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Abstract: The randomized response technique (RRT) is used to reduce underreport-
ing of sensitive characteristics in survey studies by enhancing privacy protection.
Currently, the RRT is mainly applied for prevalence estimation of some sensitive
event. We extend the application of the RRT to an analysis of a time-to-event
outcome. Event time data collected from surveys are usually subject to case-
I interval-censoring, so that only “current-status” data on the occurrence of the
event by the examination time are available. As such, we focus on current-status
(case-I interval-censored) event time data collected using the RRT. Based on the
data, we propose a semiparametric maximum likelihood estimation procedure for
the event time distribution given the covariates. The proposed method is assumed
to follow a general class of semiparametric transformation models characterized by a
parametric function for the relationship between the event time and the covariates,
as well as an unspecified baseline function. We develop the asymptotic theory
for the proposed estimation, including the consistency and asymptotic normality,
and examine its finite-sample properties using simulation studies. We apply the
proposed method to current-status data surveyed using the RRT to make statistical
inferences on the time to incidence of extramarital relations since marriage.

Key words and phrases: Randomized response technique, semiparametric maximum
likelihood estimation, semiparametric transformation model, sensitive issue.

1. Introduction

The time duration to the occurrence of some event of interest is a common
and important research target in various disciplines, including medicine and
the social sciences. Usually, the observation of the event time is subject to
incompleteness caused by a limitation of the observation procedure, a well-known
phenomenon called “censoring.” For example, when the occurrence of an event is
not tracked continuously, but only by a sequence of examinations, the event time
lies in some interval between two consecutive examinations, that is, the event
time is subject to interval censoring. In survey studies, it is common for there
to be only one examination during the observation period. Here, the event time
is subject to a special case of interval censoring, called case-I interval censoring,
and the resulting event time data are called “current-status” data. Analyses of
case-1 interval-censoring data, including regression analyses, are widely used in
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the literature; see Huang] (1996)), |[Lin, Oakes and Ying| (1998), Martinussen and
Scheike| (2002)), Sun and Sun| (2005)), Tian and Cai (2006), Sun/ (2006), Zhang
and Sun! (2010)), Wen and Chen| (2012)), among others, for further details.

In addition to censoring, event time data obtained from survey studies are
also subject to participants’ response bias, that is, the participants answer the
survey questions inaccurately or falsely. Response bias is of particular concern
when the survey questions are related to moral, legal, or other sensitive issues,
because there is a greater chance that participants will want to protect their
privacy, and thus conceal the truth on such issues. In other words, response data
from sensitive survey questions can be highly erroneous.

To encourage respondents to truthfully answer sensitive questions, the ran-
domized response technique (RRT) was proposed by Warner| (1965)), and has
been extended by various subsequent authors (Greenberg et al.l [1969; Horvitz,
Shah and Simmons|, [1967; Kukl 1990} Singh, Singh and Mangatl, 2000} |Gjestvang
and Singh|, |2006; Narjis and Shabbir} |2023). The RRT encourages respondents
to respond to sensitive issues by using some random device (such as a coin,
cards, or dice), the outcome of which is blind to the interviewer. As a result, the
respondents may feel it is safer to tell the truth, because they cannot be identified
by the interviewer, thus reducing underreporting of sensitive characteristics in
surveys (Scheers and Dayton, [1988).

Two types of the RRT are popular: the related- and unrelated-question RRTs.
Warnerfs (1965) original RRT proposal is now termed the “related-question”
RRT, and uses a question set consisting of a sensitive question A, and a
complementary question A¢. For example,

A: Have you ever had sex with someone other than your spouse?
A°: Have you never had sex with someone other than your spouse?

The interviewee is asked either A or A°, determined by a random device and
unknown to the interviewer. |Greenberg et al.| (1969) proposed the unrelated-
question RRT, which employs a question set consisting of a sensitive question A,
and an innocuous question B. For example,

A: Have you ever had sex with someone other than your spouse?
B: Were you born in the month of January, February, or March?

The interviewee answers one of A or B, which again is determined by a random
device and unknown to the interviewer. The probability of answering “yes” to
question B is known, or can be estimated before the survey. A simple RRT is
designed by asking interviewees to either answer question A truthfully, or answer

)

“yes,” regardless of the truth, according to the outcome of a random device. This
RRT can also be conceived as an unrelated-question RRT with an innocuous

question B, such that the probability of answering “yes” to B is one.
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Although the RRT has been applied to obtain less biased estimations of
the prevalence (Warner, 1965; Greenberg et al., [1969) and factors (Scheers and
Daytonl, [1988) affecting sensitive behavior, it has not been applied to estimate
an event time distribution. As mentioned above, event times in survey studies
are usually only observed in the form of interval-censored data, often case-I
interval-censored, or current-status data. Hence, an analysis of time-to-event
data collected using the RRT may also need to address the interval-censoring
problem in addition to the special data structure under the RRT.

In this work, we propose a general methodology for analyzing current-status
event time data collected using the RRT in a survey study. Specifically, we
propose a semiparametric maximum likelihood estimation procedure for the event
time distribution given the covariates, which is assumed to follow semiparametric
transformation models characterized by a parametric function for the relationship
between the event time and the covariates, and an unspecified baseline function.
We also discuss the asymptotic theory, including the consistency and asymptotic
normality, for the proposed estimation, and examine its finite-sample properties
using simulation studies. We apply the proposed method to a set of current-
status data collected using the RRT to make statistical inferences about the time
to the incidence of extramarital relations after marriage.

2. Current-Status Data and Model

Let T, C, and Z denote the time to the sensitive event of interest, survey
time, and covariate vector for an individual, respectively. Then, 6 = I(T < C)
indicates whether or not the sensitive event has occurred by the survey time C,
where I(-) is the indicator function.

Given the covariate Z, the event time T is assumed to follow a semiparametric
transformation model, namely, at time ¢, the conditional distribution function of
T given Z is of the form

Pr(T <t|Z = z) = F(exp(8'2)H(t)), (2.1)

where F' is a known distribution function, 5 is an unknown vector of regression
parameters, and H is an unspecified increasing real-valued function. The choices
of F(x) = 1—exp(—z) and F(x) = x/(1+) lead to the proportional hazards and
proportional odds model, respectively, which are well-known models for lifetime
distributions with ranges on [0,1]; see, for example, Zeng and Lin| (2006) and
Zeng and Lin| (2007)).

Throughout the paper, we assume the censoring mechanism is noninforma-
tive, that is, T" and C are conditionally independent given Z.
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Figure 1. Diagrams of the probability mechanism for the unrelated-question RRT (left
panel) and the related-question RRT (right panel).

