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S1. Proofs of the theoretical results

Proof of Lemma : As the metric space (2%, dy) is separable, so is H% (Lukic
and Beder, 2001, Lemma 4.3). Being a closed subspace of a separable Hilbert space,
ker(2%y) is also a separable Hilbert space, and hence admits a countable dense
subset K. Fixing h € K, we have Var{h(X)} = 0, implying that there exists a set
Sxn, such that Px(Sx,) = 1 and that, for all z € Sxp,, we have h(z) — E{h(X)} =
(h, kx (-, 2) — px)zg = 0.

Denoting Qx = NpexSxn, the countability of I implies that Px(Qx) = 1. We
next show that, for all x € Qx, we have kx(-,7) — ux € ker(X% )+ = Hx. Taking
an arbitrary g € ker(X% ), there exist a sequence of elements h; € K, such that
g — hjllg — 0 as j — oo. Let N denote the collection of natural numbers. Then,

for an arbitrary = € (0x and j € N, we have that,

[(rx (@) = s Gy, | < [(hx (5 @) = s g = g |+ [(x () — pxs hydaeg |

< lex (@) = pxllag g = Rillag, +0,

which further implies that (rkx(-,2) — pix,g)y9 = 0. This completes the proof of
Lemma [1] 0



Proof of Lemma [2} (a). The proof is structurally similar to that of Proposition 1
in |Li and Song| (2017)), but we include it for completeness.

Fix f € Hx. Denote Z;YEYX = Ryx, and fix an arbitrary g € Hy. Then,

Cov{(Ryx f)(Y),9(Y)} = (ZLySvx [, vy @)y = (Svxf, 9)my = Cov{f(X),g(Y)}.

Consequently, for all f € Hy and g € Hy, we have,

Cov{f(X) = (Ryxf)(Y),g(Y)} =0, (SL.1)

Consider an arbitrary h € Ly(Py). By Assumption [2] there exist a sequence {h,} of
elements of Hy, such that var{h(Y) — h,(Y)} — 0, as n — oo. Therefore, by (S1.1)),

|Cov{f(X) — (Ryxf)(Y), h(Y)}|
< [Cov{f(X) = (Ryx/)(Y),hY) = hu(Y)} + |Cov{f(X) = (Ryx [)(Y), ha(Y)}]
< [Var{f(X) — (Ryx f)(Y)} Var{h(Y) — h,(Y)}]'/* + 0,

for all n. The first variance in the final expression above is finite, since Var{ f(X)} <

IZxxllopllfl3, < oo, and Var{(Ryxf)(Y)} < [[RyxlorlZvxllopllfl7, < oc.
This implies that (S1.1]) holds also when g is replaced with any h € Lo(Py ).
Note that a square-integrable random variable Z is almost surely equal to the

conditional expectation E{f(X) | Y}, if
E{f(X) = Z}h(Y)] = 0, (S51.2)

for all h € Ly(Py). A direct computation using (S1.1)) shows that the choice Z =
(Ryxf)(Y) — E{(Ryxf)(Y)} + E{f(X)} satisfies (S1.2]) for all h € Ly(Py), which

implies the following holds almost surely,

E{f(X) | Y} = E{f(X)} = (ZhyEvx HY) = E{(S}y Syx /) (V)}- (SL.3)



Finally, by Lemma[l] the right-hand side of (S1.3) is almost surely equal to the
random variable (X1 5y x f, ky (-, Y) — piy )2, , Where we take sy (-,Y) — iy to equal
the zero element for those values of Y for which it is not a member of Hy. This

proves the assertion (a).

(b). By definition,

E<97 [{’%Y<U Y) - /vLY} & {RY(W Y) - NY}]g/>HY = <ga EYY9/>Hy7

for all g,¢’ € Hy. This, in conjunction with part (a) of the lemma, implies that the
left-hand side of the assertion (b) equals,

E(SLy Syxf, {oy (1Y) — iy} @ {ey () — iy Y80y Sy x oy
= <E€/YEYXJC7 ZYYEQ/YEYXJE%{Y = <f> EXYEJ{/YEYXf/>HX-

This proves the assertion (b), and completes the proof of Lemma ]

Proof of Theorem : By Theorem 1 in [Douglas (1966)), and Assumption , both
EQYZY x and EE( y2xy are bounded. Henceforth, Agg is also bounded.

