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Abstract: Maximum composite likelihood estimation is an attractive and com-

monly used alternative to standard maximum likelihood estimation that typically

involves sacrificing statistical efficiency for computational efficiency. This statistical

efficiency can be quantified by evaluating the sandwich information matrix of

the maximum composite likelihood estimator, and then comparing it with the

analogous Fisher information matrix for the maximum likelihood estimator. In

this paper, we derive new closed-form expressions for the asymptotic relative

efficiency of various maximum composite likelihood estimators for a one-dimensional

exponential covariance Gaussian process. These expressions are based on a sampling

scheme that allows for analyses under three common spatial asymptotic frameworks:

expanding domain, infill, and hybrid. Our results demonstrate how the choice of

composite likelihood affects the estimation efficiency and consistency, particularly

for the infill and hybrid frameworks.

Key words and phrases: Block likelihood, expanding domain, full conditional

likelihood, hybrid asymptotics, infill asymptotics, sandwich covariance matrix.

1. Introduction

Maximum composite likelihood estimation is an attractive and commonly

used alternative to standard maximum likelihood estimation when the full

likelihood is difficult to formulate and/or is computationally intractable (Besag

(1974); Lindsay (1988)). Constructing a composite likelihood function involves

taking the product of marginal or conditional densities that are individually

simpler and collectively quicker to evaluate than the full likelihood (Varin, Reid

and Firth (2011)). Although this is beneficial from a computational standpoint,

there is usually a loss of statistical efficiency. This loss is often quantified by

computing the sandwich covariance matrix (or, at least, an estimate of this

quantity), and comparing it with the inverse Fisher information matrix (e.g.,

see Singhal and Kumar (2019); Xu, Reid and Xu (2024)). However, a theoretical

evaluation of these matrices often requires lengthy algebraic manipulation, even

for processes with relatively simple dependence structures. One such example is

the Gaussian spatial process, which is our focus here.

Studying the asymptotic efficiency for spatial process data is further compli-
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Figure 1. Comparison of asymptotic frameworks for spatial process data. The black-
bordered region and black points denote the initial region of collection and the locations
of observations, respectively; gray points are further observation locations under the
corresponding asymptotic framework.

cated by the choice of asymptotic framework, which is most commonly categorized

as expanding domain, infill (or fixed domain), or hybrid (or domain-expanding

infill). These asymptotic frameworks have been formalized several times (e.g.,

see Zheng and Zhu (2012); Lu and Tjøstheim (2014)); their main differences

are illustrated in Figure 1. Roughly speaking, under the expanding domain

framework, observations are progressively collected in such a way that the

domain that contains these observations is unbounded, and the minimum distance

between observations is bounded below. In contrast, the spatial domain under

infill is bounded and becomes infinitely dense, with observations everywhere

within this domain. Finally, as the name suggests, the hybrid framework inherits

the “domain unboundedness” and “infinite density” characteristics of the first

two frameworks. The choice of framework affects the asymptotic properties of

the estimators (Hall and Patil (1994); Zheng and Zhu (2012); Kaufman and Shaby

(2013); Chang, Huang and Ing (2017)).

In this paper, we derive sandwich covariance matrices for maximum compos-

ite likelihood estimators applied to Gaussian spatial processes, in both general

and specific cases. For the general case, we present an expression for the sandwich

covariance matrix that unifies existing results specific to particular classes of

composite likelihood functions, such as those presented in Stein, Chi and Welty

(2004), Eidsvik et al. (2014), and Bevilacqua and Gaetan (2015), among others.

We then focus on the widely explored one-dimensional exponential covariance

Gaussian process, and develop new results on the asymptotic relative efficiency

of maximum composite likelihood estimators under the expanding domain, infill,

and hybrid frameworks. In particular, we consider two composite likelihood

functions: a composite full conditional likelihood, which extends the work of

Bachoc, Lagnoux and Nguyen (2017) under the infill framework, and a composite

marginal block likelihood, as studied by Caragea and Smith (2007) under the
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expanding domain framework. We also demonstrate the effects of the model

specification on the asymptotic behavior by comparing results based on which

parameters in the exponential covariance model are assumed to be known. Our

results indicate that the choice of composite likelihood and model can have major

implications for the statistical efficiency and asymptotic behavior of the estimator,

particularly under the infill and hybrid asymptotic frameworks.

2. Literature Review

Several general results exist pertaining to maximum likelihood asymptotics

for Gaussian spatial processes under the expanding domain, infill, and hybrid

frameworks. Mardia and Marshall (1984) showed that for Gaussian spatial

regression models, given a few mild regularity conditions, maximum likelihood

estimators are consistent and asymptotically normally distributed under the

expanding domain framework. Additionally, the asymptotic variance of the

maximum likelihood estimator is given by the inverse of the Fisher information

matrix I(θ) = E[−∂2ℓ(θ;y)/(∂θ ∂θT )], where ℓ(·) is the full log-likelihood. For

Gaussian spatial autoregressive models, Zheng and Zhu (2012) derived a series of

results relating to the maximum likelihood estimator. Specifically, they showed

that the estimator is
√
N -consistent under the expanding domain framework,

where N is the sample size. It is also consistent under the hybrid framework,

though the rate of asymptotic convergence for the spatial covariance parameters

is slower than
√
N . However, under infill asymptotics, the maximum likelihood

estimator for the spatial covariance parameters may be inconsistent.

