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Abstract: We study semiparametric regression for a recurrent event process with
an informative terminal event, where observations are taken only at discrete time
points, rather than continuously over time. To account for the effect of a terminal
event on the recurrent event process, we propose a semiparametric reversed mean
model, for which we develop a two-stage sieve likelihood-based method to estimate
the baseline mean function and the covariate effects. Our approach overcomes
the computational difficulties arising from the nuisance functional parameter in
the assumption that the likelihood is based on a Poisson process. We establish
the consistency, convergence rate, and asymptotic normality of the proposed two-
stage estimator, which is robust against the assumption of an underlying Poisson
process. The proposed method is evaluated using extensive simulation studies, and
demonstrated using panel count data from a longitudinal healthy longevity study
and data from a bladder tumor study.
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1. Introduction

Panel count data often arise in biomedical research, economics, social
sciences, and reliability studies (Thall (1988); Sun and Wei (2000); Hu, Sun and
Wei (2003);|[Wellner and Zhang (2007); Lu, Zhang and Huang] (2009); Zhao, Li and
Sun| (2013)). During the follow-up, observations are taken at finite distinct time
points, with researchers collecting the number of recurrent events that occurred
between observation times, without information on the exact timing of the events.
While both the observation and the follow-up times may vary between subjects,
observations may be terminated by a terminal event. Examples of studies based
on panel count data include the bladder cancer study conducted by the Veterans
Administration Cooperative Urological Research Group (Andrews and Herzberg
(1985)) and the Chinese Longitudinal Healthy Longevity Study (CLHLS) (Zeng
et al.| (2017))). We aim to estimate the mean function of the underlying counting
process and make inferences about the factors that affect the event occurrence
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rate in the setting of panel count data, subject to an informative terminal event.
The unique characteristics of panel count data present additional challenges to
statistical inference, requiring advanced modeling techniques.

Many methods have been developed for estimating the mean function of a
counting process with panel count data but without considering the effect of a
terminal event. These include the parametric methods by [Kalbfleisch and Lawless|
(1985)); [Hinde| (1982); Breslow, (1984); Thall| (1988); the nonparametric methods
of Sun and Kalbfleisch| (1995)); [Wellner and Zhang (2000); Hu, Lagakos and|
Lockhart| (2009); Zhang and Jamshidian| (2003)); Huang, Wang and Zhang] (2006));
Lu, Zhang and Huang| (2007); and the semiparametric methods of |(Cheng and Wei
(2000); |Sun and Wei (2000)); Zhang (2002)); Hu, Sun and Wei| (2003); [Wellner and,
\Zhang| (2007); [Lu, Zhang and Huang| (2009). More recently, Ma and Sundaram|
investigated gap times with panel count data, Zhu et al. (2018) developed
a semiparametric likelihood-based method for a regression analysis of mixed panel

count data, and Diao et al| (2019) studied semiparametric frailty models when

dropouts are informative. (Chiou et al.|(2019))) provide a comprehensive overview
of existing methods for panel count data analysis and the corresponding software
implementations.

Despite the abundant research on modeling panel count data, few works
include an informative terminal event. Two common methods used for counting

process data to account for the effect of terminal events are joint modeling

approaches that use frailty variables (Huang and Wang| (2004); Zeng and Cai
(2010));|Sun et al.|(2012); Zhou et al. (2017)); Diao et al. (2017, 2019)) and marginal
modeling approaches that use the inverse probability weighting technique
Zhou and Sun| (2011); Zhao, Li and Sun| (2013)). However, both methods
have limitations. In particular, the joint modeling approach cannot explicitly

depict the relationship between a recurrent event process and the terminal event,
although it is implied by the shared unknown latent variables, and the marginal
modeling approach may not be feasible when a terminal event permanently stops
the recurrent event process. On the other hand, the terminal event time usually
induces direct effects on the recurrent event through a functional relationship.
For example, (Chan et al| (1995 found that the occurrence of AIDS-defining
events increases prior to the death of HIV-infected individuals. [Lunney et al.
discovered that the functional decline changes significantly in the final year
before the death of HIV-infected individuals. To the best of our knowledge, there
are no semiparametric methods that directly capture the correlation between the

terminal event and the recurrent event process in the case of panel count data.
This study contributes to the literature in three ways. First, we develop a
semiparametric reversed mean model anchoring at a terminal event to explicitly
quantify its effect on the recurrent event process, while emphasizing the pro-
cess near the anchoring event (Chan and Wang| (2010, 2017); Kong et al.| (2018))).
Second, conditional on censored terminal event time data, we formulate the log-
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likelihood for panel count data as an objective function, and design a correspond-
ing two-stage estimation procedure. Third, we establish a general framework
for the asymptotic distributional theory of semiparametric M-estimators with
a nuisance functional parameter that can be applied to derive the asymptotic
normality of functionals of two-stage semiparametric M-estimators for panel
count data. In particular, the asymptotic results of the proposed estimator do
not rely on the working model following a Poisson process.