To prove the unbiasedness of Agr, we first note that the set Sy|x is closed
because measurability is preserved in taking point-wise limits, which in an RKHS
is implied by the convergence in norm. Concurrently, Sy|x = span{f € Hx |
[ is Gy|x-measurable }, and we have the desired result of Tan(Agir) C Sy|x, as long
as we can show that SﬁX C ker(AgRg)-

We begin by establishing this inclusion for the elements of ran(Xxx). Let f =
Yxxm for an arbitrary m € Hx. Suppose (f,h)y, = 0 for all h € Sy|x, which
implies that, Cov{m(X), h(X)} = (Exxm,h)y, = 0 for all h € Sy|x. Let Sy x =
{h € Ly(Px) | his Gy|x-measurable}. Then, by (Li, 2018, Theorem 13.3), we have
that Cov{m(X), h(X)} = 0 for all h € S5 y. This in turn implies that

<m - E{m(X>}7 h>L2(PX) =0,



for all h € &5, where E{m(X)} represents the constant function taking the value

E{m(X)} everywhere. Therefore, following Lee et al. (2013, Lemma 1), we have that
E{m(X) | Gy)x} — E{m(X)} =0, almost surely. (S1.4)

We next show that (S1.4) leads to E{m(X) | Y} = E{m(X)} almost surely. Let
o(Y, Gy|x) be the smallest o-field containing both o(Y) and Gy|x. By rule of iterative

expectation, we have, almost surely,
E{m(X) [ Y} = E[E{m(X) [ o(Y, Gyx)} | Y] = E[E{m(X) | Gyvix} | Y] = E{m(X)},

where the second equality follows from the fact that Y 1L X | Gy|x, and the third

equality is by (S1.4)).

Combining the above result with Lemma [2| leads to that, for all g € Hx,

0= (m, ZXYETYYEYX9>HX = (f, ASIRG) % -

In other words, f € ker(A&y). Therefore, ran(Xxx) N Sﬁx C ker(AgR)-

To extend this inclusion to hold in the full orthogonal complement S¢| s, We
invoke Assumption , which implies that, for f € Sﬁ +» there exist a sequence of
elements f,, of ran(Xxx) N SﬁX, such that ||f, — fllxy — 0, as n — 0. Because

Agip frn = 0 for all n, we also have Ay f = 0 by continuity. This completes the proof
of Theorem [1l ]

Proof of Theorem [3} We first present three auxiliary lemmas, under the same set
of conditions of Theorem [3] We then prove Theorem [3] based on these lemmas.
The first auxiliary lemma shows that the sample covariance operators are root-n

consistent estimators of the corresponding population counterparts.

Lemma S1.1. Suppose the conditions of Theorem@ hold. Then, Hf]XX — Yxx|lus,
||f]Xy — Yxvyllus and ||f]yy — Yyyllus are of the order O,(1/y/n).
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Proof of Lemma[S1.1. Denote hx = rkx(-, X) — ux. By definition, the covariance

operator X x x satisfies that,

(f:XxxDux = E(f, hx)ux (9, hx)ny) = B{(f, (hx @ hx)g)ayx )

where hx is to be the zero element for those realizations x € §2 not belonging to the
almost sure set in Lemma [Il
Since the covariance operator in a separable Hilbert space is a trace-class operator
(Zwald et al., [2004), we have that |Sxx|lus < oo. To show |[Sxx — Sxx|lus =
O,(1/y/n), we note that,
Sy — i(b ® bx,)
Xx = - 2 x; @ 0x;),
where by, = kx (-, Xi) — (1/n) >7_, kx (-, X;). Denoting hx, = rx(-, Xi) — px, we
further have that bx, = hx, — h,, where h, = (1/n) Y7 hx,. Therefore,

n

1
- Z(hxi ® hx,) — Xxx

=1

+ ||An @ B |us. (S1.5)

HS

Ixx — Zxxllus <

For the second term on the right-hand-side of (S1.5]), we have that,

B B B 1 n n
Elln @ ullas = Bl = — S S Bl hoghue. (S16)

i=1 j=1

For any pair of distinct indices 7 # j, hx, and hy; are independent. This means that,

E<th hXj>7'lX = EXj <EXi<hXi)? hXj>7'lX = EXj <0> h’Xj>HX - 07 (817)

where Ex, (+) is the expectation with respect to the distribution of X;. Consequently,

- ] — 1
Ellfu ® hullns = =5 > Bllx By = ~Ellhx iy
=1



where E[lhx, |13, = EHhleig( = E{sx (X1, X))} — H/Lxuig( < oo, which holds by
Assumption [§f Therefore, E||h, ® hy|lus = O(1/n), which, by Markov’s inequality,
further implies that ||k, ® h,|lus = O,(1/n).