3. Estimation under the Unrelated RRT

Suppose that the current-status data for the sensitive event are collected
using the unrelated-question RRT (Greenberg et al., [1969). Recall that the
unrelated-question RRT consists of a question A on the sensitive event and
an innocuous question B, and one of them, determined by a random device,
is answered by the interviewee. Let (Q be a binary random variable, with @) = 1
denoting that the interviewee answers question A and @ = 0 denoting that
the interviewee answers question B, and let W be the binary response of the
interviewee to the innocuous question B. A single observation in the unrelated-
question RRT survey then consists of O = {Y,C, Z}, where Y = Q5 + (1 — Q)W,
with § = I(T < C). Here, and in the following, we assume that interviewees
answer honestly when asked the sensitive question. Figure 1 illustrates the
probability mechanism of the answer Y from the unrelated-question RRT. Here,
we propose an estimation procedure for the event time model based on
the independent and identically distributed (i.i.d.) sample O; = {Y;, C;, Z;}, for
1 =1,...,n, of the unrelated-question RRT observation O. Let the probabilities
Pr(Q =1)=q, Pr(W =1|C,Z) = ¢, and Pr(W = 0|C, Z) = 1 — c¢. The values of
q and c are assumed known in the following.

Observe that

Pr(Y =1|C, 2)

=Pr(Y =1|C,Z,Q =1)Pr(Q=1)+Pr(Y =1|C, Z,Q = 0) Pr(Q = 0)
=Pr(6 =1|C,Z)q+Pr(W = 1|C, Z)(1 — q)

= qF (e’ *H(C)) + ¢(1 — q).

Hence, the likelihood function of (Oy,...,0,) takes the form

n

L, (0) =[] L(610y), (3.1)

i=1

where L(0]0) = {qF (e *H(C)) + (1 — 9)e}* {1 — qF (" H(C)) — (1 — q)c}~
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an 9 (ﬁ, H). The semiparametric maximum likelihood estimator (SPMLE)
= (B, H), referred to as the RRT estimator, of § maximizes the likelihood in
(3-1).

It is obvious that (3.1) depends on H only through H(C;), for i = 1,...,n.
Therefore, in maximizing L,,, we treat H as a right-continuous step functlon that
jumps at the survey time C;. Let ¢; < --- < tx be the ordered distinct time
points of C}, for ¢« = 1,...,n, associated with Y; = 1. For a person with Y; = 0
and t, < C; < tyy1, consider two increasing step functions, H; and H,, with
H, = H, at all t;, except that H,(C;) = Hy(tx) and Ho(C;) > H;(t;). Because the
transformation F' is increasing, we conclude that L(3, Hy) > L(f3, Hy). Therefore,
H can have jumps only at ¢, for j = 1,..., K. Let h; denote the jump size at t;.

Because the number K of jumps increases with the sample size, a direct max-
imization of can be challenging. Note that, without randomized response
sampling, O = (Y, C, Z) reduces to the current-status data (6, C, Z). Turnbull
(1976) proposed a self-consistency formula for computing the SPMLE, that is
essentially an EM algorithm based on current-status data without covariates.
Herein, we propose a novel EM algorithm that extends Turnbull’s method to
a regression analysis of randomized response survival data. Let N;; = I(T; €
(tj_1,t]), for j =1,..., K, with t, = 0. We treat the failure time indicator N;;
and the latent mdlcator Q; of selecting the sensitive question in the unrelated-
question set as missing values in the EM method. Let g =1—qgand¢c=1—c.
The complete-data likelihood of {(Y;, Cy, Zi, Nij, Qi),i = 1,...,n,5 = 1,..., K}

takes the form

n QiYi s
L;(0) =_H<{q 11 VF(eB’ZiH(tj))Nw} {q{l_F(eﬁ/ziH(Ci))Hw )

t;<C;

X((jc)(l Q:)Y; (C]C)(le')(lyz‘))7

where VF(e? % H(t;)) = F(e”% H(t;)) — F(e? % H(t;_,)). In the M-step, we
maximize

ZlY Y (NyQ) log V("7 H(ty)) + (1 - Y)Q[ log{1 — F (e # H(C)))}

=1 t;<C;
+Q; logq + (1 — Q;)Y:log(ge) + (1 — Q) (1 — Y;) log(ge) |, (3.2)

where
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- gF ("7 H(Cy))" {1 = F(e” # H(Cy))}' ™"
gF(PEH(C))Y {1~ F(ePZH(C)) Y + geriet

and
(NijQi)/\ = E(NijQiD/iaChZi) = Pr(Nij = 17Qi = 1|Yi,ci, Zi)
qVF (e % H(t;))
qF (e ?:H(C})) + gc (t; = Co)
To update hy, for k = 1..., K, we use a one-step self-consistency algorithm, as

follows. By the first-order approximation, the objective function (3.2) can be
approximated by

Z Y: > (NyQ:i) log{F (" # H(t;))e” % h;} (3.3)

i=1 t;<C;

+(1 = Y)Q! log{1 — F(e” # H(Cy))}

+Q} log g+ (1 — Q1)Y;log(qe) + (1 — QM)(1 — )10g(q0)] (3.4)

where F(z) = dF(z)/dz. We set the derivative of (3.3) relative to hy, to zero to
obtain

0= ) (NaQ:) —+Z > (NQ)" (;) (P ZH(t)}e? % I(t, < t,)

:Y;=1 :Y;=1j5:t;<C}

- @ ( ) {7 H(Cy)}e" 7 (1 < C),

1:Y;=0

which gives an updating algorithm for hy,

hk:{Z( NiQ;) } DT (V@) (?) (e ZH (t,) P ZI(t, < t;)

:Y;=1 :Y;=15:1;<C;

s QA< | ){e“m »}eﬁ’zif(tksa)]_ ,

3:Y; =0

where F(z) = d?F(z)/dz®. To update S, we use a one-step Newton-Raphson
algorithm based on . The initial value of  is set to zero and the initial value
of hy is set to 1/K. The E-steps and M-steps are iterated until the changes for
the parameter estimates between two successive iterations are all less than 10~%.

With regularity conditions, given in the Appendix, our theorems establish
the asymptotic properties for the RRT estimator 9. Denote by 6y = (5o, Ho) the
true parameter. Define the metric d*{(3, H), (3, H)} = (||8— 8|2+ H — H||2)"/2,
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where || - || is the Euclidean norm and ||H||3 = [ H(u)*du.

