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Abstract: We examine distributed estimation and support recovery for ultrahigh-

dimensional linear regression models under a potentially arbitrary noise distribu-

tion. The composite quantile regression is an efficient alternative to the least squares

method, and provides robustness against heavy-tailed noise while maintaining rea-

sonable efficiency in the case of light-tailed noise. The highly nonsmooth nature of

the composite quantile regression loss poses challenges to both the theoretical and

the computational development in an ultrahigh-dimensional distributed estimation

setting. Thus, we cast the composite quantile regression into the least squares

framework, and propose a distributed algorithm based on an approximate Newton

method. This algorithm is efficient in terms of both computation and communi-

cation, and requires only gradient information to be communicated between the

machines. We show that the resultant distributed estimator attains a near-oracle

rate after a constant number of communications, and provide theoretical guarantees

for its estimation and support recovery accuracy. Extensive experiments demon-

strate the competitive empirical performance of our algorithm.

Key words and phrases: Composite quantile regression, distributed estimation, ef-

ficiency, heavy-tailed noise, support recovery.

1. Introduction

A fundamental task in statistics is to estimate the coefficients of a linear

model. The least squares (LS) regression is routinely used for this task, and has

well-established theory (Monahan (2008)). However, in the era of big data, rapid

advances in information technology have raised several new challenges. The first

lies in the sizes of the data sets, often measured in TBs or even PBs, making them

difficult to process on a single machine. Traditional in-memory algorithms are

losing power because of communication, storage, and computation restrictions

(Lan, Lee and Zhou (2020)). Thus, we need distributed algorithms with theoret-

ical guarantees. The second challenge arises from the potentially arbitrary noise.
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Under very heavy-tailed noise, where the finite variance condition is violated,

the LS and Huber regressions are sub-optimal (Fan, Fan and Barut (2014); Zhou

et al. (2018); Sun, Zhou and Fan (2020)). In such cases, the quantile regression

(QR, Koenker (2005)) becomes an attractive alternative, because its asymptotic

variance does not depend on the moments of the noise distribution. However, in

terms of efficiency, a QR can be arbitrarily less efficient than an LS. For exam-

ple, under the mixture normal noise 0.5N (−3, 1) + 0.5N (3, 1), the least absolute

deviation estimate is 1,272.8 times less efficient than the LS estimate (Gu and

Zou (2020)). To shield the QR against potential efficiency loss, while maintaining

its robust property, Zou and Yuan (2008) proposed a composite quantile regres-

sion (CQR) that combines quantile information across various quantile levels.

The third challenge lies in the ultrahigh dimensionality of modern data. Here, a

sparsity assumption is often adopted (Zhao and Yu (2006); Wainwright (2009);

Hastie, Tibshirani and Wainwright (2015)). Despite the massive amount of lit-

erature on sparse LS under ultrahigh dimensions, few works have examined the

ultrahigh-dimensional CQR; see Gu and Zou (2020). In a distributed setting,

numerous studies focus on statistical estimation (Lee et al. (2017); Battey et al.

(2018); Jordan, Lee and Yang (2019)). However, the support recovery for the

CQR in a distributed setting remains largely unexplored.

We propose a new estimation procedure for an ultrahigh-dimensional CQR in

the distributed setting, with theoretical guarantees on its estimation and support

recovery accuracy. Specifically, we consider coefficient estimation and support

recovery of the following model:

Y = β0 +

p∑
j=1

Xjβj + ε, (1.1)

where x = (X1, . . . , Xp)
T is a p-dimensional covariate vector with mean zero, and

ε is the noise. We assume ε is independent of x and has a density with respect

to the Lebesgue measure (see, e.g., Zou and Yuan (2008); Fan, Fan and Barut

(2014); Gu and Zou (2020)). Suppose β∗0 and β∗ = (β∗1 , . . . , β
∗
p)T are the true

coefficients that generate the N independent and identically distributed (i.i.d.)

data (xi, Yi)
N
i=1, where xi = (Xi1, . . . , Xip)

T. Denote the response vector by

y = (Y1, . . . , YN )T, and the design matrix by X = (x1, . . . ,xN )T. We assume a

sparsity structure on β∗ in the sense that only s < p elements of β∗ are nonzero.

We consider the CQR for estimating β∗ in model (1.1) that is robust to

heavy-tailed errors, while maintaining reasonable efficiency under light-tailed er-

rors. Denote F (·) and f(·) as the cumulative distribution and the probability
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density functions, respectively, of ε. To ensure the identifiability of β∗0 , assume

F (0) = 0.5. Given an ordered sequence of quantile levels τ1 < τ2 < · · · <
τK ∈ (0, 1), let α∗k

def
= β∗0 + F−1(τk) and α∗

def
= (α∗1, . . . , α

∗
K)T ∈ RK , where

F−1(τk) = inf{x : F (x) ≥ τk} denotes the τkth quantile of ε, for k = 1, . . . ,K.

The canonical CQR (Zou and Yuan (2008)) estimates β∗ by minimizing

Q(α, β; x, Y )
def
=

1

K

K∑
k=1

ρτk(Y − αk − xTβ) (1.2)

jointly over α = (α1, . . . , αK)T ∈ RK and β ∈ Rp, where ρτk(u)
def
= {τk − I(u <

0)}u is the check loss at level τk, for k = 1, . . . ,K (Koenker (2005)). It is easy to

see that

(α∗T,β∗T)T = argmin
α,β

E{Q(α, β; x, Y )}.

Typically, we take equally spaced τk: τk = k/(K + 1), for k = 1, . . . ,K. As

K → ∞, Zou and Yuan (2008) show that the asymptotic efficiency of the CQR

relative to the LS has a universal lower bound of 86.4% (Kai, Li and Zou (2010)).

Even with a relatively small K, such as K = 9, the CQR estimator achieves a

substantial efficiency gain.

Although using the CQR provides robustness to heavy-tailed noise and safe-

guards against potential efficiency loss, the nonsmoothness of the CQR loss raises

computational challenges, owing to limited computing power and memory when

the sample size and dimension are both considerable. Doing so also makes theo-

retical developments difficult. Recently, Gu and Zou (2020) developed the theory

for ultrahigh-dimensional sparse penalized CQR in a single-node setting. In addi-

tion, to consider scalability, they proposed using an alternating direction method

of multipliers algorithm, rather than the linear programming algorithm consid-

ered in Zou and Yuan (2008). For ultrahigh-dimensional data stored on multiple

machines, we may not be able to use existing algorithms for the sparse penalized

CQR, making distributed algorithms with theoretical guarantees increasingly im-

portant. The main goals of this study are to develop a new distributed estimation

approach for the ultrahigh-dimensional CQR, and to establish its estimation and

support recovery theory.

