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Abstract: We study semiparametric regression for a recurrent event process with

an informative terminal event, where observations are taken only at discrete time

points, rather than continuously over time. To account for the effect of a terminal

event on the recurrent event process, we propose a semiparametric reversed mean

model, for which we develop a two-stage sieve likelihood-based method to estimate

the baseline mean function and the covariate effects. Our approach overcomes

the computational difficulties arising from the nuisance functional parameter in

the assumption that the likelihood is based on a Poisson process. We establish

the consistency, convergence rate, and asymptotic normality of the proposed two-

stage estimator, which is robust against the assumption of an underlying Poisson

process. The proposed method is evaluated using extensive simulation studies, and

demonstrated using panel count data from a longitudinal healthy longevity study

and data from a bladder tumor study.
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1. Introduction

Panel count data often arise in biomedical research, economics, social

sciences, and reliability studies (Thall (1988); Sun and Wei (2000); Hu, Sun and

Wei (2003); Wellner and Zhang (2007); Lu, Zhang and Huang (2009); Zhao, Li and

Sun (2013)). During the follow-up, observations are taken at finite distinct time

points, with researchers collecting the number of recurrent events that occurred

between observation times, without information on the exact timing of the events.

While both the observation and the follow-up times may vary between subjects,

observations may be terminated by a terminal event. Examples of studies based

on panel count data include the bladder cancer study conducted by the Veterans

Administration Cooperative Urological Research Group (Andrews and Herzberg

(1985)) and the Chinese Longitudinal Healthy Longevity Study (CLHLS) (Zeng

et al. (2017)). We aim to estimate the mean function of the underlying counting

process and make inferences about the factors that affect the event occurrence
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rate in the setting of panel count data, subject to an informative terminal event.

The unique characteristics of panel count data present additional challenges to

statistical inference, requiring advanced modeling techniques.

Many methods have been developed for estimating the mean function of a

counting process with panel count data but without considering the effect of a

terminal event. These include the parametric methods by Kalbfleisch and Lawless

(1985); Hinde (1982); Breslow (1984); Thall (1988); the nonparametric methods

of Sun and Kalbfleisch (1995); Wellner and Zhang (2000); Hu, Lagakos and

Lockhart (2009); Zhang and Jamshidian (2003); Huang, Wang and Zhang (2006);

Lu, Zhang and Huang (2007); and the semiparametric methods of Cheng and Wei

(2000); Sun and Wei (2000); Zhang (2002); Hu, Sun and Wei (2003); Wellner and

Zhang (2007); Lu, Zhang and Huang (2009). More recently, Ma and Sundaram

(2018) investigated gap times with panel count data, Zhu et al. (2018) developed

a semiparametric likelihood-based method for a regression analysis of mixed panel

count data, and Diao et al. (2019) studied semiparametric frailty models when

dropouts are informative. Chiou et al. (2019)) provide a comprehensive overview

of existing methods for panel count data analysis and the corresponding software

implementations.

Despite the abundant research on modeling panel count data, few works

include an informative terminal event. Two common methods used for counting

process data to account for the effect of terminal events are joint modeling

approaches that use frailty variables (Huang and Wang (2004); Zeng and Cai

(2010); Sun et al. (2012); Zhou et al. (2017); Diao et al. (2017, 2019)) and marginal

modeling approaches that use the inverse probability weighting technique (Zhao,

Zhou and Sun (2011); Zhao, Li and Sun (2013)). However, both methods

have limitations. In particular, the joint modeling approach cannot explicitly

depict the relationship between a recurrent event process and the terminal event,

although it is implied by the shared unknown latent variables, and the marginal

modeling approach may not be feasible when a terminal event permanently stops

the recurrent event process. On the other hand, the terminal event time usually

induces direct effects on the recurrent event through a functional relationship.

For example, Chan et al. (1995) found that the occurrence of AIDS-defining

events increases prior to the death of HIV-infected individuals. Lunney et al.

(2003) discovered that the functional decline changes significantly in the final year

before the death of HIV-infected individuals. To the best of our knowledge, there

are no semiparametric methods that directly capture the correlation between the

terminal event and the recurrent event process in the case of panel count data.

This study contributes to the literature in three ways. First, we develop a

semiparametric reversed mean model anchoring at a terminal event to explicitly

quantify its effect on the recurrent event process, while emphasizing the pro-

cess near the anchoring event (Chan and Wang (2010, 2017); Kong et al. (2018)).

Second, conditional on censored terminal event time data, we formulate the log-



SEMIPARAMETRIC REVERSED MEAN MODEL FOR RECURRENT EVENT PROCESS 1845

likelihood for panel count data as an objective function, and design a correspond-

ing two-stage estimation procedure. Third, we establish a general framework

for the asymptotic distributional theory of semiparametric M-estimators with

a nuisance functional parameter that can be applied to derive the asymptotic

normality of functionals of two-stage semiparametric M-estimators for panel

count data. In particular, the asymptotic results of the proposed estimator do

not rely on the working model following a Poisson process.

