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Abstract: The randomized response technique (RRT) is used to reduce underreport-

ing of sensitive characteristics in survey studies by enhancing privacy protection.

Currently, the RRT is mainly applied for prevalence estimation of some sensitive

event. We extend the application of the RRT to an analysis of a time-to-event

outcome. Event time data collected from surveys are usually subject to case-

I interval-censoring, so that only “current-status” data on the occurrence of the

event by the examination time are available. As such, we focus on current-status

(case-I interval-censored) event time data collected using the RRT. Based on the

data, we propose a semiparametric maximum likelihood estimation procedure for

the event time distribution given the covariates. The proposed method is assumed

to follow a general class of semiparametric transformation models characterized by a

parametric function for the relationship between the event time and the covariates,

as well as an unspecified baseline function. We develop the asymptotic theory

for the proposed estimation, including the consistency and asymptotic normality,

and examine its finite-sample properties using simulation studies. We apply the

proposed method to current-status data surveyed using the RRT to make statistical

inferences on the time to incidence of extramarital relations since marriage.

Key words and phrases: Randomized response technique, semiparametric maximum

likelihood estimation, semiparametric transformation model, sensitive issue.

1. Introduction

The time duration to the occurrence of some event of interest is a common

and important research target in various disciplines, including medicine and

the social sciences. Usually, the observation of the event time is subject to

incompleteness caused by a limitation of the observation procedure, a well-known

phenomenon called “censoring.” For example, when the occurrence of an event is

not tracked continuously, but only by a sequence of examinations, the event time

lies in some interval between two consecutive examinations, that is, the event

time is subject to interval censoring. In survey studies, it is common for there

to be only one examination during the observation period. Here, the event time

is subject to a special case of interval censoring, called case-I interval censoring,

and the resulting event time data are called “current-status” data. Analyses of

case-I interval-censoring data, including regression analyses, are widely used in
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the literature; see Huang (1996), Lin, Oakes and Ying (1998), Martinussen and

Scheike (2002), Sun and Sun (2005), Tian and Cai (2006), Sun (2006), Zhang

and Sun (2010), Wen and Chen (2012), among others, for further details.

In addition to censoring, event time data obtained from survey studies are

also subject to participants’ response bias, that is, the participants answer the

survey questions inaccurately or falsely. Response bias is of particular concern

when the survey questions are related to moral, legal, or other sensitive issues,

because there is a greater chance that participants will want to protect their

privacy, and thus conceal the truth on such issues. In other words, response data

from sensitive survey questions can be highly erroneous.

To encourage respondents to truthfully answer sensitive questions, the ran-

domized response technique (RRT) was proposed by Warner (1965), and has

been extended by various subsequent authors (Greenberg et al., 1969; Horvitz,

Shah and Simmons, 1967; Kuk, 1990; Singh, Singh and Mangat, 2000; Gjestvang

and Singh, 2006; Narjis and Shabbir, 2023). The RRT encourages respondents

to respond to sensitive issues by using some random device (such as a coin,

cards, or dice), the outcome of which is blind to the interviewer. As a result, the

respondents may feel it is safer to tell the truth, because they cannot be identified

by the interviewer, thus reducing underreporting of sensitive characteristics in

surveys (Scheers and Dayton, 1988).

Two types of the RRT are popular: the related- and unrelated-question RRTs.

Warner’s (1965) original RRT proposal is now termed the “related-question”

RRT, and uses a question set consisting of a sensitive question A, and a

complementary question Ac. For example,

A: Have you ever had sex with someone other than your spouse?

Ac: Have you never had sex with someone other than your spouse?

The interviewee is asked either A or Ac, determined by a random device and

unknown to the interviewer. Greenberg et al. (1969) proposed the unrelated-

question RRT, which employs a question set consisting of a sensitive question A,

and an innocuous question B. For example,

A: Have you ever had sex with someone other than your spouse?

B: Were you born in the month of January, February, or March?

The interviewee answers one of A or B, which again is determined by a random

device and unknown to the interviewer. The probability of answering “yes” to

question B is known, or can be estimated before the survey. A simple RRT is

designed by asking interviewees to either answer question A truthfully, or answer

“yes,” regardless of the truth, according to the outcome of a random device. This

RRT can also be conceived as an unrelated-question RRT with an innocuous

question B, such that the probability of answering “yes” to B is one.
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Although the RRT has been applied to obtain less biased estimations of

the prevalence (Warner, 1965; Greenberg et al., 1969) and factors (Scheers and

Dayton, 1988) affecting sensitive behavior, it has not been applied to estimate

an event time distribution. As mentioned above, event times in survey studies

are usually only observed in the form of interval-censored data, often case-I

interval-censored, or current-status data. Hence, an analysis of time-to-event

data collected using the RRT may also need to address the interval-censoring

problem in addition to the special data structure under the RRT.

In this work, we propose a general methodology for analyzing current-status

event time data collected using the RRT in a survey study. Specifically, we

propose a semiparametric maximum likelihood estimation procedure for the event

time distribution given the covariates, which is assumed to follow semiparametric

transformation models characterized by a parametric function for the relationship

between the event time and the covariates, and an unspecified baseline function.

We also discuss the asymptotic theory, including the consistency and asymptotic

normality, for the proposed estimation, and examine its finite-sample properties

using simulation studies. We apply the proposed method to a set of current-

status data collected using the RRT to make statistical inferences about the time

to the incidence of extramarital relations after marriage.