Arguably the most widely studied Gaussian spatial process is the two-

parameter exponential covariance process, owing to its simplicity and mathemat-

ical convenience. In the case of one spatial dimension, the covariance function can

be expressed as cov(y(s), y(s′)) = σ2 exp (−α|s− s′|), for s, s′ ∈ R, where σ2 is the

variance of y(s), and α is the inverse spatial scale parameter. For equally spaced

observations, Abt and Welch (1998) and Zhang and Zimmerman (2005) showed

the
√
N -consistency of maximum likelihood estimation under the expanding

domain framework and derived a simple closed-form expression for I(σ2, α).

In contrast, Ying (1991) showed its inconsistency under the infill framework,

attributing this to the lack of asymptotic identifiability of the components in the

product σ2α (see also Ibragimov and Rozanov (1978, p. 100)). However, under

the hybrid framework, Chang, Huang and Ing (2017) showed that the maximum

likelihood estimator is consistent, with a convergence rate that is dictated by the

rate of growth of the spatial domain.

In contrast to maximum likelihood estimations, the large-sample results for

maximum composite likelihood estimations of Gaussian spatial processes are often

narrower in scope. This is largely because the asymptotics can vary depending on

the choice of component densities used in the composite likelihood. Furthermore,
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even if a particular maximum composite likelihood estimator is shown to be

consistent and asymptotically normal, it is often difficult to obtain a closed-

form expression for the asymptotic variance given by the sandwich covariance

matrix G(θ)−1 = H(θ)−1J(θ)H(θ)−1, where H(θ) = E[−∂2cℓ(θ;y)/(∂θ ∂θT )]

and J(θ) = E[{∂ cℓ(θ;y)/∂θ} {∂ cℓ(θ;y)/∂θ}T ], for a composite log-likelihood

cℓ(·) (Kent (1982); Lindsay (1988)). For Gaussian processes, calculating H(θ)

requires evaluating second-order moments, whereas J(θ) is considerably more

complicated because it involves fourth-order moments. As such, the majority

of available closed-form expressions for asymptotic relative efficiency are derived

under the simple exponential covariance Gaussian process. We now review the

literature for this specific, but important case.

Caragea and Smith (2007) investigated the so-called “small blocks estimator”

(henceforth, the composite marginal block likelihood estimator), where observa-

tions along a line are grouped into equally sized blocks, and independence between

blocks is deliberately assumed when constructing the composite likelihood

function. They focused on the exponential covariance Gaussian process under the

analogous equally spaced AR(1) process y(t+1) = ϕy(t) + ϵ(t+1), where {ϵ(t)}
are independent and identically distributed (i.i.d.) normal random variables with

mean zero and variance σ2
ϵ (thus, α = − log ϕ and σ2 = σ2

ϵ/(1− ϕ2)). Under the

assumption that σ2
ϵ is known, they derive closed-form expressions for J(ϕ) and

H(ϕ) by expressing each y(t) term in the composite likelihood in its causal time

series representation. Under this time series (expanding domain) framework, they

evaluate the asymptotic relative efficiency (limN→∞ I(ϕ)−1/G(ϕ)−1) for various

choices of ϕ and block size, finding it to be around 0.9 or higher.

For the same AR(1) process, Davis and Chun (2011) studied composite

marginal pairwise likelihood estimators. They showed that the traditional

pairwise likelihood, which takes the product of all bivariate densities, yields an

estimator that is not fully efficient for most values of ϕ. In contrast, maximizing

the consecutive marginal pairwise likelihood (based on the bivariate densities of

all adjacent pairs of observations) yields the standard Yule–Walker estimators for

ϕ and σ2
ϵ , and is therefore fully efficient.

Under the infill asymptotic framework, Bachoc, Bevilacqua and Velandia

(2019) investigated weighted marginal and conditional pairwise likelihood func-

tions for the exponential covariance Gaussian process. Owing to the aforemen-

tioned inconsistency of the maximum likelihood estimators of σ2 and α under infill

(Ying (1991)), they focused instead on estimating the microergodic parameter

σ2α. They derived the asymptotic distributions of the resulting composite

likelihood estimators, showing that full efficiency is achieved by setting weights

that correspond to the consecutive marginal pairwise likelihood of Davis and

Chun (2011). They also showed that the consistency of the marginal pairwise

likelihood estimator is subject to restrictions on the parameter space, unlike the

full likelihood and conditional pairwise likelihood estimators.
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In the same framework, Bachoc, Lagnoux and Nguyen (2017) derived infill

asymptotic distributions for a so-called “cross-validation estimator,” obtained

from a composite likelihood based on the product of all full conditional

distributions; henceforth, the composite full conditional likelihood. They

demonstrated the consistency and asymptotic normality of the estimator for σ2α,

as well as for σ2 and α separately when the other parameter is fixed. Interestingly,

their results show that the asymptotic variance of these estimators depends on

the construction of the infill sampling scheme, in contrast to the results of Ying

(1991) for the full likelihood.