The remainder of this paper is organized as follows. In Section 2, we introduce
the proposed semiparametric reversed mean model, and present the corresponding
two-stage estimation procedure. In Section 3, we establish the asymptotic
properties, including the consistency, convergence rate, and asymptotic normality
of the proposed estimator. Section 4 reports the results of simulation studies
to demonstrate the performance of the proposed estimator. In Section 5, we
apply the proposed method to two real datasets. Section 6 concludes the paper.
All technical proofs and a general theorem for semiparametric M-estimators are
provided in the online Supplementary Material.

2. Methodology
2.1. Model setting

We use N(t) to denote the total number of occurrences of the event of interest
up to time, t for 0 < t < 7, where 7 is the length of the study duration. Let
U be the terminal event time with the counting process N(-), and let C' be
the censoring time for (U, N(-)), after which the counting process or terminal
event may still happen, but is unobserable. Let Y = U A C be the observed
time for the terminal event, where a A b = min(a,b), and let A = Iyy<cy be
a censoring indicator. Suppose that N(-) is observed at discrete time points
0 < Tk < - < Tk i, where K is the potential number of observation times. Let
Ty = (Tka,...,Tk k) denote panel observation times on the counting process,
and let N = (N(Tk.1),...,N(Tk k)) be the cumulative event counts observed at
Ty Let Z be a d-dimensional vector of associated covariates at the baseline. The
observed data consist of independent and identically distributed (i.i.d.) copies of
D=Y,ANTy K, Z).

Motivated by the works of (Chan and Wang (2010, [2017)); |Kong et al.| (2018)),
to characterize the behavior of the counting process near the informative terminal
event time U, we investigate the reversed counting process N (t;U), which is the
event count from time ¢ to the terminal event time U. Suppose that N (t;U)
follows a semiparametric reversed mean model,

E(NGU)U =u, Z) = Au — t)e’ Z, (2.1)

where A(-) is a nondecreasing function with A(0) = 0, and (3 is a d-dimensional



1846 SU ET AL.

vector of unknown regression coefficients. This reversed mean model indicates
that the reversed counting process is associated with the random terminal time
U only through the length to the terminal event U — ¢, and hence can be viewed
as a homogeneous temporal model.

Because N (t; U) may not be observed at some ¢, owing to U being censored,
model is not immediately useful for estimating A(-) and 8 based on the
observed data. Noting that N () = N(0;U) — N(t; U), we have

E(N®|U =u, Z) = {A(w) — A(u—t)}e? 2, (2.2)

which we can use to study the reversed mean function A(-) and the regression
coefficient S using a likelihood method similar to those in [Wellner and Zhang
(2007); ILu, Zhang and Huang| (2009)).

2.2. Estimation procedure

We assume that U and C are independent given Z, and both the distribution
of the censoring time C and that of (K,T)) are non-informative to A. Let
AN; = N(Tk ;) — N(Tkj-1), AN = (ANy,...,ANg), An = (Ang, ..., Any),
and t, = (tg1,...,tex), With An; = n;—n;_;. Suppose that the counting process
N{(-) follows a conditional Poisson process, with

P(AN = An|Z,U =u, K =k, Ty =t;)

_ Ty (AN e 2 (AN (e’ )2
I di(C |

(2.3)

j=1
where ty o = 0, ng = 0, and AA;(u) = Alu — ty;-1) — A(u — 1y ;), for j > 1.
We write § = (8, A), and use the notation 6y = (5o, Ag) and AAy;(u) to denote

the true values of # and AA;(u), respectively. The individual log-likelihood of 6
based on the working model ([2.3) is given by

K
(0;U,AN, Ty K, Z) =Y {AN]- log(AA(U)e? Z) — AAj(U)eﬂTZ} .

