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Abstract: We propose a divide-and-conquer approach to filtering. The proposed

approach decomposes the state variable into low-dimensional components, to which

standard particle filtering tools can be successfully applied, and recursively merges

them to recover the full filtering distribution. This approach is less dependent

on factorizing transition densities and observation likelihoods than are competing

approaches, and can be applied to a broader class of models. We compare the

performance of the proposed approach with that of state-of-the-art methods on a

benchmark problem, and show that the proposed method is broadly comparable in

settings in which the other methods are applicable, and that it can be applied in

settings in which they cannot.
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1. Introduction

Particle filters (PFs), an instance of sequential Monte Carlo (SMC) methods,

are a popular class of algorithms for performing state estimation for state-space

models (SSM), also known as general-state-space hidden Markov models. We con-

sider the class of SSMs with a latent Rd-valued process (Xt)t≥1 and conditionally

independent Rp-valued observations (Yt)t≥1. Such an SSM (Xt, Yt)t≥1 is defined

by the transition density ft(xt−1, xt) of the latent process, with the convention

that f1(x0, x1) ≡ f1(x1), and by the observation likelihood gt(yt|xt). In this

work, we are interested in approximating the sequence of filtering distributions,

(p(xt|y1:t))t≥1, that is, at each time t, the distribution of the latent state at that

time given the observations obtained by that time.

Basic PF algorithms are known to suffer from the curse of dimensionality,

requiring an exponential increase in computational requirements as the dimension

d grows, limiting their applicability to large systems (Rebeschini and Van Handel

(2015); Bengtsson, Bickel and Li (2008)). Although the ensemble Kalman filter

(Evensen (2009)) can handle high-dimensional problems, it involves approxima-

tions that do not disappear, even asymptotically and does not perform well if the

model is far from being linear and Gaussian (Lei, Bickel and Snyder (2010)).

To extend the use of PFs to high-dimensional problems, it is natural to
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exploit the fact that dependencies in high-dimensional SSMs are often local in

space. This enables us to decompose the filtering problem into a collection of

local low-dimensional problems that can somehow be combined; examples of this

strategy are the block PF (BPF; Rebeschini and Van Handel (2015)), space-time

PFs (STPFs; Beskos et al. (2017)), and nested sequential Monte Carlo (NSMC)

methods (Næsseth, Lindsten and Schön (2015, 2019)).

We propose a divide-and-conquer approach that divides the state space into

smaller subsets, over which we can apply standard particle filtering ideas. These

smaller subsets are then recursively merged in a principled manner to obtain

approximations over the full state space. Our method is an extension of the

divide-and-conquer sequential Monte Carlo (DaC-SMC) algorithm introduced by

Lindsten et al. (2017) to the filtering context, where we exploit ideas akin those

in Klaas, De Freitas and Doucet (2005) and Lin et al. (2005) to marginalize out

the past x1:t−1 at a given time t.

In order to apply the DaC-SMC algorithm to the filtering problem, we define

a nonstandard sequence of targets, evolving both in space and in time: at a

given time t, we define d univariate targets serving as proxies for the marginals

of the filtering distribution, p(xt(i)|y1:t), for i = 1, . . . , d. Then, we iteratively

combine these lower-dimensional targets to obtain approximations of the higher-

dimensional marginals (e.g., p(xt(i : i+1)|y1:t)), until we recover the full filtering
distribution, p(xt|y1:t) ≡ p(xt(1 : d)|y1:t).

Unlike the NSMC and STPF algorithms, this approach does not require

analytic expressions for the marginals of the transition density or observation

likelihood. Instead, it requires only point-wise evaluations of ft and gt, making

it suitable for high-dimensional SSMs in which the observations are correlated

in nontrivial ways (cf., the model in Section 4.2), as is common in practice (see,

e.g., Chib, Omori and Asai (2009, Sec. 2)).

We review the basic ideas of particle filtering, its marginal variant, and

the divide-and-conquer SMC algorithm in Section 2. In Section 3, we extend

the ideas underlying the DaC-SMC algorithm to the filtering problem, and we

discuss strategies to improve the computational cost and accuracy. In Section 4,

we compare the performance of the divide-and-conquer approach with that

of the NSMC and STPF algorithms on a simple linear Gaussian SSM, for

which the Kalman filter provides the exact filtering distribution. The results

of our experiments show that the errors from approximating the true filtering

distribution obtained with the divide-and-conquer approach are comparable with

those of the NSMC and STPF algorithms. Then, we consider a spatial model

whose correlation structure in the observation model makes it impossible to apply

the NSMC or STPF algorithm (at least without additional approximations). We

show empirically that the proposed approach can recover stable estimates of the

filtering distribution which, in small dimensional settings, coincide with those

obtained using a bootstrap PF with a large number of particles.
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2. Background

2.1. Particle filtering

Here, we describe the basic SMC approach, often referred to as sequential

importance resampling (Doucet and Johansen (2011, p.15)); refer to Liu (2001)

and Chopin and Papaspiliopoulos (2020) for a more extensive treatment.

Given the sequence of unnormalized target densities (γt)t≥1, with

γt(x1:t) = p(x1:t, y1:t) =
t∏

k=1

fk(xk−1, xk)gk(yk|xk), (2.1)

defined on (Rd)t, PFs proceed iteratively, and, at time t− 1, approximate

πt−1 :=
γt−1∫

γt−1(x1:t−1)dx1:t−1

using a cloud of particles {xn
1:t−1}Nn=1. The particles are propagated forward in

time using a Markov kernel Kt(x1:t−1, ·), reweighted using the weight function

wt := γt/γt−1 ⊗Kt, and resampled to obtain a new particle population {xn
1:t}Nn=1

approximating πt.