2. Current-Status Data and Model

Let T , C, and Z denote the time to the sensitive event of interest, survey

time, and covariate vector for an individual, respectively. Then, δ ≡ I(T ≤ C)

indicates whether or not the sensitive event has occurred by the survey time C,

where I(·) is the indicator function.

Given the covariate Z, the event time T is assumed to follow a semiparametric

transformation model, namely, at time t, the conditional distribution function of

T given Z is of the form

Pr(T ≤ t|Z = z) = F (exp(β′z)H(t)), (2.1)

where F is a known distribution function, β is an unknown vector of regression

parameters, and H is an unspecified increasing real-valued function. The choices

of F (x) = 1−exp(−x) and F (x) = x/(1+x) lead to the proportional hazards and

proportional odds model, respectively, which are well-known models for lifetime

distributions with ranges on [0,1]; see, for example, Zeng and Lin (2006) and

Zeng and Lin (2007).

Throughout the paper, we assume the censoring mechanism is noninforma-

tive, that is, T and C are conditionally independent given Z.
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Figure 1. Diagrams of the probability mechanism for the unrelated-question RRT (left
panel) and the related-question RRT (right panel).

3. Estimation under the Unrelated RRT

Suppose that the current-status data for the sensitive event are collected

using the unrelated-question RRT (Greenberg et al., 1969). Recall that the

unrelated-question RRT consists of a question A on the sensitive event and

an innocuous question B, and one of them, determined by a random device,

is answered by the interviewee. Let Q be a binary random variable, with Q = 1

denoting that the interviewee answers question A and Q = 0 denoting that

the interviewee answers question B, and let W be the binary response of the

interviewee to the innocuous question B. A single observation in the unrelated-

question RRT survey then consists of O = {Y,C, Z}, where Y = Qδ+ (1−Q)W,

with δ = I(T ≤ C). Here, and in the following, we assume that interviewees

answer honestly when asked the sensitive question. Figure 1 illustrates the

probability mechanism of the answer Y from the unrelated-question RRT. Here,

we propose an estimation procedure for the event time model (2.1) based on

the independent and identically distributed (i.i.d.) sample Oi = {Yi, Ci, Zi}, for
i = 1, . . . , n, of the unrelated-question RRT observation O. Let the probabilities

Pr(Q = 1) = q, Pr(W = 1|C,Z) = c, and Pr(W = 0|C,Z) = 1− c. The values of

q and c are assumed known in the following.

Observe that

Pr(Y = 1|C,Z)

= Pr(Y = 1|C,Z,Q = 1)Pr(Q = 1) + Pr(Y = 1|C,Z,Q = 0)Pr(Q = 0)

= Pr(δ = 1|C,Z)q + Pr(W = 1|C,Z)(1− q)

= qF (eβ
′zH(C)) + c(1− q).

Hence, the likelihood function of (O1, . . . , On) takes the form

Ln(θ) =
n∏

i=1

L(θ|Oi), (3.1)

where L(θ|O) = {qF (eβ
′zH(C)) + (1 − q)c}Y {1 − qF (eβ

′zH(C)) − (1 − q)c}1−Y
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and θ = (β,H). The semiparametric maximum likelihood estimator (SPMLE)

θ̂ = (β̂, Ĥ), referred to as the RRT estimator, of θ maximizes the likelihood in

(3.1).

It is obvious that (3.1) depends on H only through H(Ci), for i = 1, . . . , n.

Therefore, in maximizing Ln, we treat Ĥ as a right-continuous step function that

jumps at the survey time Ci. Let t1 < · · · < tK be the ordered distinct time

points of Ci, for i = 1, . . . , n, associated with Yi = 1. For a person with Yi = 0

and tk < Ci < tk+1, consider two increasing step functions, H1 and H2, with

H1 = H2 at all tj, except thatH1(Ci) = H1(tk) andH2(Ci) > H1(tk). Because the

transformation F is increasing, we conclude that L(β,H1) > L(β,H2). Therefore,

Ĥ can have jumps only at tj, for j = 1, . . . ,K. Let hj denote the jump size at tj.

Because the number K of jumps increases with the sample size, a direct max-

imization of (3.1) can be challenging. Note that, without randomized response

sampling, O = (Y,C, Z) reduces to the current-status data (δ, C, Z). Turnbull

(1976) proposed a self-consistency formula for computing the SPMLE, that is

essentially an EM algorithm based on current-status data without covariates.

Herein, we propose a novel EM algorithm that extends Turnbull’s method to

a regression analysis of randomized response survival data. Let Nij = I(Ti ∈
(tj−1, tj]), for j = 1, . . . ,K, with t0 = 0. We treat the failure time indicator Nij

and the latent indicator Qi of selecting the sensitive question in the unrelated-

question set as missing values in the EM method. Let q̄ = 1 − q and c̄ = 1 − c.