Jj=1

However, we may not be able to evaluate this likelihood, because U is subject to
censoring. To deal with this case, we consider the conditional expectation of the
log-likelihood: E{l(6; U, AN,Ty,K,Z)|Y,A,Z}. Let Fy(u|z) be the conditional
cumulative distribution function of U given the covariate Z = z. A direct
calculation yields

E{l(6;U, AN, T, K, Z)|Y,A, Z}

= Ai {ANj log(AA;(Y)e? 7)) — AA],(Y)BBTZ}

j=1
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AN log(AA, —AAvueﬂTz}dF ulZ),
Fomz/ BN, e %) — A (w) b(ul2)

where Fy(u|Z) = 1 — Fy(u|Z), and 7 is a finite time. Thus, the conditional
expectation of log-likelihood (CELL) for i.i.d. samples D = {D; : i =1,...,n}
is

1,(0,F; D) =
% i lAz i { AN log(BA (V) #) = AN (Yi)ed (2.4)
YIZ Z/ 5 108(AA 5 (w)e” 7) - AAi,j(“)eﬁTZi}dF(“’Zi)

after omitting the parts unrelated to (0, F'), where T, o = 0, AN, ; = N;(T«x, ;) —
N;i(Tk, j-1), and AA; j(u) = AMu—Tk, j—1)—A(u—TE, ;). To obtain the estimators
of 8y and F; based on , we consider a two-stage procedure, similar in spirit
to a pseudo-likelihood estimation.

Stage 1: Obtain the estimator of Fy, F,(u|Z), based on the right-censored data
{(Y,,A,,Z), fori=1,...,n}.

Stage 2: Obtain the CELL estimator 0, = (Bn, [\n) by maximizing [,,(6; D) :=
1(60, Fu; D).

In Stage 1, to estimate Fy,(t|Z), we can assume a survival model such as the
Cox proportional hazards model (Cox| (1972)). Suppose the hazard function of
U given the covariate Z satisfies

MulZ) = v(u)et 7,

where v(-) is an unknown baseline hazard function, and ¢ is a vector of unknown
regression parameters. Denote the true values of v(-) and ¢ in this model as vy
and (p, respectively. We can estimate the regression coefﬁcient (o using the partial
likelihood, and estimate the cumulative baseline hazard Yo(u fo vo(t)dt using
the Breslow estimator (Breslow| (1972))), denoted by ¢, and Tn, respectlvely. As
a result, Fy(u|z) is estimated by

Fo(u|Z) =1 —exp (= Th(u)et 7). (2.5)

In Stage 2, we estimate the smooth nondecreasing monotone function Ag
using the spline-based sieve method (Lu, Zhang and Huang (2009)). Take 7 =
{siyi=1,...,m, + 21}, with

O=s1=- =8 <8131 < " <Smpit < Smptitl =" = Sm421 =T
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being a sequence of knots that partition [0, 7] into m, + 1 subintervals I; =
[S144 Siiz1], for i =0,1,...,m,. Let ®, be a class of polynomial splines of order
{ > 1 with the knot sequence 7. Then ®,, is linearly spanned by the normalized
B-spline basis functions {B;,l = 1,...,¢,}, with ¢, = m,, +1 (Schumaker| (1981))).

Let
dn dn
0, = {ZalBl 0<a; < <ag, Y aB(0) = 0}
=1 =1
be a subclass of ®,. For any A(t) € ¥,,, A(t) is monotone nondecreasing and
A(0) = 0. In addition, let R be a compact set of R?. The two-stage estimator of
0y is given by

0, = argmax1, (0, F,,; D),

0ER XV,
with A, = S, & B;. The proposed estimator can be computed in two steps

using the usual profile likelihood method. First, for each fixed value of 5, we take

A, (B) = argmax,, (0, Fn; D)

Aev,

and (}eﬁne Alf:“’f“e(ﬂ; D)=1,(8, f\(ﬁ), F";Q), yielding B, :argmaxﬁeng“’ﬁle(ﬁ; D)
and A,, = A, (B,). The proposed two-stage CELL estimator can be implemented
using the constrained optimization package constrOptim in R.

3. Asymptotic Properties
3.1. Notation and metrics

We expand the notation and metrics originally defined in [Wellner and Zhang
(2007) to study the asymptotic properties of the proposed estimator. Let B¢
and B denote the collection of Borel sets in R? and R, respectively, and let
Bio.-1 = {BN[0,7] : B € B}. We then define the measures vy, v, V1, 11, and po
as follows. For any By, By, B € By ), and B; € B,