There are two main data-partitioning schemes in distributed systems: “hori-

zontal” and “vertical.” In a “horizontal” distributed setting, assume N observa-

tions are scattered evenly across m local nodes, with n observations at each node.

Denote by Hj the set of observational indices at the jth node. The divide-and-

conquer strategy is popular for such data, owing to its simplicity (Zaharia et al.
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(2016)); see, for example, Li, Lin and Li (2012), Zhao, Cheng and Liu (2016),

Battey et al. (2018), Shi, Lu and Song (2018), Jiang et al. (2018), Fan, Guo and

Wang (2021) and Fan et al. (2019). However, the final estimate, which is an

average of the m local estimates, is usually no longer sparse. Moreover, although

averaging reduces the variance of the local estimates, it might not remove the

bias of these local estimates. Hence, restrictions on the number of nodes, for

example, m = O(N1/2), are routinely imposed to achieve the minimax conver-

gence rate (Braverman et al. (2016)). To remove such restrictions on m, Wang

et al. (2017) and Jordan, Lee and Yang (2019) developed multi-round procedures.

However, their methodology and theory require second-order differentiability of

the loss function, in general, and cannot be applied directly to the highly non-

smooth CQR loss. Chen et al. (2020) studied the distributed high-dimensional

QR problem, providing theoretical guarantees on its support recovery. However,

their method cannot safeguard against the potential efficiency loss incurred by the

QR. In a “vertical” distributed setting, each local node holds a subset of all the

covariates of the data. To recover the sparsity pattern, He, Zhou and Feng (2022)

proposed decorrelating the covariates before aggregating. Their work improves

on previous results (Zhou et al. (2014); Song and Liang (2015)) by requiring

constraints on the correlation structure of the covariates that are less strict.

Our work focuses on the “horizontal” distributed setting. We propose a new

distributed procedure for estimating the coefficients of a high-dimensional linear

model, with potentially arbitrary noise, using the CQR. We first show that we

can estimate α∗ and β∗ from a pseudo-response Ỹi, instead of Yi. This yields a

pooled estimate from solving a lasso problem based on (xi, Ỹi)
N
i=1, without any

moment conditions on the noise term. The pooled estimate is computationally

much more efficient than the penalized CQR in a single-node setting. We fur-

ther provide a communication-efficient distributed implementation of this pooled

estimate where, at each communication, only the (p + K)-dimensional gradient

information is communicated, instead of the (p+K)×(p+K) Hessian matrix, by

modifying the approximate Newton method of Shamir, Srebro and Zhang (2014).

Our results demonstrate the accuracy of our method in terms of both estimation

and support recovery. We prove that, after a constant number of communica-

tions, our estimate achieves a near-oracle rate of [s log{max(p,N)}/N ]1/2 for the

estimation of β∗, and [Ks log{max(p,N)}/N ]1/2 for that of α∗, in terms of the

`2-error (Theorem 2). These rates coincide with those of the `1-regularized CQR

in a single-node setting (Gu and Zou (2020)). We also derive the “beta-min”

condition for exact support recovery, which becomes weaker as the number of

communications increases (Theorem 4). After a constant number of communica-
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tions, our “beta-min” condition matches that of the classical setting in which all

data are in a single node.

The rest of this paper is organized as follows. We describe the distributed

algorithm for the penalized CQR in Section 2, and derive the estimation error

bounds and the support recovery results for the distributed estimator in Section 3.

Extensive simulations in Section 4 provide empirical evidence for our theoretical

findings. Section 5 concludes the paper. All technical proofs are relegated to the

online Supplementary Material.

We use the following notation. We denote C,C0, C1, . . . , c, c0, c1, . . . as generic

constants that may vary at each appearance. We also use the standard asymp-

totic notation. Given two sequences {an} and {bn}, we write an = O(bn) if there

exists a constant C < ∞ such that an ≤ Cbn, and an = o(bn) if an/bn → 0.

For two sets of random variables {Xn} and {Yn}, we write Xn = Op(Yn) if

for any ε > 0, there exists a finite M > 0 and a finite n0 > 0 such that

pr(|Xn/Yn| > M) < ε, for any n > n0. For a vector v = (v1, . . . , vp)
T, we denote

its support by supp(v)
def
= {j ∈ N : vj 6= 0}. We further define |v|1

def
=
∑p

i=1 |vi|,
|v|2

def
=
(∑p

i=1 v
2
i

)1/2
, and vmin def

= mini∈supp(v) |vi|. For S ⊆ {1, . . . , p} with

length |S|, let vS
def
= (vi, i ∈ S) ∈ R|S|. For a matrix A = (aij) ∈ Rp×q,

we define |A|∞
def
= max1≤i≤p,1≤j≤q |aij |, ‖A‖∞

def
= max1≤i≤p

∑
1≤j≤q |aij |, and

‖A‖op
def
= max|v|2=1 |Av|2. For two subsets S1 ⊆ {1, . . . , p} and S2 ⊆ {1, . . . , q},

we let AS1×S2 = (aij , i ∈ S1, j ∈ S2). Finally, denote the largest and smallest

singular values of A by Λmax(A) and Λmin(A), respectively.

2. Distributed Sparse CQR

2.1. The Newton update and a surrogate loss

Motivated by the Newton–Raphson method, we cast the CQR as an LS prob-

lem. Let φ
def
= (αT,βT)T ∈ Rp+K and g(φ; x, Y )

def
= {gα(φ; x, Y )T, gβ(φ; x, Y )T}T,

where gα(φ; x, Y ) ∈ RK and gβ(φ; x, Y ) ∈ Rp are the subgradients of the

loss function Q(φ; x, Y ) with respect to α and β, respectively. Moreover, let

H(φ)
def
= ∂E{g(φ; x, Y )}/∂φT ∈ R(p+K)×(p+K) denote the population Hessian

matrix of E{Q(φ; x, Y )}. Given any initial solution φ0
def
= (αT

0 ,β
T

0 )T ∈ Rp+K , the

population version of the Newton–Raphson iteration has the form

φ1
def
= (αT

1 ,β
T

1 )T = φ0 −H(φ0)
−1E{g(φ0; x, Y )}. (2.1)

For the CQR loss Q(φ; x, Y ) in (1.2), we consider a subgradient of the form

gα(φ; x, Y ) = {I(Y − α1 − xTβ ≤ 0) − τ1, . . . , I(Y − αK − xTβ ≤ 0) − τK}T/K
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and gβ(φ; x, Y ) =
∑K

k=1 x{I(Y −αk−xTβ ≤ 0)− τk}/K. Note that the Hessian

matrix takes the form

H(φ) =

 ∂E{gα(φ;x,Y )}
∂αT

∂E{gα(φ;x,Y )}
∂βT

∂E{gβ(φ;x,Y )}
∂αT

∂E{gβ(φ;x,Y )}
∂βT


(p+K)×(p+K)

,

where

∂E{gα(φ; x, Y )}
∂αT

=
1

K
diag(f{xT(β − β∗) + α1}, . . . , f{xT(β − β∗) + αK}),

∂E{gβ(φ; x, Y )}
∂βT

=
1

K

K∑
k=1

E[xxTf{xT(β − β∗) + αk}], and

∂E{gα(φ; x, Y )}
∂βT

=
1

K
{E(xf{xT(β − β∗) + α1}), . . . ,

E(xf{xT(β − β∗) + αK})}T.