The complete-data likelihood of {(Yi, Ci, Zi, Nij, Qi), i = 1, . . . , n, j = 1, . . . ,K}
takes the form

Lc
n(θ) =

n∏
i=1

({
q
∏

tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

}QiYi [
q
{
1− F (eβ

′ZiH(Ci))
}]Qi(1−Yi)

×(q̄c)(1−Qi)Yi(q̄c̄)(1−Qi)(1−Yi)

)
,

where ∇F (eβ
′ZiH(tj)) = F (eβ

′ZiH(tj)) − F (eβ
′ZiH(tj−1)). In the M-step, we

maximize

n∑
i=1

[
Yi

∑
tj≤Ci

(NijQi)
∧ log∇F (eβ

′ZiH(tj)) + (1− Yi)Q
∧
i log{1− F (eβ

′ZiH(Ci))}

+Q∧
i log q + (1−Q∧

i )Yi log(q̄c) + (1−Q∧
i )(1− Yi) log(q̄c̄)

]
, (3.2)

where

Q∧
i = E(Qi|Yi, Ci, Zi) = Pr(Qi = 1|Yi, Ci, Zi)
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=
qF (eβ

′ZiH(Ci))
Yi{1− F (eβ

′ZiH(Ci))}1−Yi

qF (eβ′ZiH(Ci))Yi{1− F (eβ′ZiH(Ci))}1−Yi + q̄cYi c̄1−Yi
,

and

(NijQi)
∧ = E(NijQi|Yi, Ci, Zi) = Pr(Nij = 1, Qi = 1|Yi, Ci, Zi)

=
q∇F (eβ

′ZiH(tj))

qF (eβ′ZiH(Ci)) + q̄c
I(tj ≤ Ci)Yi.

To update hk, for k = 1 . . . ,K, we use a one-step self-consistency algorithm, as

follows. By the first-order approximation, the objective function (3.2) can be

approximated by

n∑
i=1

[
Yi

∑
tj≤Ci

(NijQi)
∧ log{Ḟ (eβ

′ZiH(tj))e
β′Zihj} (3.3)

+(1− Yi)Q
∧
i log{1− F (eβ

′ZiH(Ci))}

+Q∧
i log q + (1−Q∧

i )Yi log(q̄c) + (1−Q∧
i )(1− Yi) log(q̄c̄)

]
, (3.4)

where Ḟ (x) = dF (x)/dx. We set the derivative of (3.3) relative to hk to zero to

obtain

0 =
∑

i:Yi=1

(NikQi)
∧ 1

hk

+
∑

i:Yi=1

∑
j:tj≤Ci

(NijQi)
∧

(
F̈

Ḟ

)
{eβ

′ZiH(tj)}eβ
′ZiI(tk ≤ tj)

−
∑

i:Yi=0

Q∧
i

(
Ḟ

1− F

)
{eβ

′ZiH(Ci)}eβ
′ZiI(tk ≤ Ci),

which gives an updating algorithm for hk,

hk =

{ ∑
i:Yi=1

(NikQi)
∧

}− ∑
i:Yi=1

∑
j:tj≤Ci

(NijQi)
∧

(
F̈

Ḟ

)
{eβ

′ZiH(tj)}eβ
′ZiI(tk ≤ tj)

+
∑

i:Yi=0

Q∧
i

(
Ḟ

1− F

)
{eβ

′ZiH(Ci)}eβ
′ZiI(tk ≤ Ci)

]−1

,

where F̈ (x) = d2F (x)/dx2. To update β, we use a one-step Newton–Raphson

algorithm based on (3.3). The initial value of β is set to zero and the initial value

of hk is set to 1/K. The E-steps and M-steps are iterated until the changes for

the parameter estimates between two successive iterations are all less than 10−4.

With regularity conditions, given in the Appendix, our theorems establish

the asymptotic properties for the RRT estimator θ̂. Denote by θ0 = (β0, H0) the

true parameter. Define the metric d∗{(β,H), (β̃, H̃)} = (∥β− β̃∥2+∥H−H̃∥22)1/2,



RANDOMIZED RESPONSE EVENT TIME DATA 31

where ∥ · ∥ is the Euclidean norm and ∥H∥22 =
∫
H(u)2du.

Theorem 1 (Consistency and rate of convergence). The RRT estimator

(β̂, Ĥ) is consistent; that is, β̂
P→ β0 and Ĥ(t)

P→ H0(t) for every t in the

study period. The rate of convergence of (β̂, Ĥ) is of order n−1/3; that is,

d∗{(β̂, Ĥ), (β0, H0)} = Op(n
−1/3).

Let w(θ) = qḞ (eβ
′ZH(C))eβ

′ZH(C), E(θ) = qF (eβ
′ZH(C)) + (1 − q)c, and

V(θ) = E(θ){1 − E(θ)}. Define m∗(θ|O) = w(θ)V(θ)−1{Z − g∗(C)H(C)−1}{Y −
E(θ)}, where

g∗(C) = H0(C)
E{Zw(θ0)

2V(θ0)−1|C}
E{w(θ0)2V(θ0)−1|C}

.

Theorem 2 (Asymptotic normality). The RRT estimator β̂ is asymptotically

normal; that is,

√
n(β̂ − β0) = I−1 1√

n

n∑
i=1

m∗(θ0|Oi) + oP (1)
d→ N{0, I−1Σ(I−1)′},

where Σ = E{m∗(θ0|O)m∗(θ0|O)′} and I = −E{∂m∗(θ0|O)/∂β}.

Although the overall convergence rate for (β̂, Ĥ) is OP (n
−1/3), it is dominated

by that of the estimated nonparametric baseline function Ĥ; the convergence rate

for β̂ still achieves the usual parametric rate OP (n
−1/2). The asymptotic variance

var(β̂) ≡ I−1Σ(I−1)′/n can be estimated by v̂ar(β̂) ≡ Î−1Σ̂(Î−1)′/n, with Σ̂ =

n−1
∑n

i=1{m∗(θ̂|Oi)m
∗(θ̂|Oi)

′} and Î = −n−1
∑n

i=1 ∂m
∗(θ̂|Oi)/∂β. In particular,

the conditional expectations in g∗ can be estimated by using the multivariate

product kernel method (Huang, 1996).