Vl(Bl X BQ X Bg) :/

B

/ZP(K:MZ:Z,UZU)
370 k=1

k
XY P(u—Ty ;-1 € Bi,u—"Ti; € Bo|Z = 2, K = k,U = u)dFy(ulz)dH (2),
j=1

vo(B x Bs) = /

B

/ZP(K:k|Z:z,U:u)
370 k=1

k
x> Plu—Ty; €B|Z=2K =k U =u)dFy(ulz)dH(z),

Jj=1

Ml(Bl X BQ) = Vl(Bl X BQ X Rd)7
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3(B) = 12(B x BY),

ps(By X By) //ZP =k Z=2U=u)
X P(u—Tyy € Bi,u € Bo|Z = 2, K =k, U = u)dFy(u|z)dH(z),

where H is the distribution function of Z. When the distribution function Fy in
measure v is replaced by F;,, we use the notation v,; instead. We also define the
Ly-metrics d;(61,02), forj = 1,20, in the parameter space © as

1/2
d;(01,02) ={ 1181 = Ball® + A1 = Mol b

Let Z be the support of H. Let M; (j = 1,...,7) and ¢ denote universal
constants. Let ¢g(") be the rth derivative function of g. For r > 1, we define

He={g:1g" V(s) —g" V() <c|s—t| forall 0 < s <t <7},
F ={F: F(u|z)is a conditional distribution function on [0, 7] x Z},
Fy={F: |F - Ryl <n,F € F},
U = {A: A(u) is a strictly increasing continuous function over [0, 7]
with A(0) =0,A € H,},
O=RxV, 0,=RxVY,,
Ons ={0: di(0,600) <9,0 €0,}, O;={0: di(0,6y) <6,0 € O},

where || — Fylloo = sup,, . |F(u|z) — Fo(ulz)|, for F € F.

3.2. Consistency and convergence rate

We impose the following regularity conditions in order to derive the
consistency and convergence rate of the proposed estimator:

(C1) The true parameter 6y = (S8y, Ag) € R® x ¥, with 0 < Ag(7) < 0o, where R°
is the interior of R.

(C2) Z is a bounded set in RY and P(K < M;) = 1, for some positive constant
M;.

(C3) The function Jy(D) = Zj; AN; log(AN;) satisfies E{Jy(D)} < oo.
(C4) inf,ez P(U >Y|Z = z) = M,, for 0 < My < 1.

(C5) The conditional density function f, of the terminal event time U for given Z
satisfies fo(u|z) > M3 on its support set, a measurable subset of [ug, 7] X Z
with ug > 0 and M5 > 0.

(C6) The measure p; x H on ([0,7]7 x R B[0,7]7 x B?) is absolutely continuous
with respect to v;, for j =1,2.
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(C7) For all B € R? with 8 £ 0, P(8TZ #¢) > 0.

(C8) The maximum spacing of the knots, maxj<;<q, +1|t; — tic1] = O(n™7),
with qn = O(’nﬂ% for 0 < o< 1/2, and maxi<i<g,+1 ’ti_ti—ly/
minlgigq"+1 ’tz — ti71| < M4 uniformly for n.

Condition (C1) is a regular condition on the true parameter; (C2) and
(C3) impose bounded conditions on the number of observation times K and
the recurrent process N, respectively; (C4) implies that the censoring rate falls
between zero and one; (C5) is a condition on the distribution of the terminal
event time, and is satisfied by most continuous random variables; (C6) and (C7)
are needed to establish the identifiability of the semiparametric model; and (C8)
is a technical condition to ensure the approximation for the monotone function
(Lu, Zhang and Huang| (2007}, 2009))).

Theorem 1 (Consistency). Suppose that ||F, — Follcs — 0 almost surely
and pz({0} x {r}) > 0. Under Conditions (C1) to (C8), di(0,,6p) — 0 and
dy(0,,00) — 0 almost surely.

To derive the rate of convergence, we need additional conditions:

(C9) The observation time points are sp-separated; that is, there exists a
constant so > 0 such that P(Tx; — Tk -1 > so forall j=1,...,K) = 1.
Furthermore, s is absolutely continuous with respect to the Lebesgue
measure, with a derivative fi5(t) > M5 > 0, for some positive constant Ms.

(C10) The true baseline function A is differentiable and the derivative has
positive and finite lower and upper bounds in the observation interval; that
is, there exists a constant 0 < Mg < oo such that 1/Mg < Ay(t) < M, for
t €10,7].

(C11) P(eN(™)) < M;, for some positive constants ¢ and M.

(C12) For some w € (0,1), a' Var(Z|U,Us)a > wa' E(ZZ"|U;,Us)a almost
surely for all a € R?, where (Uy,Us,, Z) has distribution v, /v, ([0, 7]* X Z).