When the initial estimate φ0 is close to the true parameter φ∗
def
= (α∗T,β∗T)T,

H(φ0) is approximately

H(φ∗) =
1

K


f(α∗1)

. . .

f(α∗K) ∑K
k=1 f(α∗k)Σ

 ,

where Σ = E(xxT), and the zero entries are left blank. Replacing H(φ0) with

H(φ∗) in (2.1) results in the following iteration:

φ1 = φ0 −H(φ∗)−1E{g(φ0; x, Y )}. (2.2)

This, together with the Taylor expansion of E{g(φ0; x, Y )} around φ∗,

E{g(φ0; x, Y )} = H(φ∗)(φ0 − φ∗) +O(|φ0 − φ∗|22),

ensures an improved convergence rate of φ1 in the `2-norm; that is,

|φ1 − φ∗|2 = |φ0 −H(φ∗)−1{H(φ∗)(φ0 − φ∗) +O(|φ0 − φ∗|22)} − φ∗|2
= O(|φ0 − φ∗|22).

Therefore, by refining a consistent estimate φ0 using the Newton–Raphson iter-

ation (2.2), we obtain an improved estimate φ1.
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Next, we demonstrate how to cast the Newton–Raphson iteration of the CQR

problem as an LS problem. Let f(α∗)
def
=
∑K

k=1 f(α∗k)/K. Because α and β are

decoupled in the Newton–Raphson iteration (2.2), α1 = (α1,1, . . . , α1,K)T and β1

admit the explicit forms

α1,k = α0,k − f−1(α∗k)E{I(Y − α0,k − xTβ0 ≤ 0)− τk}, k = 1, . . . ,K, (2.3)

and

β1 = β0 − Σ−1f−1(α∗)E{gβ(φ0; x, Y )}

= Σ−1E

{
x

(
xTβ0 − f−1(α∗)

[
1

K

K∑
k=1

{I(Y − α0,k − xTβ0 ≤ 0)− τk}

])}
.

Define a pseudo response

Ỹ = xTβ0 − f−1(α∗)

[
1

K

K∑
k=1

{I(Y − α0,k − xTβ0 ≤ 0)− τk}

]
.

Then, β1 = Σ−1E(xỸ ) = argminβ∈RpE(Ỹ − xTβ)2 is the LS regression coeffi-

cient of Ỹ on x. To encourage sparsity in the coefficient vector, we consider the

following penalized LS problem:

β1, pen = argmin
β∈Rp

1

2
E(Ỹ − xTβ)2 + P (β, λ), (2.4)

where P (·, ·) is a sparsity-inducing penalty. Examples of penalties include the `1-

norm penalty (LASSO, Tibshirani (1996)), smoothly clipped absolute deviation

penalty (SCAD, Fan and Li (2001)), and minimax concave penalty (MCP, Zhang

(2010)); see Hastie, Tibshirani and Wainwright (2015) and the references therein

for comprehensive reviews of recent developments. In the present context, we

adopt the `1-norm penalty P (β, λ)
def
= λ|β|1, for ease of exposition. Then, (2.4)

becomes

β1, `1 = argmin
β∈Rp

1

2
E(Ỹ − xTβ)2 + λ|β|1. (2.5)

At the population level, if we have a consistent estimate (αT

0 ,β
T

0 )T of (α∗T,β∗T)T,

then we can estimate α∗ and the ultrahigh-dimensional sparse β∗ by solving a

simple iteration (2.3) and a penalized LS problem (2.5), rather than solving the

original penalized CQR.

Now, we define the empirical version of β1, `1 in a single-node setting. Let

α̂(0) and β̂(0) be the initial estimates of α∗ and β∗, respectively, and let f̂(α∗)
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be an estimate of f(α∗). For i = 1, . . . , N, define the pseudo responses

Ỹi = xT

i β̂
(0) − f̂−1(α∗)

[
1

K

K∑
k=1

{I(Yi − α̂(0)
k − xT

i β̂
(0) ≤ 0)− τk}

]
.

We estimate α∗ and β∗ using the empirical versions of (2.3) and (2.5), respec-

tively:

α̂
(1)
k = α̂

(0)
k − f̂

−1(α∗k) ·
1

N

N∑
i=1

{
I(Yi − α̂(0)

k − xT

i β̂
(0) ≤ 0)− τk

}
, (2.6)

and

β̂
(1)
`1

= argmin
β∈Rp

1

2N

N∑
i=1

(Ỹi − xT

i β)2 + λN |β|1. (2.7)

In a single-node setting, problems (2.6) and (2.7) correspond to a simple LS

problem and an LS lasso problem, respectively, which are computationally much

easier than an `1-regularized CQR problem.

We take f̂(α∗) =
∑K

k=1 f̂(α∗k)/K as the average of the K kernel density

estimates

f̂(α∗k) = (Nh)−1
N∑
i=1

K
{

(Yi − α̂(0)
k − xT

i β̂
(0))

h

}
, k = 1, . . . ,K. (2.8)

Here, K(·) is a kernel function fulfilling Condition (C3) of Section 3, and h > 0 is

the bandwidth. In Sections 3 and 4, we discuss the selection of the bandwidth.

To minimize problems (2.6) and (2.7), we may first pool all the data into a

single central node, which we then optimize. However, this may require substan-

tial memory and storage for large amounts of data. Distributed systems require

computationally efficient algorithms with very low communication costs (Jordan,

Lee and Yang (2019); Fan et al. (2019); Lan, Lee and Zhou (2020)). In this paper,

we introduce a distributed algorithm that robustly and efficiently estimates α∗

and β∗ at near-oracle rates.