Theorem 1 (Consistency and rate of convergence). The RRT estimator
(B, H) is consistent; that is, B = By and H(t) 5 Hy(t) for every t in the
study period. The rate of convergence of (3,H) is of order n~'/3; that is,

d*{(B. H), (Bo, Ho)} = Op(n~1/3).

Let w(f) = qF(e?2H(C))e’?H(C), £(h) = qF(eﬂ/ZH( ) + (1 —g)c, and
V(0) = £(6){1 — £(8)}. Define m*(610) = w(@V(O) {7 — ¢"(C)H(C) 1Y -
£(0)}, where
E{Zw(6,)*V(6,) " |C}

) = O Gy V60 IO}

Theorem 2 (Asymptotic normality). The RRT estimator B\ s asymptotically
normal; that is,

V(B - B) = f Zm (60103) + 0p(1) 5 N{0,Z7'S(Z7")'},

where ¥ = E{m*(0o|0)m*(0,|0)'} and T = —E{0m*(0,|0)/08}.

Although the overall convergence rate for (3, H) is Op(n=2/3), it is dominated
by that of the estimated nonparametric baseline function H ; the convergence rate
for B still achieves the usual parametric rate Op(n~'/2). The asyrnptotic variance
var(B) = I~ '¥(Z7")"/n _can be estimated by var(B) = Z7'S(Z1) /n, with 3 =

1" {m*(010,)m*(6]0;)} and T = —n =t 2" dm*(A|0;)/0B. In particular,
the conditional expectations in g* can be estimated by using the multivariate
product kernel method (Huang, 1996]).

4. Estimation under the Related-Question RRT

In this section, we discuss estimation with current-status data obtained
from the related-question RRT (Warner, [1965). Recall that this RRT consists
of a question A and a complementary question A°, and that one of them,
determined by a random device, is answered by the interviewee. Let ) be a
binary random variable, such that () = 1 represents the interviewee answering
A, and Q = 0 represents the interviewee answering A°. A single observation
in the related-question RRT survey consists of O = {X,C,Z}, where X =
Qi+(1-Q)(1—-6), with 6 = I(T < C). Again, we assume that interviewees answer
honestly when asked the sensitive question. Figure 1 illustrates the probability
mechanism of the answer X from the related-question RRT. Below, we propose
an estimation procedure for the event time model based on the i.i.d. sample,
0, = {X;,C;, Z;}, for i = 1,...,n, of the related-question RRT observation
O = {X,C, Z}. Here, we assume the value of ¢ = Pr(Q = 1) is known. The case
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with ¢ = 0.5 leads to a degenerate data distribution containing no information
on model (2.1)), and hence is excluded.
Let g = 1—qand F = 1 — F. Similarly to the derivation of (3.1)), the

likelihood function of the sample (61, ..., 0,) takes the form

n

L.(9) = [IL(010s). (4.1)

i=1

where L(6]0) = [(qF + qF){e” ZH(C)})¥[(1 — ¢F — gF){e” ?H(C)}]'~. The
nonparametric maximum likelihood estimator 0, = (Br,flr), referred to as the
rRRT estimator, of § = (8, H) maximizes the likelihood under the related-
question RRT. As in Section 3, let t; < --- < tx be the ordered distinct time
points of {C;|X; = 1,4 = 1,...,n}. Furthermore, as in the case of the RRT
estimator .FAI, the rRRT estimator fIT can have jumps only at ¢;,7 =1, for ..., K.
For the computation of the rRRT estimator, we employ a similar EM algorithm
to that developed in Section 3, as described below.

Let the failure time indicator N;; = I(T; € (t;-1,t;]), and let @Q; be the latent
indicator of selecting the sensitive question in the related-question set, both of
which are treated as missing values in the EM method. Let X; = 1 — X, and
Q; = 1—Q;. The complete-data likelihood of the sample {(X;, C;, Z;, N;j, Qi),i =
1,...,n,5=1,..., K} takes the form

>

Qi

where VF(e? % H(t;)) = F(e” % H(t;)) — F(e? % H(t;_,)).

By omitting terms in L¢ () irrelevant to (5, H), in the M-step, we maximize

i l Z X{(N;Q) + Xi(NijQi)/\} log VF(eﬁ,ZiH(tj)) (4.2)

i=1 Lt; <C;

+(Xin/‘\ + XzQi\) log F(eﬁlZiH(Ci))] )

where

Q' = B(Qi| Xy, Ci, Z;) = Pr(Q; = 11X,,Cy, Zy)
qFXiF'=Xi(ePZiH(CY))
(qF + qF)X:(qF + qF )= X:(ef'Z H(C;))’
(Ni;Qi)" = E(N;;Qi1X:,Ci, Z;) = Pr(Ny; = 1,Q; = 11X;,C;, Z;)
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_ qVF(PEH(ty))
 (¢F + qF)(e? % H(C,))
(NZ-J-QZ-)A = E{N;;(1-Q,)|X;,Ci, Z;} =Pr(N;; =1,Q, =0 X,,C;, Z;)
_ GVF("7H(ty))
 (qF + qF){e? % H(Cy)}

I(t; < C)X

I(t; < C)(1 - X,),

To update h;, for j = , K, we replace VF(e?% H(t;)) in with
its first-order approx1mat10n F(eﬁ 2 iH(t,))e? % h;, and set the derlvatlve of [@.2)
with respect to hy to zero to obtain an updating algorithm for hy,

=[S i) + )|

{ Z Z {X NipQ:)" + Xi(Nw Q)" } (?) (P Z H(t;)} e % (1, < t;)

+Z XQA+XQA)< F ){eﬂZzH( i)}eﬁ/Zq(tkga—)] .

To update 3, we use a one-step Newton—Raphson algorithm based on . We
obtain the rRRT estimator by starting with initial values § = 0 and h; = 1/K, for
j=1,..., K, and then iterating between the E- and M-Steps until the changes
for the parameter estimates between two successive iterations are all less than
1074,

Given the regularity conditions in the Appendix and ¢ # 0.5, the following
tllem:f:ms establish the asymptotic properties for the rRRT estimator @ =
(By, H..).

