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Abstract: The generalized resolution was introduced and justified as a criterion for

selecting nonregular factorial designs. Although there has been extensive research

conducted on other aspects of nonregular designs, few works have investigated the

construction of nonregular designs with maximum generalized resolutions, as we do

in this study. To date, our knowledge of nonregular designs with maximum gener-

alized resolutions is predominantly computational, except for very few theoretical

results. We derive lower bounds on relevant J-characteristics and present the con-

struction results. With the assistance of the lower bounds, many of the constructed

designs are shown to have maximum generalized resolutions.

Key words and phrases: Good Hadamard matrix, orthogonal array, Paley construc-

tion, tensor product.

1. Introduction

Nonregular factorial designs are not regular and, therefore, cannot be spec-

ified by defining relations. The generalized resolution, introduced by Deng and

Tang (1999), provides a concise characterization for a two-level nonregular design,

just as the resolution does for a two-level regular design. As a design selection

criterion, the generalized resolution is justifiable from two points of view, one

from the properties of projection designs, and the other from the biases on the

estimation of the main effects. An extension of the concept to multi-level designs

was examined by Evangelaras et al. (2005) and Grömping and Xu (2014).

Studies on nonregular designs started as early as the 1940s, when Plackett

and Burman (1946) introduced a class of main-effect plans for run sizes that are

multiples of four. However, such studies were rare until Lin and Draper (1992),

Wang and Wu (1995), Cheng (1995) and Box and Tyssedal (1996) investigated

the projection properties of nonregular designs. There have been extensive re-

search activities since, with much of the later work centered around the minimum
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G2-aberration criterion and the construction of minimum G2-aberration designs;

see, for example, Tang and Deng (1999), Xu and Wu (2001), Butler (2003), Xu

(2003), and Butler (2004). Parallel flats designs are a class of nonregular designs;

see Srivastava and Li (1996), Liao, Iyer and Vecchia (1996), and Mee and Per-

alta (2000) for some representative papers. Nonregular designs from quaternary

codes were considered by, for example, Xu and Wong (2007) and Phoa and Xu

(2009). A recent work on constructing strength-three orthogonal arrays is that

of Vazquez, Goos and Schoen (2019). We refer to Xu, Phoa and Wong (2009) for

a general review of topics on nonregular designs.

However, our knowledge of nonregular designs with maximum generalized

resolutions is predominantly computational. Important works along this line

include Deng and Tang (2002), Sun, Li and Ye (2008), Schoen, Eendebak and

Nguyen (2010), Bulutoglu and Ryan (2015), and Schoen, Vo-Thanh and Goos

(2017). There are very few theoretical results available in the literature. Xu

and Wong (2007) showed that quaternary code designs can be constructed to

have a generalized resolution of 3.5. Shi and Tang (2018) obtained a couple of

results that allow the construction of designs with large generalized resolutions

from good Hadamard matrices.

We undertake a comprehensive and systematic study on the construction

of two-level nonregular designs with maximum generalized resolutions. Section 2

introduces the notation and background, and Section 3 provides some preliminary

results on saturated orthogonal arrays. The main results are in Section 4, where

we derive a general lower bound on the relevant J-characteristics, and present

several constructions of nonregular designs with large generalized resolutions. We

show that many of the constructed designs have maximum generalized resolutions.

Section 5 presents another construction of designs with maximum generalized

resolutions. Section 6 concludes the paper.

2. Notation and Preparation

A two-level factorial design of n runs for m factors is represented by an n×m
matrix D = (dij), with dij = ±1, where each column represents a factor and each

row specifies a run. Design D is an orthogonal array of strength t, denoted by

OA(n, 2m, t), if the 2t level combinations occur with the same frequency in each

of its submatrices of t columns. Corresponding to every subset of columns of D

is a J-characteristic, defined as Ju =
∑n

i=1

∏
j∈u dij , where u ⊆ {1, 2, . . . ,m}.

Let r be the smallest positive integer such that max|u|=r |Ju| > 0, where |u| is

the cardinality of u. Then, the generalized resolution of design D, as defined in
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Deng and Tang (1999), is

R(D) = r + 1−max
|u|=r

|Ju|
n
.