4. Estimation under the Related-Question RRT

In this section, we discuss estimation with current-status data obtained

from the related-question RRT (Warner, 1965). Recall that this RRT consists

of a question A and a complementary question Ac, and that one of them,

determined by a random device, is answered by the interviewee. Let Q be a

binary random variable, such that Q = 1 represents the interviewee answering

A, and Q = 0 represents the interviewee answering Ac. A single observation

in the related-question RRT survey consists of Õ = {X,C,Z}, where X =

Qδ+(1−Q)(1−δ), with δ = I(T ≤ C). Again, we assume that interviewees answer

honestly when asked the sensitive question. Figure 1 illustrates the probability

mechanism of the answer X from the related-question RRT. Below, we propose

an estimation procedure for the event time model (2.1) based on the i.i.d. sample,

Õi = {Xi, Ci, Zi}, for i = 1, . . . , n, of the related-question RRT observation

Õ = {X,C,Z}. Here, we assume the value of q = Pr(Q = 1) is known. The case
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with q = 0.5 leads to a degenerate data distribution containing no information

on model (2.1), and hence is excluded.

Let q̄ = 1 − q and F̄ = 1 − F . Similarly to the derivation of (3.1), the

likelihood function of the sample (Õ1, . . . , Õn) takes the form

L̃n(θ) =
n∏

i=1

L̃(θ|Õi), (4.1)

where L̃(θ|Õ) = [(qF + q̄F̄ ){eβ′ZH(C)}]X [(1 − qF − q̄F̄ ){eβ′ZH(C)}]1−X . The

nonparametric maximum likelihood estimator θ̂r = (β̂r, Ĥr), referred to as the

rRRT estimator, of θ = (β,H) maximizes the likelihood (4.1) under the related-

question RRT. As in Section 3, let t1 < · · · < tK be the ordered distinct time

points of {Ci|Xi = 1, i = 1, . . . , n}. Furthermore, as in the case of the RRT

estimator Ĥ, the rRRT estimator Ĥr can have jumps only at tj, j = 1, for . . . ,K.

For the computation of the rRRT estimator, we employ a similar EM algorithm

to that developed in Section 3, as described below.

Let the failure time indicator Nij ≡ I(Ti ∈ (tj−1, tj]), and let Qi be the latent

indicator of selecting the sensitive question in the related-question set, both of

which are treated as missing values in the EM method. Let X̄i = 1 − Xi and

Q̄i = 1−Qi. The complete-data likelihood of the sample {(Xi, Ci, Zi, Nij, Qi), i =

1, . . . , n, j = 1, . . . ,K} takes the form

L̃c
n(θ) =

n∏
i=1

[{
q
∏

tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

}QiXi {
qF̄ (eβ

′ZiH(Ci))
}QiX̄i

×
{
q̄F̄ (eβ

′ZiH(Ci))
}Q̄iXi

{
q̄
∏

tj≤Ci

∇F (eβ
′ZiH(tj))

Nij

}Q̄iX̄i]
,

where ∇F (eβ
′ZiH(tj)) = F (eβ

′ZiH(tj))− F (eβ
′ZiH(tj−1)).

By omitting terms in L̃c
n(θ) irrelevant to (β,H), in the M-step, we maximize

n∑
i=1

[ ∑
tj≤Ci

Xi{(NijQ)∧i + X̄i(NijQ̄i)
∧} log∇F (eβ

′ZiH(tj)) (4.2)

+(X̄iQ
∧
i +XiQ̄

∧
i ) log F̄ (eβ

′ZiH(Ci))

]
,

where

Q∧
i = E(Qi|Xi, Ci, Zi) = Pr(Qi = 1|Xi, Ci, Zi)

=
qFXiF̄ 1−Xi(eβ

′ZiH(Ci))

(qF + q̄F̄ )Xi(qF̄ + q̄F )1−Xi(eβ′ZiH(Ci))
,

(NijQi)
∧ = E(NijQi|Xi, Ci, Zi) = Pr(Nij = 1, Qi = 1|Xi, Ci, Zi)
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=
q∇F (eβ

′ZiH(tj))

(qF + q̄F̄ )(eβ′ZiH(Ci))
I(tj ≤ Ci)Xi,

(NijQ̄i)
∧ = E{Nij(1−Qi)|Xi, Ci, Zi} = Pr(Nij = 1, Qi = 0|Xi, Ci, Zi)

=
q̄∇F (eβ

′ZiH(tj))

(qF̄ + q̄F ){eβ′ZiH(Ci)}
I(tj ≤ Ci)(1−Xi),

To update hj, for j = 1, . . . ,K, we replace ∇F (eβ
′ZiH(tj)) in (4.2) with

its first-order approximation Ḟ (eβ
′ZiH(tj))e

β′Zihj, and set the derivative of (4.2)

with respect to hk to zero to obtain an updating algorithm for hk,

hk =

[∑
i

{
Xi(NikQi)

∧ + X̄i(NikQ̄i)
∧}]

×

−∑
i

∑
j:tj≤Ci

{
Xi(NikQi)

∧ + X̄i(NikQ̄i)
∧}( F̈

Ḟ

)
{eβ

′ZiH(tj)}eβ
′ZiI(tk ≤ tj)

+
∑
i

(X̄iQ
∧
i +XiQ̄

∧
i )

(
Ḟ

1− F

)
{eβ

′ZiH(Ci)}eβ
′Zi1(tk ≤ Ci)

]−1

.