2.2. Distributed estimation

Here, we develop a distributed communication-efficient algorithm to com-

pute α̂(1) and β̂
(1)
`1

in (2.6) and (2.7) under the “horizontal” distributed setting.

Because
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α̂
(1)
k = α̂

(0)
k − f̂

−1(α∗k)
1

N

m∑
j=1

∑
i∈Hj

{I(Yi − α̂(0)
k − xT

i β̂
(0) ≤ 0)− τk}, k = 1, . . . ,K,

the communication cost to obtain α̂(1) is O(mK), which is communication-

efficient. For β̂
(1)
`1

, we solve problem (2.7) using an approximate Newton method

(Wang et al. (2017); Jordan, Lee and Yang (2019); Fan, Guo and Wang (2021)),

that has a communication cost O(mp). For ease of notation, let

zn,j
def
=

1

n

∑
i∈Hj

xiỸi, zN
def
=

1

m

m∑
j=1

zn,j , Σ̂j
def
=

1

n

∑
i∈Hj

xix
T

i , and Σ̂
def
=

1

m

m∑
j=1

Σ̂j .

We further define the pseudo local and global loss functions, respectively, as

Lj(β)
def
=

1

2n

∑
i∈Hj

(Ỹi − xT

i β)2 and LN (β)
def
=

1

m

m∑
j=1

Lj(β).

Denote the gradient of LN (β) by ∇LN (β), which is Σ̂β − zN . Given an initial

estimate β̂(0), we have

LN (β) =LN (β̂(0)) + {∇LN (β̂(0))}T(β − β̂(0))

+
1

2
(β − β̂(0))TΣ̂(β − β̂(0)).

(2.9)

Recall that in a “horizontal” distributed system, the data are scattered across

m nodes. Transmitting the Hessian matrix Σ̂ requires a communication cost

O(p2), which is typically expensive in a high-dimensional setting. To reduce the

communication cost, we approximate the Hessian matrix Σ̂ by Σ̂1, which leads

to the surrogate loss

L̃∗(β)
def
=LN (β̂(0)) + {∇LN (β̂(0))}T(β − β̂(0))

+
1

2
(β − β̂(0))TΣ̂1(β − β̂(0)).

(2.10)

Comparing (2.10) with (2.9), we obtain the approximation error of the surrogate

loss

L̃∗(β)− LN (β) = (β − β̂(0))T(Σ̂− Σ̂1)(β − β̂(0))

= Op
{
‖Σ̂− Σ̂1‖op · |β − β̂(0)|22

}
,

where the last equality follows from the Cauchy–Schwarz inequality. The ap-

proximation error is negligible if either ‖Σ̂− Σ̂1‖op or |β − β̂(0)|2 is op(1), which
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is possible if p is much smaller than n or if a sparsity structure exists in the

coefficient vector when p is much greater than n.

Ignoring the additive terms in (2.10) irrelevant to β, the surrogate loss can

be simplified to

L̃(β)
def
=

1

2n

∑
i∈H1

(xT

i β)2 − βT{zN + (Σ̂1 − Σ̂)β̂(0)}.

Here, rather than working with the pseudo global loss LN in (2.7), we work with

L̃(β) to reduce the communication cost. Specifically, we define

β̂(1) def
= argmin

β∈Rp

L̃(β) + λN |β|1. (2.11)

Note that we can calculate Σ̂β̂(0) and zN very efficiently in a distributed manner

with a communication cost O(mp), because Σ̂jβ̂
(0) and zn,j , which form Σ̂β̂(0)

and zN , respectively, are both p-dimensional vectors (see Algorithm 1). There is

no need to communicate the p× p covariance matrix Σ̂j .

In practice, when feasible, we recommend using the `1-penalized CQR esti-

mate (Gu and Zou (2020); Pietrosanu et al. (2021)), fitted from the data collected

only at the first node as the initial estimate:

{α̂(0), β̂(0)} def
= argmin
α∈RK ,β∈Rp

1

2nK

∑
i∈H1

K∑
k=1

ρτk(Yi − αk − xT

i β) + λn|β|1. (2.12)

Our distributed estimation procedure then proceeds iteratively from the initial

estimate. Specifically, for any t ≥ 1, let β̂(t−1) be the distributed estimate in the

(t− 1)th communication, and let

f̂ (t)(α∗)
def
= (NKh(t))−1

K∑
k=1

N∑
i=1

K
{
Yi − α̂(t−1)

k − xT

i β̂
(t−1)

h(t)

}

be the estimate of f(α∗) and h(t) be the associated bandwidth (specified in The-

orem 2) in the tth communication. Define

Ỹ
(t)
i = xT

i β̂
(t−1) − f̂−1(α∗)

[
1

K

K∑
k=1

{I(Yi − α̂(t−1)
k − xT

i β̂
(t−1) ≤ 0)− τk}

]
,

for i = 1, . . . , N , and z
(t)
N = N−1

∑N
i=1 xiỸ

(t)
i . The distributed estimate in the tth
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communication takes the form

α̂
(t)
k

def
= α̂

(t−1)
k − f̂−1(α∗k)

1

N

N∑
i=1

{I(Yi − α̂(t−1)
k − xT

i β̂
(t−1) ≤ 0)− τk} (2.13)

and

β̂(t) def
= argmin

β∈Rp

1

2n

∑
i∈H1

(xT

i β)2 − βT
{
z
(t)
N + (Σ̂1 − Σ̂)β̂(t−1)}+ λN, t|β|1. (2.14)

Problem (2.14) is an `1-regularized quadratic program, which can be solved us-

ing a first-order method (Combettes and Pesquet (2011); Bach et al. (2012);

Tropp and Wright (2010)), a Newton-type algorithm (Fountoulakis, Gondzio and

Zhlobich (2014); Dassios, Fountoulakis and Gondzio (2015)), or the coordinate

descent algorithm (Friedman, Hastie and Tibshirani (2010)). In our implementa-

tion, we use the primal dual active set (PDAS, Fan, Jiao and Lu (2014)) method,

which is essentially a generalized Newton-type method. It converges after one

iteration if the initial value is good enough. To select the regularization param-

eter, because β̂(t) is a piecewise linear function of λN, t (Osborne, Presnell and

