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Abstract: We propose a divide-and-conquer approach to filtering. The proposed
approach decomposes the state variable into low-dimensional components, to which
standard particle filtering tools can be successfully applied, and recursively merges
them to recover the full filtering distribution. This approach is less dependent
on factorizing transition densities and observation likelihoods than are competing
approaches, and can be applied to a broader class of models. We compare the
performance of the proposed approach with that of state-of-the-art methods on a
benchmark problem, and show that the proposed method is broadly comparable in
settings in which the other methods are applicable, and that it can be applied in
settings in which they cannot.
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1. Introduction

Particle filters (PFs), an instance of sequential Monte Carlo (SMC) methods,
are a popular class of algorithms for performing state estimation for state-space
models (SSM), also known as general-state-space hidden Markov models. We con-
sider the class of SSMs with a latent R?-valued process (X;);>; and conditionally
independent RP-valued observations (Y;):>1. Such an SSM (X, Y});>1 is defined
by the transition density f;(x;_1,x;) of the latent process, with the convention
that fi(xg,z1) = fi(x1), and by the observation likelihood g¢;(y:|x;). In this
work, we are interested in approximating the sequence of filtering distributions,
(p(x¢|y14))e>1, that is, at each time ¢, the distribution of the latent state at that
time given the observations obtained by that time.

Basic PF algorithms are known to suffer from the curse of dimensionality,
requiring an exponential increase in computational requirements as the dimension
d grows, limiting their applicability to large systems (Rebeschini and Van Handel
(2015); Bengtsson, Bickel and Li| (2008)). Although the ensemble Kalman filter
(Evensen (2009)) can handle high-dimensional problems, it involves approxima-
tions that do not disappear, even asymptotically and does not perform well if the
model is far from being linear and Gaussian (Lei, Bickel and Snyder] (2010))).

To extend the use of PFs to high-dimensional problems, it is natural to
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exploit the fact that dependencies in high-dimensional SSMs are often local in
space. This enables us to decompose the filtering problem into a collection of
local low-dimensional problems that can somehow be combined; examples of this
strategy are the block PF (BPF; Rebeschini and Van Handel (2015)), space-time
PFs (STPFs; Beskos et al. (2017)), and nested sequential Monte Carlo (NSMC)
methods (Neesseth, Lindsten and Schon, (2015] 2019)).

We propose a divide-and-conquer approach that divides the state space into
smaller subsets, over which we can apply standard particle filtering ideas. These
smaller subsets are then recursively merged in a principled manner to obtain
approximations over the full state space. Our method is an extension of the
divide-and-conquer sequential Monte Carlo (DaC-SMC) algorithm introduced by
Lindsten et al.|(2017) to the filtering context, where we exploit ideas akin those
in Klaas, De Freitas and Doucet| (2005 and |[Lin et al.| (2005) to marginalize out
the past x;.,_; at a given time t.

In order to apply the DaC-SMC algorithm to the filtering problem, we define
a nonstandard sequence of targets, evolving both in space and in time: at a
given time ¢, we define d univariate targets serving as proxies for the marginals
of the filtering distribution, p(z:(i)|y1.¢), for i = 1,...,d. Then, we iteratively
combine these lower-dimensional targets to obtain approximations of the higher-
dimensional marginals (e.g., p(x¢(i : i+ 1)|y1.+)), until we recover the full filtering
distribution, p(x¢|y1..) = p(xi(1 : d)|y1.e)-

Unlike the NSMC and STPF algorithms, this approach does not require
analytic expressions for the marginals of the transition density or observation
likelihood. Instead, it requires only point-wise evaluations of f; and ¢g;, making
it suitable for high-dimensional SSMs in which the observations are correlated
in nontrivial ways (cf., the model in Section 4.2), as is common in practice (see,
e.g., |Chib, Omori and Asai| (2009, Sec. 2)).

We review the basic ideas of particle filtering, its marginal variant, and
the divide-and-conquer SMC algorithm in Section 2. In Section 3, we extend
the ideas underlying the DaC-SMC algorithm to the filtering problem, and we
discuss strategies to improve the computational cost and accuracy. In Section 4,
we compare the performance of the divide-and-conquer approach with that
of the NSMC and STPF algorithms on a simple linear Gaussian SSM, for
which the Kalman filter provides the exact filtering distribution. The results
of our experiments show that the errors from approximating the true filtering
distribution obtained with the divide-and-conquer approach are comparable with
those of the NSMC and STPF algorithms. Then, we consider a spatial model
whose correlation structure in the observation model makes it impossible to apply
the NSMC or STPF algorithm (at least without additional approximations). We
show empirically that the proposed approach can recover stable estimates of the
filtering distribution which, in small dimensional settings, coincide with those
obtained using a bootstrap PF with a large number of particles.
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2. Background
2.1. Particle filtering

Here, we describe the basic SMC approach, often referred to as sequential
importance resampling (Doucet and Johansen| (2011, p.15)); refer to [Liu/ (2001)
and |Chopin and Papaspiliopoulos (2020) for a more extensive treatment.

Given the sequence of unnormalized target densities (7;):>1, with

t

Ye(T1:0) = P(T1:t5 Yi:t) H (Tr—1, 21) g (Yr| 71, (2.1)

defined on (R%)?, PFs proceed iteratively, and, at time ¢ — 1, approximate

Yi—1
f ’Yt71(l‘1:t71)d171:t71

Tp—1 =

using a cloud of particles {z7, ,})_,. The particles are propagated forward in
time using a Markov kernel K;(x;,; 1,-), reweighted using the weight function
wi := ¢ /Yi-1 @ K;, and resampled to obtain a new particle population {7},
approximating ;.