Standard PFs formally target distributions (2.1) with a dimension that

increases at every time step t. However, we are often interested only in the

final time marginal of the approximated distributions, in this case, the filtering

distribution. An alternative to this approach is given by marginal particle filters

(MPFs; Klaas, De Freitas and Doucet (2005)), and the closely related ideas of

Lin et al. (2005). MPFs target the filtering distribution directly:

γt(xt) = p(xt|y1:t) = gt(yt|xt)

∫
ft(xt−1, xt)p(xt−1|y1:t−1)dxt−1. (2.2)

Furthermore, because the integral w.r.t. xt−1 is intractable, MPFs replace

p(xt−1|y1:t−1) with its particle approximation obtained at time t − 1. Given the

new sequence of targets, MPFs proceed as standard PFs. However, whenever

we need to compute an integral w.r.t. xt−1, this is approximated using πN
t−1,

obtained by normalizing γN
t−1, the particle approximation of p(xt−1|y1:t−1). Basic

MPFs incur an O(N2) cost for each time step, because of the presence of the

integral w.r.t. xt−1 in the weight computations, although lower cost strategies

might be employed in some cases (Lin et al. (2005); see also Klaas et al. (2006)).

2.2. PFs for high-dimensional problems

We briefly summarize three classes of PFs that use space decompositions to

tackle the filtering problem, which we believe to be the state-of-the-art in Monte

Carlo approximations of high-dimensional filtering distributions.
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The BPF (Rebeschini and Van Handel (2015)) algorithm relies on a decom-

position of the state space Rd into lower-dimensional blocks on which, at each t,

one step of a standard PF is run. The approximation of the filtering distribution

over the whole state space is obtained as the product of the lower-dimensional

approximations on each block. BPFs are inherently biased, because of the

decomposition into blocks; however, this bias can be eliminated asymptotically

by allowing the blocks to grow at an appropriate rate with computational effort.

STPFs (Beskos et al. (2017)) exploit local dependence structures in the

observation yt to gradually introduce the likelihood term by decomposing the

space dimension into smaller subsets, and running N independent PFs on each of

the subsets (also called islands). These are then combined using an importance

resampling step, which guarantees asymptotically consistent approximations, in

contrast to BPFs. Crucial to the implementation of an STPF algorithm is that

the joint law (2.1) at time t can be factorized so that the marginal of xt(i),

given the observations and the past, depends only on a neighborhood of xt(i),

{xt(j) : j ∈ A}, for some A ⊂ {1, . . . , d}, for all i = 1, . . . , d. STPFs

are particularly useful for SSMs which are time discretizations of stochastic

differential equations, because in this case, we can build time discretization

schemes that guarantee analytical forms for the marginals (Akyildiz, Crisan and

Miguez (2022)). A marginal version of STPFs also exists (Beskos et al. (2017);

Xu and Jasra (2019)).

A nested sequential Monte Carlo algorithm (NSMC; Næsseth, Lindsten and

Schön (2015)) treats the problem of recovering the filtering distribution as a

smoothing problem. In this case, the time variable is replaced with the dimension

d, and the method approximates the fully adapted proposal of Pitt and Shephard

(1999) using an inner SMC iteration, and then uses the result in the outer level,

which corresponds to a standard forward-filtering backward-simulation algorithm.

An NSMC algorithm is particularly well suited for Markov random fields in which

the temporal and the spatial components can be separated, because this makes

the backward simulation straightforward.

2.3. Divide and conquer SMC

The DaC-SMC algorithm (Lindsten et al. (2017)) is an extension of the stan-

dard SMC algorithm in which a collection of (unnormalized) target distributions

(γu)u∈T is indexed by the nodes of a rooted tree, T, and particles evolve from the

leaves to the root, R, rather than along a sequence of distributions indexed by

(algorithmic) time. This method shares many of the convergence properties of

the standard SMC algorithm (Kuntz, Crucinio and Johansen (2023)).

The target distributions are defined on spaces with dimension that grows as

we progress up the tree: for each u, πu ∝ γu is a density over R|Tu|, where Tu

denotes the sub-tree of T rooted at u (obtained by removing all nodes from

T, except for u and its descendants), and |Tu| denotes its cardinality. We
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focus here on the case in which the state space is Rd. However, essentially the

same construction allows for more general spaces, including those with discrete

components.

As in a standard SMC algorithm, each distribution γu is approximated by a

particle population {xn
u}Nn=1. However, these distributions are merged whenever

the corresponding branches of T merge, rather than evolving “linearly”. For

simplicity, we describe the case in which T is a binary tree, and each non-leaf

node u has two children, namely, a left child ℓ(u) and a right child r(u).

If u is a leaf node, the algorithm performs a simple importance sampling

step with the proposal Ku and the importance weight wu := γu/Ku to obtain

a weighted particle population {xn
u, w

n
u}Nn=1 approximating γu. Otherwise, to

obtain such a particle population, we gather the particle populations associated

with each of the children, and compute the (weighted) product form estimator

(Kuntz, Crucinio and Johansen (2022))

γN
Cu

=
1

N2

N∑
n1=1

N∑
n2=1

wℓ(u)(x
n1

ℓ(u))wr(u)(x
n2

r(u))δ(xn1
ℓ(u)

,x
n2
r(u)

) (2.3)

to approximate the product of the marginal distributions γCu
:= γℓ(u) × γr(u).

The O(N2) cost of evaluating γN
Cu

can be prohibitively large; we discuss lower

cost alternatives in Section 3.3.

We reweight the particle approximation γN
Cu

of γCu
to target γu; the resulting

mixture (importance) weights

mu(xℓ(u), xr(u)) :=
γu(xℓ(u), xr(u))

γℓ(u)(xℓ(u))γr(u)(xr(u))
(2.4)

capture the mismatch between γu and γℓ(u) × γr(u), and are incorporated prior

to resampling, similarly to the auxiliary “twisting” function in the auxiliary PF

(see, e.g., Chopin and Papaspiliopoulos (2020, Chap. 10)). This leads to weights

of the form

w̃u(xℓ(u), xr(u)) := wℓ(u)(xℓ(u))wr(u)(xr(u))mu(xℓ(u), xr(u)). (2.5)

Resampling N times from w̃uγ
N
Cu
, using any unbiased resampling scheme (cf.,

Gerber, Chopin and Whiteley (2019)), we obtain an equally weighted particle

population {x̃n
u, w

n
u = 1}Nn=1 approximating γu. If necessary, we can then apply a

πu-invariant Markov kernel Ku to rejuvenate the particles. This is summarized in

Algorithm 1, which is applied to the root node to carry out the sampling process.