Turlach (2000)), we use a continuation procedure in order to fully exploit the

fast convergence of the PDAS method. Specifically, we use the solution from the

previous step as the initial value for the current step. When the continuation

procedure completes, we have a solution path for (2.14), from which we choose

the best regularization parameter based on maximum voting. In particular, we

set λ1 = |z(t)N + (Σ̂1 − Σ̂)β̂(t−1)|∞, which has a solution to (2.14) that is exactly

zero, by the Karush–Kuhn–Tucker conditions. Let λ` = λ1ρ
`−1, with ρ ∈ (0, 1),

for ` ≥ 1. For some pre-fixed threshold s0 ∈ N+, we apply the PDAS method to

compute a solution path {β̂(t), λ1 , . . . , β̂(t), λL} until |β̂(t), λL |0 > s0 for a smallest

possible L. Let Sv = {λ` : |β̂(t), λ` |0 = v, ` = 1, . . . , L} be the set of regulariza-

tion parameters at which the solution to (2.14) has v nonzero elements, where

v = 1, . . . , s0. We determine λN, t by maximum voting, that is,

λN, t = max{Sv} and v = argmax
v
|Sv|,

where |Sv| is the cardinality of the set Sv. Our parameter selection rule is seam-

lessly integrated with the continuation procedure without incurring extra com-

munication and computation costs. Classical cross-validation approaches can be

used in the distributed setting (Yu, Chao and Cheng (2021)) as well. We sum-

marize our distributed algorithm in Algorithm 1.
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Algorithm 1 Distributed algorithm for sparse CQR.

Input: Data {(xi, Yi)i∈Hj
}, for j = 1, . . . ,m, the number of iterations t, the quantile

levels τk, for k = 1, . . . ,K, a sequence of bandwidths h(g), for g = 1, . . . , t, the

regularization parameters λn and λ
(g)
N , for g = 1, . . . , t.

1: Compute the initial estimates α̂(0) and β̂(0) using (2.12), based on {(xi, Yi)i∈H1
}.

2: for g = 1, . . . , t do
3: Transmit α̂(g−1) and β̂(g−1) from the first node to the local ones labeled with

2, . . . ,m.
4: for j = 1, . . . ,m do
5: Calculate

f̂ (g,j)(α∗) = (nKh(g))−1
K∑

k=1

∑
i∈Hj

K
{
Yi − α̂(g−1)

k − xT
i β̂

(g−1)

h(g)

}

at the jth node and send it back to the first node.
6: end for
7: The first node computes f̂ (g)(α∗) = m−1

∑m
j=1 f̂

(g,j)(α∗) and transmits it to the
local nodes labeled with 2, . . . ,m.

8: for j = 1, . . . ,m do

9: Calculate Σ̂jβ̂
(g−1) and z

(g)
n,j = n−1

∑
i∈Hj

xiỸ
(g)
i at the jth node and send them

back to the first node.
10: end for
11: Calculate α̂(g) and β̂(g) on the first node, based on (2.13) and (2.14).
12: end for
Output: The final estimates α̂(t) and β̂(t) obtained from the first node.

3. Theoretical Results

In this section, we show the estimation and support recovery accuracy of the

distributed CQR estimate. Denote S def
= supp(β∗) as the support of β∗, and let

s
def
= |S|. Following Wainwright (2019), we say a random vector x ∈ Rp is sub-

Gaussian if it satisfies sup|α|2=1E exp{t(αTx)2} ≤ C, for some t > 0 and C > 0.

We assume the following conditions:

(C1) The density f is bounded and Lipschitz continuous, that is, |f(x)− f(y)| ≤
CL|x−y|, for any x, y ∈ R and some constant CL > 0. Moreover, we assume

f(α∗k) ≥ f > 0, for all k = 1, . . . ,K.

(C2) There exists a constant c0 > 0 such that c−10 ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ c0.

Furthermore, we assume ‖ΣSc×SΣ−1S×S‖∞ ≤ 1− α, for some 0 < α < 1.

(C3) Assume the kernel function K(·) is differentiable with a bounded derivative

K′(·). Moreover, K(·) is integrable, with
∫∞
−∞K(u)du = 1 and K(u) = 0, for

|u| ≥ 1.
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(C4) The covariate vector x is sub-Gaussian. The dimension p satisfies p =

O(Nν), for some ν > 0. The sample size n at each local node satisfies

n ≥ Nω, for some 0 < ω < 1, the sparsity level s satisfies s = O(nr), for

some 0 ≤ r < 1/3, and the number of quantile levels K satisfies K = O(nr),

for some 0 ≤ r < 1/3.

(C5) The initial estimates α̂(0) and β̂(0) satisfy pr(supp(β̂(0)) ⊆ S) → 1

and |β̂(0) − β∗|2 = Op(an) and |α̂(0) − α∗|2 = Op(K
1/2an), where an =

(s logN/n)1/2.

Condition (C1) is standard on the smoothness of the noise density (Gu and

Zou (2020); Chen et al. (2020)). The irrepresentable condition (C2) is widely

used in the high-dimensional statistics literature to establish support recovery;

see, for example, Zhao and Yu (2006),Wainwright (2009), Hastie, Tibshirani and

Wainwright (2015), and Wainwright (2019). Condition (C3) imposes regular con-

ditions on the kernel function, and is mild and satisfied by many common kernel

functions. Condition (C4) is commonly assumed in the distributed estimation

literature; see, for example, Chen et al. (2020), Wang et al. (2017), and Jordan,

Lee and Yang (2019). In Algorithm 1, the initial estimator β̂(0) is obtained using

the data scattered at the central node. Such an initial estimate satisfies (C5) un-

der Conditions (C1), (C2), and (C4) (see Theorem 1 of Gu and Zou (2020)). We

use logN throughout for simplicity, because we have log{max(N, p)} = C1 logN ,

for some constant C1 > 0, by Condition (C4).

We first present the convergence rates of the distributed estimates α̂(1) and

β̂(1) from the first communication.

Theorem 1. Set λN = C0{(logN/N)1/2 + (s logN/n)1/2an} and the bandwidth

h � an, where C0 > 0 is a sufficiently large constant. Under Conditions (C1)–

(C5), we have

|α̂(1) −α∗|2 = Op

{(
Ks logN

N

)1/2

+

(
Ks2 logN

n

)1/2

an

}
and

|β̂(1) − β∗|2 = Op

{(
s logN

N

)1/2

+

(
s2 logN

n

)1/2

an

}
.

Let a
(g)
N = (s logN/N)1/2 + s(2g+1)/2(log[N ]/n)(g+1)/2, for g = 1, . . . , t. Ap-

plying Theorem 1 leads to the convergence rates of the distributed estimates α̂(t)

and β̂(t) from the tth communication.
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Theorem 2. Set λ
(g)
N = C0

{
(logN/N)1/2 + (s logN/n)1/2a

(g−1)
N

}
and the band-

width h(g) � a(g−1)N , for g = 1, . . . , t, where C0 > 0 is a sufficiently large constant.