Two-level orthogonal arrays are intimately related to Hadamard matrices. A

Hadamard matrix of order n is an n × n square matrix H with entries ±1 such

that HTH = HHT = nIn, where In is an identity matrix of order n. Therefore,

the columns of a Hadamard matrix are mutually orthogonal; so are its rows.

The order n of a Hadamard matrix has to be one, two, or a multiple of four.

Two Hadamard matrices are isomorphic if one can be obtained from the other

by a sequence of isomorphic operations consisting of row permutation, column

permutation, sign-switching a row, and sign-switching a column. A Hadamard

matrix is said to be normalized if its first column only contains entry +1; any

Hadamard matrix can be normalized by sign-switching those rows that have −1 in

the first column. Deleting the first column from a normalized Hadamard matrix

of order n, we obtain a saturated orthogonal array OA(n, 2n−1, 2).

The simplest way to construct Hadamard matrices is to use a tensor product.

Let H = (hij) and G be Hadamard matrices of orders n1 and n2, respectively.

Then, H⊗G = (hijG) is a Hadamard matrix of order n1n2. A Hadamard matrix

of Sylvester type, which corresponds to a regular design, is simply the k-fold

tensor product of a Hadamard matrix of order two, for any integer k ≥ 1.

Paley (1993) presented two constructions of Hadamard matrices. A Galois

field of order s is denoted by GF (s) = {α0, α1, . . . , αs−1}, where s is a prime

power. A nonzero element α in GF (s) is called a quadratic residue if α = β2, for

some β in GF (s). Now, define χ(α) = 0 if α = 0, χ(α) = 1 if α is a quadratic

residue, and χ(α) = −1 if α is not a quadratic residue.

Both of Paley’s constructions use the matrix Q = (qij)s×s, where qij =

χ(αi − αj), for i, j = 0, 1, . . . , s− 1. The first asserts that

H =

[
1 − 1Ts
1s Q+ Is

]
(2.1)

is a Hadamard matrix of order s+1, where 1s is a column vector of all ones. The

second claims that

H =

 1 1Ts − 1 1Ts
1s Q+ Is 1s Q− Is
−1 1Ts − 1 − 1Ts

1s Q− Is − 1s −Q− Is

 (2.2)

is a Hadamard matrix of order 2(s+ 1) if s = 4k + 1, for some integer k.
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We see that, for any given order n that is a multiple of four, Paley’s first

construction works if n− 1 is a prime power, and his second construction works

if n/2− 1 is a prime power that has the form 4k + 1.

Note that the matrix Q is skew-symmetric in Paley’s first construction and

symmetric in his second construction. The symmetry of Q in Paley’s second

construction is needed in Section 5.

3. Preliminary Results

Our first set of results concerns saturated orthogonal arrays OA(n, 2n−1, 2).

The next result provides a lower bound on the value of max|u|=3 |Ju| for such

designs.

Proposition 1. Let D be an OA(n, 2n−1, 2). We then have that

max
|u|=3

|Ju| ≥ n− 8

⌊
n

8

(
1− 1

(n− 3)1/2

)⌋
,

where bxc is the floor function.

Shi and Tang (2018) effectively proved that

max
|u|=3,4

|Ju| ≥ n− 8

⌊
n

8

(
1− 1

(n− 3)1/2

)⌋
.

Although this result does not imply Proposition 1 directly, a tiny modification to

its proof is all we need to prove Proposition 1.

Consider the Hadamard matrix from Paley’s first construction given in (2.1)

of Section 2. If we delete the first column, consisting of all ones, we obtain a

saturated orthogonal array OA(n, 2n−1, 2). This array is called a Paley design in

the literature.

Proposition 2. If an OA(n, 2n−1, 2) is a Paley design, we have that

max
|u|=3

|Ju| ≤ n− 8

⌈
1

8

(
n− 4− 2(n− 1)1/2

)⌉
,

where dxe is the ceiling function.

For a Paley design, Shi and Tang (2018) effectively established that

max
|u|=3,4

|Ju| ≤ n− 8

⌈
1

8

(
n− 4− 2(n− 1)1/2

)⌉
.