The DaC approach in Algorithm 1 is a special case of that considered in

Lindsten et al. (2017) and Kuntz, Crucinio and Johansen (2023), in which the

target at each non-leaf node is defined on the product of the spaces on which

each of its child targets are defined. DaC-SMC is particularly amenable to a

distributed implementation (Lindsten et al. (2017, Sec. 5.3)).
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Algorithm 1 dac smc(u) for u in T.
1: if u is a leaf then
2: Initialize: draw xn

u ∼ Ku and compute wn
u = γu/Ku for all n ≤ N .

3: else
4: Recurse: set ({xn

v , w
n
v }Nn=1) := dac smc(v) for v in {ℓ(u), r(u)} and obtain γN

Cu

in (2.3).

5: Merge: compute w̃
(n1,n2)
u in (2.5) for all n1, n2 ≤ N .

6: Resample: draw {x̃n
u}Nn=1 using weights w̃

(n1,n2)
u and set wn

u = 1 for all n ≤ N .
7: (Optionally): draw xn

u ∼ Ku(x̃
n
u, ·) for all n ≤ N .

(Otherwise): set xn
u = x̃n

u for all n ≤ N .
8: end if

xt(1 : 8)

xt(1 : 4)

xt(1 : 2)

xt(1)

Figure 1. Space decomposition for d = 8.

3. Divide and Conquer within Marginal SMC for Filtering

To apply the DaC-SMC algorithm to the filtering problem, we need to identify

a suitable collection (γ̃t,u)u∈T indexed by the nodes of the tree T, for each time t.

Graphically, this corresponds to a path graph (corresponding to time), in which

each node has associated with it a copy of the tree T (corresponding to space).

In this case, Algorithm 1 takes as input, at the leaves, a particle population

approximating the filtering distribution at time t − 1, and outputs, at the root,

a particle population approximating the filtering distribution at time t.

At a given time t, to build the collection (γ̃t,u)u∈T, we consider spatial

decompositions of xt into low-dimensional (often univariate) elements. Here,

we consider a simple decomposition obtained by identifying the d components

(xt(1), . . . , xt(d)) using the leaves of a tree T. As we move up the tree, the

components are merged pairwise until xt = xt(1 : d) is recovered at the root node

R. For simplicity, we assume that d = 2D, for some D ∈ N, such that T is a

perfect binary tree; essentially the same construction applies to general d.

We denote the set of components associated with node u by Vu, and its

cardinality increases from the leaves to the root: at the level of the leaves, |Vu| =
1, whereas |VR| = d. Figure 1 shows the space decomposition for d = 8.
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Because the filtering problem has an inherent (temporal) sequential structure,

the collection (γ̃t,u)u∈T at time t is most easily specified in terms of the filtering

distribution at time t − 1, γ̃t−1,R, as shown in (3.1). Similarly to MPFs, we

deal with this dependence by approximately marginalizing out the previous time

step using the existing sample approximation. We introduce auxiliary functions

ft,u : Rd × R|Vu| → R and gt,u : R|Vu| × R|Vu| → R for t ≥ 1 and u ∈ T, such
that ft,R = ft, gt,R = gt, and for u ∈ T \ R, ft,u and gt,u serve as proxies for

the marginals of the transition density and observation likelihood, respectively.

These auxiliary functions are used to define our collection of target densities

(γ̃t,u)t≥1,u∈T over R|Vu|:

γ̃t,u(zt,u) = gt,u(zt,u, {yt(i)}i∈Vu
)

∫
ft,u(xt−1, zt,u)γ̃t−1,R(xt−1)dxt−1, (3.1)

where zt,u = (xt(i))i∈Vu
are the components of xt associated with node u, and

xt−1 denotes the previous state of the system. The requirement that gt,R = gt
and ft,R = ft ensures that, at the root, we obtain the distribution in (2.2). The

integral w.r.t. γ̃t−1,R in (3.1) cannot be computed analytically. Hence, as in

MPFs, we use a sample approximation of this integral, described in the next

section.

If the marginals of ft and gt are available, one could use them to define gt,u
and ft,u. However, this is not essential, because these intermediate distributions

can be essentially arbitrary up to the absolute continuity required to justify the

importance sampling steps, although, of course, the variance of the estimator

is influenced by this choice. Specifying these distributions is closely related to

choosing the sequence of artificial targets in a standard SMC sampler when one is

interested only in the final target distribution (see Del Moral, Doucet and Jasra

(2006), who note that optimizing this sequence is a very difficult problem). See

Kuntz, Crucinio and Johansen (2023, Sec. 4.2) for a theoretical perspective in a

divide-and-conquer context. Their results suggest that the optimal choice of the

intermediate target distribution is the appropriate marginal of the root target;

hence we suggest using the marginals of ft and gt, where these are available. In

practice, when doing this exactly is not feasible, we should approximate these

distributions using tractable approximations with comparable tail behavior in

order to keep all importance weights well controlled. If there is a substantial

mismatch between the children of a node and itself, then choosing a parametric

path between the two, adaptively specifying a tempering sequence along that

path and using SMC techniques to approximate each distribution in turn, may

mitigate some difficulties (See Appendix S2).

Although we believe that the best choice of ft,u and gt,u will depend on the

model, in some cases, certain choices are preferable. As an example, take ft
to be a Gaussian distribution with mean µ and covariance Σ. Then, a possible

choice for γt,u is a Gaussian distribution with mean µu equal to the restriction
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of µ to the components corresponding to node u, and covariance Σu obtained by

subsetting Σ, and discarding all components not in u. In this context, we find

that setting Σu = Σ(Vu)−1, that is, selecting the components of Σ corresponding

to node u and then inverting this matrix, instead of Σu = Σ−1(Vu) incurs a

lower computational cost and leads to more diffuse distributions, and thus better

behaved mixture weights (3.5).