These conditions are similar to those required by Wellner and Zhang; (2007));
Lu, Zhang and Huang (2009) when studying semiparametric models for panel
count data. Condition (C9) requires that adjacent observation times be at least
so apart, and that the intensity of the measure sy be strictly positive. Condition
(C10) requires that the true baseline function A, be absolutely continuous, with
a bounded intensity function. This assumption is used mainly for technical
convenience in the proofs. Condition (C11) is satisfied easily by a uniformly
bounded process N(t) or a Poisson-type process, and (C12) is justified by the
arguments for conditions (C13) and (C14) in Wellner and Zhang| (2007). These
conditions, while mainly for technical purposes, are quite mild in practice.
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Theorem 2 (Convergence rate). Suppose that ||F,, — Fy|le = O,(n~"/0+2)).
Under Conditions (C1) to (C12), we have

dy(0,,,00) = O, (n~/0+21),

Theorem 2 shows that the convergence rate of the semiparametric two-
stage estimator 6, is of order n~"/(+2") even if the convergence rate of the

nonparametric estimator F,, for the nuisance functional parameter Fj is below
1/2
n'/2.

3.3. Asymptotic normality
Define Hy = {h = (h1,h2) : hy € R, ha € H,, ||ha]| <1, ||zl < 1}. Writing

8Tz
9= (g 1)

i [AN log(AA;(u)e” T2y _ AAj(u)eﬁTZ},

=1

<.

we define, for any h = (hy, hy) € Hy,

m(0, F; D) = AS(Y) + f - A (u|2),

my (0, F; D)[hy] = AhTZZA YAA;(Y)

A o2&
M /Y ;Aj(u)mj(u)dp(uw),
m2<9,F;D>[hQ]—A2A< ) Ahay(Y)

w) Aoy (u)dF (u|Z),

and
mW (0, F; D)[h] = my(0, F; D)[h1] + my (6, F; D)[hs)],

with Ahj(u) = h(u — Tk j—1) — h(u — Tk ;). For ease of exposition, we use
{D;,i=1,...n} to represent the i.i.d. sample for estimating Fj, in Stage 1.

Theorem 3. Suppose that Conditions (C1) to (C12) hold, and |E, — Fy||s =
O,(n="/+21) " Assume that there exists a uniformly bounded process O and a
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Lipschitz function g such that
f/qu E,(u|Z) — Fy(u|Z)] Z/z/zuDdOuDD)

1s distributed asymptotically as a mormal distribution with mean zero for the
integrable function 1, where ) = g o1, with g o ¢ denoting the composite of
the functions g and . Then, we have

()
V(B = Bo) 2> Na(0, 27 S5(51) ),

where

K
5, = E( AN (U)e’ ?[Z — R(U, K, TK,“,TKJ)]m),

j=1

S, = E(m*(eo,Fo;D)®2),

with R(U, K, Tk ;, T ;) = E(Ze® ?|U, K, Tk ;,Ti ;7)) E(e% ?|U, K, Tk ;,
TK,j');

(ii) For h € H,,

vn / A4, A ” (tﬁj)\o“ :8) 83 *A(t, s)dv (s, t, 2) = N(0,02[h]),
where AM(t,s) = A(t) — A(s), Ah(t,s) = h(t) — h(s) and o?[h] = E(m(6,,
Fy; D)[R])?, with mY (8, Fo; D)[h] = my (6o, Fo; D)[R] — m* (6o, Fo; D)[R] +
m**(0y, Fo; D)[h].

Here, for some complicated expression m*(@, F;D), m*(0,F;D) and
m**(0, F; D) are given in the Supplementary Material for the proof of Theorem
3. The second part of this theorem is developed to construct test statistics for
testing the null hypothesis: A = Ag and 8 = .

To derive the asymptotic normality of the two-stage estimator under the Cox
proportional hazards model for the terminal event time, we need an additional
assumption.

(C13) The information matrix of the partial likelihood for the Cox regression
model at the true parameter values is positive definite.

Corollary 1. Suppose Conditions (C1) to (C13) hold. If there exists some
positive constant M such that inf.cz P(C > 7|Z = z) = M, then Theorem 3
holds for Ay € H,., for r > 2, when Fy is estimated using F,,(u|Z) in .
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Remark 1. The assumption that inf,.z P(C > 7|Z = z) = M > 0 is a common
technical condition for the weak convergence result of the baseline hazard function
estimator on an interval [0, 7] under Cox regression models (e.g., Condition C1(b)
of Kalbfleisch and Prentice| (2002, p.175); Condition D of Andersen and Gill
(1982); Condition (2.5) of |[Flemin and Harringtong| (1991, p.290); Condition 5
in [Kong et al| (2018)). In addition, as pointed out by Kalbfleisch and Prentice
(2002, p.178), with right-censoring, the asymptotic result can be extended to hold
for data on the entire interval [0, 00) by placing somewhat stronger conditions on
the covariates (see, e.g., |Arjas (1988))).