The primary contribution of this study is the derivation of sandwich

covariance matrices that enable a unified analysis of the efficiency of composite

likelihood functions under the expanding domain, infill, and hybrid frameworks.

In particular, we expand existing results for the exponential covariance Gaussian

process, especially those of Bachoc, Lagnoux and Nguyen (2017) for the composite

full conditional likelihood, and those of Caragea and Smith (2007) for the

composite marginal block likelihood.

3. Sandwich Covariance Matrix for Gaussian Spatial Processes

Let {y(s), s ∈ S ⊆ Rr} be a zero-mean, r-dimensional Gaussian spatial

process with covariance function cov(y(s), y(s′)) ≡ Σ(s, s′;θ) and parameter

vector θ. Additionally, consider a finite subset of locations {si ∈ S, i =

1, . . . , N}, from which observations are taken to form the data vector y =

[y(s1), y(s2), . . . , y(sN)]
T . Note that any expressions for the sandwich covariance

matrix on θ here also apply to a Gaussian process with a nonzero mean function,

provided that this function is independent of θ.

The general definition of a composite likelihood function is quite broad

and can include component densities based on sums and differences of random

variables, among other possibilities (e.g., see Varin, Reid and Firth (2011), Bai,

Song and Raghunathan (2012) and Bevilacqua and Gaetan (2015)). Here, we

restrict our attention to the common case in which the component densities

involve only vectors whose entries are a subset of the entries in the data vector

y. We can then write composite marginal log-likelihood functions in the form

cℓ(θ;y) =
∑M

m=1 wm log f(ym;θ), and composite conditional log-likelihood func-

tions as cℓ(θ;y) =
∑M

m=1 wm log f(y1
m|y2

m;θ), for a set of positive weights wm and

M component densities on data subsets ym. Note that because f(y1
m|y2

m;θ) =

f(y1
m,y

2
m;θ)/f(y

2
m;θ), composite conditional log-likelihood functions may also

be written in the form of the former expression by allowing the weights to

be negative. This result suggests that we can analyze composite conditional

likelihood functions using similar methods to those for composite marginal

likelihood functions, which is something we use in Section 4.
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Because each ym follows a (multivariate) Gaussian distribution with some

covariance matrixΣm, the composite log-likelihood can be expressed as cℓ(θ;y) =

−
∑M

m=1 wm(log det (Σm) + yT
mΣ

−1
m ym)/2, up to an additive constant. Hence,

a straightforward application of calculations from Mardia and Marshall (1984)

yields the following result.

Theorem 1. Let y follow a zero-mean Gaussian distribution with covariance

parameter vector θ. Then,

{H(θ)}ij ≡ E

[
− ∂2

∂θi∂θj
cℓ(θ;y)

]
=

1

2

M∑
m=1

wmtr

(
Σ−1

m

∂Σm

∂θi
Σ−1

m

∂Σm

∂θj

)
, (3.1)

where tr(·) is the trace operator.

Obtaining an expression for J(θ) is more challenging, because it involves

taking the expectation of products between pairs of component densities, which

introduces fourth-order moments. However, with the assistance of an additional

lemma (all proofs are provided in the Supplementary Material), we obtain the

following main result.

Theorem 2. Let y follow a zero-mean Gaussian distribution with covariance

parameter vector θ. Then,

{J(θ)}ij ≡ E

[
∂

∂θi
cℓ(θ;y)

∂

∂θj
cℓ(θ;y)

]

=
1

2

M∑
m=1

w2
mtr

(
Σ−1

m

∂Σm

∂θi
Σ−1

m

∂Σm

∂θj

)

+
1

2

M∑
m=1

M∑
l ̸=m

wmwl tr

(
Σ−1

m

∂Σm

∂θi
Σ−1

m Σm,lΣ
−1
l

∂Σl

∂θj
Σ−1

l ΣT
m,l

)
, (3.2)

where Σm,l ≡ cov(ym,yl).

Observe the similarity between the first terms in (3.1) and (3.2). In

particular, if wm = 1, which is the case for an unweighted composite marginal

likelihood, then {J(θ)}ij differs from {H(θ)}ij only by the second term in

(3.2). This additional term contributes to the loss of information from using

the composite marginal likelihood compared with using the full likelihood.

The use of expressions (3.1) and (3.2) for inferential purposes is often

complicated by the computational complexity of (3.2). In particular, the

computation time scales with the square of the number of component densities,

which offsets the time benefit of using many simpler densities for fast point esti-

mation. Alternative approaches for estimating J(θ) include window subsampling

(Heagerty and Lele (1998)) and the parametric bootstrap (Bai, Kang and Song

(2014)). Given the theoretical focus of this study, we leave this as an avenue for

future research.
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1 2 D − 1 D
1
F

2
F

1 2 F 2F (D − 1)F DFi

si

Figure 2. Location of observations under the sampling scheme SD,F . The expansion of
the domain is controlled by D, whereas the infill frequency is controlled by F .