The remainder of this paper is organized as follows. In Section 2, we introduce

the proposed semiparametric reversed mean model, and present the corresponding

two-stage estimation procedure. In Section 3, we establish the asymptotic

properties, including the consistency, convergence rate, and asymptotic normality

of the proposed estimator. Section 4 reports the results of simulation studies

to demonstrate the performance of the proposed estimator. In Section 5, we

apply the proposed method to two real datasets. Section 6 concludes the paper.

All technical proofs and a general theorem for semiparametric M-estimators are

provided in the online Supplementary Material.

2. Methodology

2.1. Model setting

We use N(t) to denote the total number of occurrences of the event of interest

up to time, t for 0 ≤ t ≤ τ0, where τ0 is the length of the study duration. Let

U be the terminal event time with the counting process N(·), and let C be

the censoring time for (U,N(·)), after which the counting process or terminal

event may still happen, but is unobserable. Let Y = U ∧ C be the observed

time for the terminal event, where a ∧ b = min(a, b), and let ∆ = 1{U≤C} be

a censoring indicator. Suppose that N(·) is observed at discrete time points

0 < TK,1 < · · · < TK,K , whereK is the potential number of observation times. Let

TK = (TK,1, . . . , TK,K) denote panel observation times on the counting process,

and let N = (N(TK,1), . . . , N(TK,K)) be the cumulative event counts observed at

TK . Let Z be a d-dimensional vector of associated covariates at the baseline. The

observed data consist of independent and identically distributed (i.i.d.) copies of

D = (Y,∆, N, TK ,K, Z).

Motivated by the works of Chan and Wang (2010, 2017); Kong et al. (2018),

to characterize the behavior of the counting process near the informative terminal

event time U , we investigate the reversed counting process Ñ(t;U), which is the

event count from time t to the terminal event time U . Suppose that Ñ(t;U)

follows a semiparametric reversed mean model,

E(Ñ(t;U)|U = u, Z) = Λ(u− t)eβ
⊤Z , (2.1)

where Λ(·) is a nondecreasing function with Λ(0) = 0, and β is a d-dimensional
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vector of unknown regression coefficients. This reversed mean model indicates

that the reversed counting process is associated with the random terminal time

U only through the length to the terminal event U − t, and hence can be viewed

as a homogeneous temporal model.

Because Ñ(t;U) may not be observed at some t, owing to U being censored,

model (2.1) is not immediately useful for estimating Λ(·) and β based on the

observed data. Noting that N(t) = Ñ(0;U)− Ñ(t;U), we have

E(N(t)|U = u, Z) = {Λ(u)− Λ(u− t)}eβ
⊤Z , (2.2)

which we can use to study the reversed mean function Λ(·) and the regression

coefficient β using a likelihood method similar to those in Wellner and Zhang

(2007); Lu, Zhang and Huang (2009).

2.2. Estimation procedure

We assume that U and C are independent given Z, and both the distribution

of the censoring time C and that of (K,TK) are non-informative to Λ. Let

△Nj = N(TK,j) − N(TK,j−1), △N = (△N1, . . . ,△NK), △n = (△n1, . . . ,△nk),

and tk = (tk,1, . . . , tk,k), with △nj = nj−nj−1. Suppose that the counting process

N(·) follows a conditional Poisson process, with

P (△N = △n|Z,U = u,K = k, TK = tk)

=
k∏

j=1

exp(−△Λj(u)e
β⊤Z)(△Λj(u)e

β⊤Z)△nj

(△nj)!
, (2.3)

where tk,0 ≡ 0, n0 ≡ 0, and △Λj(u) = Λ(u − tk,j−1) − Λ(u − tk,j), for j ≥ 1.

We write θ = (β,Λ), and use the notation θ0 = (β0,Λ0) and △Λ0j(u) to denote

the true values of θ and △Λj(u), respectively. The individual log-likelihood of θ

based on the working model (2.3) is given by

l(θ;U,△N,TK ,K, Z) =
K∑
j=1

{
△Nj log(△Λj(U)eβ

⊤Z)−△Λj(U)eβ
⊤Z
}
.

However, we may not be able to evaluate this likelihood, because U is subject to

censoring. To deal with this case, we consider the conditional expectation of the

log-likelihood: E{l(θ;U,△N,TK ,K, Z)|Y,∆, Z}. Let F0(u|z) be the conditional

cumulative distribution function of U given the covariate Z = z. A direct

calculation yields

E{l(θ;U,△N,TK ,K, Z)|Y,∆, Z}

= ∆
K∑
j=1

{
△Nj log(△Λj(Y )eβ

⊤Z)−△Λj(Y )eβ
⊤Z
}
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+
1−∆

F 0(Y |Z)