Proposition 2 is an immediate consequence of this result, because max|u|=3 |Ju| ≤
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Table 1.

order n 12 20 24 28 32 44 60 72 80

max|u|=3| |Ju| 4 12 8 12 8 12 12 16 16

max|u|=3,4 |Ju|.
If the upper bound in Proposition 2 meets the lower bound in Proposition

1, then the Paley design minimizes max|u|=3 |Ju|, and thus maximizes the general-

ized resolution. We can check that this happens for n = 12, 20, 24, 28, 32, 44, 60, 72,

and 80. Therefore, Paley designs for these orders have maximum generalized res-

olutions. The values of max|u|=3| |Ju| for these Paley designs are displayed above.

Whether or not Paley designs have maximum generalized resolutions for other

orders remains to be settled. The answer may well be affirmative, because we

have not found a counterexample. A sharper lower bound on the max|u|=3 |Ju|
value would help. Nevertheless, Paley designs provide an attractive class of non-

regular designs, because they have a generalized resolution bounded below by

3 + (8/n)
⌈
(1/8)

(
n− 4− 2(n− 1)1/2

)⌉
, which converges to four as n goes to in-

finity.

As mentioned immediately after Proposition 2, in addition to having small

max|u|=3 |Ju| values, Paley designs also have small max|u|=4 |Ju| values. This

makes these designs even more attractive, because max|u|=4 |Ju|/n represents the

largest correlation of two-factor interactions with each other. For example, among

all 7570 OA(28, 227, 2) (Schoen, Eendebak and Nguyen (2010)), twelve arrays have

max|u|=3 |Ju| = 12, and all twelve have the maximum generalized resolution. Only

one of these twelve arrays has max|u|=4 |Ju| = 12, and the other eleven all have

max|u|=4 |Ju| = 20. Not surprisingly, the best one is precisely the Paley design.

4. Main Results

We examine the general case in this section and consider an OA(n, 2m, 2),

for n/2 ≤ m ≤ n− 1. The next result generalizes Proposition 1.

Theorem 1. Let D be an OA(n, 2m, 2), where n/2 ≤ m ≤ n− 1. We then have

that

max
|u|=3

|Ju| ≥ L(n,m) = n− 8
⌊n

8
(1− q1/2)

⌋
,

where q = (2m− n)/((m− 1)(m− 2)).

Proof. Write D = (d1, . . . , dm). Then, there exist real vectors e1, . . . , ep, with

p = n − m − 1, such that 1n/n
1/2, d1/n

1/2, . . . , dm/n
1/2, e1, . . . , ep form an or-
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thonormal basis in the n-dimensional Euclidean space. Because d1d2, . . . , d1dm
are mutually orthogonal, for any given k = 1, . . . , p, we have

∑m
j=2 |〈d1dj/n1/2,

ek〉|2 ≤ 1, where 〈x, y〉 denotes the inner product of x and y. Noting that

d1d1 = 1n and 〈1n, ek〉 = 0, we obtain
∑m

j=1 |〈d1dj , ek〉|2 ≤ n. In general, we

have
∑m

j=1 |〈didj , ek〉|2 ≤ n, for every i = 1, . . . ,m. Summing over i and re-

moving redundancy gives
∑

1≤i<j≤m |〈didj , ek〉|2 ≤ nm/2. Summing over k and

rearranging, we obtain
∑

1≤i<j≤m
∑p

k=1 |〈didj , ek〉|
2 ≤ pnm/2. This shows that

mini<j
∑p

k=1 |〈didj , ek〉|
2 ≤ pn/(m − 1), which allows us to take i∗ and j∗ so

that
∑p

k=1 |〈di∗dj∗ , ek〉|
2 ≤ pn/(m − 1). Now, consider vector di∗dj∗ under the

orthonormal basis 1n/n
1/2, d1/n

1/2, . . . , dm/n
1/2, e1, . . . , ep. We then have that

n =
∑

j 6=i∗,j∗ |〈di∗dj∗ , dj/n1/2〉|2 +
∑p

k=1 |〈di∗dj∗ , ek〉|
2, owing to the orthogonal-

ity of di∗dj∗ to 1n, di∗ , dj∗ . Using |〈di∗dj∗ , dj〉| ≤ max|u|=3 |Ju| and the just estab-

lished bound on
∑p

k=1 |〈di∗dj∗ , ek〉|
2, we obtain that n2 ≤ (m−2) max|u|=3 |Ju|2+

pn2/(m− 1). Solving for max|u|=3 |Ju| and using p = n− 1−m, we obtain that

max|u|=3 |Ju| ≥ nq1/2, where q = (2m − n)/((m − 1)(m − 2)). Theorem 1 then

follows by noting that n−max|u|=3 |Ju| is a multiple of eight.