4. One-Dimensional Exponential Covariance Gaussian Spatial Process

For the remainder of this article, we focus on the special case of a zero-mean,

one-dimensional exponential covariance Gaussian process, where we can obtain

analytical large-sample results. We consider unweighted versions of both the

composite full conditional likelihood and the composite marginal block likelihood,

leaving brief discussion regarding the inclusion of weights to Section 5. We also

provide results pertaining to the inclusion of a constant mean parameter µ in

the Supplementary Material. An interesting finding related to µ is that the

asymptotic behavior of the estimators for µ and σ2 share similarities, such as

similar expressions of asymptotic relative efficiency for the composite marginal

block likelihood, and inconsistency under the infill asymptotic framework.

Consider a Gaussian spatial process {y(s), s ∈ (0,∞)} with mean zero and

exponential covariance function cov(y(s), y(s′)) = σ2 exp (−|s− s′|α). Suppose

we use a sampling scheme SD,F = {si = i/F, i = 1, . . . , DF = N}, as shown in

Figure 2, whereD controls the expansion of the spatial domain and F controls the

spacing between adjacent observations. Under this setup, the covariance matrix

for y = [y(s1), y(s2), . . . , y(sN)]
T has entries Σij = σ2 exp (−|i− j|α/F ), with

det (Σ) = σ2N [1− exp (−2α/F )]N−1 and

Σ−1 =
1

σ2(1− e−2α/F )




1 −e−α/F 0 . . . 0 0

−e−α/F 1 + e−2α/F −e−α/F . . . 0 0

0 −e−α/F 1 + e−2α/F . . . 0 0
...

...
. . .

. . .
. . .

...

0 0 0
. . . 1 + e−2α/F −e−α/F

0 0 0 . . . −e−α/F 1




.

(4.1)

Zhang and Zimmerman (2005) showed that the Fisher information matrix

under this setting is given by

I(σ2, α;y) =




DF

2σ4

(DF − 1)ρ2

σ2F (1− ρ2)

(DF − 1)ρ2

σ2F (1− ρ2)

(DF − 1)ρ2(1 + ρ2)

F 2(1− ρ2)2


 , (4.2)
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where ρ = exp (−α/F ). This serves as a baseline for calculating the relative

efficiency of our composite likelihood estimators. In addition, (4.2) allows us

to analyze the asymptotic behavior of the maximum likelihood estimation when

both σ2 and α are unknown, as well as when either one is known. In particular,

note that σ̂2
ML|α and α̂ML|σ2 , the maximum likelihood estimators of σ2 and α,

respectively, when the other is known, are consistent under all three asymptotic

frameworks, but σ̂2
ML and α̂ML, the respective maximum likelihood estimators

when both parameters are unknown, are only consistent under the expanding

domain and hybrid frameworks, as we show indirectly.

In the subsections that follow, we use asymptotic relative efficiency as a

metric to compare the composite likelihood estimators. For our model with the

parameters (σ2, α)T (which we temporarily relabel as (θ1, θ2)
T , for generality of

the expressions below), we calculate the expanding-domain asymptotic relative

efficiency (EDARE) for an individual parameter as EDARE(θ̂i,CL, θ̂i,ML) ≡
limD→∞{I(θ1, θ2)−1}ii/{G(θ1, θ2)

−1}ii, for i ∈ {1, 2}, when both parameters

are unknown, and as EDARE(θ̂i,CL|θj , θ̂i,ML|θj ) ≡ limD→∞{I(θ1, θ2)ii}−1/

[{H(θ1, θ2)ii}−1J(θ1, θ2)ii{H(θ1, θ2)ii}−1], for i ̸= j, when only θj is known.

As an overall measure of efficiency, we also calculate Overall EDARE ≡
limD→∞{det[I(θ1, θ2)−1]/det[G(θ1, θ2)

−1]}1/2. Where appropriate, we consider

the infill asymptotic relative efficiency by replacing D → ∞ with F → ∞, and

the hybrid asymptotic relative efficiency by taking bothD and F to ∞. Note that

in the cases we consider, the hybrid asymptotic relative efficiency is unaffected

by the relative growth rates of D and F .

Our approach for deriving the sandwich covariance matrix relies on expressing

the sum of the individual Gaussian log-densities in the form cℓ(σ2, α;y) =

q(σ2, α)− yTM(α)y/(2σ2), for some function q(·) and N ×N symmetric matrix

M(α), which can be decomposed as a linear combination of simpler matrices

{Ak}, each of which has a well-defined structure; that is, M(α) =
∑

ck(α)Ak.

The objective is to obtain expressions for tr(AkΣ) and tr(AkΣAlΣ) for all k and

l, which can then be used to find H(σ2, α) and J(σ2, α). Proofs of the theorems

that follow are provided in the Supplementary Material.