K∑
j=1

∫ τ

Y

{
△Nj log(△Λj(u)e

β⊤Z)−△Λj(u)e
β⊤Z

}
dF0(u|Z),

where F 0(u|Z) = 1 − F0(u|Z), and τ is a finite time. Thus, the conditional

expectation of log-likelihood (CELL) for i.i.d. samples D = {Di : i = 1, . . . , n}
is

ln(θ, F ;D) =

1

n

n∑
i=1

[
∆i

Ki∑
j=1

{
△Ni,j log(△Λi,j(Yi)e

β⊤Zi)−△Λi,j(Yi)e
β⊤Zi

}
(2.4)

+
1−∆i

F (Yi|Zi)

Ki∑
j=1

∫ τ

Yi

{
△Ni,j log(△Λi,j(u)e

β⊤Zi)−△Λi,j(u)e
β⊤Zi

}
dF (u|Zi)

]
,

after omitting the parts unrelated to (θ, F ), where TKi,0 ≡ 0, △Ni,j = Ni(TKi,j)−
Ni(TKi,j−1), and△Λi,j(u) = Λ(u−TKi,j−1)−Λ(u−TKi,j). To obtain the estimators

of θ0 and F0 based on (2.4), we consider a two-stage procedure, similar in spirit

to a pseudo-likelihood estimation.

Stage 1: Obtain the estimator of F0, F̂n(u|Z), based on the right-censored data

{(Yi,∆i, Z), for i = 1, . . . , n}.

Stage 2: Obtain the CELL estimator θ̂n = (β̂n, Λ̂n) by maximizing ln(θ;D) :=

ln(θ, F̂n;D).

In Stage 1, to estimate F0(t|Z), we can assume a survival model such as the

Cox proportional hazards model (Cox (1972)). Suppose the hazard function of

U given the covariate Z satisfies

λ(u|Z) = υ(u)eζ
⊤Z ,

where υ(·) is an unknown baseline hazard function, and ζ is a vector of unknown

regression parameters. Denote the true values of υ(·) and ζ in this model as υ0
and ζ0, respectively. We can estimate the regression coefficient ζ0 using the partial

likelihood, and estimate the cumulative baseline hazard Υ0(u) =
∫ u

0
υ0(t)dt using

the Breslow estimator (Breslow (1972)), denoted by ζ̂n and Υ̂n, respectively. As

a result, F0(u|z) is estimated by

F̂n(u|Z) = 1− exp
(
− Υ̂n(u)e

ζ̂⊤
n Z
)
. (2.5)

In Stage 2, we estimate the smooth nondecreasing monotone function Λ0

using the spline-based sieve method (Lu, Zhang and Huang (2009)). Take T =

{si, i = 1, . . . ,mn + 2l}, with

0 = s1 = · · · = sl < sl+1 < · · · < smn+l < smn+l+1 = · · · = smn+2l = τ
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being a sequence of knots that partition [0, τ ] into mn + 1 subintervals Ii =

[sl+i, sl+i+1], for i = 0, 1, . . . ,mn. Let Φn be a class of polynomial splines of order

l ≥ 1 with the knot sequence T . Then Φn is linearly spanned by the normalized

B-spline basis functions {Bl, l = 1, . . . , qn}, with qn = mn+ l (Schumaker (1981)).

Let

Ψn =

{
qn∑
l=1

αlBl : 0 ≤ α1 ≤ · · · ≤ αqn ,
qn∑
l=1

αlBl(0) = 0

}
be a subclass of Φn. For any Λ(t) ∈ Ψn, Λ(t) is monotone nondecreasing and

Λ(0) = 0. In addition, let R be a compact set of Rd. The two-stage estimator of

θ0 is given by

θ̂n = argmax
θ∈R×Ψn

ln(θ, F̂n;D),

with Λ̂n =
∑qn

l=1 α̂lBl. The proposed estimator can be computed in two steps

using the usual profile likelihood method. First, for each fixed value of β, we take

Λ̂n(β) = argmax
Λ∈Ψn

ln(θ, F̂n;D)

and define lProfile
n (β;D)= ln(β, Λ̂(β), F̂n;D), yielding β̂n=argmaxβ∈Rl

Profile
n (β;D)

and Λ̂n = Λ̂n(β̂n). The proposed two-stage CELL estimator can be implemented

using the constrained optimization package constrOptim in R.

3. Asymptotic Properties

3.1. Notation and metrics

We expand the notation and metrics originally defined in Wellner and Zhang

(2007) to study the asymptotic properties of the proposed estimator. Let Bd

and B denote the collection of Borel sets in Rd and R, respectively, and let

B[0,τ ] = {B ∩ [0, τ ] : B ∈ B}. We then define the measures ν1, ν2, νn1, µ1, and µ2

as follows. For any B1, B2, B ∈ B[0,τ ], and B3 ∈ Bd,

ν1(B1 ×B2 ×B3) =

∫
B3

∫ τ

0

∞∑
k=1

P (K = k|Z = z, U = u)

×
k∑

j=1

P (u− Tk,j−1 ∈ B1, u− Tk,j ∈ B2|Z = z,K = k, U = u)dF0(u|z)dH(z),

ν2(B ×B3) =

∫
B3

∫ τ

0

∞∑
k=1

P (K = k|Z = z, U = u)