The lower bound L(n,m) in Theorem 1 reduces to that in Proposition 1

when m = n − 1 as q = 1/(n − 3). For m = n/2, Theorem 1 also gives sensible

results, because it is easily seen that L(n, n/2) = 0 if n is a multiple of eight and

L(n, n/2) = 4 otherwise. The case of m = n/2 is discussed further in Section 5.

Let Pn denote a Paley design of order n, which is a saturated design of n runs

for n−1 factors. Further, let Pn,m be any design that selects m columns from Pn

and, for convenience, we still call Pn,m a Paley design. In Section 3, we proved that

Pn has the maximum generalized resolution for n = 12, 20, 24, 28, 32, 44, 60, 72,

and 80. Using the bound in Theorem 1, we can establish that for each of these

orders, design Pn,m also has the maximum generalized resolution for a range

of m values. For n = 36, a Paley design is unavailable because n − 1 = 35

is not a prime power. Using the results of Shi and Tang (2018) on Hadamard

matrices of order 36, an OA(36, 235, 2) with max|u|=3 |Ju| = 12 can be obtained.

This design and many of its subdesigns can be shown by Theorem 1 to have the

maximum generalized resolution. We present in Table 2 the above results for

n = 20, 24, 28, 32, 36, 44, 60, 72, and 80. The case of n = 12 is excluded from

Table 2 because, trivially, P12,m has the maximum generalized resolution for any

m ≥ 3.

Table 2 also includes other designs with maximum generalized resolutions,

obtained later in this paper.

The next major task of this section is to present constructions of nonreg-

ular designs with large generalized resolutions. Using Theorem 1, many of the
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Table 2. Nonregular designs with maximum generalized resolutions.

n max|u|=3 |Ju| m source

20 12 13, 14, . . . , 19 Theorem 1

24 8 13, 14, . . . , 23 Theorem 1

28 12 17, 18, . . . , 27 Theorem 1

32 8 17, 18, . . . , 31 Theorem 1

36 12 21, 22, . . . , 35 Theorem 1

44 12 25, 26, . . . , 43 Theorem 1

60 12 33, 34, . . . , 59 Theorem 1

72 16 52, 53, . . . , 71 Theorem 1

80 16 54, 55, . . . , 79 Theorem 1

48 8 25, 26, . . . , 44 Theorem 4, Example 3

64 16 52, 53, . . . , 62 Theorem 3, Example 4

96 16 60, 61, . . . , 92 Theorem 4

128 16 75, 76, . . . , 124 Theorem 4, Example 4

144 16 83, 84, . . . , 121 Theorem 2, Example 1

192 16 106, 107, . . . , 176 Theorem 4, Example 3

768 32 511, 512, . . . , 704 Theorem 4, Example 3

20 4 3, 4, . . . , 10 Theorem 5

28 4 3, 4, . . . , 14 Theorem 5

36 4 3, 4, . . . , 18 Theorem 5

52 4 3, 4, . . . , 26 Theorem 5

60 4 3, 4, . . . , 30 Theorem 5

76 4 3, 4, . . . , 38 Theorem 5

84 4 3, 4, . . . , 42 Theorem 5

100 4 3, 4, . . . , 50 Theorem 5

108 4 3, 4, . . . , 54 Theorem 5

124 4 3, 4, . . . , 62 Theorem 5

resulting designs are shown to have the maximum generalized resolutions.

Theorem 2. Let A be an OA(n1, 2
m1 , 2) with R(A) = 4 − ε1, and B be an

OA(n2, 2
m2 , 2) with R(B) = 4− ε2. Then, D = A⊗ B is an OA(n1n2, 2

m1m2 , 2)

with R(D) = 4− ε1ε2.