Under Conditions (C1)–(C5), we have

|α̂(t) −α∗|2 = Op

{(
Ks logN

N

)1/2

+ (K)1/2s(2t+1)/2

(
logN

n

)(t+1)/2}
and

|β̂(t) − β∗|2 = Op

{(
s logN

N

)1/2

+ s(2t+1)/2

(
logN

n

)(t+1)/2}
.

When the number of communications t is large enough, that is,

t ≥ log

(
N

n

)/
log

{
c0n

s2 logN

}
, for some c0 > 0, (3.1)

we have s(2t+1)/2(logN/n)(t+1)/2 = O{(s logN/N)1/2}. Therefore, |β̂(t) − β∗|2 =

Op{(s logN/N)1/2}, and the distributed estimate β̂(t) attains the minimax op-

timal rate O{(s logN/N)1/2}. This is also the optimal rate when the data are

pooled at a single central node (Gu and Zou (2020)). In view of Condition (C4),

the right-hand side of (3.1) is bounded by a constant. To achieve the oracle rate,

our distributed algorithm requires the number of communications, t, to increase

logarithmically with the number of nodes, m. In contrast, existing distributed

first-order algorithms require the number of communications to increase polyno-

mially with m; see Table 1 of Zhang and Xiao (2018) for details.

We present the support recovery of our distributed method in the following

two theorems.

Theorem 3. Under the conditions of Theorem 1, we have supp(β̂(1)) ⊆ S, with

probability approaching one. Suppose, in addition, for a sufficiently large positive

constant C,

β∗min ≥ C‖Σ−1S×S‖∞

{(
logN

N

)1/2

+ |β̂(0) − β∗|2
(
s logN

n

)1/2
}
.

Then, we have supp(β̂(1)) = S, with probability approaching one.

Theorem 4. Under the conditions of Theorem 2, we have supp(β̂(t)) ⊆ S, with

probability approaching one. Suppose, for a sufficiently large positive constant C,

β∗min ≥ C‖Σ−1S×S‖∞

{(
logN

N

)1/2

+ st
(

logN

n

)(t+1)/2
}
.
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Then, we have supp(β̂(t)) = S, with probability approaching one.

The “beta-min” condition, which is commonly assumed in the literature on

high-dimensional statistics, weakens as t increases and matches the oracle rate

for the “beta-min” condition, that is, β∗min ≥ C‖Σ−1S×S‖∞(logN/N)1/2, after a

constant number of communications (Wainwright (2009)).

We have assumed evenly scattered data across the nodes, for ease of demon-

stration. In fact, the number of data points, n, is just the “working” sample size

at the first node, or the central node, as it is known as in distributed computing.

Once it is specified, our approach does not depend on the partition of the data.

Several works in the distributed computing literature examine heavy-tailed

noise. Chen et al. (2020) consider the distributed QR estimation and similarly

cast the nonsmooth QR problem as an LS problem. Note that our study of

the CQR is motivated by the potential loss of efficiency of the QR under cer-

tain noise distributions, and our work is technically more challenging than the

distributed QR, because our loss function consists of quantile check losses at

multiple levels. Furthermore, in contrast to the validation method of Chen et al.

(2020), we suggest a new tuning procedure in Section 2.2 that does not incur ex-

tra communication and computation costs. Luo, Sun and Zhou (2022) consider

the distributed adaptive Huber regression, which can also handle certain cases

of heavy-tailed noise. Their theoretical analysis does not assume independence

between the noise and the covariates, but does require that the covariates to be

bounded. Moreover, the Huber regression does not work under very heavy-tailed

noise such as the Cauchy, whereas the CQR does. Battey, Tan and Zhou (2021)

suggest a convoluted smoothing of the check loss to handle the nonsmoothness of

the QR. This alternative smoothing procedure can be applied to our CQR loss,

especially when the construction of the pseudo response is not stable in small

samples. However, it may not be as computationally efficient as our method,

owing to our simple LS formulation. In addition, the aforementioned works focus

mainly on the estimation error bounds of their respective estimates, whereas we

establish the support recovery theory in addition to the estimation error. Sup-

port recovery is an important topic in high-dimensional distributed settings but

is usually very challenging (Neykov, Liu and Cai (2016)).

4. Simulation Studies

4.1. Design of the simulations

We simulate the data from model (1.1) with β∗0 = 0 and β∗ = (3, 1.5, 0, 0, 2,

0p−5)
T, and the covariates xi are drawn from N (0,Σ), with Σ = (0.5|k−l|)p×p.
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We fix p = 500 throughout. For the noise distribution, we follow Zou and Yuan

(2008) and Gu and Zou (2020), and consider three shapes:

(a) the normal distribution, ε ∼ N (0, 1),

(b) the Student’s t distribution with three degrees of freedom, ε ∼ t(3), and

(c) the Cauchy distribution, ε ∼ f(ε) = 1/{π(1 + ε2)}.

The initial estimator is taken as the `1-regularized CQR estimator defined in

(2.12) using the local data at the first node. The constant C0 of λ
(g)
N is chosen

using majority voting along the solution paths calculated using the method of

Huang et al. (2018). We use the bi-weight kernel function K(x) = 105(1−3x2)(1−
x2)2I(|x| ≤ 1)/64, and set the bandwidth as h(g) = ca

(g−1)
N , for some constant

c > 0 (Theorem 2). We take c = 1, for simplicity. A sensitivity analysis of

the choice of c is provided in Section 4.5. Throughout, we take K = 19 and

τk = k/(K + 1), for k = 1, . . . ,K.

We compare our distributed estimate with its pooled counterpart and the

divide-and-conquer estimate. Specifically, the divide-and-conquer method com-

putes the `1-regularized CQR at each local node and combines the local estimates

using simple averaging.

Two criteria are used to evaluate the performance of the methods: the esti-

mation error, |β̂ − β∗|2, and the F1-score,

F1
def
=

2(TP)

2(TP) + FP + FN
,

where TP, FP, and FN denote the numbers of true positives, false positives, and

false negatives, respectively. The F1-score ranges from zero to one, with larger

values indicating better performance (see, e.g., Goutte and Gaussier (2005)), and

is widely used in the literature to evaluate support recovery accuracy.

We repeat each setting with one hundred independent runs.

