_{j}^{\mathrm{T}}=0.95$. We generate $M_{i j}=M_{j i}, i \neq j$ from a Bernoulli distribution with success rate $\mathbf{X}_{i} \cdot \mathbf{X}_{j}^{\mathrm{T}}$. and generate each entry in $\boldsymbol{\beta}_{0}$ from a mean zero normal distribution
with variance d / n_{2}. Moreover, we define $\mathbf{B}_{0}=\mathbf{P}_{\mathbf{X}}^{\perp} \mathbf{U}_{0} \mathbf{V}_{0}^{\mathrm{T}} d / \sqrt{n_{1} n_{2}}$ where $\mathbf{U}_{0} \in \mathbb{R}^{n_{1} \times 10}$ and $\mathbf{V}_{0} \in \mathbb{R}^{n_{2} \times 10}$ are matrices with standard normal entries. Let $\mathbf{A}_{0}=\mathbf{X} \boldsymbol{\beta}_{0}+\mathbf{B}_{0}$ and $\mathbf{Y}=\mathbf{A}_{0}+\boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon}$ is an error matrix with independent mean zero normal entries where the standard deviation is chosen to achieve 0.5 signal-to-noise ratio. We adopt the uniform missingness (Model I) with $\theta_{i j}=0.2$. When estimating $\widehat{\mathbf{X}}$, we vary the dimension d from 3 to 50. And we select the tuning parameters using the error perturbation method in Section 4.1. The same procedure is adopted for selecting tuning parameters in the SoftImpute, TopN, and NetRec procedures and we replicate the simulation for 100 times. In Figure 2, we plot $d\left(\widehat{\mathbf{A}}, \mathbf{A}_{0}\right)$ with 95% confidence intervals versus the misspecified dimension d. It shows that our algorithm is insensitive to the selection of d.

Figure 2: Misspecified dimension d. Performance of MCNet and other methods under model I for 100 repetitions.

References

Cai, T. T. and Zhang, A. (2018). Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics. The Annals of Statistics 46, 60-89.

Loh, P.-L. and Wainwright, M. J. (2017). Support recovery without incoherence: a case for nonconvex regularization. The Annals of Statistics 45, 2455-2482.

Lu, L. and Peng, X. (2013). Spectra of edge-independent random graphs. Electronic Journal of Combinatorics 20, 27.

Mao, X., Chen, S. X. and Wong, R. K. (2019). Matrix completion with covariate information. Journal of the American Statistical Association 114, 198-210.

Oliveira, R. I. (2009). Concentration of the adjacency matrix and of the laplacian in random graphs with independent edges. arXiv preprint arXiv:0911.0600.

Tang, M., Athreya, A., Sussman, D. L., Lyzinski, V., Park, Y. and Priebe, C. E. (2017). A semiparametric two-sample hypothesis testing problem for random graphs. Journal of Computational and Graphical Statistics 26, 344-354.

Yu, Y., Wang, T. and Samworth, R. J. (2014). A useful variant of the davis-kahan theorem for statisticians. Biometrika 102, 315-323.

