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S1. Proofs of the theoretical results

Proof of Lemma 1: As the metric space (Ω0
X , dX) is separable, so is H0

X (Lukić

and Beder, 2001, Lemma 4.3). Being a closed subspace of a separable Hilbert space,

ker(Σ0
XX) is also a separable Hilbert space, and hence admits a countable dense

subset K. Fixing h ∈ K, we have Var{h(X)} = 0, implying that there exists a set

SXh, such that PX(SXh) = 1 and that, for all x ∈ SXh, we have h(x) − E{h(X)} =

〈h, κX(·, x)− µX〉H0
X

= 0.

Denoting ΩX = ∩h∈KSXh, the countability of K implies that PX(ΩX) = 1. We

next show that, for all x ∈ ΩX , we have κX(·, x) − µX ∈ ker(Σ0
XX)⊥ = HX . Taking

an arbitrary g ∈ ker(Σ0
XX), there exist a sequence of elements hj ∈ K, such that

‖g − hj‖H0
X
→ 0 as j → ∞. Let N denote the collection of natural numbers. Then,

for an arbitrary x ∈ ΩX and j ∈ N, we have that,

|〈κX(·, x)− µX , g〉H0
X
| ≤ |〈κX(·, x)− µX , g − hj〉H0

X
|+ |〈κX(·, x)− µX , hj〉H0

X
|

≤ ‖κX(·, x)− µX‖H0
X
‖g − hj‖H0

X
+ 0,

which further implies that 〈κX(·, x) − µX , g〉H0
X

= 0. This completes the proof of

Lemma 1. �
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Proof of Lemma 2: (a). The proof is structurally similar to that of Proposition 1

in Li and Song (2017), but we include it for completeness.

Fix f ∈ HX . Denote Σ†Y Y ΣY X = RY X , and fix an arbitrary g ∈ HY . Then,

Cov{(RY Xf)(Y ), g(Y )} = 〈Σ†Y Y ΣY Xf,ΣY Y g〉HY
= 〈ΣY Xf, g〉HY

= Cov{f(X), g(Y )}.

Consequently, for all f ∈ HX and g ∈ HY , we have,

Cov{f(X)− (RY Xf)(Y ), g(Y )} = 0, (S1.1)

Consider an arbitrary h ∈ L2(PY ). By Assumption 2, there exist a sequence {hn} of

elements of HY , such that var{h(Y )−hn(Y )} → 0, as n→∞. Therefore, by (S1.1),

|Cov{f(X)− (RY Xf)(Y ), h(Y )}|

≤ |Cov{f(X)− (RY Xf)(Y ), h(Y )− hn(Y )}|+ |Cov{f(X)− (RY Xf)(Y ), hn(Y )}|

≤ [Var{f(X)− (RY Xf)(Y )}Var{h(Y )− hn(Y )}]1/2 + 0,

for all n. The first variance in the final expression above is finite, since Var{f(X)} ≤

‖ΣXX‖OP‖f‖2HX
< ∞, and Var{(RY Xf)(Y )} ≤ ‖RY X‖OP‖ΣY X‖OP‖f‖2HX

< ∞.

This implies that (S1.1) holds also when g is replaced with any h ∈ L2(PY ).

Note that a square-integrable random variable Z is almost surely equal to the

conditional expectation E{f(X) | Y }, if

E[{f(X)− Z}h(Y )] = 0, (S1.2)

for all h ∈ L2(PY ). A direct computation using (S1.1) shows that the choice Z =

(RY Xf)(Y ) − E{(RY Xf)(Y )} + E{f(X)} satisfies (S1.2) for all h ∈ L2(PY ), which

implies the following holds almost surely,

E{f(X) | Y } − E{f(X)} = (Σ†Y Y ΣY Xf)(Y )− E{(Σ†Y Y ΣY Xf)(Y )}. (S1.3)
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Finally, by Lemma 1, the right-hand side of (S1.3) is almost surely equal to the

random variable 〈Σ†Y Y ΣY Xf, κY (·, Y )−µY 〉HY
, where we take κY (·, Y )−µY to equal

the zero element for those values of Y for which it is not a member of HY . This

proves the assertion (a).