3.1. The algorithm

For each time t, having identified the space decomposition over T and the

collection of distributions (γ̃t,u)u∈T, we can apply Algorithm 1 to the root R of

T. However, because the integral in (3.1) is not analytically tractable, we replace

γ̃t−1,R with an approximation provided by the particle population at the root of

the tree corresponding to t − 1, {znt−1,R}Nn=1, that is, its particle approximation

obtained at the previous time step, as is normally done in MPFs, and define

γt,u(zt,u) := gt,u(zt,u, {yt(i)}i∈Vu
)
1

N

N∑
n=1

ft,u(z
n
t−1,R, zt,u). (3.2)

Given {znt−1,R}Nn=1, at each leaf node of the tree, we sample one component

of xt per node from N−1
∑N

n=1 Kt,u(z
n
t−1,R, ·). Then, the importance weights are

given by

wt,u(zt,u, x1:t−1,u) =
gt,u(zt,u, {yt(i)}i∈Vu

)
∑N

n=1 ft,u(z
n
t−1,R, zt,u)∑N

n=1 Kt,u(znt−1,R, zt,u)
. (3.3)

As in the MPF, if we choose Kt,u = ft,u, (3.3) simplifies dramatically to wt,y(zt,u,

x1:t−1,u) = gt,u(zt,u, {yt(i)}i∈Vu
), considerably reducing the cost of evaluating the

weights at the leaves.

For any non-leaf node u, we gather the particle populations {znt,ℓ(u)}Nn=1 and

{znt,r(u)}Nn=1 on its left and right child, respectively, and obtain an approximation

of the product measure γt,Cu
:= γt,ℓ(u) × γt,r(u) using the weighted product form

estimator (2.3)

γN
t,Cu

= N−2
N∑

n1=1

N∑
n2=1

wt,ℓ(u)(z
n1

t,ℓ(u))wt,r(u)(z
n2

t,r(u))δ(zn1
t,ℓ(u)

,z
n2
t,r(u)

), (3.4)

or one of the lower cost alternatives discussed in Section 3.3.

As in the DaC-SMC setting, we reweight the particle approximation of γt,Cu

to target γt,u. In this case, the mixture weights are given by

mt,u(zt,Cu
) =

γt,u(zt,Cu
)

γt,Cu
(zt,Cu

)
(3.5)
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=
gt,u(zt,Cu

, {yt(i)}i∈Vu
)

gt,ℓ(u)(zt,ℓ(u), {yt(i)}i∈Vℓ(u)
)gt,r(u)(zt,r(u), {yt(i)}i∈Vr(u)

)
×

N−1
∑N

n=1 ft,u(z
n
t−1,R, zt,Cu

)

N−1
∑N

n=1 ft,ℓ(u)(z
n
t−1,R, zt,ℓ(u))N

−1
∑N

n=1 ft,r(u)(z
n
t−1,R, zt,r(u))

,

where we define zt,Cu
:= (zt,ℓ(u), zt,r(u)) as the vector obtained by merging the

components of the left and right children of u.

For each pair in (3.4), we obtain the incremental mixture weights m
(n1,n2)
t,u :=

mt,u(z
n1

t,ℓ(u), z
n2

t,r(u)) in (3.5), and the updated weights

w̃
(n1,n2)
t,u = w̃t,u(z

n1

t,ℓ(u), z
n2

t,r(u)) := wt,ℓ(u)(z
n1

t,ℓ(u))wt,r(u)(z
n2

t,r(u))mt,u(z
n1

t,ℓ(u), z
n2

t,r(u)),

for n1, n2 = 1, . . . , N . To avoid unbounded growth in the number of particles, we

then use the weights w̃t,u to resample a population of N particles approximating

γt,u, {z̃nt,u, wt,u = 1}Nn=1. However, we could also allow the number of particles

retained to grow as the simulation approaches the root of the tree to accommodate

the growing dimension of the space. Algorithm 2 summarizes the procedure

described above with the natural modification at t = 1, where it is not necessary

to “marginalize” over previous states, and simple importance sampling can be

used at the leaf nodes. In contrast to Algorithm 1, we do not include an additional

MCMC step in this statement of the algorithm, but one can easily be added, as

discussed in Section 3.2. In this case, given a πt,u-invariant kernel Qt,u, with

πt,u ∝ γt,u, line 8 should be replaced by: draw znt,u ∼ Qt,u(z̃
n
t,u, ·) for all n ≤ N .

Algorithm 2 dac smc(t) for t ≥ 1. Given ({znt−1,R}Nn=1) := dac smc(t− 1).

1: for u leaf node do
2: Initialize: draw znt,u ∼ N−1

∑N
n=1 Kt,u(z

n
t−1,R, ·) and compute wn

t,u as in (3.3) for
all n ≤ N .

3: end for
4: for u non-leaf node do
5: Recurse: set ({znt,v, wn

t,v}Nn=1) := dac smc(t, v) for v in {ℓ(u), r(u)} and obtain γN
Cu

in (3.4).

6: Merge: compute the mixture weights m
(n1,n2)
t,u in (3.5) and w̃

(n1,n2)
t,u for all n1, n2 ≤

N .
7: Resample: draw {z̃nt,u}Nn=1 using weights w̃

(n1,n2)
t,u and set wn

u = 1 for all n ≤ N .
8: Update: set znt,u = z̃nt,u for all n ≤ N .
9: end for

10: Output ({znt,R}Nn=1).