×
k∑

j=1

P (u− Tk,j ∈ B|Z = z,K = k, U = u)dF0(u|z)dH(z),

µ1(B1 ×B2) = ν1(B1 ×B2 × Rd),
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µ2(B) = ν2(B × Rd),

µ3(B1 ×B2) =

∫
Rd

∫ ∞∑
k=1

P (K = k|Z = z, U = u)

× P (u− Tk,k ∈ B1, u ∈ B2|Z = z,K = k, U = u)dF0(u|z)dH(z),

where H is the distribution function of Z. When the distribution function F0 in

measure ν1 is replaced by F̂n, we use the notation νn1 instead. We also define the

L2-metrics dj(θ1, θ2), forj = 1, 20, in the parameter space Θ as

dj(θ1, θ2) =
{
∥β1 − β2∥2 + ∥Λ1 − Λ2∥2L2(µj)

}1/2

.

Let Z be the support of H. Let Mj (j = 1, . . . , 7) and c denote universal

constants. Let g(r) be the rth derivative function of g. For r ≥ 1, we define

Hr = {g : |g(r−1)(s)− g(r−1)(t)| ≤ c|s− t| for all 0 ≤ s < t ≤ τ},
F = {F : F (u|z) is a conditional distribution function on [0, τ ]×Z},
Fη = {F : ∥F − F0∥∞ ≤ η, F ∈ F},
Ψ = {Λ : Λ(u) is a strictly increasing continuous function over [0, τ ]

with Λ(0) = 0,Λ ∈ Hr},
Θ = R×Ψ, Θn = R×Ψn,

Θnδ = {θ : d1(θ, θ0) ≤ δ, θ ∈ Θn}, Θδ = {θ : d1(θ, θ0) ≤ δ, θ ∈ Θ},

where ∥F − F0∥∞ = supu,z |F (u|z)− F0(u|z)|, for F ∈ F .

3.2. Consistency and convergence rate

We impose the following regularity conditions in order to derive the

consistency and convergence rate of the proposed estimator:

(C1) The true parameter θ0 = (β0,Λ0) ∈ R0×Ψ, with 0 < Λ0(τ) <∞, where R0

is the interior of R.

(C2) Z is a bounded set in Rd and P (K ≤ M1) = 1, for some positive constant

M1.

(C3) The function J0(D) ≡
∑K

j=1 △Nj log(△Nj) satisfies E{J0(D)} <∞.

(C4) infz∈Z P (U > Y |Z = z) =M2, for 0 < M2 < 1.

(C5) The conditional density function f0 of the terminal event time U for given Z

satisfies f0(u|z) ≥M3 on its support set, a measurable subset of [u0, τ ]×Z
with u0 > 0 and M3 > 0.

(C6) The measure µj ×H on ([0, τ ]j ×Rd,B[0, τ ]j ×Bd) is absolutely continuous

with respect to νj, for j = 1, 2.
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(C7) For all β ∈ Rd with β ̸= 0, P (β⊤Z ̸= c) > 0.

(C8) The maximum spacing of the knots, max1≤i≤qn+1 |ti − ti−1| = O(n−γ),

with qn = O(nγ), for 0 < γ < 1/2, and max1≤i≤qn+1 |ti − ti−1|/
min1≤i≤qn+1 |ti − ti−1| ≤M4 uniformly for n.

Condition (C1) is a regular condition on the true parameter; (C2) and

(C3) impose bounded conditions on the number of observation times K and

the recurrent process N , respectively; (C4) implies that the censoring rate falls

between zero and one; (C5) is a condition on the distribution of the terminal

event time, and is satisfied by most continuous random variables; (C6) and (C7)

are needed to establish the identifiability of the semiparametric model; and (C8)

is a technical condition to ensure the approximation for the monotone function

(Lu, Zhang and Huang (2007, 2009)).

Theorem 1 (Consistency). Suppose that ∥F̂n − F0∥∞ → 0 almost surely

and µ3({0} × {τ}) > 0. Under Conditions (C1) to (C8), d1(θ̂n, θ0) → 0 and

d2(θ̂n, θ0) → 0 almost surely.

To derive the rate of convergence, we need additional conditions:

(C9) The observation time points are s0-separated; that is, there exists a

constant s0 > 0 such that P (TK,j − TK,j−1 ≥ s0 for all j = 1, . . . ,K) = 1.

Furthermore, µ2 is absolutely continuous with respect to the Lebesgue

measure, with a derivative µ̇2(t) ≥M5 > 0, for some positive constant M5.

(C10) The true baseline function Λ0 is differentiable and the derivative has

positive and finite lower and upper bounds in the observation interval; that

is, there exists a constant 0 < M6 <∞ such that 1/M6 ≤ Λ̇0(t) ≤M6, for

t ∈ [0, τ ].

(C11) P
(
ecN(τ)

)
≤M7, for some positive constants c and M7.