Theorem 3 (Consistency and rate of convergence). The TRRT estimator
(/B\'mﬁr) s consistent; that is, BT 5 Bo andAﬁrg) 5 Hy(t) for every t in the

study period. The rate of convergence of (B, H,) is of order n='/3; that is,

d*{(B\W ﬁr)? (507 HO)} = O;D(nil/g)'
 Let @(0) = (- DF( P H(O)" H(C), E(6) = (aF +F){e” “H(C)}. and
V(0) = E(0){1 - €(0)}. Define m*(0|0) = @(0)V(0) {Z — g (C)H(C) " HX -
E(0)}, where
. E{Zi(6.V(0,) " |C}

E {w(0,)2V(6) " |C}
Theorem 4 (Asymptotic normality). The TRRT estimator BT 1s asymptoti-
cally normal; that is,
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\/ﬁ(/gr Z HO‘O + OP( ) i) N{O,IT_IET(IT_l)’},

where %, = E{m*(0,|0)m*(6|0)'} and I, = —E{dm*(6,|0)/dB}.

The asymptotic variance for B, var(ﬁ,) =7 '3,(Z") /n, can be estimated
by var(,) = Z7'5,(Z.) /n, where 5, = n~ S {m*(0,|0:)m* (9,/0,)'} and
7, = —n! oo, om* (6,10:)/08. Based on the asymptotic normality and the
estimated variance, one can perform hypothesis testing and construct a confidence
interval for the regression parameter 3.

The proofs for the asymptotic theory of the RRT and rRRT estimators in
Theorems 14 are, in general, based on the techniques of [Huang (1996), [van
der Vaart and Wellner| (1996), and Korosok| (2008). In short, we first apply
the techniques developed in [van der Vaart and Wellner| (1996) to establish the
consistency and the convergence rate of estimators in Theorem 1 and 3, then
use the techniques similar to Huang (1996) to derive the efficient scores (m
and m*) and the invertibility of the efficient Fisher Informations (Z and Z,), and
finally follow the empirical process theory and semiparametric M-estimator theory
(Korosok, [2008; van der Vaart and Wellner, (1996) to establish the asymptotic
normality of the estimators in Theorems 2 and 4. Proofs for the theorems are

*

given in the Appendix.

Remark 1. In |Ahangar et al. (2012), the response probability distribution F' to
the sensitive issue is estimated indirectly using the probability distribution of
the actual response Y (to the mix of sensitive and innocuous question problems)
Pr(Y = 1) = ¢F + (1 — q)c, or by using the probability distribution of the
actual response X (to the mix of sensitive and complementary question problems)
Pr(X =1) = qF + (1 — q)(1 — F), and the resulting estimate of F' can take a
value outside [0,1]. Our method differs from that of Ahangar et al. in that we
directly model and estimate the distribution ', avoiding the problem of an out-of-
range estimation. In the current work, we employ the same questionnaire survey
designs as those of |Warner| (1965) and |Greenberg et al| (1969)), but propose a
different modeling and estimation approach to those of |Ahangar et al. (2012),
Warner| (1965), and |(Greenberg et al.[ (1969). In particular, we focus on a (type-I)
interval-censored time-to-event model and data, which has not previously been
addressed in the RRT literature.

5. Simulation Studies

We employ simulation studies to assess the performance of the proposed
estimation methods and examine the adequacy of the associated normal approxi-
mations. Each simulation consists of 1,000 replications. The sample size n = 500
or 1000 for each simulated data set.

In the first simulation study, we consider the covariate vector Z = (Z;, Z,)',
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where Z; is generated from Bernoulli(0.5), Z, is generated from N (0,0.5), and
they are independent of each other. Given the covariate Z, the time T to the
sensitive event is generated from with 8 = (1,0.5)', H(t) = 0.5t°7, and
F(x) = 1—exp(—x), which corresponds to the proportional hazards (PH) model.
The survey time C' is simulated from Uniform(0,1), independently of 7" and Z.
The answer to the sensitive question is given by 6 = I(T' < C), and the answer
to the innocuous question W is generated as Bernoulli with Pr(W = 1|C, Z) = ¢,
with the constant ¢ = 0,0.25,0.5, or 1. Given d and W, the observed response Y
of the unrelated-question RRT survey is Y = Q0 + (1 — Q)W, and the observed
response X of the related-question RRT survey is X = Q5+ (1—Q)(1—46), where
Q is Bernoulli with Pr(Q = 1) = ¢, for ¢ = 0.5, 0.7, 0.9, or 1, with the case ¢ = 0.5
excluded for the related-question RRT as mentioned in Section 4. The unrelated-
question RRT observation consists of O = (Y,C, Z), and the related-question
RRT observation consists of O = (X,C, Z). In the second simulation study, the
data are simulated from the same setups as above, except that F(z) = z/(1+x),
which corresponds to the proportional odds (PO) model.

The simulation results are presented in Tables 1 and 2, including the bias
and standard deviation (SD) over the simulation replicates for the estimators of
B, the average standard error (ASE) based on the asymptotic theory, and the
coverage probability (CP) of the 95% Wald-type confidence intervals for 8 over
the simulation replicates. Also presented are the results of the relative efficiency
(RE) of the RRT or the rRRT estimation relative to the ideal case, defined as
MSE(f;)/MSE(f), where MSE is the mean squared error over the simulation
replicates, 3 is the RRT estimate (B) or the rRRT estimate (Br) of 3, and BI
is the “ideal” estimate obtained when the full data {(9;,C;, Z;)|i = 1,...,n} are
available, that is, the estimate from under g = 1.

The results in Tables 1 and 2 show that the proposed estimators for the
event time model parameters under the unrelated- and the related-question
RRT surveys are essentially unbiased. Furthermore, the asymptotic theory
performs well in finite samples: the asymptotic standard error approximates
the simulation standard deviation well, and the Wald-type confidence interval
based on asymptotic normality has a virtually correct coverage probability. As
expected, the RRT estimators for both the related- and unrelated-question RRT's
are less efficient than the estimator based on the current-status data without
the RRT, that is, the “ideal” estimator. In addition, the relative efficiency of
the RRT estimators with respect to the ideal estimator ranges from 10 to 87%,
depending on the probability mechanism of the random device underlying the
RRT. Comparing the results of the unrelated- and related-question RRTs, we
find that the unrelated-question RRT leads to more efficient estimation than does
the related-question RRT, especially when the probability ¢ of answering “yes”
to the innocuous question is smaller. The efficiency of the related-RRT estimator
increases when the probability g of choosing the sensitive question instead of the
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Table 1. Simulation results for the PH model under various survey designs. (317 32) :
the unrelated-question RRT estimator; (Brl, Brg) : the related-question RRT estimator;
(3117 B\[g) : the ideal estimator. ASE: the average of the standard error estimates; CP: the
coverage probability of the 95% confidence interval; RE: the ratio of the mean squared
error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE
05 0 Bl 0.014 0.276 0.290 96.6 0.347 -0.002 0.191 0.199 96.9 0.349
B2 0.003 0.187 0.210 97.5 0.358 0.001 0.138 0.144 95.7 0.311
0.25 (B;  0.075 0.358 0.362 96.7 0.198 0.029 0.238 0.244 96.6 0.222
B2 0.036 0.259 0.257 96.5 0.183 0.016 0.175 0.174 96.1 0.193
0.5 B1  0.088 0.405 0.389 97.1 0.154 0.048 0.252 0.260 96.4 0.193
B 0.052 0.284 0.271 97.4 0.150 0.023 0.181 0.182 95.5 0.177
1 B1 0.098 0.356 0.322 93.8 0.195 0.046 0.236 0.220 94.7 0.220
B2 0.067 0.240 0.203 90.6 0.203 0.024 0.149 0.141 93.0 0.264
07 0 B1 0.010 0.222 0.225 95.1 0.535 -0.001 0.153 0.156 95.3 0.542
B2 0.007 0.145 0.162 97.2 0.591 0.001 0.111 0.112 94.9 0.483