4.1. Composite full conditional likelihood

Owing to Markovian dependence in the exponential covariance setting,

it is well known (e.g., see p. 170–171 of Cressie and Wikle (2011)) that

the distribution of y(si) given all of the other observations follows the same

distribution as conditioning on the two nearest neighbors on either side of y(si)

(or on the single nearest neighbor for y(s1) and y(sN)). In particular, we have

(y(s1)|y(s2)) ∼ N(exp (−α/F )y(s2), σ
2[1 − exp (−2α/F )]), (y(sN)|y(sN−1)) ∼

N(exp (−α/F )y(sN−1), σ
2[1− exp (−2α/F )]), and
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(y(si)|y(si−1), y(si+1)) ∼ N


e−α/F [y(si−1) + y(si+1)]

1 + e−2α/F
, σ2 1− e−2α/F

1 + e−2α/F


,

for 1 < i < N . The composite full conditional log-likelihood is therefore

equivalent to a composite conditional “two nearest neighbors” conditional log-

likelihood, as given by

cℓ(σ2, α;y) = log f(y(s2)|y(s1);σ2, α) + log f(y(sN)|y(sN−1);σ
2, α)

+
N−1
m=2

log f(y(sm)|y(sm−1), y(sm+1);σ
2, α)

=


N

2
− 1


log (1 + e−2α/F )− N

2
log (2πσ2[1− e−2α/F ])

− 1

2σ2
yTM(α)y, (4.3)

where M(α) has a pentadiagonal structure, such that M(α) can be expressed as a

linear combination of five simpler N ×N matrices {Ak, k = 1, 2, .., 5}, the entries
of which can be defined in terms of the indicator function I(·), as follows: (A1)ij =

I(i = j), (A2)ij = I(i = j, i /∈ {1, N}), (A3)ij = I(i = j, i /∈ {1, 2, N − 1, N}),
(A4)ij = I(|i− j| = 1), and (A5)ij = I(|i− j| = 2). In particular, we can write

M(α) =
1

1− ρ2


1 + 2ρ2

1 + ρ2
A1 + 2ρ2A2 −

ρ4

1 + ρ2
A3 − 2ρA4 +

ρ2

1 + ρ2
A5


, (4.4)

where ρ = exp (−α/F ). Under this setup, we obtain the following result.

Theorem 3. For the exponential covariance Gaussian process with composite full

conditional log-likelihood defined by (4.3), the matrices comprising the sandwich

covariance matrix are given by

H(σ2, α) =




DF

2σ4

2ρ2

Fσ2(1− ρ4)
[DF − (1− ρ2)]

2ρ2

Fσ2(1− ρ4)
[DF − (1− ρ2)]

2ρ2

F 2(1− ρ4)2
hT
1 (DF, 1)T




and

J(σ2, α) =




1

2σ4(1 + ρ2)2
jT1 (DF, 1)T

4ρ2

σ2F (1− ρ2)(1 + ρ2)3
jT2 (DF, 1)T

4ρ2

σ2F (1− ρ2)(1 + ρ2)3
jT2 (DF, 1)T

4ρ2

F 2(1− ρ2)2(1 + ρ2)4
jT3 (DF, 1)T


 ,

where

h1 =


1 + ρ2 + 3ρ4 − ρ6

−1 + ρ2 − 3ρ4 + 3ρ6


, j1 =


1 + 4ρ2 + ρ4

−2ρ2 + 4ρ4


,
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Table 1. EDAREs for the exponential covariance Gaussian process.

Composite Full Composite Marginal Block

Conditional Likelihood Likelihood (fixed W )

EDARE(σ̂2
CL|α, σ̂

2
ML|α)

(1+ρ2)2

1+4ρ2+ρ4
1

1+2ρ2/[W (1−ρ2W )]

EDARE(α̂CL|σ2 , α̂ML|σ2) (1+ρ2+3ρ4−ρ6)2

(1+ρ2)(1+2ρ2+6ρ4+2ρ6+ρ8)
W−1
W

EDARE(σ̂2
CL, σ̂

2
ML)

(1−ρ2)(1+ρ2)
1+ρ4

(1−ρ2+2ρ2/W )/(1−ρ2)
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Figure 3. EDARE with respect to ρ = exp (−α/F ) of the composite full conditional
likelihood for the exponential covariance Gaussian process.

j2 =

[
1 + ρ2 + ρ4

−1 + ρ2 + ρ6

]
, j3 =

[
1 + 2ρ2 + 6ρ4 + 2ρ6 + ρ8

−1 + ρ2 − 4ρ4 + 8ρ6 + ρ8 − ρ10

]
.

Using the above result and (4.2), we can calculate the asymptotic relative

efficiency under all three asymptotic frameworks, and when one or both

parameters are unknown (a direct expression for G(σ2, α)−1 is provided in the

Supplementary Material).

Corollary 1. The EDAREs of the maximum composite full conditional likelihood

estimators for σ2 and α are presented in the middle column of Table 1. When

one parameter is known, the (individual) infill and hybrid asymptotic relative

efficiency for the other parameter is 2/3. However, when both parameters are

unknown, the entries in G(σ2, α)−1 diverge to ∞ under the infill and hybrid

asymptotic frameworks.