4. Simulation Studies

We conducted extensive numerical studies to evaluate the finite-sample
performance of the proposed likelihood-based two-stage estimator. To simulate
panel count data truncated by a terminal event, we first generated the number
of observation times K; from a uniform distribution with an equal probability of
1/6 on {1,2,3,4,5,6}. We generated the censoring time C; from the exponential

152140522 tryuncated at 7,. Here, we chose

distribution with rate parameter 0.1e™
To to achieve censoring rates of 20% and 40%, in the two simulation settings,
respectively, and assume that the terminal event time U; follows an exponential
distribution with rate parameter e**~?2 where z; and z,; are two covariates, with
z1; ~ Uniform(0, 1) and zy; ~ Bernoulli(0.5). The observed data for the terminal
event time U; consist of Y; = min{U;,C;} and A; = I(U; < C;), where I(-) is
the indicator function. For subject ¢ with observed data Y; and K;, we set the

observation times T;;, for j = 1,..., K;, as ordered variates from Uniform(0,Y;).

W5

We consider three distributions for generating panel counts: (i) N; follows
a standard Poisson process, with conditional mean function E(N;(t)|U;, Z;) =
{Ao(Uy) — Ao(U; — t)}ePo Zi; (i) N; follows a mixed Poisson process, with
conditional mean function E(N;(t)|Us, Zi,v:) = vi{Ao(Us) — Ao(U; — t)}e %,
in which v; ~ Gamma(2,1/2); and (iii) N; follows a negative binomial process,
with conditional mean function E(N;(t)|Us, Z;) = {Ao(U;) — Ao(U; —t) }eo Z. For
all cases, we set Ag(u) =8(1 —e ) and By = (1,1)".

For Cases (i) and (ii), we generated AN,; from Poisson()\;;), with

i = {AO(U T;,jfl) *Ao(Ui *Tz‘,j)}GBOTZ" and )‘i,j = %{Ao(Uz‘ *Ti,jq) *Ao(Ui
- T i)}ePoZi respectively; for Case (iii), we generated AN;; from
:5,0.5), with A ; = {Ao(U; — Tij_1) — Ao(U; — Ty ;) yePo %,

For each of the three counting processes, we conducted a Monte Carlo
simulation with 500 repetitions for each combination of sample sizes n = 100, 200
and censoring rates. Although we established the asymptotic normality in
Theorem 3.3, the standard errors could not be obtained easily using an empirical

Neg—Blnomlal()\

estimation, owing to the complicated form of the asymptotic variance-covariance
matrix of the estimators. Hence, we propose estimating the standard errors
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(a) Poisson (n = 100) (b) Poisson (n = 200)

Au)
Au)

00 05 1.0 15 20 00 05 1.0 15 20
u u

(¢) Mixed Poisson (n = 100) (d) Mixed Poisson (n = 200)

A(u)

A(u)
Au)

Figure 1. Plots of estimates for A(u) with censoring rate 20% under three different
counting processes. Red solid lines represent the true function and the blue dotted
lines represent the point-wise average of estimated baseline mean functions based on 500
repetitions.

using the bootstrapping technique. The estimated standard error and the
coverage probability were computed based on 100 bootstrap samples. Figure
1 displays the average estimated A(u) based on 500 repetitions for the three
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cases with a censoring rate of 20%, where the pointwise estimates are close
to the corresponding values of the true function, on average. Table 1 shows
the simulation results, including the estimation bias, sample standard deviation
(SSD), average of the bootstrap-based standard errors (ASE), and 95% coverage
probability (CP) for the three scenarios. The results show that the proposed
method yields asymptotically unbiased estimators, the estimated standard errors
are close to the corresponding sample standard deviations, especially when the
sample size increased to 200, and the 95% confidence intervals exhibit reasonably
accurate coverage probability. As expected, the data with a low censoring rate
of terminal events led to less biased estimations in finite samples and smaller
estimation variability. Although the counting processes in Cases (ii) and (iii)
violate the assumption of the conditional Poisson process used in the working
model to derive the likelihood, the inferences remain valid. However, the
estimation variability of the regression parameters appears to be larger relative to
Case (i), for which the working model was indeed a correct model. The simulation
results attest that the proposed reversed mean model under the working Poisson
process is robust against the underlying stochastic process used to generate the
observed panel count data, as shown for the ordinary mean model for panel
count data without considering an informative terminal event (Wellner and Zhang
(2007); ILu, Zhang and Huang| (2009))).