(b). By definition,

E〈g, [{κY (·, Y )− µY } ⊗ {κY (·, Y )− µY }]g′〉HY
= 〈g,ΣY Y g

′〉HY
,

for all g, g′ ∈ HY . This, in conjunction with part (a) of the lemma, implies that the

left-hand side of the assertion (b) equals,

E〈Σ†Y Y ΣY Xf, [{κY (·, Y )− µY } ⊗ {κY (·, Y )− µY }]Σ†Y Y ΣY Xf
′〉HY

= 〈Σ†Y Y ΣY Xf,ΣY Y Σ†Y Y ΣY Xf
′〉HY

= 〈f,ΣXY Σ†Y Y ΣY Xf
′〉HX

.

This proves the assertion (b), and completes the proof of Lemma 2. �

Proof of Theorem 1: By Theorem 1 in Douglas (1966), and Assumption 3, both

Σ†Y Y ΣY X and Σ†XXΣXY are bounded. Henceforth, ΛSIR is also bounded.

To prove the unbiasedness of ΛSIR, we first note that the set SY |X is closed

because measurability is preserved in taking point-wise limits, which in an RKHS

is implied by the convergence in norm. Concurrently, SY |X = span{f ∈ HX |

f is GY |X-measurable }, and we have the desired result of ran(ΛSIR) ⊆ SY |X , as long

as we can show that S⊥Y |X ⊆ ker(Λ∗SIR).

We begin by establishing this inclusion for the elements of ran(ΣXX). Let f =

ΣXXm for an arbitrary m ∈ HX . Suppose 〈f, h〉HX
= 0 for all h ∈ SY |X , which

implies that, Cov{m(X), h(X)} = 〈ΣXXm,h〉HX
= 0 for all h ∈ SY |X . Let S∗Y |X =

{h ∈ L2(PX) | h is GY |X-measurable}. Then, by (Li, 2018, Theorem 13.3), we have

that Cov{m(X), h(X)} = 0 for all h ∈ S∗Y |X . This in turn implies that

〈m− E{m(X)}, h〉L2(PX) = 0,
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for all h ∈ S∗Y |X , where E{m(X)} represents the constant function taking the value

E{m(X)} everywhere. Therefore, following Lee et al. (2013, Lemma 1), we have that

E{m(X) | GY |X} − E{m(X)} = 0, almost surely. (S1.4)

We next show that (S1.4) leads to E{m(X) | Y } = E{m(X)} almost surely. Let

σ(Y,GY |X) be the smallest σ-field containing both σ(Y ) and GY |X . By rule of iterative

expectation, we have, almost surely,

E{m(X) | Y } = E[E{m(X) | σ(Y,GY |X)} | Y ] = E[E{m(X) | GY |X} | Y ] = E{m(X)},

where the second equality follows from the fact that Y X | GY |X , and the third

equality is by (S1.4).

Combining the above result with Lemma 2 leads to that, for all g ∈ HX ,

0 = 〈m,ΣXY Σ†Y Y ΣY Xg〉HX
= 〈f,ΛSIRg〉HX

.

In other words, f ∈ ker(Λ∗SIR). Therefore, ran(ΣXX) ∩ S⊥Y |X ⊆ ker(Λ∗SIR).

To extend this inclusion to hold in the full orthogonal complement S⊥Y |X , we

invoke Assumption 4, which implies that, for f ∈ S⊥Y |X , there exist a sequence of

elements fn of ran(ΣXX) ∩ S⊥Y |X , such that ‖fn − f‖HX
→ 0, as n → 0. Because

Λ∗SIRfn = 0 for all n, we also have Λ∗SIRf = 0 by continuity. This completes the proof

of Theorem 1. �

Proof of Theorem 3: We first present three auxiliary lemmas, under the same set

of conditions of Theorem 3. We then prove Theorem 3 based on these lemmas.