To update β, we use a one-step Newton–Raphson algorithm based on (4.2). We

obtain the rRRT estimator by starting with initial values β = 0 and hj = 1/K, for

j = 1, . . . ,K, and then iterating between the E- and M-Steps until the changes

for the parameter estimates between two successive iterations are all less than

10−4.

Given the regularity conditions in the Appendix and q ̸= 0.5, the following

theorems establish the asymptotic properties for the rRRT estimator θ̂r =

(β̂r, Ĥr).

Theorem 3 (Consistency and rate of convergence). The rRRT estimator

(β̂r, Ĥr) is consistent; that is, β̂r
P→ β0 and Ĥr(t)

P→ H0(t) for every t in the

study period. The rate of convergence of (β̂r, Ĥr) is of order n−1/3; that is,

d∗{(β̂r, Ĥr), (β0, H0)} = Op(n
−1/3).

Let w̃(θ) = (q− q̄)Ḟ (eβ
′ZH(C))eβ

′ZH(C), Ẽ(θ) = (qF+ q̄F̄ ){eβ′ZH(C)}, and
Ṽ(θ) = Ẽ(θ){1 − Ẽ(θ)}. Define m̃∗(θ|Õ) = w̃(θ)Ṽ(θ)

−1
{Z − g̃∗(C)H(C)−1}{X −

Ẽ(θ)}, where

g̃∗(C) = H0(C)
E
{
Zw̃(θ0)

2Ṽ(θ0)
−1
|C
}

E
{
w̃(θ0)2Ṽ(θ0)

−1
|C
} .

Theorem 4 (Asymptotic normality). The rRRT estimator β̂r is asymptoti-

cally normal; that is,
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√
n(β̂r − β0) = I−1

r

1√
n

n∑
i=1

m̃∗(θ0|Õi) + oP (1)
d→ N{0, I−1

r Σr(I−1
r )′},

where Σr = E{m̃∗(θ0|Õ)m̃∗(θ0|Õ)′} and Ir = −E{∂m̃∗(θ0|Õ)/∂β}.

The asymptotic variance for β̂r, var(β̂r) ≡ I−1
r Σr(I−1

r )′/n, can be estimated

by v̂ar(β̂r) ≡ Î−1
r Σ̂r(Î−1

r )′/n, where Σ̂r = n−1
∑n

i=1{m̃∗(θ̂r|Õi)m̃
∗(θ̂r|Õi)

′} and

Îr = −n−1
∑n

i=1 ∂m̃
∗(θ̂r|Õi)/∂β. Based on the asymptotic normality and the

estimated variance, one can perform hypothesis testing and construct a confidence

interval for the regression parameter β.

The proofs for the asymptotic theory of the RRT and rRRT estimators in

Theorems 1–4 are, in general, based on the techniques of Huang (1996), van

der Vaart and Wellner (1996), and Korosok (2008). In short, we first apply

the techniques developed in van der Vaart and Wellner (1996) to establish the

consistency and the convergence rate of estimators in Theorem 1 and 3, then

use the techniques similar to Huang (1996) to derive the efficient scores (m∗

and m̃∗) and the invertibility of the efficient Fisher Informations (I and Ir), and

finally follow the empirical process theory and semiparametric M-estimator theory

(Korosok, 2008; van der Vaart and Wellner, 1996) to establish the asymptotic

normality of the estimators in Theorems 2 and 4. Proofs for the theorems are

given in the Appendix.

Remark 1. In Ahangar et al. (2012), the response probability distribution F to

the sensitive issue is estimated indirectly using the probability distribution of

the actual response Y (to the mix of sensitive and innocuous question problems)

Pr(Y = 1) = qF + (1 − q)c, or by using the probability distribution of the

actual response X (to the mix of sensitive and complementary question problems)

Pr(X = 1) = qF + (1 − q)(1 − F ), and the resulting estimate of F can take a

value outside [0,1]. Our method differs from that of Ahangar et al. in that we

directly model and estimate the distribution F , avoiding the problem of an out-of-

range estimation. In the current work, we employ the same questionnaire survey

designs as those of Warner (1965) and Greenberg et al. (1969), but propose a

different modeling and estimation approach to those of Ahangar et al. (2012),

Warner (1965), and Greenberg et al. (1969). In particular, we focus on a (type-I)

interval-censored time-to-event model and data, which has not previously been

addressed in the RRT literature.

5. Simulation Studies

We employ simulation studies to assess the performance of the proposed

estimation methods and examine the adequacy of the associated normal approxi-

mations. Each simulation consists of 1,000 replications. The sample size n = 500

or 1000 for each simulated data set.

In the first simulation study, we consider the covariate vector Z = (Z1, Z2)
′,
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where Z1 is generated from Bernoulli(0.5), Z2 is generated from N(0, 0.5), and

they are independent of each other. Given the covariate Z, the time T to the

sensitive event is generated from (2.1) with β = (1, 0.5)′, H(t) = 0.5t0.7, and

F (x) = 1−exp(−x), which corresponds to the proportional hazards (PH) model.

The survey time C is simulated from Uniform(0,1), independently of T and Z.