Standard PFs formally target distributions with a dimension that
increases at every time step t. However, we are often interested only in the
final time marginal of the approximated distributions, in this case, the filtering
distribution. An alternative to this approach is given by marginal particle filters
(MPFs; Klaas, De Freitas and Doucet| (2005))), and the closely related ideas of
Lin et al.| (2005). MPF's target the filtering distribution directly:

%(l‘t) = p($t|y1;t) = gt(yt|$t) /ft(lfthﬂ?t)p(l‘t1|y1:t1)dl‘t1- (2~2)

Furthermore, because the integral w.r.t. x;_; is intractable, MPFs replace
p(xi_1|y1.4—1) with its particle approximation obtained at time ¢ — 1. Given the
new sequence of targets, MPFs proceed as standard PFs. However, whenever
we need to compute an integral w.r.t. z; ;, this is approximated using 7} ,,
obtained by normalizing ¥ ,, the particle approximation of p(x;_;|y;.+_1). Basic
MPFs incur an O(N?) cost for each time step, because of the presence of the
integral w.r.t. x;_; in the weight computations, although lower cost strategies
might be employed in some cases (Lin et al.| (2005); see also Klaas et al.| (2006])).

2.2. PFs for high-dimensional problems

We briefly summarize three classes of PFs that use space decompositions to
tackle the filtering problem, which we believe to be the state-of-the-art in Monte
Carlo approximations of high-dimensional filtering distributions.
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The BPF (Rebeschini and Van Handel (2015)) algorithm relies on a decom-
position of the state space R? into lower-dimensional blocks on which, at each t,
one step of a standard PF is run. The approximation of the filtering distribution
over the whole state space is obtained as the product of the lower-dimensional
approximations on each block. BPFs are inherently biased, because of the
decomposition into blocks; however, this bias can be eliminated asymptotically
by allowing the blocks to grow at an appropriate rate with computational effort.

STPFs (Beskos et al.| (2017)) exploit local dependence structures in the
observation y; to gradually introduce the likelihood term by decomposing the
space dimension into smaller subsets, and running /N independent PF's on each of
the subsets (also called islands). These are then combined using an importance
resampling step, which guarantees asymptotically consistent approximations, in
contrast to BPFs. Crucial to the implementation of an STPF algorithm is that
the joint law at time ¢ can be factorized so that the marginal of z.(7),
given the observations and the past, depends only on a neighborhood of x;(i),
{z:(j) + j € A}, for some A C {1,...,d}, for all i = 1,...,d. STPFs
are particularly useful for SSMs which are time discretizations of stochastic
differential equations, because in this case, we can build time discretization
schemes that guarantee analytical forms for the marginals (Akyildiz, Crisan and
Miguez| (2022))). A marginal version of STPFs also exists (Beskos et al.| (2017));
Xu and Jasra) (2019)).

A nested sequential Monte Carlo algorithm (NSMC; Naesseth, Lindsten and
Schon (2015)) treats the problem of recovering the filtering distribution as a
smoothing problem. In this case, the time variable is replaced with the dimension
d, and the method approximates the fully adapted proposal of [Pitt and Shephard
(1999) using an inner SMC iteration, and then uses the result in the outer level,
which corresponds to a standard forward-filtering backward-simulation algorithm.
An NSMC algorithm is particularly well suited for Markov random fields in which
the temporal and the spatial components can be separated, because this makes
the backward simulation straightforward.

2.3. Divide and conquer SMC

The DaC-SMC algorithm (Lindsten et al.| (2017)) is an extension of the stan-
dard SMC algorithm in which a collection of (unnormalized) target distributions
(Vu)uer is indexed by the nodes of a rooted tree, T, and particles evolve from the
leaves to the root, R, rather than along a sequence of distributions indexed by
(algorithmic) time. This method shares many of the convergence properties of
the standard SMC algorithm (Kuntz, Crucinio and Johansen| (2023)).

The target distributions are defined on spaces with dimension that grows as
we progress up the tree: for each u, m, o 7, is a density over R/l where T,
denotes the sub-tree of T rooted at u (obtained by removing all nodes from
T, except for uw and its descendants), and |T,| denotes its cardinality. We
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focus here on the case in which the state space is RY. However, essentially the
same construction allows for more general spaces, including those with discrete
components.

As in a standard SMC algorithm, each distribution +, is approximated by a
particle population {z"}"_,. However, these distributions are merged whenever
the corresponding branches of T merge, rather than evolving “linearly”. For
simplicity, we describe the case in which T is a binary tree, and each non-leaf
node u has two children, namely, a left child ¢(u) and a right child r(u).

If u is a leaf node, the algorithm performs a simple importance sampling
step with the proposal K, and the importance weight w, := ~,/K, to obtain

a weighted particle population {x", w!}_,

approximating +v,. Otherwise, to
obtain such a particle population, we gather the particle populations associated
with each of the children, and compute the (weighted) product form estimator

(Kuntz, Crucinio and Johansen (2022))

1 N N . .
Yo =3z 2o D e (@)W (8700, a2, ) (2.3)

n1:1 712:1

to approximate the product of the marginal distributions e, = Vo) X Vr(u)-
The O(N?) cost of evaluating 74" can be prohibitively large; we discuss lower
cost alternatives in Section 3.3.