The mixture resampling strategy described above requires evaluating the

mixture weights (3.5) for each of the N2 pairs in (3.4). The O(N2) cost of this

operation is often prohibitive for large N ; we describe alternatives with smaller

costs in Section 3.3, and demonstrate that these approaches perform well in

Section 4.
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3.2. Choice of proposals

Algorithm 2 describes a general strategy for filtering using the DaC-SMC

algorithm; as in the case of the standard SMC algorithm, the performance of the

algorithm is heavily influenced by the choice of the proposals at the leaf nodes.

Here, we discuss a simple strategy to select Kt,u.

We assume that we can sample from ft,u in (3.1), and set Kt,u(z
n
t−1,R, ·) =

ft,u(z
n
t−1,R, ·) so that the importance weights (3.3) reduce to wt,u = gt,u. This

choice corresponds to the proposal used in the bootstrap PF of Gordon, Salmond

and Smith (1993). However, (locally) optimal proposals also exist (see, e.g.,

Chopin and Papaspiliopoulos (2020, Chap. 10)), and are expected to lead to

better performance, but incur a higher computational cost.

Although picking Kt,u(z
n
t−1,R, ·) = ft,u(z

n
t−1,R, ·) causes standard marginal

PFs to reduce to the bootstrap PF (as described in Klaas, De Freitas and Doucet

(2005, Sec. 3.3)), this is not true for our marginal DaC-SMC, because the integral

w.r.t. zt−1,R still appears in the mixture weights (3.5).

If needed, to avoid particle impoverishment, one might consider applying a

Markov kernel Qt,u that leaves πt,u ∝ γt,u invariant after the resampling step in

line 7 of Algorithm 2. These πt,u-invariant kernels can be selected based on the

vast literature on sequential MCMC methods (e.g., Gilks and Berzuini (2001);

Septier et al. (2009); Carmi, Septier and Godsill (2012); Septier and Peters (2016);

Pal and Coates (2018); Han and Nakamura (2021)) to employ proposals with a

cost less than O(N), as it would be for some näıve choices.

3.3. Adaptive lightweight mixture resampling

The mixture resampling in lines 6–7 of Algorithm 2 becomes computationally

impractical for large N , because it requires evaluating the mixture weights for N2

particles (Lindsten et al. (2017); Kuntz, Crucinio and Johansen (2023); Corneflos,

Chopin and Särkkä (2022)). Several strategies have been proposed to alleviate

this cost by constructing only a subset of the N2 combinations in (3.4), including

the multiple matching strategy of Lin et al. (2005), which gives rise to the

lightweight mixture resampling of Lindsten et al. (2017) in this context, strategies

borrowed from the literature on incomplete U-statistics (Kuntz, Crucinio and

Johansen (2023)), and lazy resampling schemes (Corneflos, Chopin and Särkkä

(2022)).

We consider the lightweight version of the mixture resampling proposed in

Lindsten et al. (2017), which considers only a subset θN , with θ ≪ N , of the

N2 possible pairs. However, instead of setting θ to some prespecified value (e.g.,

θ = ⌈
√
N⌉), we propose a simple strategy for selecting θ adaptively based on the

effective sample size (ESS; Kong, Liu and Wong (1994)),
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ESS :=

(∑
n w̃

n
t,u

)2∑
n(w̃

n
t,u)2

, (3.6)

where the sum is over all pairs n = (n1, n2) obtained from (3.4). This is similar

in spirit to the adaptive tempering strategies commonly encountered in the SMC

literature (see, e.g., Jasra et al. (2010); Johansen (2015)), and aims to do just

enough computation to obtain a good N -sample approximation.

The merge step in lines 6–7 of Algorithm 2 is replaced by Algorithm 3: after

building all the N pairs obtained by concatenating the particles associated with

each of the two children, further permutations are added until the ESS achieves

a prespecified value ESS⋆ (e.g., ESS⋆ = N). To avoid θ getting too large, we stop

adding permutations when θ = ⌈
√
N⌉, thereby allowing us to bound the worst-

case computational cost by O(N3/2). We empirically compare several mixture

resampling approaches in Appendix S1.

Algorithm 3 Adaptive lightweight mixture resampling.

1: Correct: compute the mixture weights mt,u(x
n
ℓ(u), x

n
r(u)) as in (3.5) and

w̃t,u(x
n
ℓ(u), x

n
r(u)) for all n ≤ N and the ESS (3.6).

2: Set: θ ← 1 and x̃n
u = (xn

ℓ(u), x
n
r(u)) for n ≤ N .

3: while ESS((x̃n)θNn=1) < ESS⋆ and θ < ⌈
√
N⌉ do

4: Set: θ ← θ + 1.
5: Permute: draw one permutation of N , π(N), set x̃

N(θ−1)+n
u = (xn

ℓ(u), x
π(n)
r(u) ),

compute the mixture weights mt,u(x̃
N(θ−1)+n
u ) in (3.5) and the updated weights

w̃t,u(x̃
N(θ−1)+n
u ) for n ≤ N and update the ESS.

6: end while
7: Resample: draw {znt,u}Nn=1 from x̃1:Nθ

u with weights w̃t,u(x̃
1:Nθ
u ) and set wn

t,u = 1 for
all n ≤ N .

Algorithm 3 can be implemented in a space-efficient manner by storing the

permutations π(N) corresponding to each value of θ, rather than building the

θN pairs x̃1:Nθ
u .

We report in Figure 2 the distribution of the number of permutations θ

selected by Algorithm 3 for the linear Gaussian model in Section 4. We observe

that the highest values of θ are chosen at the level above the leaves (panel 1).

Indeed, the observation yt is incorporated at the leaf level, causing a larger

adjustment to the distribution at the first mixture resampling step than that

needed as we move up the tree. The spike at θ = ⌈
√
N⌉ at level 1 shows that the

target ESS is not always reached, which suggests that the product of the proposal

distributions over the children might be a poor proposal for γt,u. This is likely,

in part, to be because we use a “bootstrap proposal” and can be mitigated in

the same way as in standard PFs by designing (marginal) proposal distributions

that incorporate the influence of observations. It can also be mitigated by using

(adaptive) tempering, as shown in, for example, Jasra et al. (2010), Johansen
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Figure 2. Distribution of the number of permutations θ selected by Algorithm 3 for the
simple linear Gaussian model in Section 4.1 with d = 32, N = 103, and 10 time steps;
the panels correspond to the levels of the tree from the level above the leaves (level 1) to
the root (level 5).