5. Applications
5.1. Chinese longitudinal healthy longevity survey data

We applied the proposed likelihood-based two-stage estimation procedure
under the reversed mean model to the Chinese Longitudinal Healthy Longevity
Survey (CLHLS) data. The CLHLS conducted a survey study on elderly people
aged 65 or older with health and quality of life related questionnaires from 1998
to 2014 (Zeng et al. (2017)). Follow-up interviews were carried out every two to
three years with new individuals recruited as replacement for those lost to follow-
up or deceased. We only included individuals of the 1998 enrollment because
these individuals provided the longest observation window. We noted there were
some seemingly erroneous or missing data records, likely due to administrative
mistakes. After removing those erroneous or missing records, data from 2,904
individuals remained for analysis.

We considered the reported number of serious illnesses as the recurrent event
process of interest, which could be truncated by the terminal event of death.
The censored subjects include those lost to follow-up or alive at the end of study
period, and the sample yielded a censoring rate 27% with the longest follow-up
time of 7 = 197 months. We investigated two binary covariates including gender
and residence with the goal to explore the covariate effects on the mean function
of serious illness counts under consideration. For this purpose, we applied the
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Table 1. Simulation results for the recurrent event process following Poisson process,
mixed Poisson process, and negative binomial process.

Poisson Process
CR n =100 n = 200
B B2 B B2
20% Bias  0.0516  -0.0197  0.0454 -0.0180
SSE  0.1756 0.1044  0.1131 0.0708
ESE  0.1711 0.1018 0.1174 0.0709
CP 0.9280 0.9360  0.9460 0.9520
40% Bias  0.0510 -0.0076  0.0283  -0.0107
SSE  0.2272 0.1206  0.1583 0.0845
ESE  0.2302 0.1284  0.1564 0.0870
Cp 0.9380 0.9640  0.9320 0.9540
Mixed Poisson Process
CR n =100 n = 200
b1 B B1 B
20% Bias  0.0440 -0.0307 0.0383  -0.0197
SSE  0.4188 0.2137  0.2876 0.1499
ESE  0.3976 0.2119  0.2809 0.1492
Cp 0.9380 0.9500  0.9520 0.9580
40%  Bias  0.0408 -0.0152  0.0454 -0.0067
SSE  0.5103 0.2592  0.3405 0.1759
ESE  0.4686 0.2538  0.3263 0.1759
Cp 0.9340 0.9480  0.9440 0.9520
Negative Binomial Process
CR n =100 n = 200
B B2 B B2
20% Bias  0.0367 -0.0091  0.0428  -0.0196
SSE 0.2187 0.1404 0.1612 0.0962
ESE  0.2216 0.1355  0.1532 0.0937
CP 0.9440 0.9340  0.9300 0.9420
40%  Bias  0.0364 -0.0117 0.0261 -0.0180
SSE 0.2961 0.1716 0.2005 0.1162
ESE  0.2977 0.1694  0.2054 0.1153
Cp 0.9440 0.9520  0.9480 0.9440

Note: CR represents the censoring rate.

proposed two-stage estimation procedure to panel count data with right-censored
terminal event data, where the Cox proportional hazards model was used in
Stage 1 to estimate the conditional distribution function of survival time. The
diagnostic test for the proportional hazards assumption (Grambsch and Therneau
(1994)) for the U variable yielded p-value 0.19, not suggesting violation of the
Cox model. Table 2 shows the results from applying the two-stage estimation
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Table 2. Estimation results for CLHLS data.

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value
Gender (female = 1, male = 0) 0.0257 (-0.0590, 0.1104)  0.5520
Residence (rural = 1, urban = 0)  0.2000 (0.1156, 0.2844)  3.38e-06***

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value
Gender (female = 1, male = 0) 0.0217 (-0.1013, 0.1448) 0.7294
Residence (rural = 1, urban = 0) -0.2820 (-0.4164, -0.1476)  3.9155e-05***
Level of significance: * 0.05 **0.01 ***0.005.

Table 3. Estimation results for bladder tumor data.