The first auxiliary lemma shows that the sample covariance operators are root-n

consistent estimators of the corresponding population counterparts.

Lemma S1.1. Suppose the conditions of Theorem 3 hold. Then, ‖Σ̂XX − ΣXX‖HS,

‖Σ̂XY − ΣXY ‖HS and ‖Σ̂Y Y − ΣY Y ‖HS are of the order Op(1/
√
n).
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Proof of Lemma S1.1. Denote hX = κX(·, X) − µX . By definition, the covariance

operator ΣXX satisfies that,

〈f,ΣXXg〉HX
= E(〈f, hX〉HX

〈g, hX〉HX
) = E{〈f, (hX ⊗ hX)g〉HX

},

where hX is to be the zero element for those realizations x ∈ Ω not belonging to the

almost sure set in Lemma 1.

Since the covariance operator in a separable Hilbert space is a trace-class operator

(Zwald et al., 2004), we have that ‖ΣXX‖HS < ∞. To show ‖Σ̂XX − ΣXX‖HS =

Op(1/
√
n), we note that,

Σ̂XX =
1

n

n∑
i=1

(bXi
⊗ bXi

),

where bXi
= κX(·, Xi) − (1/n)

∑n
j=1 κX(·, Xj). Denoting hXi

= κX(·, Xi) − µX , we

further have that bXi
= hXi

− h̄n where h̄n = (1/n)
∑n

i=1 hXi
. Therefore,

‖Σ̂XX − ΣXX‖HS ≤

∥∥∥∥∥ 1

n

n∑
i=1

(hXi
⊗ hXi

)− ΣXX

∥∥∥∥∥
HS

+ ‖h̄n ⊗ h̄n‖HS. (S1.5)

For the second term on the right-hand-side of (S1.5), we have that,

E‖h̄n ⊗ h̄n‖HS = E‖h̄n‖2HX
=

1

n2

n∑
i=1

n∑
j=1

E〈hXi
, hXj
〉HX

. (S1.6)

For any pair of distinct indices i 6= j, hXi
and hXj

are independent. This means that,

E〈hXi
, hXj
〉HX

= EXj
〈EXi

(hXi
), hXj

〉HX
= EXj

〈0, hXj
〉HX

= 0, (S1.7)

where EXi
(·) is the expectation with respect to the distribution of Xi. Consequently,

E‖h̄n ⊗ h̄n‖HS =
1

n2

n∑
i=1

E‖hXi
‖2HX

=
1

n
E‖hX1‖2HX

,
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where E‖hX1‖2HX
= E‖hX1‖2H0

X
= E{κX(X1, X1)} − ‖µX‖2H0

X
< ∞, which holds by

Assumption 8. Therefore, E‖h̄n ⊗ h̄n‖HS = O(1/n), which, by Markov’s inequality,

further implies that ‖h̄n ⊗ h̄n‖HS = Op(1/n).

For the first term on the right-hand-side of (S1.5), we have that,

E

∥∥∥∥∥ 1

n

n∑
i=1

(hXi
⊗ hXi

)− ΣXX

∥∥∥∥∥
2

HS

=
1

n2

n∑
i=1

n∑
j=1

E〈Hi, Hj〉HS, (S1.8)

where Hi = (hXi
⊗ hXi

)− ΣXX . By the definition of the Hilbert-Schmidt norm,

E〈Hi, Hj〉HS = E〈hXi
⊗ hXi

, hXj
⊗ hXj

〉HS − 〈ΣXX ,ΣXX〉HS.