For the first term on the right—hand—side of , we have that,

— ZZE H;, H;)ys, (S1.8)

=1 j5=1

n

1
- Z(hx ® hx,) — EXX

i=1

E

where H; = (hx, ® hy,) — X xx. By the definition of the Hilbert-Schmidt norm,
E(H;, Hj)us = E(hx, ® hx,, hx; ® hx,)ns — (Exx, Xxx)Hs

Therefore, adopting he same strategy used to simplify (S1.6), we have E(hx, ®
hx, hx, ® hx;)us = (X¥xx,Xxx)us, for i # j. This allows us to ignore all pairs

of distinct indices in (S1.8)), and we obtain that,

—ZZE H;, Hj)ns = ZEIIH s = E||H1||§13- (S1.9)

i=1 j=1

Correspondingly,

E||Hi|fs < Ellhx, @ hx,|lfis + 2Bl hx, ® hx, lnslExxlus + 1Zxx|fs

= Bllhx, I3, + 2Bl hx, 15, 1 Zxx]las + [[Exx s,

which is finite, because X xx is a Hilbert-Schmidt operator, and that, by Assump-
tion § Ellsx (- X1)[l5, = E{sx(X1,X1)*} < oo, guaranteeing that Elhx, |3, is
finite. Together, (S1.8) and (S1.9), along with Markov’s inequality, imply that

= Oy(1/v/n).

1 n
HE > (hx, ® hx,) = Sxx
HS

=1

Combining the results above, we obtain that ||Zyx — Sxx|lus = Op(1/4/n). The
results for 3 xy and f]yy can be established similarly. This completes the proof of

Lemma [ST.11 O



The second auxiliary lemma shows that the inverse operators G} and G, are

bounded in the operator norm, where G} = (Xxx +71)" and G3 = (Sxx+71)"".

Lemma S1.2. Suppose the conditions of Theorem [3 hold. Then, |Gl lop < 1/7,

and |Gz llop < 1/7.

Proof of Lemma[S1.9. Note that ||G.3 lop = (1/7)||(Zxx/7 + ) op < 1/7. This
relation holds because, by the positive semi-definiteness of 7' = ¥ xx /7, we have, for

arbitrary f € Hy,
T+ D7 e < T+ DT+ DT+ )7 s
< N lex 1T+ D7l

implying that |[(T+1)"' f|ls, < ||f]l7y. Similarly, we can show that |G, |lop < 1/7.
This completes the proof of Lemma O

The third auxiliary lemma establishes the convergence rate for the effect of re-

placing the pseudo-inverse with its regularized counterpart on the population level.

Lemma S1.3. Suppose the conditions of Theorem@ hold. Then, |G xy —3k «Sxyllop =
O(7).

Proof of Lemma[S1.3. By Assumption [9] and Theorem 1 of [Douglas (1966), we have
Yxy = X% xC, for some bounded operator C': Hx — Hx. This further implies that,

G Zxy — ZhySxvllor < [(GraZxx — I)Sxxllor||Cllor

= || = 7G2ZxxllopCllor = 7[I7GL; — IloplICllop,
where ||7G,5 — I|lop < 7I|Gz llop + | I]lop < 2, by Lemma [S1.2l Therefore,
1G3 Exy = ZhxExy llor = O(7).

This completes the proof of Lemma O



Based on the above three auxiliary lemmas, we next prove Theorem

We first establish the closeness of G 13 yy to the operator G, 3% xy. Note that
G Sxy — Gz Sxv llop
<Gt loplExy = Sxvllor + (Gol = Gr3)Exv[lop-
To simplify (S1.10|), we observe that, by Assumption |§|, we have Y yy = X xxD for

some bounded operator D). This implies that

(S1.10)

(G — G2 )Exvllop = |Gl (Gr = G2) Gy Excy [lop
< |GaillorlGar — Grallop[| Gz Exy [lop
< (1/7)IExx = ExxllopllGra Exy lop
< O,(1/{rvnh)l(Zxx + 1)~ Sxxllopl| Dllop
= Op(1/{rv/n}),
where the last equality holds because the largest eigenvalue of the operator (Xyx +

71) 'Y xx is bounded from above by one.

Therefore, together with Lemmas and [S1.2] we have that
G Exy = GraSxyllop = Op(1/{Tv/n}). (S1.11)
Combining with Lemma, leads to
G Exy = Sk Sxvllor = Op(7 + 1/{rv/n}).

The sample convergence of (Syy + 71) 'Sy x can be established similarly. This

completes the proof of Theorem [3]
]

Proof of Theorem : Denote Ly, = I(Y; = k), Ny = > Ly, and hy, = kx (-, X;) —
x. We have that

. 1 « 1 — 1 < _
TX|k = Fk ;Hikh)(i T ; hx, = Fk ;Hithi — .