We reweight the particle approximation 'yé\i of v¢, to target ~,; the resulting
mizture (importance) weights

Y @e(u) Triw))
Ye(u) (fUz(u) )%«(u) (xr(u))

mu(l'g(u), mr(u)) = (24)
capture the mismatch between v, and 7u) X ¥r), and are incorporated prior
to resampling, similarly to the auxiliary “twisting” function in the auxiliary PF
(see, e.g., |Chopin and Papaspiliopoulos| (2020, Chap. 10)). This leads to weights
of the form

W (Tpu)s Tr(w)) = Wew) (Toeu)) Wrw) (Tr)) M (Tequ)> Trca))- (2.5)

Resampling N times from @,7 , using any unbiased resampling scheme (cf.,
Gerber, Chopin and Whiteley| (2019))), we obtain an equally weighted particle
population {z", w” = 1}_, approximating v,. If necessary, we can then apply a
m-invariant Markov kernel K, to rejuvenate the particles. This is summarized in
Algorithm 1, which is applied to the root node to carry out the sampling process.

The DaC approach in Algorithm 1 is a special case of that considered in
Lindsten et al.| (2017) and Kuntz, Crucinio and Johansen (2023), in which the
target at each non-leaf node is defined on the product of the spaces on which
each of its child targets are defined. DaC-SMC is particularly amenable to a
distributed implementation (Lindsten et al. (2017, Sec. 5.3)).
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Algorithm 1 dac_smc(u) for  in T.

1: if w is a leaf then
2:  Initialize: draw z]! ~ K, and compute w;} =, /K, for all n < N.
3: else

4:  Recurse: set ({2, w

in .

n1N

n3) = dacsme(v) for v in {€(u),r(u)} and obtain 7§

5. Merge: compute 1?1&"1’"2) in for all ny,ny < N.
6:  Resample: draw {Z"}_, using weights @) and set wl =1 for alln < N.
7. (Optionally): draw =it ~ K, (Z7%,-) for all n < N.
(Otherwise): set ' = " for all n < N.
8: end if

Figure 1. Space decomposition for d = 8.

3. Divide and Conquer within Marginal SMC for Filtering

To apply the DaC-SMC algorithm to the filtering problem, we need to identify
a suitable collection (4, )uer indexed by the nodes of the tree T, for each time .
Graphically, this corresponds to a path graph (corresponding to time), in which
each node has associated with it a copy of the tree T (corresponding to space).
In this case, Algorithm 1 takes as input, at the leaves, a particle population
approximating the filtering distribution at time ¢ — 1, and outputs, at the root,
a particle population approximating the filtering distribution at time ¢.

At a given time ¢, to build the collection (J;.)uer, We consider spatial
decompositions of z; into low-dimensional (often univariate) elements. Here,
we consider a simple decomposition obtained by identifying the d components
(x¢(1),...,2(d)) using the leaves of a tree T. As we move up the tree, the
components are merged pairwise until z, = z,(1 : d) is recovered at the root node
M. For simplicity, we assume that d = 2P, for some D € N, such that T is a
perfect binary tree; essentially the same construction applies to general d.

We denote the set of components associated with node u by V,, and its
cardinality increases from the leaves to the root: at the level of the leaves, |V, | =
1, whereas |Vix| = d. Figure 1 shows the space decomposition for d = 8.



DIVIDE-AND-CONQUER PARTICLE FILTERING 1099

Because the filtering problem has an inherent (temporal) sequential structure,
the collection (3;.)uer at time ¢ is most easily specified in terms of the filtering
distribution at time ¢ — 1, ¥_y n, as shown in . Similarly to MPFs, we
deal with this dependence by approximately marginalizing out the previous time
step using the existing sample approximation. We introduce auxiliary functions
fiw : REX RVl — R and g, : RVl x RVl — R for t > 1 and u € T, such
that fim = fi,9e: = i, and for v € T\ R, f,, and g¢,, serve as proxies for
the marginals of the transition density and observation likelihood, respectively.
These auxiliary functions are used to define our collection of target densities
ﬁt,u)ty,ue?r over RVel:

:?t,u(zt,u) - gt,u(zt,uv {yt(i)}ievu) / ft,u(xtfly Zt,u):?tfl,iﬁ(xtfl)dxtfla (31)

where z;, = (24(7));ey, are the components of x; associated with node u, and
x¢—1 denotes the previous state of the system. The requirement that g, : = g
and f; x = f; ensures that, at the root, we obtain the distribution in . The
integral w.r.t. ;-1 x in cannot be computed analytically. Hence, as in
MPFs, we use a sample approximation of this integral, described in the next
section.