0.25 p; 0.037 0.249 0.246 94.4 0.417 0.015 0.165 0.170 95.6 0.461
B2 0.020 0.169 0.176 96.7 0.434 0.007 0.121 0.121 95.8 0.402
0.5 B 0.043 0.257 0.255 95.1 0.390 0.021 0.175 0.176 95.6 0.412
B2 0.027 0.179 0.179 959 0.383 0.013 0.121 0.124 954 0.398

1 51 0.056 0.251 0.242 95.0 0.401 0.027 0.173 0.168 94.5 0.413
B2 0.038 0.170 0.158 93.8 0.412 0.018 0.113 0.111 93.3 0.450
- B 0.079 0.506 0.510 97.6 0.101 0.036 0.342 0.335 95.4 0.107
Bro 0.038 0.331 0.349 97.4 0.113 0.024 0.237 0.234 95.9 0.104
09 0 B1 0.012 0.181 0.181 94.8 0.804 0.005 0.121 0.126 96.1 0.867
B2 0.012 0.123 0.129 96.7 0.820 0.003 0.088 0.089 95.7 0.766

0.25 ([;  0.020 0.185 0.184 95.3 0.770 0.007 0.125 0.128 96.2 0.816
B> 0.016 0.127 0.130 95.9 0.759 0.005 0.091 0.090 95.1 0.722

0.5 61 0.022 0.184 0.186 95.2 0.774 0.010 0.126 0.129 95.3 0.800
B2 0.020 0.130 0.130 96.0 0.723 0.007 0.090 0.091 95.9 0.729

1 B1 0.027 0.187 0.186 95.1 0.745 0.015 0.133 0.130 94.9 0.713
B2 0.025 0.129 0.126 94.7 0.729 0.011 0.089 0.088 95.8 0.713

- By 0.023 0.216 0.216 94.2 0.561 0.015 0.146 0.150 96.2 0.588
Brz 0.023 0.148 0.152 96.5 0.561 0.009 0.105 0.105 96.2 0.534

1 - BH 0.015 0.162 0.161 94.5 - 0.005 0.113 0.112 95.1 -
312 0.014 0.111 0.111 954 - 0.005 0.077 0.078 95.2 -

complementary question approaches one. These effects correspond to a bias—
efficiency trade-off, as mentioned in Scheers and Dayton| (1988)); see Section 7 for
further discussion.

Figure 2 shows the Q-Q plots for the standardized RRT estimates {var(j3)} /2
(B — B) and the standardized rRRT estimates {var(3,)} */2(B, — 8) for
with respect to the standard normal quantile values under the PH model with
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Table 2. Simulation results for the PO models under various survey designs. (51, Bg) :
the unrelated-question RRT estimator; (Brl, Brg) : the related-question RRT estimator;
(311, B\[g) : the ideal estimator. ASE: the average of the standard error estimates; CP: the
coverage probability of the 95% confidence interval; RE: the ratio of the mean squared
error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE
05 0 El -0.015 0.342 0.363 96.4 0.396 -0.018 0.233 0.249 97.0 0.406
32 -0.011 0.229 0.262 98.0 0.413 -0.007 0.163 0.179 96.9 0.424

0.25 [/ 0.062 0.456 0.466 97.0 0.220 0.024 0.305 0.316 96.7 0.237
32 0.028 0.331 0.333 974 0.197 0.011 0.222 0.225 95.7 0.229

0.5 31 0.072 0.520 0.513 96.9 0.168 0.047 0.333 0.344 96.5 0.196
B2 0.043 0.369 0.360 97.4 0.158 0.017 0.236 0.243 96.5 0.201

1 fj\l 0.093 0.516 0.471 958 0.169 0.041 0.340 0.318 94.8 0.189
B2 0.069 0.358 0.317 92.8 0.164 0.014 0.224 0.216 94.2 0.225

0.7 0 81 -0.014 0.279 0.287 94.9 0.597 -0.012 0.191 0.198 95.9 0.606
EQ -0.004 0.183 0.207 97.5 0.646 -0.006 0.138 0.143 95.6 0.590

0.25 B 0.025 0.321 0.321 95.1 0.448 0.010 0.211 0.221 95.9 0.495
32 0.014 0.221 0.230 96.9 0.444 0.004 0.156 0.158 95.3 0.459

0.5 B 0.030 0.339 0.339 95.5 0.401 0.018 0.232 0.234 95.5 0.409
B2 0.022 0.240 0.241 96.7 0.376 0.010 0.161 0.166 96.0 0.437

1 B 0.044 0.350 0.343 95.8 0.374 0.023 0.244 0.237 94.9 0.369

B2 0.032 0.241 0.238 95.5 0.367 0.014 0.168 0.164 95.2 0.399

- //8\7“]. 0.077 0.672 0.692 97.8 0.102 0.031 0.435 0.446 96.8 0.116
Brz 0.042 0.472 0474 983 0.097 0.016 0.311 0.313 96.5 0.116

09 0 31 -0.008 0.234 0.237 94.7 0.848 -0.006 0.158 0.164 96.3 0.881
B2 0.002 0.159 0.170 97.1 0.864 -0.003 0.116 0.118 95.3 0.836

0.25 [/ 0.005 0.242 0.244 94.6 0.792 -0.001 0.165 0.169 95.8 0.812
B2 0.009 0.167 0.175 97.0 0.782 0.001 0.121 0.121 953 0.771

0.5 B1  0.008 0.246 0.249 94.7 0.770 0.003 0.168 0.173 95.7 0.779
B2 0.014 0.173 0.178 96.1 0.722 0.004 0.121 0.123 96.0 0.767

1 B 0.011 0.254 0.256 95.5 0.719 0.009 0.181 0.178 95.9 0.674

B2 0.017 0.178 0.181 96.5 0.678 0.008 0.126 0.126 95.9 0.706

- //8\7“1 0.009 0.286 0.289 952 0.566 0.009 0.197 0.200 96.1 0.570
Br2 0.017 0.197 0.206 97.2 0.559 0.006 0.141 0.142 96.1 0.569

1 0 B]l -0.006 0.215 0.217 94.7 - -0.007 0.149 0.151 95.8 -
B]z 0.002 0.148 0.155 96.9 - -0.001 0.106 0.107 94.6 -

g = 0.7,¢ = 0.25, and n = 1000. The Q-Q plots confirm that the normal
approximation theory for the proposed estimators is adequate.