Therefore, adopting he same strategy used to simplify (S1.6), we have E〈hXi
⊗

hXi
, hXj

⊗ hXj
〉HS = 〈ΣXX ,ΣXX〉HS, for i 6= j. This allows us to ignore all pairs

of distinct indices in (S1.8), and we obtain that,

1

n2

n∑
i=1

n∑
j=1

E〈Hi, Hj〉HS =
1

n2

n∑
i=1

E‖Hi‖2HS =
1

n
E‖H1‖2HS. (S1.9)

Correspondingly,

E‖H1‖2HS ≤ E‖hX1 ⊗ hX1‖2HS + 2E‖hX1 ⊗ hX1‖HS‖ΣXX‖HS + ‖ΣXX‖2HS

= E‖hX1‖4HX
+ 2E‖hX1‖2HX

‖ΣXX‖HS + ‖ΣXX‖2HS,

which is finite, because ΣXX is a Hilbert-Schmidt operator, and that, by Assump-

tion 8, E‖κX(·, X1)‖4HX
= E{κX(X1, X1)

2} < ∞, guaranteeing that E‖hX1‖4HX
is

finite. Together, (S1.8) and (S1.9), along with Markov’s inequality, imply that∥∥∥∥∥ 1

n

n∑
i=1

(hXi
⊗ hXi

)− ΣXX

∥∥∥∥∥
HS

= Op(1/
√
n).

Combining the results above, we obtain that ‖Σ̂XX −ΣXX‖HS = Op(1/
√
n). The

results for Σ̂XY and Σ̂Y Y can be established similarly. This completes the proof of

Lemma S1.1.
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The second auxiliary lemma shows that the inverse operators G−1n1 and G−1n2 are

bounded in the operator norm, where G−1n1 = (Σ̂XX +τI)−1 and G−1n2 = (ΣXX +τI)−1.

Lemma S1.2. Suppose the conditions of Theorem 3 hold. Then, ‖G−1n1 ‖OP ≤ 1/τ ,

and ‖G−1n2 ‖OP ≤ 1/τ .

Proof of Lemma S1.2. Note that ‖G−1n2 ‖OP = (1/τ)‖(ΣXX/τ + I)−1‖OP ≤ 1/τ . This

relation holds because, by the positive semi-definiteness of T = ΣXX/τ , we have, for

arbitrary f ∈ HX ,

‖(T + I)−1f‖2HX
≤ 〈(T + I)(T + I)−1f, (T + I)−1f〉HX

≤ ‖f‖HX
‖(T + I)−1f‖HX

,

implying that ‖(T+I)−1f‖HX
≤ ‖f‖HX

. Similarly, we can show that ‖G−1n1 ‖OP ≤ 1/τ .

This completes the proof of Lemma S1.2.

The third auxiliary lemma establishes the convergence rate for the effect of re-

placing the pseudo-inverse with its regularized counterpart on the population level.

Lemma S1.3. Suppose the conditions of Theorem 3 hold. Then, ‖G−1n2 ΣXY−Σ†XXΣXY ‖OP =

O(τ).

Proof of Lemma S1.3. By Assumption 9 and Theorem 1 of Douglas (1966), we have

ΣXY = Σ2
XXC, for some bounded operator C : HX → HX . This further implies that,

‖G−1n2 ΣXY − Σ†XXΣXY ‖OP ≤ ‖(G−1n2 ΣXX − I)ΣXX‖OP‖C‖OP

= ‖ − τG−1n2 ΣXX‖OP‖C‖OP = τ‖τG−1n2 − I‖OP‖C‖OP,

where ‖τG−1n2 − I‖OP ≤ τ‖G−1n2 ‖OP + ‖I‖OP ≤ 2, by Lemma S1.2. Therefore,

‖G−1n2 ΣXY − Σ†XXΣXY ‖OP = O(τ).

This completes the proof of Lemma S1.3.
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Based on the above three auxiliary lemmas, we next prove Theorem 3.