(C12) For some ϖ ∈ (0, 1), a⊤V ar(Z|U1, U2)a ≥ ϖa⊤E(ZZ⊤|U1, U2)a almost

surely for all a ∈ Rd, where (U1, U2, Z) has distribution ν1/ν1([0, τ ]
2 ×Z).

These conditions are similar to those required by Wellner and Zhang (2007);

Lu, Zhang and Huang (2009) when studying semiparametric models for panel

count data. Condition (C9) requires that adjacent observation times be at least

s0 apart, and that the intensity of the measure µ2 be strictly positive. Condition

(C10) requires that the true baseline function Λ0 be absolutely continuous, with

a bounded intensity function. This assumption is used mainly for technical

convenience in the proofs. Condition (C11) is satisfied easily by a uniformly

bounded process N(t) or a Poisson-type process, and (C12) is justified by the

arguments for conditions (C13) and (C14) in Wellner and Zhang (2007). These

conditions, while mainly for technical purposes, are quite mild in practice.
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Theorem 2 (Convergence rate). Suppose that ∥F̂n − F0∥∞ = Op(n
−r/(1+2r)).

Under Conditions (C1) to (C12), we have

d1(θ̂n, θ0) = Op(n
−r/(1+2r)).

Theorem 2 shows that the convergence rate of the semiparametric two-

stage estimator θ̂n is of order n−r/(1+2r), even if the convergence rate of the

nonparametric estimator F̂n for the nuisance functional parameter F0 is below

n1/2.

3.3. Asymptotic normality

Define H1 = {h = (h1, h2) : h1 ∈ R, h2 ∈ Hr, ∥h1∥ ≤ 1, ∥h2∥∞ ≤ 1}. Writing

Aj(u) =

(
△Nj

△Λj(u)eβ
⊤Z

− 1

)
eβ

⊤Z ,

S(u) =
K∑
j=1

[
△Nj log(△Λj(u)e

β⊤Z)−△Λj(u)e
β⊤Z

]
,

we define, for any h = (h1, h2) ∈ H1,

m(θ, F ;D) = ∆S(Y ) +
1−∆

F (Y |Z)

∫ ∞

Y

S(u)dF (u|Z),

m1(θ, F ;D)[h1] = ∆h⊤
1 Z

K∑
j=1

Aj(Y )△Λj(Y )

+
1−∆

F (Y |Z)
h⊤
1 Z

∫ ∞

Y

K∑
j=1

Aj(u)△Λj(u)dF (u|Z),

m2(θ, F ;D)[h2] = ∆
K∑
j=1

Aj(Y )△h2j(Y )

+
1−∆

F (Y |Z)

∫ ∞

Y

K∑
j=1

Aj(u)△h2j(u)dF (u|Z),

and

m(1)(θ, F ;D)[h] = m1(θ, F ;D)[h1] +m2(θ, F ;D)[h2],

with △hj(u) = h(u − TK,j−1) − h(u − TK,j). For ease of exposition, we use

{D̃i, i = 1, . . . n} to represent the i.i.d. sample for estimating F0 in Stage 1.

Theorem 3. Suppose that Conditions (C1) to (C12) hold, and ∥F̂n − F0∥∞ =

Op(n
−r/(1+2r)). Assume that there exists a uniformly bounded process O and a
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Lipschitz function g such that

√
n

∫ τ

0

ψ(u;D)d[F̂n(u|Z)− F0(u|Z)] =
1√
n

n∑
i=1

∫ τ

0

ψ̃(u;D)dO(u;D; D̃i)

is distributed asymptotically as a normal distribution with mean zero for the

integrable function ψ, where ψ̃ = g ◦ ψ, with g ◦ ψ denoting the composite of

the functions g and ψ. Then, we have

(i) √
n(β̂n − β0)

D−→ Nd(0,Σ
−1
1 Σ2(Σ

−1
1 )⊤),

where

Σ1 = E

(
K∑
j=1

△Λ0j(U)eβ
⊤
0 Z
[
Z −R(U,K, TK,j−1, TK,j)

]⊗2

)
,

Σ2 = E
(
m∗(θ0, F0;D)⊗2

)
,

with R(U,K, TK,j, TK,j′) = E(Zeβ
⊤
0 Z |U,K, TK,j, TK,j′)/E(eβ

⊤
0 Z |U,K, TK,j,

TK,j′);

(ii) For h ∈ Hr,

√
n

∫ △Λ̂n(t, s)−△Λ0(t, s)

△Λ0(t, s)
eβ

⊤
0 z△h(t, s)dν1(s, t, z)

D−→ N(0, σ2
1[h]),

where △Λ(t, s) = Λ(t)− Λ(s), △h(t, s) = h(t)− h(s) and σ2
1[h] = E(m†(θ0,

F0;D)[h])2, with m†(θ0, F0;D)[h] = m2(θ0, F0;D)[h] − m̃∗(θ0, F0;D)[h] +

m∗∗(θ0, F0;D)[h].

Here, for some complicated expression m∗(θ, F ;D), m̃∗(θ, F ;D) and

m∗∗(θ, F ;D) are given in the Supplementary Material for the proof of Theorem

3. The second part of this theorem is developed to construct test statistics for

testing the null hypothesis: Λ = Λ0 and β = β0.