If the marginals of f; and g, are available, one could use them to define g, ,
and f;,. However, this is not essential, because these intermediate distributions
can be essentially arbitrary up to the absolute continuity required to justify the
importance sampling steps, although, of course, the variance of the estimator
is influenced by this choice. Specifying these distributions is closely related to
choosing the sequence of artificial targets in a standard SMC sampler when one is
interested only in the final target distribution (see Del Moral, Doucet and Jasra
(2006), who note that optimizing this sequence is a very difficult problem). See
Kuntz, Crucinio and Johansen| (2023, Sec. 4.2) for a theoretical perspective in a
divide-and-conquer context. Their results suggest that the optimal choice of the
intermediate target distribution is the appropriate marginal of the root target;
hence we suggest using the marginals of f; and g;, where these are available. In
practice, when doing this exactly is not feasible, we should approximate these
distributions using tractable approximations with comparable tail behavior in
order to keep all importance weights well controlled. If there is a substantial
mismatch between the children of a node and itself, then choosing a parametric
path between the two, adaptively specifying a tempering sequence along that
path and using SMC techniques to approximate each distribution in turn, may
mitigate some difficulties (See Appendix S2).

Although we believe that the best choice of f;, and g;, will depend on the
model, in some cases, certain choices are preferable. As an example, take f;
to be a Gaussian distribution with mean p and covariance . Then, a possible
choice for +v;, is a Gaussian distribution with mean p, equal to the restriction
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of i to the components corresponding to node u, and covariance >, obtained by
subsetting >, and discarding all components not in w. In this context, we find
that setting 3, = X(V,) ™', that is, selecting the components of 3 corresponding
to node u and then inverting this matrix, instead of ¥, = X7*(V,) incurs a
lower computational cost and leads to more diffuse distributions, and thus better
behaved mixture weights ({3.5]).

3.1. The algorithm

For each time ¢, having identified the space decomposition over T and the
collection of distributions (9t )uer, We can apply Algorithm 1 to the root R of
T. However, because the integral in (3.1]) is not analytically tractable, we replace

Yi—1.m with an approximation provided by the particle population at the root of

N

n_1, that is, its particle approximation

the tree corresponding to ¢ — 1, {2} | »}
obtained at the previous time step, as is normally done in MPF's, and define

. 1<
Ve (Ztu) = G2t {yt(z)}ievu)ﬁ Z ft,u(Z?_Lma Ztu)- (3.2)
n=1

Given {z]" | 3 })_;, at each leaf node of the tree, we sample one component
of z; per node from N~' 3 Ki.u(27 1 ;). Then, the importance weights are
given by

w (Z T ) . gt,u<zt,u7 {yt(i>}ievu) 22;1 ft,u<2?717m, Zt,u)
t,ulZt, 1it—1,u) = .
' " ' ij:l Kt,u('z?ﬁl’ma Zt,u)

As in the MPF, if we choose K, = fi 4, (3.3) simplifies dramatically to w; (2t .4,
T1t-1u) = Gt.u(Zews {1 (7) }icy, ), considerably reducing the cost of evaluating the
weights at the leaves.

(3.3)

For any non-leaf node u, we gather the particle populations {z{fé(u)}le and
{Z;T(u)}le on its left and right child, respectively, and obtain an approximation
of the product measure v ¢, = V¢ .0(u) X Vt,r(u) Using the weighted product form
estimator ([2.3)

N N
Ve, = N7 Z Z W) (214 Wer ) (P ) )O3 202 ) (3-4)
7L1:1 n2:1

or one of the lower cost alternatives discussed in Section 3.3.
As in the DaC-SMC setting, we reweight the particle approximation of v, ¢,
to target 7;.. In this case, the mixture weights are given by

Ve u(th )
Miy(2te,) =————% 3.5
tulane.) Yec, (2tc,) (3:5)
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_ gt,u(zt,cu, {yt(i)}ievu)
ey (Zeequys {Y1(8) Yievoew )9ty (Zer(u)s 10:(8) Yiev, )
Nt 25:1 ft,u(z?—l,m7 zZic,)
N Feay (gt 20 N7V 00 Fraru (0y 00 2t

X

where we define z,¢, := (240u)s 2t,r(u)) @s the vector obtained by merging the
components of the left and right children of u.
For each pair in , we obtain the incremental mixture weights miﬁj’m) =
M, (21 > Zp () I (3-5), and the updated weights
B = (s 21k w) = (b)) W) (27 e (2 by 21k )
for ny,ny = 1,..., N. To avoid unbounded growth in the number of particles, we
then use the weights 0, , to resample a population of N particles approximating
Yeyus {20, Wew = 1})_,. However, we could also allow the number of particles
retained to grow as the simulation approaches the root of the tree to accommodate
the growing dimension of the space. Algorithm 2 summarizes the procedure
described above with the natural modification at ¢ = 1, where it is not necessary
to “marginalize” over previous states, and simple importance sampling can be
used at the leaf nodes. In contrast to Algorithm 1, we do not include an additional
MCMC step in this statement of the algorithm, but one can easily be added, as
discussed in Section 3.2. In this case, given a m ,-invariant kernel ., with
Tt X Ve, line 8 should be replaced by: draw 27, ~ Q. (Z}",, ) for all n < N.

Algorithm 2 dac_smc(t) for ¢t > 1. Given ({zf_lm}fl\’:l) = dac_smc(t — 1).

1: for u leaf node do
2. Initialize: draw 27, ~ N1 ZnN:1 Kt,u(Ztn,qu, -) and compute wy’,, as in (3.3 for

all n < N.

3: end for

4: for uw non-leaf node do

51 Recurse: set ({2, w},}}_,) := dac_smc(t, v) for v in {¢(u),r(u)} and obtain %’
in .

6:  Merge: compute the mixture weights mgﬁj’"?) in and wgfjj’"z) for all nq,ne <
N.