4.2. Effect of the number of communications

We investigate how the performance of our distributed estimate varies ac-

cording to the number of iterations (or communications). We fix the sample size

at N = 5000, the local sample size at n = 500, and the number of nodes at

m = 10. Shown in Figure 1 is the plot of the mean estimation error (over one

hundred independent runs) versus the number of iterations, where the error bar

corresponds to one standard error. The distributed and pooled estimates exhibit

similar performance under all three noise scenarios, and both become stable in
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Figure 1. The horizontal axis shows the number of iterations (communications), and
the vertical axis represents the estimation errors of the divide-and-conquer ( ), dis-
tributed ( ), and pooled ( ) estimates when the noise comes from the (a) normal,
(b) Student’s t(3), and (c) Cauchy distributions. The error bar corresponds to one stan-
dard error. The horizontal values are jittered to avoid overlapping. The overall sample
size, local sample size, and dimension are fixed at N = 5000, n = 500, and p = 500,
respectively.

just a few iterations. In addition, they both outperform the divide-and-conquer

estimate by a large margin.

4.3. Effect of the noise distribution

Here, we demonstrate the robustness of the CQR to heavy-tailed noise and

its preservation of efficiency under light-tailed noise by considering the three

aforementioned noise distributions. We additionally include the LS lasso estimate

in a single-node setting (pooled data) in the comparison. We vary the sample size
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Table 1. The estimation errors and F1-scores of the distributed, pooled, and divide-
and-conquer estimates, and the least squares lasso estimate fitted using the pooled data
under varying sample sizes N when the noise comes from the normal, Student’s t(3), and
Cauchy distributions. The local sample size n is fixed at 500.

N
distr pooled dc lasso

est. error F1-score est. error F1-score est. error F1-score est. error F1-score

Normal noise

2,500 0.0998 1.0000 0.0997 1.0000 0.1770 0.0826 0.0817 0.4636

5,000 0.0718 1.0000 0.0717 1.0000 0.1716 0.0409 0.0576 0.4793

10,000 0.0515 1.0000 0.0515 1.0000 0.1673 0.0241 0.0398 0.4521

15,000 0.0378 1.0000 0.0379 1.0000 0.1639 0.0186 0.0307 0.4748

20,000 0.0349 1.0000 0.0348 1.0000 0.1662 0.0158 0.0295 0.5512

25,000 0.0308 1.0000 0.0307 1.0000 0.1655 0.0146 0.0288 0.8413

Student’s t(3) noise

2,500 0.1242 1.0000 0.1244 1.0000 0.1974 0.0756 0.1433 0.4199

5,000 0.0884 1.0000 0.0885 1.0000 0.1894 0.0394 0.0990 0.4067

10,000 0.0596 1.0000 0.0596 1.0000 0.1841 0.0238 0.0695 0.4858

15,000 0.0465 1.0000 0.0465 1.0000 0.1826 0.0183 0.0538 0.4761

20,000 0.0432 1.0000 0.0432 1.0000 0.1824 0.0159 0.0481 0.4482

25,000 0.0383 1.0000 0.0383 1.0000 0.1816 0.0143 0.0441 0.4417

Cauchy noise

2,500 0.1713 1.0000 0.1713 1.0000 0.1908 0.1042 3.1826 0.2245

5,000 0.1254 1.0000 0.1255 1.0000 0.1897 0.0470 3.1247 0.2505

10,000 0.0846 1.0000 0.0846 1.0000 0.1878 0.0276 3.0907 0.2454

15,000 0.0732 1.0000 0.0732 1.0000 0.1845 0.0211 3.1835 0.2361

20,000 0.0619 1.0000 0.0618 1.0000 0.1819 0.0175 3.1540 0.2490

25,000 0.0541 1.0000 0.0540 1.0000 0.1837 0.0158 2.9773 0.2418

N , and summarize the estimation errors and F1-scores of the four estimates in

Table 1. In all settings, the performance of our distributed estimate matches that

of the pooled estimate, and both outperform the divide-and-conquer and lasso

estimates. In particular, the distributed and pooled estimates perform similarly

to the lasso estimate under normal noise, but exhibit much better performance

under the Cauchy noise. We omit the lasso estimate in subsequent comparisons,

owing to its instability under heavy-tailed noises.

4.4. Effect of the overall and local sample sizes

We investigate the performance of the estimates under different combinations

of the overall sample size N and the local sample size n. The estimation errors

and F1-scores are reported in Table 2. In terms of the estimation error, both the

distributed and the pooled estimates outperform the divide-and-conquer estimate

in almost all the settings, except when N = 5000 and n = 1000 under the

Cauchy noise. In this exceptional case, however, they outperform the divide-and-
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Table 2. The estimation errors and F1-scores of the distributed, pooled, and divide-
and-conquer estimates under different combinations of the overall sample size N and the
local sample size n when the noise comes from the normal, Student’s t(3), and Cauchy
distributions.

n 200 500 1,000

N 5,000 10,000 20,000 5,000 10,000 20,000 5,000 10,000 20,000

Normal noise

distr
est. error 0.0711 0.0506 0.0377 0.0711 0.0491 0.0342 0.0719 0.0478 0.0358

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pooled
est. error 0.0710 0.0505 0.0376 0.0710 0.0490 0.0342 0.0718 0.0478 0.0357

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

dc
est. error 0.2565 0.2544 0.2536 0.1698 0.1661 0.1636 0.1251 0.1185 0.1174

F1-score 0.0187 0.0136 0.0121 0.0407 0.0239 0.0156 0.0812 0.0415 0.0254

Student’s t(3) noise

distr
est. error 0.0870 0.0606 0.0442 0.0860 0.0623 0.0427 0.0873 0.0577 0.0448

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pooled
est. error 0.0869 0.0612 0.0436 0.0861 0.0622 0.0425 0.0873 0.0576 0.0447

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

dc
est. error 0.2953 0.2929 0.2906 0.1868 0.1876 0.1825 0.1394 0.1302 0.1292

F1-score 0.0192 0.0139 0.0121 0.0403 0.0239 0.0158 0.0794 0.0424 0.0238

Cauchy noise

distr
est. error 0.1236 0.0878 0.0606 0.1326 0.0897 0.0614 0.1215 0.0865 0.0608

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

pooled
est. error 0.1241 0.0878 0.0611 0.1327 0.0897 0.0615 0.1215 0.0866 0.0610

F1-score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

dc
est. error 0.3674 0.3657 0.3630 0.1900 0.1876 0.1828 0.1083 0.1019 0.0941

F1-score 0.0199 0.0144 0.0123 0.0492 0.0278 0.0174 0.1384 0.0797 0.0407

conquer estimate again when the sample size N keeps growing, for example, from

N = 5000 to N = 10000. This demonstrates the sub-optimality of the divide-and-

conquer estimate compared with our distributed estimate when the number of

nodes m grows. In terms of the support recovery, the F1-scores of the distributed

and pooled estimates are equal to one in all settings, and are much better than

that of the divide-and-conquer estimate. This is not surprising, because the

divide-and-conquer method usually results in a dense estimate.