To derive the asymptotic normality of the two-stage estimator under the Cox

proportional hazards model for the terminal event time, we need an additional

assumption.

(C13) The information matrix of the partial likelihood for the Cox regression

model at the true parameter values is positive definite.

Corollary 1. Suppose Conditions (C1) to (C13) hold. If there exists some

positive constant M such that infz∈Z P (C ≥ τ |Z = z) = M , then Theorem 3

holds for Λ0 ∈ Hr, for r ≥ 2, when F0 is estimated using F̂n(u|Z) in (2.5).
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Remark 1. The assumption that infz∈Z P (C ≥ τ |Z = z) =M > 0 is a common

technical condition for the weak convergence result of the baseline hazard function

estimator on an interval [0, τ ] under Cox regression models (e.g., Condition C1(b)

of Kalbfleisch and Prentice (2002, p.175); Condition D of Andersen and Gill

(1982); Condition (2.5) of Flemin and Harringtong (1991, p.290); Condition 5

in Kong et al. (2018)). In addition, as pointed out by Kalbfleisch and Prentice

(2002, p.178), with right-censoring, the asymptotic result can be extended to hold

for data on the entire interval [0,∞) by placing somewhat stronger conditions on

the covariates (see, e.g., Arjas (1988)).

4. Simulation Studies

We conducted extensive numerical studies to evaluate the finite-sample

performance of the proposed likelihood-based two-stage estimator. To simulate

panel count data truncated by a terminal event, we first generated the number

of observation times Ki from a uniform distribution with an equal probability of

1/6 on {1, 2, 3, 4, 5, 6}. We generated the censoring time Ci from the exponential

distribution with rate parameter 0.1e−1.5z1i+0.5z2i , truncated at τ0. Here, we chose

τ0 to achieve censoring rates of 20% and 40%, in the two simulation settings,

respectively, and assume that the terminal event time Ui follows an exponential

distribution with rate parameter ez1i−z2i , where z1i and z2i are two covariates, with

z1i ∼ Uniform(0, 1) and z2i ∼ Bernoulli(0.5). The observed data for the terminal

event time Ui consist of Yi = min{Ui, Ci} and ∆i = I(Ui ≤ Ci), where I(·) is

the indicator function. For subject i with observed data Yi and Ki, we set the

observation times Tij, for j = 1, . . . ,Ki, as ordered variates from Uniform(0, Yi).

We consider three distributions for generating panel counts: (i) Ni follows

a standard Poisson process, with conditional mean function E(Ni(t)|Ui, Zi) =

{Λ0(Ui) − Λ0(Ui − t)}eβ⊤
0 Zi ; (ii) Ni follows a mixed Poisson process, with

conditional mean function E(Ni(t)|Ui, Zi, γi) = γi{Λ0(Ui) − Λ0(Ui − t)}eβ⊤
0 Zi ,

in which γi ∼ Gamma(2, 1/2); and (iii) Ni follows a negative binomial process,

with conditional mean function E(Ni(t)|Ui, Zi) = {Λ0(Ui)−Λ0(Ui−t)}eβ
⊤
0 Zi . For

all cases, we set Λ0(u) = 8(1− e−u) and β0 = (1, 1)⊤.

For Cases (i) and (ii), we generated △Ni,j from Poisson(λi,j), with

λi,j = {Λ0(Ui−Ti,j−1)−Λ0(Ui−Ti,j)}eβ
⊤
0 Zi and λi,j = γi{Λ0(Ui−Ti,j−1)−Λ0(Ui

− Ti,j)}eβ
⊤
0 Zi , respectively; for Case (iii), we generated △Ni,j from

Neg-Binomial(λi,j, 0.5), with λi,j = {Λ0(Ui − Ti,j−1)− Λ0(Ui − Ti,j)}eβ
⊤
0 Zi .

For each of the three counting processes, we conducted a Monte Carlo

simulation with 500 repetitions for each combination of sample sizes n = 100, 200

and censoring rates. Although we established the asymptotic normality in

Theorem 3.3, the standard errors could not be obtained easily using an empirical

estimation, owing to the complicated form of the asymptotic variance-covariance

matrix of the estimators. Hence, we propose estimating the standard errors
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Figure 1. Plots of estimates for Λ(u) with censoring rate 20% under three different
counting processes. Red solid lines represent the true function and the blue dotted
lines represent the point-wise average of estimated baseline mean functions based on 500
repetitions.