Proof. Write A = (a1, a2, . . . , am1
) and B = (b1, b2, . . . , bm2

). Then, the columns

of D = A⊗B have the form of ai ⊗ bj . By a result of Tang (2006), we have

J(ai1 ⊗ bj1 , ai2 ⊗ bj2 , ai3 ⊗ bj3) = J(ai1 , ai2 , ai3)J(bj1 , bj2 , bj3),

where J(x, y, z) is the J-characteristic of three column vectors x = (x1, . . . , xn),

y = (y1, . . . , yn), and z = (z1, . . . , zn), defined as J(x, y, z) =
∑n

i=1 xiyizi. It is
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obvious that J(ai1 , ai2 , ai3) = 0 if ai1 = ai2 because A is an orthogonal array. We

therefore have that max|u|=3 |Ju(D)| = max|u|=3 |Ju(A)|max|u|=3 |Ju(B)|. Theo-

rem 2 follows.

Example 1. Let A and B both be P12, an OA(12, 211, 2), that has a generalized

resolution R = 4 − 1/3. Then, Theorem 2 states that design D = A ⊗ B, an

OA(144, 2121, 2), has a generalized resolution R(D) = 4 − 1/9. In terms of J-

characteristics, we have that max|u|=3 |Ju(D)| = 16. Because L(144, 121) = 16,

by Theorem 1, design D has the maximum generalized resolution. Deleting some

columns from D gives a design with fewer factors. Because L(144,m) = 16 for

all m values in the range of 83 ≤ m ≤ 121, we therefore obtain an OA(144, 2m, 2)

with the maximum generalized resolution for every m = 83, 84, . . . , 121.

Example 2. Let A be P12 and B be P32, so R(A) = 4−1/3 and R(B) = 4−1/4.

Using Theorem 2, we obtain a design D = A ⊗ B, an OA(384, 2341, 2), that has

a generalized resolution R = 4 − 1/12. This design does not achieve the lower

bound in Theorem 1. Although we do not know if it has the maximum generalized

resolution, we do know that it has a large generalized resolution, close to four.

The next result has a flavor similar to that of Theorem 2, but offers a different

perspective on the tensor product construction. Given a Hadamard matrix H,

we define

γ(H) = max
|u|=1,3

|Ju(H)|. (4.1)

Theorem 3. Let H be a Hadamard matrix of order n1 with γ = γ(H), and

A be an OA(n2, 2
m, 2) with R(A) = 4 − ε. Then, design D = H ⊗ A is an

OA(n1n2, 2
n1m, 2) with R(D) = 4− ε(γ/n1).

Proof. It is obvious that D = H ⊗A is an OA(n1n2, 2
n1m, 2). To prove R(D) =

4− ε(γ/n1), again using Lemma 2 of Tang (2006), we obtain

max
|u|=1,3

|Ju(D)| = max
|u|=1,3

|Ju(H)| max
|u|=1,3

|Ju(A)|.

Because A and D are orthogonal arrays of strength two, we have that Ju(D) =

Ju(A) = 0, for all u, with |u| = 1. This shows that max|u|=3 |Ju(D)| = max|u|=1,3

|Ju(H)|max|u|=3 |Ju(A)|, which entails that R(D) = 4− ε(γ/n1).
If H in Theorem 3 has a column of all ones, then γ(H) = n1, and thus

R(D) = 4− ε. This special case was established in Shi and Tang (2018).
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One can easily check that the Hadamard matrix

H =

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 (4.2)

has that γ(H) = 2.

Theorem 4. Consider the above Hadamard matrix H of order four, and let A

be an OA(n, 2m, 2) with R(A) = 4 − ε. Define D0 = A and Dk = H ⊗ Dk−1,

for k ≥ 1. Then, Dk, an OA(n4k, 2m4k

, 2), has that R(Dk) = 4 − ε/2k, for any

integer k ≥ 0.

Theorem 4 is immediate from Theorem 3.