The answer to the sensitive question is given by δ = I(T ≤ C), and the answer

to the innocuous question W is generated as Bernoulli with Pr(W = 1|C,Z) = c,

with the constant c = 0, 0.25, 0.5, or 1. Given δ and W, the observed response Y

of the unrelated-question RRT survey is Y = Qδ + (1 −Q)W, and the observed

response X of the related-question RRT survey is X = Qδ+(1−Q)(1−δ), where

Q is Bernoulli with Pr(Q = 1) = q, for q = 0.5, 0.7, 0.9, or 1, with the case q = 0.5

excluded for the related-question RRT as mentioned in Section 4. The unrelated-

question RRT observation consists of O = (Y,C, Z), and the related-question

RRT observation consists of Õ = (X,C,Z). In the second simulation study, the

data are simulated from the same setups as above, except that F (x) = x/(1+x),

which corresponds to the proportional odds (PO) model.

The simulation results are presented in Tables 1 and 2, including the bias

and standard deviation (SD) over the simulation replicates for the estimators of

β, the average standard error (ASE) based on the asymptotic theory, and the

coverage probability (CP) of the 95% Wald-type confidence intervals for β over

the simulation replicates. Also presented are the results of the relative efficiency

(RE) of the RRT or the rRRT estimation relative to the ideal case, defined as

MSE(β̂I)/MSE(β̌), where MSE is the mean squared error over the simulation

replicates, β̌ is the RRT estimate (β̂) or the rRRT estimate (β̂r) of β, and β̂I

is the “ideal” estimate obtained when the full data {(δi, Ci, Zi)|i = 1, . . . , n} are

available, that is, the estimate from (3.1) under q = 1.

The results in Tables 1 and 2 show that the proposed estimators for the

event time model parameters under the unrelated- and the related-question

RRT surveys are essentially unbiased. Furthermore, the asymptotic theory

performs well in finite samples: the asymptotic standard error approximates

the simulation standard deviation well, and the Wald-type confidence interval

based on asymptotic normality has a virtually correct coverage probability. As

expected, the RRT estimators for both the related- and unrelated-question RRTs

are less efficient than the estimator based on the current-status data without

the RRT, that is, the “ideal” estimator. In addition, the relative efficiency of

the RRT estimators with respect to the ideal estimator ranges from 10 to 87%,

depending on the probability mechanism of the random device underlying the

RRT. Comparing the results of the unrelated- and related-question RRTs, we

find that the unrelated-question RRT leads to more efficient estimation than does

the related-question RRT, especially when the probability c of answering “yes”

to the innocuous question is smaller. The efficiency of the related-RRT estimator

increases when the probability q of choosing the sensitive question instead of the
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Table 1. Simulation results for the PH model under various survey designs. (β̂1, β̂2) :

the unrelated-question RRT estimator; (β̂r1, β̂r2) : the related-question RRT estimator;

(β̂I1, β̂I2) : the ideal estimator. ASE: the average of the standard error estimates; CP: the
coverage probability of the 95% confidence interval; RE: the ratio of the mean squared
error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE

0.5 0 β̂1 0.014 0.276 0.290 96.6 0.347 -0.002 0.191 0.199 96.9 0.349

β̂2 0.003 0.187 0.210 97.5 0.358 0.001 0.138 0.144 95.7 0.311

0.25 β̂1 0.075 0.358 0.362 96.7 0.198 0.029 0.238 0.244 96.6 0.222

β̂2 0.036 0.259 0.257 96.5 0.183 0.016 0.175 0.174 96.1 0.193

0.5 β̂1 0.088 0.405 0.389 97.1 0.154 0.048 0.252 0.260 96.4 0.193

β̂2 0.052 0.284 0.271 97.4 0.150 0.023 0.181 0.182 95.5 0.177

1 β̂1 0.098 0.356 0.322 93.8 0.195 0.046 0.236 0.220 94.7 0.220

β̂2 0.067 0.240 0.203 90.6 0.203 0.024 0.149 0.141 93.0 0.264

0.7 0 β̂1 0.010 0.222 0.225 95.1 0.535 -0.001 0.153 0.156 95.3 0.542

β̂2 0.007 0.145 0.162 97.2 0.591 0.001 0.111 0.112 94.9 0.483

0.25 β̂1 0.037 0.249 0.246 94.4 0.417 0.015 0.165 0.170 95.6 0.461

β̂2 0.020 0.169 0.176 96.7 0.434 0.007 0.121 0.121 95.8 0.402

0.5 β̂1 0.043 0.257 0.255 95.1 0.390 0.021 0.175 0.176 95.6 0.412

β̂2 0.027 0.179 0.179 95.9 0.383 0.013 0.121 0.124 95.4 0.398

1 β̂1 0.056 0.251 0.242 95.0 0.401 0.027 0.173 0.168 94.5 0.413

β̂2 0.038 0.170 0.158 93.8 0.412 0.018 0.113 0.111 93.3 0.450

- β̂r1 0.079 0.506 0.510 97.6 0.101 0.036 0.342 0.335 95.4 0.107

β̂r2 0.038 0.331 0.349 97.4 0.113 0.024 0.237 0.234 95.9 0.104

0.9 0 β̂1 0.012 0.181 0.181 94.8 0.804 0.005 0.121 0.126 96.1 0.867

β̂2 0.012 0.123 0.129 96.7 0.820 0.003 0.088 0.089 95.7 0.766

0.25 β̂1 0.020 0.185 0.184 95.3 0.770 0.007 0.125 0.128 96.2 0.816

β̂2 0.016 0.127 0.130 95.9 0.759 0.005 0.091 0.090 95.1 0.722

0.5 β̂1 0.022 0.184 0.186 95.2 0.774 0.010 0.126 0.129 95.3 0.800

β̂2 0.020 0.130 0.130 96.0 0.723 0.007 0.090 0.091 95.9 0.729

1 β̂1 0.027 0.187 0.186 95.1 0.745 0.015 0.133 0.130 94.9 0.713

β̂2 0.025 0.129 0.126 94.7 0.729 0.011 0.089 0.088 95.8 0.713

- β̂r1 0.023 0.216 0.216 94.2 0.561 0.015 0.146 0.150 96.2 0.588

β̂r2 0.023 0.148 0.152 96.5 0.561 0.009 0.105 0.105 96.2 0.534

1 - β̂I1 0.015 0.162 0.161 94.5 - 0.005 0.113 0.112 95.1 -

β̂I2 0.014 0.111 0.111 95.4 - 0.005 0.077 0.078 95.2 -

complementary question approaches one. These effects correspond to a bias–

efficiency trade-off, as mentioned in Scheers and Dayton (1988); see Section 7 for

further discussion.

Figure 2 shows the Q-Q plots for the standardized RRT estimates {v̂ar(β̂)}−1/2

(β̂ − β) and the standardized rRRT estimates {v̂ar(β̂r)}−1/2(β̂r − β) for β

with respect to the standard normal quantile values under the PH model with
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Table 2. Simulation results for the PO models under various survey designs. (β̂1, β̂2) :

the unrelated-question RRT estimator; (β̂r1, β̂r2) : the related-question RRT estimator;

(β̂I1, β̂I2) : the ideal estimator. ASE: the average of the standard error estimates; CP: the
coverage probability of the 95% confidence interval; RE: the ratio of the mean squared
error of the ideal estimate to that of the considered estimate.

n = 500 n = 1000

q c Bias SD ASE CP RE Bias SD ASE CP RE

0.5 0 β̂1 -0.015 0.342 0.363 96.4 0.396 -0.018 0.233 0.249 97.0 0.406

β̂2 -0.011 0.229 0.262 98.0 0.413 -0.007 0.163 0.179 96.9 0.424

0.25 β̂1 0.062 0.456 0.466 97.0 0.220 0.024 0.305 0.316 96.7 0.237

β̂2 0.028 0.331 0.333 97.4 0.197 0.011 0.222 0.225 95.7 0.229

0.5 β̂1 0.072 0.520 0.513 96.9 0.168 0.047 0.333 0.344 96.5 0.196

β̂2 0.043 0.369 0.360 97.4 0.158 0.017 0.236 0.243 96.5 0.201

1 β̂1 0.093 0.516 0.471 95.8 0.169 0.041 0.340 0.318 94.8 0.189

β̂2 0.069 0.358 0.317 92.8 0.164 0.014 0.224 0.216 94.2 0.225

0.7 0 β̂1 -0.014 0.279 0.287 94.9 0.597 -0.012 0.191 0.198 95.9 0.606

β̂2 -0.004 0.183 0.207 97.5 0.646 -0.006 0.138 0.143 95.6 0.590

0.25 β̂1 0.025 0.321 0.321 95.1 0.448 0.010 0.211 0.221 95.9 0.495

β̂2 0.014 0.221 0.230 96.9 0.444 0.004 0.156 0.158 95.3 0.459

0.5 β̂1 0.030 0.339 0.339 95.5 0.401 0.018 0.232 0.234 95.5 0.409

β̂2 0.022 0.240 0.241 96.7 0.376 0.010 0.161 0.166 96.0 0.437

1 β̂1 0.044 0.350 0.343 95.8 0.374 0.023 0.244 0.237 94.9 0.369

β̂2 0.032 0.241 0.238 95.5 0.367 0.014 0.168 0.164 95.2 0.399

- β̂r1 0.077 0.672 0.692 97.8 0.102 0.031 0.435 0.446 96.8 0.116

β̂r2 0.042 0.472 0.474 98.3 0.097 0.016 0.311 0.313 96.5 0.116

0.9 0 β̂1 -0.008 0.234 0.237 94.7 0.848 -0.006 0.158 0.164 96.3 0.881

β̂2 0.002 0.159 0.170 97.1 0.864 -0.003 0.116 0.118 95.3 0.836

0.25 β̂1 0.005 0.242 0.244 94.6 0.792 -0.001 0.165 0.169 95.8 0.812

β̂2 0.009 0.167 0.175 97.0 0.782 0.001 0.121 0.121 95.3 0.771

0.5 β̂1 0.008 0.246 0.249 94.7 0.770 0.003 0.168 0.173 95.7 0.779

β̂2 0.014 0.173 0.178 96.1 0.722 0.004 0.121 0.123 96.0 0.767

1 β̂1 0.011 0.254 0.256 95.5 0.719 0.009 0.181 0.178 95.9 0.674

β̂2 0.017 0.178 0.181 96.5 0.678 0.008 0.126 0.126 95.9 0.706

- β̂r1 0.009 0.286 0.289 95.2 0.566 0.009 0.197 0.200 96.1 0.570

β̂r2 0.017 0.197 0.206 97.2 0.559 0.006 0.141 0.142 96.1 0.569

1 0 β̂I1 -0.006 0.215 0.217 94.7 - -0.007 0.149 0.151 95.8 -

β̂I2 0.002 0.148 0.155 96.9 - -0.001 0.106 0.107 94.6 -

q = 0.7, c = 0.25, and n = 1000. The Q-Q plots confirm that the normal

approximation theory for the proposed estimators is adequate.