(2015), Wang, Wang and Bouchard-Côté (2020), and Zhou, Johansen and Aston

(2016) for the standard SMC algorithm and Lindsten et al. (2017, Sec. 4.2) for the

DaC-SMC algorithm. However, a näıve implementation of this approach incurs a

substantial computational cost in the marginal context; thus, designing MCMC

kernels that are efficient in this context has been explored in the sequential

MCMC context (e.g., Septier and Peters (2016, Sec. III-B) and in marginal STPFs

(Xu and Jasra (2019))). We give details of a tempering strategy for Algorithm 3

in Appendix S2.

3.4. Computational cost

At a given node, u, the runtime cost of Algorithm 2 with lightweight mixture

resampling, given the particle approximations for its children, is O(h(N, d)θN),

where h(N, d) denotes the cost of obtaining the mixture weights (3.5).

In general, the dependence of h(N, d) on the number of particles N is O(N),

as for MPFs. Similarly to MPFs, we can try to reduce the cost of computing (3.5)

by adapting N -body learning techniques (e.g., Gray and Moore (2000); Lang,

Klaas and de Freitas (2005)), as shown in Klaas, De Freitas and Doucet

(2005). Alternatively, one could consider efficient implementations using GPUs

(Charlier et al. (2021)), as shown in (Clarté, Diez and Feydy (2022, Sec. 4)), for

sums of the form of those in (3.5).

For some models, it might be possible to pick the auxiliary functions ft,u so

that the dependence on the past (i.e., zt−1,R in (3.2)) vanishes, and thus obtain

an O(1) cost w.r.t. N . However, we expect that this type of decomposition will

require larger corrections at the root, where ft,R = ft, which might offset the cost

savings.

In the adaptive case, worst-case costs are given by O(h(N, d)θN), with

θ replaced with the upper bound imposed on the number of permutations
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considered. For instance, for the examples in Section 4, we incur an h(N, d) =

O(N) cost to obtain the mixture weights, and set the upper bound for θ to N1/2,

leading to a cost O(N5/2) w.r.t. the number of particles.

Denoting Cu(d, θu, N) as the cost of running Algorithm 2 at node u, we can

then bound the total cost of serial implementations of Algorithm 2 applied at

the root node R as O(dt supu Cu), where the supremum is taken over all nodes in

T; a lower running cost O(t supu Cu log2 d) can be achieved by parallelizing the

computations over each level of the tree (Lindsten et al. (2017, Sec. 5.3)).

In the adaptive case, this upper bound is far from being tight, because, as

shown in the histogram in Figure 2, θ tends to be high when the observation is

incorporated (level 1), but stabilizes as we move up the tree. Additionally, for

large N , one expects the number of permutations required to obtain a good N -

particle approximation to converge to some fixed integer and, hence, the cost for

sufficiently large N will, with high probability, be of smaller order than these

bounds. Furthermore, the constants multiplying the N5/2 contribution arising

from the level above the leaves are sufficiently small that this is not the dominant

cost in our experiments. This is likely to be typical in high-dimensional settings

in which it is rarely feasible to employ very large numbers of particles, and the

objective is to obtain a good approximation within acceptable time and space

costs.

4. Experiments

We compare the results obtained using the DaC algorithm with those of the

NSMC and STPF algorithms. We do not include the simpler strategies, because

both the standard PF algorithm and the BPF algorithm have been shown to

perform worse than the NSMC and STPF algorithms for the model considered

here (Næsseth, Lindsten and Schön (2015, 2019); Beskos et al. (2017)), nor do we

include the marginal version of the STPF algorithm because of the higher cost

for large d.

The functions gt,u and ft,u in (3.1) are obtained from gt and ft, respectively,

by discarding all the terms in those functions involving components i ̸∈ Vu; further
details are given in Appendix S3. For Algorithm 2, we use the proposals discussed

in Section 3.2 and the lightweight mixture resampling strategies described in

Section 3.3. All resampling steps are performed using stratified resampling

(Kitagawa (1996)).

First, we consider a simple linear Gaussian SSM, and compare the results

obtained by the three algorithms, with the exact filtering distribution given by

the Kalman filter. Then, we consider a spatial model with simple latent dynamics,

but nontrivial spatial correlations between observations, moving away from the

assumption of independent and identically distributed (i.i.d.) observations, which

is convenient from a computational perspective, but rarely satisfied in practice
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(Chib, Omori and Asai (2009)).

All experiments are executed in serial using a single core of an Intel(R)

Xeon(R) CPU E5-2440 0 @ 2.40GHz using R 4.1.0.

4.1. Simple linear Gaussian model

We start by considering a simple linear Gaussian SSM, taken from Næsseth,

Lindsten and Schön (2015), for which the filtering distributions can be com-

puted exactly using the Kalman filter. The model is given by ft(xt−1, xt) =

N (xt;Axt−1,Σ) and gt(xt, yt) = N (yt;xt, σ
2
yIdd), with A ∈ Rd×d, σ2

y > 0,

Σ ∈ Rd×d a tridiagonal covariance matrix, and Idd the d-dimensional identity

matrix (see Appendix S3.1 for full details and the computation of the mixture

weights (3.5)).

We compare the DaC algorithm with both non-adaptive and adaptive

lightweight mixture resampling using a two-level NSMC algorithm with a fully

adapted outer level and an STPF algorithm on data simulated from the model

for d = 25, 28, 211 for t = 100 time steps. We use different numbers of particles

N = 100, 500, 1000 for Algorithm 2 and the outer levels of the NSMC and STPF

algorithms. We fix the number of particles for the inner level of the NSMC

algorithm and the number of particles for each island of the STPF algorithm to

M = 100, as suggested in Næsseth, Lindsten and Schön (2015) and Beskos et al.