6. Analysis of Extramarital Relations Data

In this section, we apply the proposed methods to a data set from the
Taiwan Social Change Survey (TSCS) conducted by Academia Sinica in Taiwan.
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Figure 2. Q-Q plots of the standardized RRT estimates (left panels) and rRRT estimates
(right panels) versus the standard normal distribution under the simulation scenario with
n = 1000,qg = 0.7, and ¢ = 0.25, and the PH model.

One of the survey questions was aimed at extramarital relations, in particular,
extramarital sex, and was asked using the unrelated-question RRT of |Greenberg
et al. (1969) for 1,140 study participants, who were aged above 18 years and
married. The sensitive and innocuous questions were given by

A: Have you ever had sex with someone other than your spouse?
B: Were you born in the month of January, February, or March?

The interviewees were asked to pick up one card from the deck of 40 cards
numbered 1 to 5 (8 cards numbered 1, 4 numbered 2, 8 numbered 3, 16 numbered
4, 4 numbered 5), and not to tell the interviewer the number on the card. Then,
the interviewees answered Question A or B, according to the number on the
card. If the number on the card was 1, 2, or 3, they answered Question A; if the
number on the card was 4 or 5, they answered Question B. Under the design, the
probability of answering the sensitive question A is Pr(Q = 1) = ¢ = 0.5, where
@ is a binary random variable representing whether question A (Q = 1) or B is
answered.
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Table 3. Analysis results of extramarital relations data.

Model Male Atti  Child EduYear max-loglik

PH Est 1.223* 0.791* -0.948 -0.032 -588.128
SE 0320 0.312 0.505 0.038

PO Est 1.449* 0.950* -1.268 -0.036 -589.355
SE 0373 0.433 0.673 0.048

n = 1040, q = 0.5,¢c = 0.25, and “x” denotes significance.

Based on the survey data obtained using the above RRT design, we wish to
study the relationship between a set of covariates and the time 7" to extramarital
relations since marriage. Let C' denote the survey time of the interviewee since
he/she was married, obtained by the answer to the survey question, “How many
years have you been married 77 Let 6 = I(T < C) be the current-status indicator
for the interviewee at the survey time C, representing whether or not the sensitive
event (extramarital relations) had occurred by the time C'. Owing to the RRT
design, instead of observing T', we can only observe Y = Qd+ (1—Q)W, assuming
that the interviewee answered question A truthfully, and W is the response to
question B.

The covariates we consider in the analysis include gender (Male; 1: Male,
0: Female), attitude toward extramarital relations (Atti; 1: Yes, 0: No), any
children (Child; 1: Yes, 0: No), and years of education (EduYear; 1.5-27
years). Whether an interviewee has any children was obtained by the survey
question “Do you have any child?”, and the attitude toward extramarital relations
of an interviewee was obtained by the survey question “Can married people
have extramarital relations?” To investigate the covariate effects on the time
to extramarital relations, we consider the class of generalized odds-rate hazards
models (Scharfstein, Tsiatis and Gilbert, |1998)), that is, the function F' in
is given by F(z) = 1 — (1 4+ vz)¥,v > 0. This class of models includes the
PH (v = 0) and PO (v = 1) models as special cases. For the TSCS RRT data,
the generalized odds-rate hazards model with v = 0, that is, the PH model is
found to give the largest log-likelihood value (-558.128) over a set of grid values
for v € [0,2]. The regression analysis results for the TSCS RRT data based on
the PH and PO models are presented in Table 3.

As shown in Table 3, the results from both models reveal that males have a
significantly higher cumulative chance of experiencing extramarital relations than
females do. Furthermore, persons with a positive attitude toward extramarital
relations have a significantly shorter time to extramarital relations than persons
with a negative attitude do. On the other hand, people with children and
who have more education tend to have less incidence of extramarital relations,
although these trends are not statistically significant at the 5% level.

Figure 3 presents the RRT estimates of the cumulative percentages of
extramarital relations over years since marriage for males and females, obtained
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Figure 3. The estimated cumulative proportions of extramarital relations for males
and females under the PH model and the PO model, with the covariates (Atti, Child,
EduYear) fixed at the sample means.

from the PH and PO models, with the covariates Atti, Child, and EduYear
fixed at their sample means. The estimates of the proportions of males and
females having extramarital relations based on Figure 3 are presented in the
Supplementary Material.

Here, to help readers understand the proposed method, we summarize and
explain the steps applied to the TSCS unrelated-question RRT data. First, we set
the time-to-event model, which can belong to a general class of models, such as the
generalized odds-rate hazard models. The resulting likelihood is then obtained
from of Section 3. Second, we apply the computation algorithm described in
Section 3 to maximize the likelihood function and obtain the maximum likelihood
estimates of the model parameters. Third, we base on the asymptotic normality
theory in Theorem 2 to make the inferences, including the hypothesis testing and
confidence intervals, about model parameters. Fourth, we choose an appropriate
time-to-event model from the general class of models considered, and compare the
log-likelihood values of different models in the class. When the method is applied
to related-question RRT data, the steps are essentially the same, except that the
likelihood function is now obtained from expression (3.1 of Section 4, and the
computation algorithm and the asymptotic normality theory of the maximum
likelihood estimates are provided in Section 4 and Theorem 4, respectively.

7. Conclusion

Current-status data obtained from routine survey studies, where continuous
follow-up is rare, allow us to analyze the time-to-event distribution and the
distribution conditional on certain covariate variables (Huang, 1996} |Jewell and
van der Laan) 2003)). In this work, we extend the regression analysis for current-
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status data to that for data collected using theRRT, including the unrelated-
question RRT of Greenberg et al. (1969)) and the related-question RRT of Warner
(1965). The RRT is usually applied in surveys on sensitive issues, and uses some
random perturbation of the target question in a well-designed manner to make
it possible to analyze the target issue while protecting interviewees’ privacy.
Statistical analysis methods for the prevalence of a sensitive event, possibly
adjusting for certain covariates, based on RRT data are available. The main
and novel contribution of this work is that we extend the application of the RRT
to event time analysis.