Consequently,

El[9xk — vxpwll3, =E + E[[hnl3,

2
1 n
— Lihyx —
NkZ ENVX, — VYX|k
i=1 Hx
I & -
—2E <E;Lkhxi - m,hn>

The first term of the right-hand-side of ((S1.12) is equal to,

(S1.12)

Hx

n n 1
Y )E <mﬂikﬂjk<hxi — Yxik hx, — mm) . (S1.13)
k

i=1 j=1

Denote vi; = (hx, — x|k hx; — Vx|k)#- Then, for any distinct ¢ # j, conditioning

on the values of the corresponding indicators implies the summand in (S1.13|) equals

1 1
E (F]?Uij | ]L,k]ljk — 1) Fg =E <F]3 } ]Izk]lgk = 1) E (Uz'j } I[zk]Ijk = 1) 7'(']%7

where m, = P(Y = k). Using a similar argument as in (S1.7) and the definition of
x|k, We have that E (vij ‘ Ll = 1) = 0, implying that (S1.13]) is further equal to

& 1
58 (gl — el )
i=1 F (S1.14)
1
k

Correspondingly, we have that

mE(lhx, — vxlli [ Tie = 1) = me{B(lhx, 5, [T = 1) = w3,

< B(|lhx, ) < 0.

We next tackle the term E(1/NZ | I;; = 1). Conditioning on {Iy;, = 1}, the distribu-
tion of (n—1)%/N? is that of (n—1)?/(B+1)?, where B follows a Binomial(n—1, ;)
distribution. By Theorem 1 of|Shi et al.|(2010)), the expected value of (n—1)*/(B+c)*



is of the order O(1) for any ¢, > 0. This further implies that and, conse-
quently, the first term on the right-hand-side of (S1.12)), is of the order O(1/n).
The second term of the right-hand-side of , as shown in Theorem [3[ and
by Assumption [§] is of the order O(1/n).
The third term of the right-hand-side of can be expressed as

2 e — 1
- Z Z E (ELI@ULXZ- — VX |k> hXj>) . (S1.15)

i=1 j=1
Conditioning on the indicators, we can rewrite the contribution of any index pair of
i # 7 to the sum as

K

> mmEQ/ Ny | Ty = DE((hx, — Yxik hix,) | Tilje = 1),
/=1

where the final expected value is equal to zero, following a similar argument to (S1.7)).
Therefore, only the index pairs of ¢ = j contribute to the sum (S1.15)), which then

takes the form,

2 — 1
—ENTE( —Lix(hx. — vk, hx,
n; (Nk k< X; — VX|k X>)
= = 2mE(1/ Ny | L = DE((hx, = v, bix,) | L = 1)

Now, E(1/Ny | Ly, = 1) = O(1/n) by Theorem 1 of Shi et al.| (2010). Moreover, we can
show that the term m,E((hx, —vxk, ~x,) | Lir = 1) is of the order O(1). Consequently,
the third term on the right-hand-side of is of the order O(1/n).
Applying the Markov’s inequality obtains that ||[Yx, — vxkllax = Op(1/v/n).
We next show that Zszl(Nk/n) (Yxk ® Yx|k) converges in the Hilbert-Schmidt

norm to Ixxy = Zszl Te(Yx|k ® Yxk)- Note that the norm of the difference

S (N /) (e @ Axpe) — ey Te(Yx e ® vxpe) is upper-bounded by
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K K
Z(Nk/n)(’?xvc ® Yx|k) — Zﬂk(’YX\k ® Yx|k)
h—1 k=1 HS
K
< Z 1(Ni/n)(Fxire @ Yxir) — T (Ve @ Vxip) | s
k=1
K
< AW/ G @ Axie) = (v @ vxii) s + [(Ni/m) = ol v © e s}
k=1
K
< Z{(Nk/n)ﬂ(’?X\k = Vx|k) ® Yx |kl HS

i

1

+ (Ni/m) [{rxie @ (x ik — vxip) Hias + [(Ne/n) — 7l [[vxe @ vxpellns}. (S1.16)

Note that ||(9xx — Yx k) @ Yxelliis = 1Fx1s — xiklFee 1Fx18lF = Op(1/n), because
19xkl5,, converges to the finite constant ||yxx||5,, asn — co. Similarly, we can show
that |1y @ (e — ) s = Op(1/n), and that [(Ni/n) — 7] = O,(1/y/i), which
follows from the standard Central Limit Theorem. Substituting all terms with their
rates in (ST.16), we have that || Y, (Nik/n) (G ®@3xk) = ey T (x ik ®@7x1i) s =
0,(1/v).

We further employ the proof of Theorem |3 to deal with the inclusion of the
pseudo-inverses. This completes the proof of Theorem . ]
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