7. Resample: draw {Z}",})_, using weights d}ﬁﬁf’m) and set w?’ =1 for all n < N.

8:  Update: set 27, =z, for alln < N.

9: end for

10: Output ({zfm}ﬁ[:l ).

The mixture resampling strategy described above requires evaluating the
mixture weights for each of the N? pairs in (3.4). The O(N?) cost of this
operation is often prohibitive for large IV; we describe alternatives with smaller
costs in Section 3.3, and demonstrate that these approaches perform well in
Section 4.
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3.2. Choice of proposals

Algorithm 2 describes a general strategy for filtering using the DaC-SMC
algorithm; as in the case of the standard SMC algorithm, the performance of the
algorithm is heavily influenced by the choice of the proposals at the leaf nodes.
Here, we discuss a simple strategy to select K, ,.

We assume that we can sample from f,, in (3.1)), and set K, (2" | »,") =
fw(zf_l’m, -) so that the importance weights reduce to w;, = g¢,. This
choice corresponds to the proposal used in the bootstrap PF of |Gordon, Salmond|
and Smith| (1993). However, (locally) optimal proposals also exist (see, e.g.,
\Chopin and Papaspiliopoulos| (2020, Chap. 10)), and are expected to lead to
better performance, but incur a higher computational cost.

Although picking K. (2 | %) = fru(2 1 ,,) causes standard marginal
PFs to reduce to the bootstrap PF (as described in [Klaas, De Freitas and Doucet,
, Sec. 3.3)), this is not true for our marginal DaC-SMC, because the integral
w.r.t. 2,1, still appears in the mixture weights .

If needed, to avoid particle impoverishment, one might consider applying a

Markov kernel @, , that leaves m;, o 7, invariant after the resampling step in
line 7 of Algorithm 2. These 7, ,-invariant kernels can be selected based on the
vast literature on sequential MCMC methods (e.g., |Gilks and Berzuini (2001);
Septier et al.|(2009); Carmi, Septier and Godsill (2012); |Septier and Peters| (2016);
Pal and Coates| (2018); [Han and Nakamural (2021))) to employ proposals with a
cost less than O(N), as it would be for some naive choices.

3.3. Adaptive lightweight mixture resampling

The mixture resampling in lines 67 of Algorithm 2 becomes computationally
impractical for large IV, because it requires evaluating the mixture weights for N2
particles (Lindsten et al.| (2017)); Kuntz, Crucinio and Johansen| (2023);|Corneflos|
\Chopin and Sérkké| (2022))). Several strategies have been proposed to alleviate
this cost by constructing only a subset of the N? combinations in , including
the multiple matching strategy of Lin et al. (2005]), which gives rise to the
lightweight mixture resampling of Lindsten et al.| (2017) in this context, strategies
borrowed from the literature on incomplete U-statistics (Kuntz, Crucinio and|
Johansen| (2023)), and lazy resampling schemes (Corneflos, Chopin and Séarkké|
f02).

We consider the lightweight version of the mixture resampling proposed in
Lindsten et al| (2017)), which considers only a subset §N, with § < N, of the
N? possible pairs. However, instead of setting 6 to some prespecified value (e.g.,
6 = [\/N), we propose a simple strategy for selecting # adaptively based on the
effective sample size (ESS; Kong, Liu and Wong (1994)),
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(5, 71)
> (@p,)?’
where the sum is over all pairs n = (nq,n2) obtained from . This is similar
in spirit to the adaptive tempering strategies commonly encountered in the SMC
literature (see, e.g., |Jasra et al. (2010); Johansen| (2015)), and aims to do just
enough computation to obtain a good N-sample approximation.

The merge step in lines 6-7 of Algorithm 2 is replaced by Algorithm 3: after
building all the N pairs obtained by concatenating the particles associated with
each of the two children, further permutations are added until the ESS achieves
a prespecified value ESS* (e.g., ESS* = N). To avoid 6 getting too large, we stop
adding permutations when 6 = (\/ﬁ |, thereby allowing us to bound the worst-
case computational cost by O(N®/2). We empirically compare several mixture
resampling approaches in Appendix S1.

ESS := (3.6)

Algorithm 3 Adaptive lightweight mixture resampling.

1. Correct: ~ compute the mixture weights myu(2y,), 27 ,)) as in (3.5) and
Wi, (T, Ty (,,y) for all n < N and the ESS (3.6).

2: Set: 6 < 1 and z! = (x?(u),x:}(u)) for n < N.

3: while ESS((7")%Y,) < ESS* and 6 < [V/N] do

4:  Set: 0+ 0+ 1.

5. Permute: draw one permutation of N, w(N), set FNO=D+n (m?(u),x:((:))),

compute the mixture weights mt,u(i"uN(e_lH") in (3.5) and the updated weights
Wy (@0 O™ for n < N and update the ESS.
6: end while
7. Resample: draw {2}, })_, from Z. VY with weights ;. (2 "?
alln < N.

) and set wy', = 1 for

Algorithm 3 can be implemented in a space-efficient manner by storing the
permutations 7(NN) corresponding to each value of #, rather than building the
ON pairs T1NVY.