Example 3. If we take P12 as A, then Dk is an OA(12 · 4k, 211·4k

, 2) that has

R(Dk) = 4− (1/3)/2k, for k ≥ 1. We also have that max|u|=3 |Ju(Dk)| = 4 · 2k =

2k+2. Now, consider D1, D2, and D3. Design D1 is an OA(48, 244, 2) with

max|u|=3 |Ju(D1)| = 8. Because L(48,m) = 8 for 25 ≤ m ≤ 44, any design by

selecting m columns from D1 has the maximum generalized resolution of 4−1/6.

Similarly, we obtain from D2 an OA(192, 2m, 2) with the maximum generalized

resolution for any m, with 106 ≤ m ≤ 176, and from D3 an OA(768, 2m, 2) with

the maximum generalized resolution for any m, with 511 ≤ m ≤ 704.

Example 4. If we take P32 as A, then Dk is an OA(32 · 4k, 231·4k

, 2), which

has that R(Dk) = 4 − (1/4)/2k = 4 − 1/2k+2 and that max|u|=3 |Ju(Dk)| =

8 · 2k = 2k+3. Again, using the lower bound in Theorem 1, we obtain from D1

an OA(128, 2m, 2) that has the maximum generalized resolution for any m, with

75 ≤ m ≤ 124.

Now, let Ck = ((1, 1)T , (1,−1)T )T ⊗ Dk, for k ≥ 0. Then, Ck is OA(64 ·
4k, 231·2

2k+1

, 2) also with R(Ck) = 4 − 1/2k+2, by Theorem 3. Together, designs

Dk and Ck, for k ≥ 0, cover all run sizes n ≥ 32 that are powers of two. In this

regard, the quaternary code designs, constructed by Xu and Wong (2007) for run

sizes that are powers of two, are not competitive, because they have a generalized

resolution of 3.5.

An application of Theorem 3 requires a Hadamard matrix H with a small

value of γ(H), defined in (4.1). A full investigation of this problem is beyond the

scope of this study. Notwithstanding, we provide some results from a preliminary

study.
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Proposition 3.

(i) The value of γ(H) must be even.

(ii) If a Hadamard matrix of order n ≥ 4 exists, we can find one such that

γ(H) ≤ n− 2.

(iii) We have that γ(H1 ⊗ H2) = γ(H1)γ(H2) for any two Hadamard matrices

H1 and H2.

Proof. Parts (i) and (iii) are obvious. To prove part (ii), let H be a Hadamard

matrix of order n that contains a column of all ones. Then, γ(H) = n. Now, we

switch the signs of one row of H and obtain another Hadamard matrix, say H ′.

Because Ju(H) is a multiple of four, for all u with |u| = 1, 3 and Ju(H ′) differs

from Ju(H) by ±2, we have that Ju(H ′) is even, but not a multiple of four; thus,

γ(H ′) ≤ n− 2.

Let γn = minH γ(H), where the minimization is over all Hadamard matrices

of order n. Obviously, we have that γ2 = γ4 = 2. By a computer search, we

obtain that γ8 = 4 and γ12 = 8. A useful lower bound on γn is provided here.

Proposition 4. We have that γn ≥ n1/2.

Proof. Let H = (h1, . . . , hn) be a Hadamard matrix of order n. Considering

vector 1n under the orthonormal basis {h1/n1/2, . . . , hn/n1/2}, we obtain that

n2 =
∑n

j=1 |J(hj)|2. Because |J(hj)| ≤ γ(H), we obtain γ(H) ≥ n1/2. Therefore

γn ≥ n1/2.
Using the bound in Proposition 4, in conjunction with the fact that γn is

even, we have that γ16 ≥ 4 and γn ≥ 6 for n = 20, 24, 28, 32, and 36. For n = 4k,

we have that γ4k ≥ 2k. Using the Hadamard matrix of order four given in (4.2)

and Part (iii) of Proposition 3, we can construct a Hadamard matrix H of order

4k with γ(H) = 2k. This establishes that γ4k = 2k, which means that Dk in

Theorem 4 is the best if A is also the best.

5. Further Results

This section provides another construction of nonregular designs with maxi-

mum generalized resolutions. The focus here is on designs with max|u|=3 |Ju| = 4

when n is not a multiple of eight.

Consider an OA(n, 2m, 2) when n is not a multiple of eight. From Deng and

Tang (2002), we know that Ju is also not a multiple of eight for all u with |u| = 3.