using the bootstrapping technique. The estimated standard error and the

coverage probability were computed based on 100 bootstrap samples. Figure

1 displays the average estimated Λ(u) based on 500 repetitions for the three
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cases with a censoring rate of 20%, where the pointwise estimates are close

to the corresponding values of the true function, on average. Table 1 shows

the simulation results, including the estimation bias, sample standard deviation

(SSD), average of the bootstrap-based standard errors (ASE), and 95% coverage

probability (CP) for the three scenarios. The results show that the proposed

method yields asymptotically unbiased estimators, the estimated standard errors

are close to the corresponding sample standard deviations, especially when the

sample size increased to 200, and the 95% confidence intervals exhibit reasonably

accurate coverage probability. As expected, the data with a low censoring rate

of terminal events led to less biased estimations in finite samples and smaller

estimation variability. Although the counting processes in Cases (ii) and (iii)

violate the assumption of the conditional Poisson process used in the working

model to derive the likelihood, the inferences remain valid. However, the

estimation variability of the regression parameters appears to be larger relative to

Case (i), for which the working model was indeed a correct model. The simulation

results attest that the proposed reversed mean model under the working Poisson

process is robust against the underlying stochastic process used to generate the

observed panel count data, as shown for the ordinary mean model for panel

count data without considering an informative terminal event (Wellner and Zhang

(2007); Lu, Zhang and Huang (2009)).

5. Applications

5.1. Chinese longitudinal healthy longevity survey data

We applied the proposed likelihood-based two-stage estimation procedure

under the reversed mean model to the Chinese Longitudinal Healthy Longevity

Survey (CLHLS) data. The CLHLS conducted a survey study on elderly people

aged 65 or older with health and quality of life related questionnaires from 1998

to 2014 (Zeng et al. (2017)). Follow-up interviews were carried out every two to

three years with new individuals recruited as replacement for those lost to follow-

up or deceased. We only included individuals of the 1998 enrollment because

these individuals provided the longest observation window. We noted there were

some seemingly erroneous or missing data records, likely due to administrative

mistakes. After removing those erroneous or missing records, data from 2,904

individuals remained for analysis.

We considered the reported number of serious illnesses as the recurrent event

process of interest, which could be truncated by the terminal event of death.

The censored subjects include those lost to follow-up or alive at the end of study

period, and the sample yielded a censoring rate 27% with the longest follow-up

time of τ = 197 months. We investigated two binary covariates including gender

and residence with the goal to explore the covariate effects on the mean function

of serious illness counts under consideration. For this purpose, we applied the
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Table 1. Simulation results for the recurrent event process following Poisson process,
mixed Poisson process, and negative binomial process.

Poisson Process

CR n = 100 n = 200

β1 β2 β1 β2
20% Bias 0.0516 -0.0197 0.0454 -0.0180

SSE 0.1756 0.1044 0.1131 0.0708

ESE 0.1711 0.1018 0.1174 0.0709

CP 0.9280 0.9360 0.9460 0.9520

40% Bias 0.0510 -0.0076 0.0283 -0.0107

SSE 0.2272 0.1206 0.1583 0.0845

ESE 0.2302 0.1284 0.1564 0.0870

CP 0.9380 0.9640 0.9320 0.9540

Mixed Poisson Process

CR n = 100 n = 200

β1 β2 β1 β2
20% Bias 0.0440 -0.0307 0.0383 -0.0197

SSE 0.4188 0.2137 0.2876 0.1499

ESE 0.3976 0.2119 0.2809 0.1492

CP 0.9380 0.9500 0.9520 0.9580

40% Bias 0.0408 -0.0152 0.0454 -0.0067

SSE 0.5103 0.2592 0.3405 0.1759

ESE 0.4686 0.2538 0.3263 0.1759

CP 0.9340 0.9480 0.9440 0.9520

Negative Binomial Process

CR n = 100 n = 200

β1 β2 β1 β2
20% Bias 0.0367 -0.0091 0.0428 -0.0196

SSE 0.2187 0.1404 0.1612 0.0962

ESE 0.2216 0.1355 0.1532 0.0937

CP 0.9440 0.9340 0.9300 0.9420

40% Bias 0.0364 -0.0117 0.0261 -0.0180

SSE 0.2961 0.1716 0.2005 0.1162

ESE 0.2977 0.1694 0.2054 0.1153

CP 0.9440 0.9520 0.9480 0.9440

Note: CR represents the censoring rate.

proposed two-stage estimation procedure to panel count data with right-censored

terminal event data, where the Cox proportional hazards model was used in

Stage 1 to estimate the conditional distribution function of survival time. The

diagnostic test for the proportional hazards assumption (Grambsch and Therneau

(1994)) for the U variable yielded p-value 0.19, not suggesting violation of the

Cox model. Table 2 shows the results from applying the two-stage estimation
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Table 2. Estimation results for CLHLS data.

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value

Gender (female = 1, male = 0) 0.0257 (-0.0590, 0.1104) 0.5520

Residence (rural = 1, urban = 0) 0.2000 (0.1156, 0.2844) 3.38e-06∗∗∗

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value

Gender (female = 1, male = 0) 0.0217 (-0.1013, 0.1448) 0.7294

Residence (rural = 1, urban = 0) -0.2820 (-0.4164, -0.1476) 3.9155e-05∗∗∗

Level of significance: ∗ 0.05 ∗∗ 0.01 ∗∗∗ 0.005.

Table 3. Estimation results for bladder tumor data.