We report in Figure 2 the distribution of the number of permutations 6
selected by Algorithm 3 for the linear Gaussian model in Section 4. We observe
that the highest values of 6 are chosen at the level above the leaves (panel 1).
Indeed, the observation y; is incorporated at the leaf level, causing a larger
adjustment to the distribution at the first mixture resampling step than that
needed as we move up the tree. The spike at § = [v/N| at level 1 shows that the
target ESS is not always reached, which suggests that the product of the proposal
distributions over the children might be a poor proposal for 7, ,. This is likely,
in part, to be because we use a “bootstrap proposal” and can be mitigated in
the same way as in standard PFs by designing (marginal) proposal distributions
that incorporate the influence of observations. It can also be mitigated by using
(adaptive) tempering, as shown in, for example, |Jasra et al.| (2010)), |Johansen
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Figure 2. Distribution of the number of permutations 6 selected by Algorithm 3 for the
simple linear Gaussian model in Section 4.1 with d = 32, N = 103, and 10 time steps;
the panels correspond to the levels of the tree from the level above the leaves (level 1) to
the root (level 5).

(2015), [Wang, Wang and Bouchard-Coté (2020), and Zhou, Johansen and Aston|
(2016) for the standard SMC algorithm and Lindsten et al.| (2017, Sec. 4.2) for the
DaC-SMC algorithm. However, a naive implementation of this approach incurs a

substantial computational cost in the marginal context; thus, designing MCMC
kernels that are efficient in this context has been explored in the sequential
MCMC context (e.g., Septier and Peters| (2016}, Sec. III-B) and in marginal STPFs
(Xu and Jasra| (2019))). We give details of a tempering strategy for Algorithm 3
in Appendix S2.

3.4. Computational cost

At a given node, u, the runtime cost of Algorithm 2 with lightweight mixture
resampling, given the particle approximations for its children, is O(h(N,d)0N),
where h(N,d) denotes the cost of obtaining the mixture weights (3.5)).

In general, the dependence of h(N,d) on the number of particles N is O(N),
as for MPFs. Similarly to MPFs, we can try to reduce the cost of computing
by adapting N-body learning techniques (e.g., Gray and Moore (2000); Lang,
Klaas and de Freitas (2005))), as shown in Klaas, De Freitas and Doucet|
(2005). Alternatively, one could consider efficient implementations using GPUs
(Charlier et al.| (2021))), as shown in (Clarté, Diez and Feydy (2022} Sec. 4)), for
sums of the form of those in .

For some models, it might be possible to pick the auxiliary functions f; ., so
that the dependence on the past (i.e., z;_1 0 in ) vanishes, and thus obtain
an O(1) cost w.r.t. N. However, we expect that this type of decomposition will
require larger corrections at the root, where f; x = f, which might offset the cost

savings.
In the adaptive case, worst-case costs are given by O(h(N,d)0N), with
0 replaced with the upper bound imposed on the number of permutations
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considered. For instance, for the examples in Section 4, we incur an h(N,d) =
O(N) cost to obtain the mixture weights, and set the upper bound for 6 to N/2,
leading to a cost O(N°/?) w.r.t. the number of particles.

Denoting C,(d, 8,, N) as the cost of running Algorithm 2 at node u, we can
then bound the total cost of serial implementations of Algorithm 2 applied at
the root node R as O(dtsup, C,), where the supremum is taken over all nodes in
T; a lower running cost O(tsup, C, log, d) can be achieved by parallelizing the
computations over each level of the tree (Lindsten et al.| (2017, Sec. 5.3)).

In the adaptive case, this upper bound is far from being tight, because, as
shown in the histogram in Figure 2, 6 tends to be high when the observation is
incorporated (level 1), but stabilizes as we move up the tree. Additionally, for
large N, one expects the number of permutations required to obtain a good -
particle approximation to converge to some fixed integer and, hence, the cost for
sufficiently large N will, with high probability, be of smaller order than these
bounds. Furthermore, the constants multiplying the N®/2? contribution arising
from the level above the leaves are sufficiently small that this is not the dominant
cost in our experiments. This is likely to be typical in high-dimensional settings
in which it is rarely feasible to employ very large numbers of particles, and the
objective is to obtain a good approximation within acceptable time and space
costs.

4. Experiments

We compare the results obtained using the DaC algorithm with those of the
NSMC and STPF algorithms. We do not include the simpler strategies, because
both the standard PF algorithm and the BPF algorithm have been shown to
perform worse than the NSMC and STPF algorithms for the model considered
here (Naesseth, Lindsten and Schon, (2015][2019); Beskos et al.| (2017)), nor do we
include the marginal version of the STPF algorithm because of the higher cost
for large d.

The functions ¢, and f;, in are obtained from g; and f;, respectively,
by discarding all the terms in those functions involving components i € V, ; further
details are given in Appendix S3. For Algorithm 2, we use the proposals discussed
in Section 3.2 and the lightweight mixture resampling strategies described in
Section 3.3. All resampling steps are performed using stratified resampling
(Kitagawa) (1996)).

First, we consider a simple linear Gaussian SSM, and compare the results
obtained by the three algorithms, with the exact filtering distribution given by
the Kalman filter. Then, we consider a spatial model with simple latent dynamics,
but nontrivial spatial correlations between observations, moving away from the
assumption of independent and identically distributed (i.i.d.) observations, which
is convenient from a computational perspective, but rarely satisfied in practice
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(Chib, Omori and Asail (2009)).
All experiments are executed in serial using a single core of an Intel(R)
Xeon(R) CPU E5-2440 0 @ 2.40GHz using R 4.1.0.