We first establish the closeness of G−1n1 Σ̂XY to the operator G−1n2 ΣXY . Note that

‖G−1n1 Σ̂XY −G−1n2 ΣXY ‖OP

≤ ‖G−1n1 ‖OP‖Σ̂XY − ΣXY ‖OP + ‖(G−1n1 −G−1n2 )ΣXY ‖OP.
(S1.10)

To simplify (S1.10), we observe that, by Assumption 9, we have ΣXY = ΣXXD for

some bounded operator D. This implies that

‖(G−1n1 −G−1n2 )ΣXY ‖OP = ‖G−1n1 (Gn1 −Gn2)G
−1
n2 ΣXY ‖OP

≤ ‖G−1n1 ‖OP‖Gn1 −Gn2‖OP‖G−1n2 ΣXY ‖OP

≤ (1/τ)‖Σ̂XX − ΣXX‖OP‖G−1n2 ΣXY ‖OP

≤ Op(1/{τ
√
n})‖(ΣXX + τI)−1ΣXX‖OP‖D‖OP

= Op(1/{τ
√
n}),

where the last equality holds because the largest eigenvalue of the operator (ΣXX +

τI)−1ΣXX is bounded from above by one.

Therefore, together with Lemmas S1.1 and S1.2, we have that

‖G−1n1 Σ̂XY −G−1n2 ΣXY ‖OP = Op(1/{τ
√
n}). (S1.11)

Combining (S1.11) with Lemma S1.3 leads to

‖G−1n1 ΣXY − Σ†XXΣXY ‖OP = Op(τ + 1/{τ
√
n}).

The sample convergence of (Σ̂Y Y + τI)−1Σ̂Y X can be established similarly. This

completes the proof of Theorem 3.

�

Proof of Theorem 4: Denote Iik = I(Yi = k), Nk =
∑n

i=1 Iik, and hXi
= κX(·, Xi)−

µX . We have that

γ̂X|k =
1

Nk

n∑
i=1

IikhXi
− 1

n

n∑
i=1

hXi
=

1

Nk

n∑
i=1

IikhXi
− h̄n.
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Consequently,

E‖γ̂X|k − γX|k‖2HX
= E

∥∥∥∥∥ 1

Nk

n∑
i=1

IikhXi
− γX|k

∥∥∥∥∥
2

HX

+ E‖h̄n‖2HX

− 2E

〈
1

Nk

n∑
i=1

IikhXi
− γX|k, h̄n

〉
HX

.

(S1.12)

The first term of the right-hand-side of (S1.12) is equal to,

n∑
i=1

n∑
j=1

E

(
1

N2
k

IikIjk〈hXi
− γX|k, hXj

− γX|k〉HX

)
. (S1.13)

Denote vij = 〈hXi
− γX|k, hXj

− γX|k〉HX
. Then, for any distinct i 6= j, conditioning

on the values of the corresponding indicators implies the summand in (S1.13) equals

E

(
1

N2
k

vij
∣∣ IikIjk = 1

)
π2
k = E

(
1

N2
k

∣∣ IikIjk = 1

)
E
(
vij
∣∣ IikIjk = 1

)
π2
k,

where πk = P (Y = k). Using a similar argument as in (S1.7) and the definition of

γX|k, we have that E
(
vij
∣∣ IikIjk = 1

)
= 0, implying that (S1.13) is further equal to

n∑
i=1

E

(
1

N2
k

Iik‖hXi
− γX|k‖2HX

)
= nπkE

(
1

N2
k

| I1k = 1

)
E
(
‖hX1 − γX|k‖2HX

| I1k = 1
)
.

(S1.14)

Correspondingly, we have that

πkE(‖hX1 − γX|k‖2HX
| I1k = 1) = πk{E(‖hX1‖2HX

| I1k = 1)− ‖γX|k‖2HX
}

≤ E(‖hX1‖2HX
) <∞.

We next tackle the term E(1/N2
k | I1k = 1). Conditioning on {I1k = 1}, the distribu-

tion of (n−1)2/N2
k is that of (n−1)2/(B+1)2, where B follows a Binomial(n−1, πk)

distribution. By Theorem 1 of Shi et al. (2010), the expected value of (n−1)α/(B+c)α
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is of the order O(1) for any c, α > 0. This further implies that (S1.14) and, conse-

quently, the first term on the right-hand-side of (S1.12), is of the order O(1/n).