This means that max|u|=3 |Ju| ≥ 4. The best situation is max|u|=3 |Ju| = 4, which
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happens if and only if |Ju| = 4, for all |u| = 3. An OA(n, 2m, 2) with |Ju| = 4,

for all |u| = 3, has a maximum generalized resolution of 4− 4/n.

For n = 12, design P12, an OA(12, 211, 2), has |Ju| = 4, for |u| = 3. For

n = 20, 28, and 36, computational results from Deng and Tang (2002), Sun, Li

and Ye (2008), and Schoen, Vo-Thanh and Goos (2017) show that OA(n, 2m, 2)s

with max|u|=3 |Ju| = 4 can be found for m ≤ n/2. This is no coincidence, because

the following general result can be established.

Let n = 8k+4. Suppose that s = n/2−1 = 4k+1 is a prime power. Consider

the following two matrices:

C =

−1 1Ts
1s Q− Is
−1 − 1Ts
−1s −Q− Is

 , D =

−1 1Ts
1s Q− Is
1 1Ts
−1s −Q− Is

 , (5.1)

where Q is given in Section 2. We see that matrix C is an n× (n/2) submatrix of

the Hadamard matrix from Paley’s second construction, and thus has orthogonal

columns. However, C is not an orthogonal array because all of its columns have

more −1s than +1s. Matrix D is an OA(n, 2n/2, 2), obtained from C by multi-

plying −1 to the (n/2+1)th row of C, while leaving all other rows untouched.

Theorem 5. Suppose that n/2− 1 = 4k + 1 is a prime power. Then, the above

design D as in (5.1) is an OA(n, 2n/2, 2) with max|u|=3 |Ju| = 4, and therefore

has a maximum generalized resolution R = 4− 4/n.

Proof. We need to show that |Ju| = 4, for all |u| = 3. Note that a projection

design of D onto three factors has many mirror image runs. When calculating

the J value of a projection design onto three factors, these mirror image runs

do not contribute, so we only need to focus on those runs that have no mirror

images. Looking at the projection design onto the first three factors, we see that

only the following six runs need to be considered: runs 1, 2, 3 and runs (n/2+1),

(n/2 + 2), and (n/2 + 3). Using the symmetry of matrix Q, the J value for the

three columns of the matrix consisting of these six runs must be ±4. For other

projection designs onto three factors, without loss of generality, we consider the

projection design onto columns 2, 3, and 4. For this projection design, we see

that we need only consider runs 1, 2, 3, 4 and runs (n/2+1), (n/2+2), (n/2+3),

and (n/2 + 4). Owing to the symmetry of Q, matrix A1 collecting runs 1, 2, 3,

and 4 as rows and matrix A2 collecting runs (n/2 + 1), (n/2 + 2), (n/2 + 3), and

(n/2 + 4) as rows must have forms
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A1 =

 1 1 1
−1 q1 q2
q1 − 1 q3
q2 q3 − 1

 , A2 =

 1 1 1
−1 − q1 − q2
−q1 − 1 − q3
−q2 − q3 − 1

 .
The J value for the three columns of the 8 × 3 matrix obtained by combining

the rows of A1 and A2 is therefore given by 2 − 2(q1q2 + q1q3 + q2q3), which is

equal to ±4 for all possible scenarios of q1 = ±1, q2 = ±1, and q3 = ±1. We have

therefore shown that Ju = ±4, for all |u| = 3.

For n ≤ 128, Theorem 5 allows the construction of an OA(n, 2n/2, 2) with

a generalized resolution R = 4 − 4/n, for n = 20, 28, 36, 52, 60, 76, 84, 100, 108,

and 124. Obviously, designs from deleting some columns from this OA(n, 2n/2, 2)

have the same generalized resolution.

An inescapable question arising from Theorem 5 is how large m can be if an

OA(n, 2m, 2) is to have R = 4 − 4/n when n = 8k + 4. Theorem 5 states that

m ≥ n/2 if n/2 − 1 = 4k + 1 is a prime power. The next result gives an upper

bound on m.

Theorem 6. If an OA(n, 2m, 2) is to have max|u|=3 |Ju| = 4 for n = 8k+4 ≥ 20,

then it is necessary that m ≤ n/2 + 2.