Our simulation studies reveal that the unrelated-question RRT leads to a
more efficient regression coefficient estimation than that of the related-question
RRT. In particular, the unrelated-question RRT achieves higher efficiency when
the probability ¢ of answering “yes” to the innocuous question is smaller.
However, a smaller value of ¢ would make the group of persons with the sensitive
event easier to identify, which, in turn, would make that group of persons less
willing to answer the sensitive question truthfully, leading to larger bias. In
particular, the extreme case of ¢ = 0 would not be used in practice, because it
would make the group of persons with the sensitive event fully identifiable. On
the other hand, increasing the probability ¢ of selecting the sensitive question,
rather than the innocuous question (in the unrelated-question RRT) or the
complement of the sensitive question (in the related-question RRT), can yiled
higher estimation efficiency; and the extreme case of ¢ = 1 yields the current-
status data exactly for the sensitive event, and hence full efficiency. However,a
larger value of ¢ means less privacy protection, and thus may induce larger bias,
as above. Hence, there is a bias—efficiency trade-off when analyzing survey data
on sensitive issues.

In this work, we assume that interviewees answer the sensitive question
truthfully under the RRT. Relaxing this assumption requires an extension of
the methods proposed here for event time regression analysis, and so is left as
poissible.

Supplementary Materials

The Matlab code implementing the proposed methods and a more detailed
report of the TSCS data analysis are available in the online Supplementary
Material.
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Appendix

We use the notation P,, Py, and P for the expectations taken under the
empirical distribution, the true underlying distribution, and a given model,
respectively. Assume Z is d-dimensional. The parameter space of 3 is a compact
subset B of R%, and the parameter space of H is a set H of all right-continuous
non-decreasing functions that are uniformly bounded on the study period [0, 7].
The asymptotic theories are based on the following assumptions.

(C1) The covariate vector Z is bounded with E{var(Z|C)} is positive definite.

(C2) The density of survey time C' is continuous with support [, 72] where 0 <
T < T <T.

(C3) The true parameter (3, is an interior point of its parameter space, and H,
is continuously differentiable and satisfies M ' < Hy(1) < Hy(2) < M.

Our proofs of the theorems are mainly based on the techniques developed in
Huang| (1996)), van der Vaart| (1998), and |Korosok| (2008]). Specifically, we apply
Theorem 5.7 of [van der Vaart| (1998) and Theorem 3.2.5 of van der Vaart and
Wellner| (1996)) to establish the consistency and the convergence rate of estimators.
To derive the asymptotic normality of estimators, we first derive the efficient
score for [ using techniques similar to [Huang (1996), and then follow the well-
known empirical process theory and semiparametric M-estimator theory (e.g.,
Korosok! (2008), Korosok (2008), van der Vaart and Wellner| (1996))) to obtain
the asymptotic normality of estimators. Without confusion, we also write L(6) =
L(6|0), m*(0) = m*(0]0), L(#) = L(0|0), and m*(0) = m*(0|O).

A.1. Asymptotic properties of the RRT estimator

Proof of Theorem 1.

Consistency. First, we apply Theorem 5.7 of van der Vaart| (1998)) to establish
the consistency of RRT estimator (3, H). Let m(#) = log L(6). Since the class
of monotone and uniformly bounded functions is a Donsker class, by Theorem
2.10.6 of van der Vaart and Wellner| (1996) and conditions (C1)-(C3), we know
that the class {m(6)|0 € B x H} is Donsker and hence Glivenko-Cantelli. By
Jensen’s inequality, we have

Py{m(9) — m(80)} < log [P{ LL((Q) }] o,

wherein the equality holds only if L(6) = L(6,) a.s., or equivalently, § = 6, by
model identifiability. This indicates that

sup Pom(0) < Pym(6,).
{0: d*{6,00}><}



RANDOMIZED RESPONSE EVENT TIME DATA 43

Furthermore, by definition of 0, P,m(0y) < ]P’nm(é\). Applying Theorem 5.7 of jvan
der Vaart| (1998), we have f—, and |[H — Hy|ls— 0 in probability. Since H, is
continuous and strictly monotone, it further implies H (t)—Hy(t) in probability
for every ¢ in (71, 72).

Rate of convergence. Below we apply Theorem 3.2.5 of van der Vaart and
Wellner, (1996) to prove d*(8,6,) = O,(n"/3). Here we follow [van der Vaart
(1998) to introduce the bracketing number and bracketing integral. For two
functions [ and wu, define the bracket [I,u] as the set of all functions f with
I < f < wu. An e-bracket in Ly(P) = {f : Pf? < oo} with respect to some
distribution P is then a bracket [l,u] with P(u —[)? < &2. For a subclass C of
L?(P), the bracketing number N (g, C, Ly(P)) is defined as the minimum number
of e-bracket that is needed to cover C, and the bracketing integral J(6,C, Ly(P))
is defined as f05{1 + log N| (e, C, Ly(P))}/?de. With the consistency and (C3),
we restrict H to Hy = {H € H [M~' < H(r)) < H() < M}. Let ¥ =
{m(0) : 0 € B x Hy}. Then each element in V¥ is uniformly bounded and satisfies
Py{m(0) — m(6y)}* < d*{0,6,}* by the mean value theorem, where < means
smaller than, up to a constant. Lemma A.l below gives the bracketing integral
J{6,V,Ly(P)} = O(6Y?). Consequently, Lemma 19.36 of van der Vaart and
Wellner| (1996) gives

) _ _ 1/2 012 >
P s |V, = R){m() — m(6n)}| <3 (1+557):
where P* is the outer expectation. By the inequality of Kullback-Leibler diver-
gence (van der Vaart and Wellner, 1996, p.62), E{m(0|O)|C, Z} is maximized
at (0y, Ho(C)). So, its first derivative is equal to zero there. Since (C,Z) has a
bounded support, the parameter spaces are compact, and H is uniformly bounded
from 0 and oo, a Taylors’s expansion gives Po{m(0) — m(6y)} =< —d*(6,0,)>.
According to Theorem 3.2.5 of van der Vaart and Wellner| (1996), we complete
the proof.

Lemma 1. log N} (e, ¥, Lo(Fp)) = O(1/e).