(2017).

To evaluate the results, we consider two global measures of accuracy for

each of the d marginals, namely, the Wasserstein-1 distance (see, e.g., Vallender

(1974)), and the Kolmogorov–Smirnov distance

W1,i :=

∫ ∣∣∣Ft,i(x)− F̂t,i(x)
∣∣∣ dx, KSi := max

x

∣∣∣Ft,i(x)− F̂t,i(x)
∣∣∣ ,

where Ft,i denotes the one-dimensional cumulative distribution function of

marginal i at time t, and F̂t,i is its particle approximation. Appendix S4.1

contains further comparisons that show that the mean squared error (MSE) of

the filtering mean behaves similarly.

For lower-dimensional problems (e.g., d = 32), the STPF algorithm achieves

the best results in terms of both the Wasserstein-1 distance and the KS distance

(Figure 3), and the relative MSE of the reconstructions is considerably smaller

(almost one order of magnitude smaller; see Appendix S4.1). The results provided

by the STPF algorithm deteriorate quickly as d grows; for d = 256, the W1 and

KS distance estimates are significantly worse than those provided by the NSMC

algorithm or the DaC algorithm without adaptation.

The cost of the STPF algorithm grows quadratically with d, and becomes

unmanageable for large d; it is therefore not included in the bottom panels of

Figure 3. The cost of the STPF algorithm is also higher for lower dimensions

(Figure 3, top panel), but in this case, provides the best results. The STPF
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Figure 3. Comparison of DaC, NSMC, and STPF for d = 25, 28, 211. Distribution
of the average (over dimension) W1 and KS distance at the last time step t = 100
for 50 runs; the boxes, from left to right, correspond to increasing number of particles
(N = 100, 500, 1000). Owing to their excessive cost, we do not include the results for
STPF with d = 2048 and those of the non-adaptive version of DaC d = 2048, N = 1000.

algorithm has higher variability than the other methods, and even when the

average results are better than those of the DaC and NSMC algorithms (e.g.

d = 32), W1 and KS can take considerably high values.

The results in terms of KS are, in general, more variable, probably because

KS is a measure of the worst case mismatch between Ft,i(x) and F̂t,i(x), whereas

forW1, the mismatch is averaged over locations. For large d, DaC has the smallest

variability among the three algorithms.

DaC with fixed-cost lightweight mixture resampling gives better results, in

general, than those of the adaptive lightweight mixture resampling. However,

the cost of the latter is considerably smaller, making the adaptive version still

manageable for large N , whereas the fixed-cost lightweight mixture resampling

becomes too costly for large N and large d. As discussed in Section 3.4, the

computational cost of both versions of DaC could be reduced using GPUs.

In particular, both W1 and KS decay more quickly with N for DaC without



1108 CRUCINIO AND JOHANSEN

adaptation than they do for DaC with adaptive lightweight mixture resampling.

The decay with N is less evident for NSMC.

4.2. Spatial model

We consider a model on a 2D-lattice in which the latent dynamics are

simple, but the observation structure is challenging. The components of Xt are

indexed by the vertices v ∈ V of a lattice, where V = {1, . . . , d}2, and follow a

simple linear evolution Xt(v) = Xt−1(v) + Ut(v), where Ut(v)
i.i.d.∼ N (0, σ2

x). The

observations model is Yt = Xt + Vt, where we take Vt to be jointly t-distributed

with ν = 10 degrees of freedom, mean zero, and precision structure encapsulating

a spatial component. Let D denote the graph distance. Then, the entry in row

v and column j of the precision matrix Σ−1 is given by (Σ−1)vj = τD(j,v) if

D(j, v) ≤ ry, and zero otherwise. We obtain data from the model above with

σ2
x = 1, τ = −0.25, ry = 1, and t = 10. The observation density does not

factorize, and therefore NSMC and STPF cannot be applied (at least without

approximating g with, e.g., a Gaussian or discarding the covariance information).

To validate the correctness of the algorithm, we compare the DaC results with

those of the standard bootstrap PF in Appendix S4 on a small lattice, and found

the agreement to be excellent.

To decompose the 2D lattice into a binary tree, we use the decomposition

described in Lindsten et al. (2017, Sec. 5.1), which recursively connects the

vertices, first horizontally and then vertically. To evaluate the performance of

the algorithm, we consider the filtering means obtained with 50 repetitions of

the DaC-SMC algorithm on an 8× 8 and a 16× 16 grid for N = 100, 500, 1000,

and 5000. To show how the standard bootstrap particle filter struggles with

higher-dimensional problems, we run a bootstrap PF with N = 105 particles for

the 8 × 8 grid. Figure 4 reports the filtering means for a corner node and an

interior node of the lattice. Both DaC approaches are in agreement, however, the

adaptive version seems to provide slightly less variable results. The behavior for

the different nodes is similar. As observed for the linear Gaussian model, the DaC

algorithm with adaptive lightweight mixture resampling has a lower cost than its

non-adaptive counterpart, and remains feasible for large N (e.g., N = 5000).

Unsurprisingly, the bootstrap PF struggles to recover the filtering means and

provides high variance estimates for node (1, 1), and collapses completely for node

(8, 6), failing to recover the filtering mean.

The box plots in Figure 4 show the variance of the estimator provided by the

DaC algorithm. For small N , the decay in variance seems to be more pronounced

(at least for the adaptive version of the DaC algorithm) than it is for large N .