4.1. Simple linear Gaussian model

We start by considering a simple linear Gaussian SSM, taken from |[Naesseth,
Lindsten and Schon| (2015), for which the filtering distributions can be com-
puted exactly using the Kalman filter. The model is given by fi(x;_1,2;) =
N(zy; A1, X)) and ge(24, 1) = N(ys20,0.1dg), with A € R, o2 > 0,
¥ € R¥? a tridiagonal covariance matrix, and Id; the d-dimensional identity
matrix (see Appendix S3.1 for full details and the computation of the mixture
weights (3.5))).

We compare the DaC algorithm with both non-adaptive and adaptive
lightweight mixture resampling using a two-level NSMC algorithm with a fully
adapted outer level and an STPF algorithm on data simulated from the model
for d = 2°,28, 21 for t = 100 time steps. We use different numbers of particles
N =100, 500, 1000 for Algorithm 2 and the outer levels of the NSMC and STPF
algorithms. We fix the number of particles for the inner level of the NSMC
algorithm and the number of particles for each island of the STPF algorithm to
M =100, as suggested in Naesseth, Lindsten and Schon| (2015)) and Beskos et al.
(2017).

To evaluate the results, we consider two global measures of accuracy for
each of the d marginals, namely, the Wasserstein-1 distance (see, e.g., [Vallender
(1974)), and the Kolmogorov—Smirnov distance

Wu = /

where F,; denotes the one-dimensional cumulative distribution function of

Fm-(:L‘) — F\t’i(l') dl’, KSZ = Imax Ft,i(x) — ﬁt’i(aj) s

marginal ¢ at time ¢, and ﬁm is its particle approximation. Appendix S4.1
contains further comparisons that show that the mean squared error (MSE) of
the filtering mean behaves similarly.

For lower-dimensional problems (e.g., d = 32), the STPF algorithm achieves
the best results in terms of both the Wasserstein-1 distance and the KS distance
(Figure 3), and the relative MSE of the reconstructions is considerably smaller
(almost one order of magnitude smaller; see Appendix S4.1). The results provided
by the STPF algorithm deteriorate quickly as d grows; for d = 256, the W; and
KS distance estimates are significantly worse than those provided by the NSMC
algorithm or the DaC algorithm without adaptation.

The cost of the STPF algorithm grows quadratically with d, and becomes
unmanageable for large d; it is therefore not included in the bottom panels of
Figure 3. The cost of the STPF algorithm is also higher for lower dimensions
(Figure 3, top panel), but in this case, provides the best results. The STPF
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Figure 3. Comparison of DaC, NSMC, and STPF for d = 2°,2% 2'!. Distribution
of the average (over dimension) W; and KS distance at the last time step ¢ = 100
for 50 runs; the boxes, from left to right, correspond to increasing number of particles
(N = 100, 500,1000). Owing to their excessive cost, we do not include the results for
STPF with d = 2048 and those of the non-adaptive version of DaC d = 2048, N = 1000.

algorithm has higher variability than the other methods, and even when the
average results are better than those of the DaC and NSMC algorithms (e.g.
d = 32), W; and KS can take considerably high values.

The results in terms of KS are, in general, more variable, probably because
KS is a measure of the worst case mismatch between F,;(z) and F, ;(z), whereas
for W7, the mismatch is averaged over locations. For large d, DaC has the smallest
variability among the three algorithms.

DaC with fixed-cost lightweight mixture resampling gives better results, in
general, than those of the adaptive lightweight mixture resampling. However,
the cost of the latter is considerably smaller, making the adaptive version still
manageable for large N, whereas the fixed-cost lightweight mixture resampling
becomes too costly for large N and large d. As discussed in Section 3.4, the
computational cost of both versions of DaC could be reduced using GPUs.
In particular, both W; and KS decay more quickly with N for DaC without
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adaptation than they do for DaC with adaptive lightweight mixture resampling.
The decay with IV is less evident for NSMC.

4.2. Spatial model

We consider a model on a 2D-lattice in which the latent dynamics are
simple, but the observation structure is challenging. The components of X; are
indexed by the vertices v € V of a lattice, where V = {1,...,d}?, and follow a
simple linear evolution X;(v) = X;_;(v) + U, (v), where U, (v) "= A/(0,02). The
observations model is Y; = X; + V;, where we take V; to be jointly ¢-distributed
with v = 10 degrees of freedom, mean zero, and precision structure encapsulating
a spatial component. Let D denote the graph distance. Then, the entry in row
v and column j of the precision matrix 7! is given by (£71!),; = 7P0) if
D(j,v) < ry, and zero otherwise. We obtain data from the model above with
o2 =1, 7= -0.25 7, = 1, and t = 10. The observation density does not
factorize, and therefore NSMC and STPF cannot be applied (at least without
approximating g with, e.g., a Gaussian or discarding the covariance information).
To validate the correctness of the algorithm, we compare the DaC results with
those of the standard bootstrap PF in Appendix S4 on a small lattice, and found
the agreement to be excellent.