Proof. First consider the functions in ¥ for a fixed 8. Given the e-brackets
H" < H < HY, it is readily to get a bracket (m”, mY) for m(6) where

m" = log [{QF(eﬁ/ZHL(C)) + (1= gq)e} {1 - gF (" H"(C)) — (1 - Q)C}l_y} ;
m" = log [{QF(GMHU(C)) + (1= q)e} {1 - gF (" 7H"(C)) — (1 - Q)C}l_y} :

By the mean value theorem, we have |m’ — mU|? < {HY(C) — HX(C)}?.
Thus, brackets for H of || - ||o-size € can translate into brackets for m(6) of Ly(F)-
size proportional to . By Example 19.11 of van der Vaart| (1998), we can cover
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the set of all H by exp(C'/e) brackets of size ¢ for some constant C. Next we
allow 3 to vary freely as well. Because £ is finite-dimensional and (9/95)m(6]0O)
is uniformly bounded in (6, 0), this increases the entropy only slightly. This
completes the proof.

Proof of Theorem 2.
Efficient score. Recall that w(f) = ¢qF(e?ZH(C))e’?H(C),E(0) = qF (%
H(C))+(1—q)c,and V(0) = £(0){1 —E(0)}. The score for 3, defined by dm/98,
takes the form m,(0) = Zw(0)V(0)"{Y — £(0)}. Consider parametric paths
H. € H with H.|..o = H and (0H./0¢)|.—o = ¢. The score for H, defined
by {0m(B, H.)/0c}|.=0, has the form my(0)[g] = {g(C)/H(C)}w(0)V(0)*
{Y — £(0)}. Also define mi2(0)[g] = {0mi(B8,H.)/0e}|c—0 and mao(0)[g, 9]
= {0my(B, H.)[g]/Oe}|.=0. They have forms
9(C) w() . 9(C) 9(C) w(0)?
m12(9)[g] = _Zm V(@) ) m22(0)[g)g] = _H(C) H(C) V(Q) :

Following semiparametric M-estimator (e.g., [Korosok| (2008)), the efficient score
is defined by m*(0) = m,(6) — mo(0)[g*], where g* satisfies that

Po{mi2(0o)[g] — ma2(00)[g", g} = 0, (A.2)
for all g in Ly(Py). It immediately gives that

E [zw(eo)w(eo)—wc]

g(C) = Ho(C) ——y
E[w(eo)meo) yc}

and hence m*(#) = w()V(0) ' {Z — g*(C)H(C) 1 {Y — £(6)}.

Asymptotic Normality. Denote a®? = aa’ for any column vector a. By direct
calculations and the definition of g*, we have

B, {%m*wo)} =EB {Z (Z B 50(3))/ %Oo);}
- { (- 5@) S } |

which is positive definite. This implies the invertibility of Z.
Applying Taylor expansions of m*(8y, H(C))(O) at Hy(C'), we conclude that

Pom*(BmH)
= Pym*(60) + Po{ma2(00)[H — Ho] — maa(60)[g", H — Hol} + O, (|1 H — Holl3)-

Using the facts that Pom*(6,) = 0, 1} and the rate of convergence of H , We
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have
VnPom™ (o, ﬁ) = 0p(1). (A.3)

It is known that the class of uniformly bounded functions of bounded variations is
a Donsker class. By Theorem 2.10.6 of [van der Vaart and Wellner| (1996), we can
show that {m*(0)|6 € B x H,} is a uniformly bounded Donsker class; the proof
of which is technical and hence omitted here. This together with the consistency

of § implies that /n(P, — Py){m*(8) — m*(6,)} = 0,(1). Adding (A.3) and using
the fact that Pym*(6y) = P,m*(0) = 0, we obtain

—VnPo{m*(0) = m* (8o, H)} = V/nP,m”(6o) + op(1).

By the mean value theorem, there exists B lying between B and Sy such that

Vi o (5. 1) (B~ fo) = Vi (0) + or(1).

op
By the consistency of f and the invertibility of Z, we have

V(0 — 0y) = I, /nPym* (0) + op(1) % N(0,I7'S(I71)).
This completes the proof.

A.2. Asymptotic properties of the rRRT estimator

Proof of Theorem 3. Let m(f) = log L(A). The consistency and the rate of
convergence of the rRRT estimator can be obtained using the same argument for
establishing Theorem 1 for the RRT estimator. We skip the most similar part of
the proof except that the construction of the bracket for m(#) needed in Lemma
A.1. Recall that

() = Xlog [(¢F +qF){e* “H(C)}| + X log [(aF + qF){e” “H(C)}] .

Given a e-brackets HY < H < HY, a bracket (m”, mY) for m can be obtained
by

m*(0) = X log {qF(eﬁ/ZHL(C’)) + qF(eﬁ’ZHU(o))}
+X log {gF (" “H"(C)) + qF (¢ “H"(C))}
mY () = X log {qF(eﬁ/zHU(C)) +GF(e? ZHE(0))
+X log {@F(e”“H" (C)) + aF (" ? H*(C)) }
Proof of Theorem 4. The asymptotic normality of the rRRT estimator can be

obtained using the same argument in Theorem 2. Below we derive the efficient
score m*(f) and show the invertibility of efficient information Z,., but skip the



46 WEN AND CHEN

much similar remaining part of the proof. ~
Recall that w(0) = (q—q‘)F(eB/ZH(C))eB/ZH(C), E(0)=(qF+qF){e"?H(C)},
and V(0) = £(0){1 — £(A)}. The score for 3 takes the form

M (6) = Zw(0)V(9) X — E(6)},

and the score for H along direction g takes the form

1a(6) ] = %ww)?wrl{x &)},

Define 2 (0)[g] = {81 (8, H.) /e }|.—o and firs(0)[G, g] = {253, H.)[§]/02} om0,

some calculations give
9(C) w(6)

mo0)le) = ~2 5 OR

9(C) 9(C) w(h)
H(C)H(C) v(9)

ﬁl22(0)[§79] -

The efficient score for § is m*(6) = my(0) — m2(0)[g*] with g* satisfying
Po{maz(0o)[g] — m22(60)[g", 9]} = 0.
It immediately gives that
P |
B [20(6)*V(00) " |C]
~ 5 -1 ’
E [w(eo)wwo) yc]

9°(C) = Ho(C

and hence m*(0) = @(9)]7(9)_1{2 — J(CYH(C)""H{X — £(H)}. By direct
calculations and the definition of g*, we have

P gy o0} =8| 7{7 ‘go%} (<90)>]

{Z Igf*o((g)) }®2 ;((90)) ]

which is positive definite. This implies the invertibility of Z,.

=F
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