This is consistent with the expected decay of the standard deviation from the

variance expansions in Kuntz, Crucinio and Johansen (2023), where for small N ,

the higher-order contributions to the variance are not yet negligible. However,
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Figure 4. Filtering mean estimates for a corner node and a node in the middle of the
grid for an 8 × 8 and a 16 × 16 lattice at time t = 10. The box plots from left to right
report the distributions over 50 repetitions for N = 100, 500, 1000, and 5000. The results
for the non-adaptive version of the DaC algorithm are not included for N = 5000, owing
to the excessive cost. The reference lines for the 8 × 8 grid show the average value of
the filtering mean estimate and the interquartile range obtained with 50 repetitions of a
bootstrap PF with N = 105 particles.

we anticipate that a central limit theorem could be obtained by combining the

results of Kuntz, Crucinio and Johansen (2023) with those for marginal PFs.

5. Discussion

We have introduced a novel sequential Monte Carlo algorithm, combining

ideas from marginal PFs and the divide-and-conquer SMC algorithm to extend

the latter to the filtering context. This algorithm is based on a novel space

decomposition for high-dimensional SSMs that allows us to recursively merge

low-dimensional marginals of the filtering distribution. Thus, we obtain the full

filtering distribution, taking into account the mismatch between the product of

marginals and the joint distributions using importance sampling. In principle,

the DaC-SMC approach is amenable to distributed implementation, although its

marginalization technique would necessitate significant communication from the

node that computes the overall filtering distribution at time t − 1 to all nodes

involved in computing at time t. This is left for future work.
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In contrast to the nested SMC and the space-time PFs algorithms, the

DaC-SMC approach to filtering can be applied when the marginals of the joint

density (2.1) are not available analytically. The computational cost of this new

approach grows polynomially with the number of particles N . However, this cost

can be reduced by exploiting GPU routines to reduce the cost of computing the

weights, as discussed in Section 3.4.

The results of the experiments in Section 4.1 show that DaC-SMC performs

comparably with NSMC and STPF, with a runtime that remains competitive,

even for large d (but small N), in contrast to STPFs. In addition, DaC-SMC

can be applied to filtering problems that do not allow for factorization, as shown

in Section 4.2 and Appendix S4. The variance decay shown in Figure 4 and

Figure 2 in Appendix S4.1 suggests that this extended DaC-SMC achieves the

same convergences rates as those of DaC-SMC (Kuntz, Crucinio and Johansen

(2023)) for sufficiently large N . Thus, we anticipate that we can combine these

techniques with those used to analyze the MPF in order to provide formal

convergence results for the method developed here. The adaptive lightweight

mixture resampling discussed in Section 3.3 is a promising route to further reduce

the computational cost of DaC-SMC for filtering. However, as the experiments in

Section 4 and Appendix S1 suggest, selecting the target ESS value that obtains

the best trade-off between computational cost and accuracy is likely to be problem

dependent. This raises interesting theoretical questions, which we leave for future

work.

For challenging problems, it is likely that tempering and MCMC kernels

are required for good performance. As discussed in Johansen (2015) and

Guarniero, Johansen and Lee (2017), the smoothing and filtering distributions

(i.e., p(x1:t|y1:t) and p(xt|y1:t), respectively) have significantly different support in

the presence of informative observations, especially in high-dimensional settings.

Thus, we expect that including the influence of future observations in the

proposals and targets in Section 3.2 (as in the lookahead methods of Lin, Chen

and Liu (2013), Guarniero, Johansen and Lee (2017), and Ruzayqat et al.

(2022), among others) will lead to considerable improvements in the accuracy

of the estimates and the development of good general-purpose filters for high-

dimensional problems.

This work focuses on obtaining approximations of the filtering distribution for

high-dimensional SSMs. Recently, studies have examined obtaining approxima-

tions of the smoothing distribution, which is a necessary component of parameter

estimation algorithms (e.g., Finke and Singh (2017); Guarniero, Johansen and Lee

(2017)). The DaC-SMC approach to filtering can be extended to tackle smoothing

and parameter estimation dealing with the marginalization in (3.1). In principle,

algorithms that directly approximate only marginals of smoothing distributions

can be adapted to these settings (see, e.g., Gerber and Chopin (2017)). We leave

this for future work.
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Supplementary Material

The online Supplementary Material contains details of the tempering

approach, and additional details and results on the experiments. An R package

reproducing the experiments is available at https://github.com/FrancescaCr

ucinio/Dac4filtering.

Acknowledgments

FRC and AMJ acknowledge support from the EPSRC (grant # EP/R034710

/1). AMJ acknowledges further support from the EPSRC (grant # EP/T004134

/1) and the Lloyd’s Register Foundation Programme on Data-Centric Engineering

at the Alan Turing Institute. For the purpose of open access, the author

has applied a Creative Commons Attribution (CC BY) licence to any Author

Accepted Manuscript version arising from this submission. No new data was

created or analysed in this study. Data sharing is not applicable to this article.

References

Akyildiz, D., Crisan, D. and Miguez, J. (2022). Space-sequential particle filters for high-

dimensional dynamical systems described by stochastic differential equations.

arXiv:2204.07680.

Bengtsson, T., Bickel, P. and Li, B. (2008). Curse-of-dimensionality revisited: Collapse of the

particle filter in very large scale systems. In Probability and Statistics: Essays in Honor of

David A. Freedman, 316–334. Institute of Mathematical Statistics.

Beskos, A., Crisan, D., Jasra, A., Kamatani, K. and Zhou, Y. (2017). A stable particle filter for

a class of high-dimensional state-space models. Advances in Applied Probability 49, 24–48.

Carmi, A., Septier, F. and Godsill, S. J. (2012). The Gaussian mixture MCMC particle algorithm

for dynamic cluster tracking. Automatica 48, 2454–2467.

Charlier, B., Feydy, J., Glaunes, J. A., Collin, F.-D. and Durif, G. (2021). Kernel operations on

the GPU, with autodiff, without memory overflows. Journal of Machine Learning Research

22, 1–6.

Chib, S., Omori, Y. and Asai, M. (2009). Multivariate stochastic volatility. In Handbook of

Financial Time Series, 365–400. Springer.

Chopin, N. and Papaspiliopoulos, O. (2020). An Introduction to Sequential Monte Carlo.

Springer.
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