The EDAREs are plotted with respect to ρ ∈ (0, 1) in Figure 3, showing

that they are decreasing functions with respect to ρ. This suggests that this
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composite likelihood estimator performs better when the data are closer to being

i.i.d., that is, when the data are spaced far apart relative to the size of the spatial

dependence. Conversely, the estimator is less efficient if the dependence between

adjacent observations is high, which is inevitable under the infill and hybrid

frameworks. Note that the efficiency of 2/3 achieved under these frameworks

when one parameter is known agrees with the results of Bachoc, Lagnoux and

Nguyen (2017). In contrast, the efficiency decreases to zero when both parameters

are unknown, which is caused by the entries in G(σ2, α)−1 diverging to ∞.

This highlights an inherent structural issue with the composite full conditional

likelihood in this setting.

4.2. Composite marginal block likelihood

When constructing the composite marginal block likelihood, there is am-

biguity in how the DF observations are grouped. However, as a natural

choice for a one-dimensional equally spaced lattice, and to simplify developments

without compromising insight, we follow Caragea and Smith (2007) by grouping

observations into B blocks along the number line. We further assume that each

block contains exactly W observations, such that N = DF = BW . Under this

setup, the composite likelihood function is given by

cℓ(σ2, α;y) =
B−1
m=0

log f(y(sWm+1), y(sWm+2), . . . , y(sW (m+1));σ
2, α)

= −DF −B

2
log (1− e−2α/F )− N

2
log (2πσ2)− 1

2σ2
yTM(α)y,

(4.5)

where M(α) = diag(Q(α),Q(α), . . . ,Q(α)) for the W ×W matrix

Q(α) =
1

1− e−2α/F




1 −e−α/F 0 . . . 0 0

−e−α/F 1 + e−2α/F −e−α/F . . . 0 0

0 −e−α/F 1 + e−2α/F . . . 0 0
...

...
. . .

. . .
. . .

...

0 0 0
. . . 1 + e−2α/F −e−α/F

0 0 0 . . . −e−α/F 1




.

Using the definitions of the simple matrices from (4.4), but reduced to sizeW×W ,

we can also write Q(α) = (A1+ρ2A2−ρA4)/(1−ρ2). This leads to the following

result:

Theorem 4. For the exponential covariance Gaussian process with composite

marginal block log-likelihood defined by (4.5), the matrices comprising the

sandwich covariance matrix are given by
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H(σ2, α) =




DF

2σ4

ρ2(DF −B)

Fσ2(1− ρ2)
ρ2(DF −B)

Fσ2(1− ρ2)

ρ2(1 + ρ2)(DF −B)

F 2(1− ρ2)2




and

J(σ2, α) =




1

2σ4


DF +

2ρ2

1− ρ2W


B − 1− ρ2DF

1− ρ2W

 ρ2

σ2F (1− ρ2)
(DF −B)

ρ2

σ2F (1− ρ2)
(DF −B)

ρ2(1 + ρ2)

F 2(1− ρ2)2
(DF −B)




= H(σ2, α) +




ρ2

σ4(1− ρ2W )


B − 1− ρ2DF

1− ρ2W


0

0 0


 .

When analyzing the asymptotic performance of the composite likelihood

estimator here, the growth rates of W and B alongside D and F are important.

However, from a computational standpoint, we are most interested in the

case in which the block size (W ) remains fixed and B grows, thus avoiding

the computationally expensive evaluation of component densities with many

observations. As such, the following results consider W as fixed and B growing

in proportion to N = DF . Using Theorem 4 and (4.2), we can calculate the

asymptotic relative efficiency under all three asymptotic frameworks, as well as

when one or both parameters are unknown (a direct expression for G(σ2, α)−1 is

provided in the Supplementary Material).

Corollary 2. The EDAREs of the maximum composite marginal block likelihood

estimators for σ2 and α are presented in the right column of Table 1. Under infill

asymptotics, we have

lim
F→∞

var(σ̂2
CL|α) = lim

F→∞
{H(σ2, α)11}−1J(σ2, α)11{H(σ2, α)11}−1

=
σ4

W 2


2

αD
− 1− exp (−2αD)

α2D2


;

thus, σ̂2
CL|α is inconsistent under infill (D fixed), and consistent under the hybrid

framework (D,F → ∞), with a relative efficiency of zero. In contrast, α̂CL|σ2

is consistent under the infill and hybrid asymptotic frameworks, with the same

efficiency as in the expanding domain case (1−1/W ). When both parameters are

unknown, G(σ2, α)−1 converges to the zero matrix under the hybrid framework,

and the estimators achieve full efficiency.

The EDAREs are plotted in Figure 4 with respect to W and ρ. Plots (b) and

(d) show that for any given value of ρ, the efficiency of σ̂2
CL|α and α̂CL|σ2 relative

to their maximum likelihood counterparts is a monotonically increasing function

with respect to W , and approaches one. This is because W controls the extent
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Table 2. (Unscaled) asymptotic variance of various estimators based on the Fisher
information or sandwich covariance matrix for the exponential covariance Gaussian
process under infill.