Proof. We need only prove that L(n,m) ≥ 12 for m = n/2 + 3, where L(n,m)

is the lower bound on max|u|=3 |Ju| in Theorem 1. Because n = 8k + 4, we have

that L(n,m) = (8k + 4)− 8
⌊
k + 0.5− (n/8)q1/2

⌋
. Thus, to prove L(n,m) ≥ 12,

we need only prove that 0.5 − (n/8)q1/2 < 0, which is equivalent to q > (4/n)2.

Plugging n = 8k + 4 and m = n/2 + 3 = 4k + 5 into q > (4/n)2, and then doing

some elementary algebra, we obtain an equivalent inequality 2k(2k−1) > 3. This

last inequality holds whenever k ≥ 2 and, correspondingly, n = 8k + 4 ≥ 20.

A weaker version than Theorem 6 can be proved using results from super-

saturated designs. Suppose that there exists a design of n = 8k + 4 runs and m

factors with |Ju| = 4, for all |u| = 3. By half fractioning (Lin (1993)), we can

construct a supersaturated design of n/2 runs for m−1 factors with the property

that the inner product of any two columns is ±2. By Cheng and Tang (2001,

Thm. 4), we obtain that m− 1 ≤ n/2 + 2, and hence that m ≤ n/2 + 3.

Theorem 6 cannot be improved by just using Theorem 1, because we can

show in a way similar to proving Theorem 6 that L(n, n/2 + 2) = 4. Thus,

the existence of an OA(n, 2n/2+1, 2) or an OA(n, 2n/2+2, 2) with R = 4 − 4/n

for n ≥ 44 is still theoretically possible, even though the impossibility has been

established for n = 20, 28, and 36 by Sun, Li and Ye (2008) and Schoen, Vo-Thanh

and Goos (2017).

When n is a multiple of eight, an OA(n, 2n/2, 3), a strength-three array, can



NONREGULAR DESIGNS WITH MAXIMUM GENERALIZED RESOLUTIONS 605

be constructed by folding over a Hadamard matrix of order n/2. Shi and Tang

(2018) showed that if a Hadamard matrix of order n/2 has type bmax, then its

foldover has the maximum generalized resolution given by R = 4+8bmax/(n/2) =

4 + 16bmax/n.

6. Conclusion

We provide a comprehensive study on the construction of nonregular designs

with maximum generalized resolutions. We derive lower bounds on the value of

max|u|=3 |Ju|, and present several methods for constructing designs with large

generalized resolutions. With the help of lower bounds, many designs are shown

to have maximum generalized resolutions. The following is a summary of existing

results and the new results obtained in this study.

• From the computational results of Sun, Li and Ye (2008), Schoen, Eendebak

and Nguyen (2010), and Schoen, Vo-Thanh and Goos (2017), we can deduce

that designs with maximum generalized resolutions have been obtained for

n = 12, 16, 20, and 24 with all m ≤ n − 1, for n = 28 with m ≤ 14 and

m = 27, for n = 32 with 17 ≤ m ≤ 31, and for n = 36 with m ≤ 18. The

other designs in Table 2 are new.

• The general result of Xu and Wong (2007) is that the QC designs of n runs

they constructed have a generalized resolution of 3.5, where n is a power of

two. In contrast, our design Dk, an OA(32 · 4k, 231·4k

, 2), given in Example

4, has R(Dk) = 4 − 1/2k+2; our design Ck, an OA(64 · 4k, 231·22k+1

, 2), also

given in Example 4, has R(Ck) = 4− 1/2k+2. Together, designs Dk and Ck,

for k ≥ 0, cover all run sizes n ≥ 32 that are powers of two.

Future work could examine the minimum G2-aberration properties of the

constructed designs, and more specifically, select those designs, using the G2-

aberration criterion, from among the constructed designs that have large or max-

imum generalized resolutions. Hadamard matrices of type bmax can be used to

construct saturated strength-three orthogonal arrays with maximum generalized

resolutions, but the general problem of constructing strength-three arrays with

maximum generalized resolutions is yet to be solved. This is an important topic

for further investigation.
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