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value
Number of initial tumors 0.1717 (-0.0154, 0.3588)  0.0721
Treatment (thiotepa = 1, placebo = 0) -0.0735 (-0.8099, 0.6630)  0.8450

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value
Number of initial tumors 0.2326 (0.0788, 0.3865) 0.0030***
Treatment (thiotepa = 1, placebo = 0) -0.7045 (-1.3188, -0.0901) 0.0246*
Level of significance: * 0.05 **0.01 ***0.005

procedure to the CLHLS dataset, where the standard errors of the estimates
were obtained by using 100 bootstrap samples. The effect size of RESIDENCE
was —0.2820, which implies that participants living in rural regions experienced
1 —e792820 = 24.6% less serious illnesses compared to participants from urban
regions, controlling for gender. In general, individuals living in urban areas may
experience higher stress from social and physical environments, which may lead to
more recurrences of serious illnesses. Additionally, easy access to medical facilities
helps to identify more occurrences of serious illnesses as well as providing more
timely and better quality of medical care, contributing to the fact that urban
residents tend to report serious illnesses more frequently than those residing in
rural regions but live longer. Gender did not show any significant effect on the
number of serious illnesses occurred during the observation period.

5.2. Bladder tumor data

We also applied the proposed method to another data set from the bladder
tumor study conducted by the Veterans Administration Co-operative Urological
Research Group (Andrews and Herzberg (1985)). The study included 118 patients
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initially diagnosed with bladder cancer and subsequently randomized to one of the
three treatments: thiotepa, pyridoxine, or placebo. During each follow-up clinical
visit, the number of new tumors since the last visit was recorded and resected.
For this analysis, we considered 85 patients in the placebo group and the thiotepa
treatment group to study the efficacy of thiorepa treatment on suppressing the
tumor recurrence. The recurrent event process was defined as the number of
tumors accumulated since the initial diagnosis excluding the prior tumors and
the terminal event time was defined as months elapsed from the date of diagnosis
to death. The longest observation time was 64 months. For patients who lost
to follow-up or were alive at the end of the study period, the terminal event
times were regarded as censored and the censoring rate was 65%. To analyze the
effect of thiotepa treatment, we also adjusted for the number of initial tumors
at diagnosis. The observed data were typical panel count data with death as
the right-censored terminal event. Table 3 shows the results from our two-stage
estimation method. In particular, the results from Stage 2 show that the initial
number of tumors at diagnosis was positively associated with the recurrence of
subsequent tumors with an effect size of 0.2326 (p-value < 0.01), which indicates
that one additional initial tumor is expected to increase subsequent recurrence of
tumors by 26.2% , controlling for treatment. The thiotepa treatment was found to
significantly suppress the tumor recurrence with the effect size of —0.7045 (p-value
< 0.05). In other words, thiotepa is expected to reduce the tumor recurrences by
50.1%, controlling for the number of initial tumors. The results are comparable
with those in previous studies (Sun and Wei (2000); Wellner and Zhang| (2007));
Lu, Zhang and Huang| (2009)).

6. Conclusion

In joint analysis of longitudinal count and survival data, the effect of
longitudinal markers on the survival is often the main study of interest (Huang
and Wang (2004); [Sun et al.| (2012)). In the recent literature of joint analysis of
longitudinal and survival data, there has been an increasing interest in studying
the behavior of longitudinal data near the terminal event for addressing more
relevant scientific questions (Chan and Wang) (2010, 2017)); Kong et al.| (2018))).
To the best of our knowledge, there is no such effort for panel count data. We
propose a semiparametric reversed conditional mean model to characterize the
behavior of a recurrent event process near an informative terminal event and
develope a novel M-estimation procedure based on the conditional expectation of
log-likelihood derived from a non-homogeneous Poisson process.

The estimation procedure is implemented through a two-stage mechanism
for numerical convenience, for which the first stage estimates the conditional
distribution function of the terminal event. We fit the Cox model to terminal
event time data due to its popularity and well-established asymptotic properties
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that fulfill the required conditions for the nuisance parameter. If the proportional
hazards assumption fails, we may consider alternative survival models such as
additive hazards or accelerated failure time models, or even the local Kaplan—
Meier estimator (Dabrowskal (1989)) to estimate the conditional distribution
function of the terminal event time.

For the adequacy of model (2.1), we can similarly develop some graphical and
numerical procedures using cumulative sums of the residuals following the ideas
in Lin et al. (2000) and Zhao, Zhou and Sun| (2011). However, the procedure is
more complicated. An easy-to-implement model-checking procedure needs to be
explored.

Supplementary Material

The online Supplementary Material contains all technical proofs for Theo-
rems 3.1 to 3.3 and Corollary 3.1.
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