Maximum Composite Full Composite Marginal Block

Likelihood Conditional Likelihood Likelihood (fixed W )

σ̂2 > 0 ∞ > 0

α̂ > 0 ∞ > 0

σ̂2
|α 0 0 (Infill ARE = 2/3) > 0

α̂|σ2 0 0 (Infill ARE = 2/3) 0 (Infill ARE = 1− 1/W )

σ̂2α 0 0 (Infill ARE = 2/3) 0 (Infill ARE = 1− 1/W )

to which the full likelihood is misspecified, with W = ∞ corresponding to the

full likelihood.

Plot (a) of Figure 4 shows that as ρ increases, the efficiency for σ̂2
CL|α decreases

to zero at all block sizes. This aligns with the finding in Corollary 2 that σ̂2
CL|α

is inconsistent under infill (F → ∞), where ρ tends to one. The composite

likelihood estimator can be written as σ̂2
CL|α = (W/N)

∑N/W
b=1 σ̂2

b,ML|α, a simple

average of the maximum likelihood estimates of σ2 within each block. Thus,

as F increases, the blocks come closer together, which increases the correlation

between individual estimates, and hinders the overall reduction in the variance

of σ̂2
CL|α. This presents an interesting difference to the infill asymptotic behavior

of the composite full conditional likelihood, as highlighted in Table 2.

In contrast to σ̂2
CL|α, plot (c) of Figure 4 shows that the efficiency of α̂CL|σ2

does not change with respect to ρ, or equivalently, with respect to α or F .

Furthermore, plot (d) shows that its efficiency is zero when W = 1, where

the composite likelihood function treats all observations as independent, and

is obviously not a function of α.

When both parameters are unknown, plot (f) of Figure 4 shows that the

relative efficiency for σ2 exhibits a peculiar trough with respect to W for ρ > 0, in

contrast to the monotonically increasing relationship in plot (b) when α is known.

This is partly because we now have full efficiency at both extremes of W , instead

of just at W = ∞. The improvement in efficiency at W = 1 and W = 2 for σ̂2
CL

compared with that for σ̂2
CL|α is mainly attributable to the maximum likelihood

estimator performing comparatively worse when α is unknown, because we know

that σ̂2
ML|α is consistent under infill, but σ̂2

ML is not. Between the two extremes, a

possible explanation for the loss of efficiency is that at the lower end, σ2 is being

treated as a “between-blocks” variance parameter, whereas at the upper end, it

is a “within-blocks” variance parameter. Hence, at the other values of W , σ̂2
CL

provides a compromise between these two conflicting extremes.

Interestingly, plots (d) and (h) of Figure 4 show that the relative efficiency of
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Figure 4. EDARE (with B → ∞) of the composite marginal block likelihood for the
exponential covariance Gaussian process. The left column displays ρ on the x-axis, with
each curve representing a different value of W , and the right column displays W on the
x-axis, with each curve representing a different value of ρ. Note that the EDARE curves
in (c) and (d) do not depend on ρ.
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Figure 5. EDARE (with B → ∞) of the composite marginal block likelihood for the
exponential covariance Gaussian process for different fixed values of W and when ρ =
exp (−α/F ) is near one.

α̂CL when ρ ≈ 0 (or α ≈ ∞) aligns exactly with that of α̂CL|σ2 for all block sizes.

However, for other values of ρ, the efficiency of α̂CL changes, unlike that of α̂CL|σ2 ,

which is likely an effect of the relationship between σ̂2
CL and α̂CL, because they

have to be estimated simultaneously. In fact, when the strength of dependence

is high, the EDARE of α̂CL also begins to exhibit a trough. This is exemplified

in Figure 5, where, for a fixed W ≥ 2, we observe that the relative efficiencies

of the two parameters converge to the same value as ρ → 1 (or, equivalently, for

α ≈ 0 or F → ∞). Furthermore, as ρ → 1, the minimum of the EDARE curve

decreases in value and is attained at a larger block size, though it can be shown

numerically that the lowest relative efficiency for any W and ρ ∈ (0, 1) is 0.8880

(to four decimal places). Owing to this right-shifting behavior, under hybrid

asymptotics where both D and F approach infinity, we achieve full efficiency

for both σ2 and α, for any W ≥ 2. This suggests that, in the limit, there is a

negligible information loss from misspecifying independence between blocks under

the hybrid asymptotic framework.