4.5. Sensitivity analysis for the bandwidth

We investigate the sensitivity of the bandwidth selection by varying the sam-

ple size N and the constant c in the bandwidth h(g) = ca
(g−1)
N from 1 to 20. We

summarize the results for the Cauchy noise in Table 3. The results for the other

two noise distributions are relegated to the Supplementary Material. We can see

from Table 3 that the distributed and pooled estimates are quite robust to the

choice of the bandwidth constant c, and exhibit similar performance under all
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Table 3. The estimation errors and F1-scores of the distributed, pooled, and divide-and-
conquer estimates under different combinations of the sample size N and the bandwidth
constant c when the noise comes from the Cauchy distribution. The local sample size n
is fixed at 500.

N c
distr pooled dc

est. error F1-score est. error F1-score est. error F1-score

5,000 1 0.1216 1.0000 0.1216 1.0000 0.1953 0.0483

10,000 1 0.0868 1.0000 0.0865 1.0000 0.1870 0.0268

20,000 1 0.0610 1.0000 0.0610 1.0000 0.1835 0.0177

5,000 5 0.1213 1.0000 0.1211 1.0000 0.1904 0.0503

10,000 5 0.0912 1.0000 0.0912 1.0000 0.1889 0.0278

20,000 5 0.0606 1.0000 0.0606 1.0000 0.1852 0.0179

5,000 10 0.1251 1.0000 0.1252 1.0000 0.1917 0.0494

10,000 10 0.0853 1.0000 0.0853 1.0000 0.1859 0.0289

20,000 10 0.0586 1.0000 0.0585 1.0000 0.1862 0.0176

5,000 20 0.1192 1.0000 0.1193 1.0000 0.1844 0.0486

10,000 20 0.0880 1.0000 0.0885 1.0000 0.1886 0.0277

20,000 20 0.0615 1.0000 0.0616 1.0000 0.1851 0.0178

choices of the constant c.

4.6. The initial estimation method

The initial estimates play a key role in determining the performance of our

distributed estimate. We investigate the sensitivity of our final estimate to the

initialization by considering different initial estimates: (1) the LS lasso estimate

based on the local sample at the central node; (2) the `1-regularized CQR estimate

(CQR lasso); (3) the `1-regularized adaptive Huber regression estimate (Huber

lasso, Sun, Zhou and Fan (2020); Wang et al. (2021)); and (4) the perturbed

true parameters with a normal noise, that is, α̂
(0)
k ∼ N (α∗k, σ

2), for k = 1, . . . ,K,

and β̂
(0)
j ∼ I(β∗j 6= 0) · N (β∗j , σ

2), for j = 1, . . . , p. We examine two noise levels,

σ = 0.05 and σ = 0.1, for the last type of initialization. For the first and third

types of initialization, we set α̂(0) as the empirical quantiles of the response at

the central node. Because our algorithm may diverge without a carefully chosen

initialization, we compare the estimates after only one iteration. We fix the overall

sample size at N = 5000, the local sample size at n = 500, and the dimension at

p = 500. The results are reported in Table 4.

Comparing the fourth type of initialization under different noise levels, we see

that a more precise initial estimate yields a better distributed estimate. Compar-

ing the first three types of initialization, we see that under a heavy-tailed noise,
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Table 4. The estimation errors and F1-scores of the distributed estimates under different
types of initialization when the noise comes from the normal, Student’s t(3), and Cauchy
distributions. The overall sample size is N = 5000, the local sample size is n = 500, and
the dimension is p = 500.

Initialization
Normal noise Student’s t(3) noise Cauchy noise

est. error F1-score est. error F1-score est. error F1-score

LS lasso 0.1149 1.0000 0.1534 1.0000 1.0561 0.9986

CQR lasso 0.1220 1.0000 0.1472 1.0000 0.1993 1.0000

Huber lasso 0.1145 1.0000 0.1500 1.0000 0.6364 0.9986

σ = 0.05 0.1179 1.0000 0.1424 1.0000 0.1973 1.0000

σ = 0.1 0.1318 1.0000 0.1466 1.0000 0.2108 1.0000

such as the Cauchy, the distributed estimate with the LS lasso initialization has

the largest estimation error, which is likely caused by this “bad” initialization.

Though the Huber lasso initialization mitigates this issue, its performance is not

nearly as good as that of the CQR lasso initialization. Moreover, the latter gives

stable estimates under all types of noise. Therefore, we suggest using the CQR

lasso initialization to handle arbitrary noise.

4.7. Computational efficiency

We investigate the computational efficiency of our distributed algorithm by

comparing the timing with that of competing methods. In addition to the pooled

and divide-and-conquer estimates, we include the `1-regularized CQR estimate

based on the pooled data in the comparison. We fix the local sample size at

n = 500, and vary the overall sample size N . The estimation errors, F1-scores,

and wall times of the four methods are reported in Table 5. It can be seen that our

distributed estimate is computationally much more efficient than the single-node

`1-regularized CQR, while exhibiting similar performance.

5. Conclusion

We have developed a distributed algorithm for the penalized CQR by trans-

forming the highly nonsmooth CQR problem into an ordinary LS, which facil-

itates both computational and theoretical developments. We have proposed a

communication-efficient distributed implementation of the transformed problem

that communicates gradient information only. Note that our distributed algo-

rithm assumes a centralized system, so the local workers are idle when the central

node executes the optimization. Future work should consider a decentralized dis-

tributed algorithm that uses all of the system’s computing power.
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Table 5. The estimation errors, F1-scores, and wall times of the distributed, pooled,
divide-and-conquer, and single-node `1-regularized CQR estimates under varying sample
size N and the Cauchy noise. The local sample size is fixed at n = 500.

N
distr pooled

est. error F1-score Time est. error F1-score Time

5,000 0.1302 1.0000 7.5889 0.1310 1.0000 7.8213

10,000 0.0959 1.0000 9.1686 0.0962 1.0000 15.1164

15,000 0.0737 1.0000 9.2264 0.0740 1.0000 19.6047

N
dc `1-regularized CQR

est. error F1-score Time est. error F1-score Time

5,000 0.1872 0.0519 19.0113 0.0423 0.8109 9.4916

10,000 0.1866 0.0280 22.9009 0.0339 0.8609 17.8304

15,000 0.1832 0.0213 24.1322 0.0357 0.8387 24.7910

Supplementary Material

The online Supplementary Material contains proofs of all our theoretical

results, as well as some additional simulations.
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