Stage 1: Cox proportional hazards model

Variable Estimate (95% CI) p-value

Number of initial tumors 0.1717 (-0.0154, 0.3588) 0.0721

Treatment (thiotepa = 1, placebo = 0) -0.0735 (-0.8099, 0.6630) 0.8450

Stage 2: Reversed mean model

Variable Estimate (95% CI) p-value

Number of initial tumors 0.2326 (0.0788, 0.3865) 0.0030∗∗∗

Treatment (thiotepa = 1, placebo = 0) -0.7045 (-1.3188, -0.0901) 0.0246∗

Level of significance: ∗ 0.05 ∗∗ 0.01 ∗∗∗ 0.005

procedure to the CLHLS dataset, where the standard errors of the estimates

were obtained by using 100 bootstrap samples. The effect size of RESIDENCE

was −0.2820, which implies that participants living in rural regions experienced

1 − e−0.2820 = 24.6% less serious illnesses compared to participants from urban

regions, controlling for gender. In general, individuals living in urban areas may

experience higher stress from social and physical environments, which may lead to

more recurrences of serious illnesses. Additionally, easy access to medical facilities

helps to identify more occurrences of serious illnesses as well as providing more

timely and better quality of medical care, contributing to the fact that urban

residents tend to report serious illnesses more frequently than those residing in

rural regions but live longer. Gender did not show any significant effect on the

number of serious illnesses occurred during the observation period.

5.2. Bladder tumor data

We also applied the proposed method to another data set from the bladder

tumor study conducted by the Veterans Administration Co-operative Urological

Research Group (Andrews and Herzberg (1985)). The study included 118 patients
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initially diagnosed with bladder cancer and subsequently randomized to one of the

three treatments: thiotepa, pyridoxine, or placebo. During each follow-up clinical

visit, the number of new tumors since the last visit was recorded and resected.

For this analysis, we considered 85 patients in the placebo group and the thiotepa

treatment group to study the efficacy of thiorepa treatment on suppressing the

tumor recurrence. The recurrent event process was defined as the number of

tumors accumulated since the initial diagnosis excluding the prior tumors and

the terminal event time was defined as months elapsed from the date of diagnosis

to death. The longest observation time was 64 months. For patients who lost

to follow-up or were alive at the end of the study period, the terminal event

times were regarded as censored and the censoring rate was 65%. To analyze the

effect of thiotepa treatment, we also adjusted for the number of initial tumors

at diagnosis. The observed data were typical panel count data with death as

the right-censored terminal event. Table 3 shows the results from our two-stage

estimation method. In particular, the results from Stage 2 show that the initial

number of tumors at diagnosis was positively associated with the recurrence of

subsequent tumors with an effect size of 0.2326 (p-value < 0.01), which indicates

that one additional initial tumor is expected to increase subsequent recurrence of

tumors by 26.2% , controlling for treatment. The thiotepa treatment was found to

significantly suppress the tumor recurrence with the effect size of−0.7045 (p-value

< 0.05). In other words, thiotepa is expected to reduce the tumor recurrences by

50.1%, controlling for the number of initial tumors. The results are comparable

with those in previous studies (Sun and Wei (2000); Wellner and Zhang (2007);

Lu, Zhang and Huang (2009)).

6. Conclusion

In joint analysis of longitudinal count and survival data, the effect of

longitudinal markers on the survival is often the main study of interest (Huang

and Wang (2004); Sun et al. (2012)). In the recent literature of joint analysis of

longitudinal and survival data, there has been an increasing interest in studying

the behavior of longitudinal data near the terminal event for addressing more

relevant scientific questions (Chan and Wang (2010, 2017); Kong et al. (2018)).

To the best of our knowledge, there is no such effort for panel count data. We

propose a semiparametric reversed conditional mean model to characterize the

behavior of a recurrent event process near an informative terminal event and

develope a novel M-estimation procedure based on the conditional expectation of

log-likelihood derived from a non-homogeneous Poisson process.

The estimation procedure is implemented through a two-stage mechanism

for numerical convenience, for which the first stage estimates the conditional

distribution function of the terminal event. We fit the Cox model to terminal

event time data due to its popularity and well-established asymptotic properties



SEMIPARAMETRIC REVERSED MEAN MODEL FOR RECURRENT EVENT PROCESS 1859

that fulfill the required conditions for the nuisance parameter. If the proportional

hazards assumption fails, we may consider alternative survival models such as

additive hazards or accelerated failure time models, or even the local Kaplan–

Meier estimator (Dabrowska (1989)) to estimate the conditional distribution

function of the terminal event time.

For the adequacy of model (2.1), we can similarly develop some graphical and

numerical procedures using cumulative sums of the residuals following the ideas

in Lin et al. (2000) and Zhao, Zhou and Sun (2011). However, the procedure is

more complicated. An easy-to-implement model-checking procedure needs to be

explored.

Supplementary Material

The online Supplementary Material contains all technical proofs for Theo-

rems 3.1 to 3.3 and Corollary 3.1.
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