In terms of overall efficiency, for W = 2 in plots (e), (g), and (i) of Figure

4, the overall EDARE remains constant with respect to ρ (Overall EDARE =

1/
√
2), despite the (individual) EDARE for σ2 being constant (EDARE = 1) and

the EDARE for α increasing to one as ρ → 1. This contrast between the full

individual relative efficiency (as ρ → 1) and the nonfull overall relative efficiency

is driven by a stronger information dependence/correlation between σ̂2
CL and α̂CL

compared with that between σ̂2
ML and α̂ML. Note that this would adversely affect

the efficiency of an estimator that is a function of both σ̂2
CL and α̂CL (e.g., σ̂2

CLα̂CL),

but is largely inconsequential in the typical situation in which an inference is

carried out on each covariance parameter separately.
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Given prior results in the literature, we also highlight the efficiency of

the estimation for the microergodic parameter σ2α in the context of infill

asymptotics presented in Table 2. By applying a transformation of the parameters

ϕ = (ϕ1, ϕ2)
T = (σ2α, α)T to the sandwich covariance matrix, our results

match those of Bachoc, Lagnoux and Nguyen (2017) that the infill asymptotic

relative efficiency of the microergodic parameter for the composite full conditional

likelihood is 2/3. In the same manner, we find that the infill asymptotic

relative efficiency of the microergodic parameter for the composite marginal block

likelihood is 1− 1/W .

5. Conclusion

We have presented a unified case study of asymptotic relative efficiency

under the expanding domain, infill, and hybrid frameworks. This was made

possible by deriving a closed-form expression for the sandwich covariance matrix

under the one-dimensional exponential covariance Gaussian process. We showed

that the composite full conditional likelihood performs reasonably when only

one parameter is unknown, but is structurally unstable when both parameters

are unknown, where it leads to inconsistent estimations under both the infill

and the hybrid asymptotic frameworks. On the other hand, the composite

marginal block likelihood performs worse, in general, when one parameter is

unknown, but exhibits high efficiency, even for small block sizes, when both

parameters are unknown, achieving full asymptotic relative efficiency under the

hybrid framework. These results highlight the need to carefully consider the

large-sample framework when determining which composite likelihood function

to use for estimation and inference. Overall, for a one-dimensional exponential

covariance Gaussian process with both σ2 and α unknown, we recommend using

the composite marginal block likelihood, but not the composite full conditional

likelihood, owing to its aforementioned instability.

For the composite marginal block likelihood, given the various nontrivial

relationships between the block size, strength of dependence, and relative

efficiencies of the estimators, there is no straightforward optimal choice of

block size. However, small block sizes benefit the most from a computational

standpoint. Because the efficiency for σ2 can fall no lower than 0.8880 (see Figure

5), which is still quite high, it would be reasonable to choose W based solely on

the efficiency for α in this situation. One approach to achieving this would be

to specify a desired level of relative efficiency for α, and then solve for W . Here,

a rule of thumb is to consider the worst-case scenario where ρ ≈ 0, for which

EDARE(α̂CL, α̂ML) ≈ (W − 1)/W . Our choice of W based on a desired level of

relative efficiency q is then W = ⌈1/(1− q)⌉, where ⌈·⌉ is the ceiling function.

In future work, we would like to derive the sandwich covariance matrix

for weighted versions of the composite likelihood functions. Our findings can
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be extended to allow for general weights, but the sandwich covariance matrix

and subsequent efficiency expressions will likely be less interpretable, except

under specific weight configurations, such as binary weights (Bevilacqua and

Gaetan (2015)) or optimal weights (Bachoc, Bevilacqua and Velandia (2019);

Pace, Salvan and Sartori (2019)). A particular set of weights of interest is the

composite full conditional likelihood with alternating binary weights, in line with

the work of Besag (1974). Here, initial simulations (not shown) suggest that as

the strength of dependence between adjacent observations increases, the variance

of the estimator does not diverge to infinity.

It is also of interest to examine the consistency and asymptotic normality of

the estimators presented here, particularly under the infill and hybrid asymptotic

frameworks. One approach to proving these statistical properties is to combine

and extend the proofs presented in Chang, Huang and Ing (2017) and Bachoc,

Lagnoux and Nguyen (2017). In particular, for flexibility when analyzing different

asymptotic frameworks, it would be preferable to use the sampling scheme of

Chang, Huang and Ing (2017), where there are N equally spaced observations in

the range (0, N δ] (with s1 = N δ−1). In this way, infill occurs when δ = 0, the

expanding domain occurs when δ = 1, and any value in between corresponds to

a hybrid asymptotic framework.

The efficiency of various composite likelihood functions can also be explored

for extensions to the one-dimensional exponential covariance process, such as

including a nugget effect (observation measurement error) or a multidimensional

separable covariance. This would follow from existing work on these cases for

maximum likelihood estimation (Ying (1993); Chen, Simpson and Ying (2000);

Chang, Huang and Ing (2017)). The two-dimensional separable exponential

covariance case is of particular interest, because the maximum likelihood

estimators are consistent under infill, in contrast to the one-dimensional case

(Ying (1993)). Caragea and Smith (2007) also study this process for the

composite marginal block likelihood, which is still quite efficient, although less so

than in the one-dimensional case. Lastly, it would be interesting to consider

the effects of “mixed” spatial asymptotics on consistency and efficiency in a

multidimensional setting, such as expanding the domain in one direction and

infilling in another direction.

Supplementary Material

The online supplementary material covers proofs of Theorems 2, 3 and 4

from this paper, as well as derivations of the Fisher information and sandwich

covariance for a constant mean parameter under the exponential covariance

model.
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