The second term of the right-hand-side of (S1.12), as shown in Theorem 3 and

by Assumption 8, is of the order O(1/n).

The third term of the right-hand-side of (S1.12) can be expressed as

− 2

n

n∑
i=1

n∑
j=1

E

(
1

Nk

Iik〈hXi
− γX|k, hXj

〉
)
. (S1.15)

Conditioning on the indicators, we can rewrite the contribution of any index pair of

i 6= j to the sum as

K∑
`=1

πkπ`E(1/Nk | IikIj` = 1)E(〈hXi
− γX|k, hXj

〉 | IikIj` = 1),

where the final expected value is equal to zero, following a similar argument to (S1.7).

Therefore, only the index pairs of i = j contribute to the sum (S1.15), which then

takes the form,

− 2

n

n∑
i=1

E

(
1

Nk

Iik〈hXi
− γX|k, hXi

〉
)

=− 2πkE(1/Nk | Iik = 1)E(〈hXi
− γX|k, hXi

〉 | Iik = 1).

Now, E(1/Nk | Iik = 1) = O(1/n) by Theorem 1 of Shi et al. (2010). Moreover, we can

show that the term πkE(〈hXi
−γX|k, hXi

〉 | Iik = 1) is of the orderO(1). Consequently,

the third term on the right-hand-side of (S1.12) is of the order O(1/n).

Applying the Markov’s inequality obtains that ‖γ̂X|k − γX|k‖HX
= Op(1/

√
n).

We next show that
∑K

k=1(Nk/n)(γ̂X|k ⊗ γ̂X|k) converges in the Hilbert-Schmidt

norm to ΓXX|Y =
∑K

k=1 πk(γX|k ⊗ γX|k). Note that the norm of the difference∑K
k=1(Nk/n)(γ̂X|k ⊗ γ̂X|k)−

∑K
k=1 πk(γX|k ⊗ γX|k) is upper-bounded by
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REFERENCES∥∥∥∥∥
K∑
k=1

(Nk/n)(γ̂X|k ⊗ γ̂X|k)−
K∑
k=1

πk(γX|k ⊗ γX|k)

∥∥∥∥∥
HS

≤
K∑
k=1

‖(Nk/n)(γ̂X|k ⊗ γ̂X|k)− πk(γX|k ⊗ γX|k)‖HS

≤
K∑
k=1

{(Nk/n)‖(γ̂X|k ⊗ γ̂X|k)− (γX|k ⊗ γX|k)‖HS + |(Nk/n)− πk|‖γX|k ⊗ γX|k‖HS}

≤
K∑
k=1

{(Nk/n)‖(γ̂X|k − γX|k)⊗ γ̂X|k‖HS

+ (Nk/n)‖{γX|k ⊗ (γ̂X|k − γX|k)}‖HS + |(Nk/n)− πk|‖γX|k ⊗ γX|k‖HS}. (S1.16)

Note that ‖(γ̂X|k − γX|k)⊗ γ̂X|k‖2HS = ‖γ̂X|k − γX|k‖2HX
‖γ̂X|k‖2HX

= Op(1/n), because

‖γ̂X|k‖2HX
converges to the finite constant ‖γX|k‖2HX

as n→∞. Similarly, we can show

that ‖γX|k⊗ (γ̂X|k−γX|k)‖2HS = Op(1/n), and that |(Nk/n)−πk| = Op(1/
√
n), which

follows from the standard Central Limit Theorem. Substituting all terms with their

rates in (S1.16), we have that ‖
∑K

k=1(Nk/n)(γ̂X|k⊗γ̂X|k)−
∑K

k=1 πk(γX|k⊗γX|k)‖HS =

Op(1/
√
n).

We further employ the proof of Theorem 3 to deal with the inclusion of the

pseudo-inverses. This completes the proof of Theorem 4. �
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