To decompose the 2D lattice into a binary tree, we use the decomposition
described in |Lindsten et al| (2017, Sec. 5.1), which recursively connects the
vertices, first horizontally and then vertically. To evaluate the performance of
the algorithm, we consider the filtering means obtained with 50 repetitions of
the DaC-SMC algorithm on an 8 x 8 and a 16 x 16 grid for N = 100, 500, 1000,
and 5000. To show how the standard bootstrap particle filter struggles with
higher-dimensional problems, we run a bootstrap PF with N = 10° particles for
the 8 x 8 grid. Figure 4 reports the filtering means for a corner node and an
interior node of the lattice. Both DaC approaches are in agreement, however, the
adaptive version seems to provide slightly less variable results. The behavior for
the different nodes is similar. As observed for the linear Gaussian model, the DaC
algorithm with adaptive lightweight mixture resampling has a lower cost than its
non-adaptive counterpart, and remains feasible for large N (e.g., N = 5000).

Unsurprisingly, the bootstrap PF struggles to recover the filtering means and
provides high variance estimates for node (1, 1), and collapses completely for node
(8,6), failing to recover the filtering mean.

The box plots in Figure 4 show the variance of the estimator provided by the
DaC algorithm. For small N, the decay in variance seems to be more pronounced
(at least for the adaptive version of the DaC algorithm) than it is for large N.
This is consistent with the expected decay of the standard deviation from the
variance expansions in [Kuntz, Crucinio and Johansen (2023), where for small N,
the higher-order contributions to the variance are not yet negligible. However,
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Figure 4. Filtering mean estimates for a corner node and a node in the middle of the
grid for an 8 x 8 and a 16 x 16 lattice at time ¢ = 10. The box plots from left to right
report the distributions over 50 repetitions for N = 100, 500, 1000, and 5000. The results
for the non-adaptive version of the DaC algorithm are not included for N = 5000, owing
to the excessive cost. The reference lines for the 8 x 8 grid show the average value of
the filtering mean estimate and the interquartile range obtained with 50 repetitions of a
bootstrap PF with N = 10° particles.

we anticipate that a central limit theorem could be obtained by combining the
results of Kuntz, Crucinio and Johansen| (2023) with those for marginal PFs.

5. Discussion

We have introduced a novel sequential Monte Carlo algorithm, combining
ideas from marginal PFs and the divide-and-conquer SMC algorithm to extend
the latter to the filtering context. This algorithm is based on a novel space
decomposition for high-dimensional SSMs that allows us to recursively merge
low-dimensional marginals of the filtering distribution. Thus, we obtain the full
filtering distribution, taking into account the mismatch between the product of
marginals and the joint distributions using importance sampling. In principle,
the DaC-SMC approach is amenable to distributed implementation, although its
marginalization technique would necessitate significant communication from the
node that computes the overall filtering distribution at time ¢ — 1 to all nodes
involved in computing at time ¢. This is left for future work.
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In contrast to the nested SMC and the space-time PFs algorithms, the
DaC-SMC approach to filtering can be applied when the marginals of the joint
density are not available analytically. The computational cost of this new
approach grows polynomially with the number of particles N. However, this cost
can be reduced by exploiting GPU routines to reduce the cost of computing the
weights, as discussed in Section 3.4.

The results of the experiments in Section 4.1 show that DaC-SMC performs
comparably with NSMC and STPF, with a runtime that remains competitive,
even for large d (but small N), in contrast to STPFs. In addition, DaC-SMC
can be applied to filtering problems that do not allow for factorization, as shown
in Section 4.2 and Appendix S4. The variance decay shown in Figure 4 and
Figure 2 in Appendix S4.1 suggests that this extended DaC-SMC achieves the
same convergences rates as those of DaC-SMC (Kuntz, Crucinio and Johansen
(2023)) for sufficiently large N. Thus, we anticipate that we can combine these
techniques with those used to analyze the MPF in order to provide formal
convergence results for the method developed here. The adaptive lightweight
mixture resampling discussed in Section 3.3 is a promising route to further reduce
the computational cost of DaC-SMC for filtering. However, as the experiments in
Section 4 and Appendix S1 suggest, selecting the target ESS value that obtains
the best trade-off between computational cost and accuracy is likely to be problem
dependent. This raises interesting theoretical questions, which we leave for future
work.

For challenging problems, it is likely that tempering and MCMC kernels
are required for good performance. As discussed in Johansen (2015) and
Guarniero, Johansen and Lee (2017)), the smoothing and filtering distributions
(i.e., p(z1.4]y1.¢) and p(a4|ys.t), respectively) have significantly different support in
the presence of informative observations, especially in high-dimensional settings.
Thus, we expect that including the influence of future observations in the
proposals and targets in Section 3.2 (as in the lookahead methods of [Lin, Chen
and Liu| (2013), |Guarniero, Johansen and Lee (2017)), and Ruzayqat et al.
(2022)), among others) will lead to considerable improvements in the accuracy
of the estimates and the development of good general-purpose filters for high-
dimensional problems.

This work focuses on obtaining approximations of the filtering distribution for
high-dimensional SSMs. Recently, studies have examined obtaining approxima-
tions of the smoothing distribution, which is a necessary component of parameter
estimation algorithms (e.g., Finke and Singh| (2017)); Guarniero, Johansen and Lee
(2017))). The DaC-SMC approach to filtering can be extended to tackle smoothing
and parameter estimation dealing with the marginalization in . In principle,
algorithms that directly approximate only marginals of smoothing distributions
can be adapted to these settings (see, e.g., Gerber and Chopin| (2017)). We leave
this for future work.
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Supplementary Material

The online Supplementary Material contains details of the tempering
approach, and additional details and results on the experiments. An R package
reproducing the experiments is available at https://github.com/FrancescaCr
ucinio/Dac4filtering,.
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