6. Analysis of Extramarital Relations Data

In this section, we apply the proposed methods to a data set from the

Taiwan Social Change Survey (TSCS) conducted by Academia Sinica in Taiwan.
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Figure 2. Q-Q plots of the standardized RRT estimates (left panels) and rRRT estimates
(right panels) versus the standard normal distribution under the simulation scenario with
n = 1000, q = 0.7, and c = 0.25, and the PH model.

One of the survey questions was aimed at extramarital relations, in particular,

extramarital sex, and was asked using the unrelated-question RRT of Greenberg

et al. (1969) for 1,140 study participants, who were aged above 18 years and

married. The sensitive and innocuous questions were given by

A: Have you ever had sex with someone other than your spouse?

B: Were you born in the month of January, February, or March?

The interviewees were asked to pick up one card from the deck of 40 cards

numbered 1 to 5 (8 cards numbered 1, 4 numbered 2, 8 numbered 3, 16 numbered

4, 4 numbered 5), and not to tell the interviewer the number on the card. Then,

the interviewees answered Question A or B, according to the number on the

card. If the number on the card was 1, 2, or 3, they answered Question A; if the

number on the card was 4 or 5, they answered Question B. Under the design, the

probability of answering the sensitive question A is Pr(Q = 1) = q = 0.5, where

Q is a binary random variable representing whether question A (Q = 1) or B is

answered.
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Table 3. Analysis results of extramarital relations data.

Model Male Atti Child EduYear max-loglik

PH Est 1.223∗ 0.791∗ -0.948 -0.032 -588.128

SE 0.320 0.312 0.505 0.038

PO Est 1.449∗ 0.950∗ -1.268 -0.036 -589.355

SE 0.373 0.433 0.673 0.048

n = 1040, q = 0.5, c = 0.25, and “∗” denotes significance.

Based on the survey data obtained using the above RRT design, we wish to

study the relationship between a set of covariates and the time T to extramarital

relations since marriage. Let C denote the survey time of the interviewee since

he/she was married, obtained by the answer to the survey question, “How many

years have you been married ?” Let δ = I(T ≤ C) be the current-status indicator

for the interviewee at the survey time C, representing whether or not the sensitive

event (extramarital relations) had occurred by the time C. Owing to the RRT

design, instead of observing T , we can only observe Y = Qδ+(1−Q)W, assuming

that the interviewee answered question A truthfully, and W is the response to

question B.

The covariates we consider in the analysis include gender (Male; 1: Male,

0: Female), attitude toward extramarital relations (Atti; 1: Yes, 0: No), any

children (Child; 1: Yes, 0: No), and years of education (EduYear; 1.5–27

years). Whether an interviewee has any children was obtained by the survey

question “Do you have any child?”, and the attitude toward extramarital relations

of an interviewee was obtained by the survey question “Can married people

have extramarital relations?” To investigate the covariate effects on the time

to extramarital relations, we consider the class of generalized odds-rate hazards

models (Scharfstein, Tsiatis and Gilbert, 1998), that is, the function F in (2.1)

is given by F (x) = 1 − (1 + νx)1/ν , ν ≥ 0. This class of models includes the

PH (ν = 0) and PO (ν = 1) models as special cases. For the TSCS RRT data,

the generalized odds-rate hazards model with ν = 0, that is, the PH model is

found to give the largest log-likelihood value (-558.128) over a set of grid values

for ν ∈ [0, 2]. The regression analysis results for the TSCS RRT data based on

the PH and PO models are presented in Table 3.

As shown in Table 3, the results from both models reveal that males have a

significantly higher cumulative chance of experiencing extramarital relations than

females do. Furthermore, persons with a positive attitude toward extramarital

relations have a significantly shorter time to extramarital relations than persons

with a negative attitude do. On the other hand, people with children and

who have more education tend to have less incidence of extramarital relations,

although these trends are not statistically significant at the 5% level.

Figure 3 presents the RRT estimates of the cumulative percentages of

extramarital relations over years since marriage for males and females, obtained
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Figure 3. The estimated cumulative proportions of extramarital relations for males
and females under the PH model and the PO model, with the covariates (Atti, Child,
EduYear) fixed at the sample means.

from the PH and PO models, with the covariates Atti, Child, and EduYear

fixed at their sample means. The estimates of the proportions of males and

females having extramarital relations based on Figure 3 are presented in the

Supplementary Material.

Here, to help readers understand the proposed method, we summarize and

explain the steps applied to the TSCS unrelated-question RRT data. First, we set

the time-to-event model, which can belong to a general class of models, such as the

generalized odds-rate hazard models. The resulting likelihood is then obtained

from (3.1) of Section 3. Second, we apply the computation algorithm described in

Section 3 to maximize the likelihood function and obtain the maximum likelihood

estimates of the model parameters. Third, we base on the asymptotic normality

theory in Theorem 2 to make the inferences, including the hypothesis testing and

confidence intervals, about model parameters. Fourth, we choose an appropriate

time-to-event model from the general class of models considered, and compare the

log-likelihood values of different models in the class. When the method is applied

to related-question RRT data, the steps are essentially the same, except that the

likelihood function is now obtained from expression (3.1) of Section 4, and the

computation algorithm and the asymptotic normality theory of the maximum

likelihood estimates are provided in Section 4 and Theorem 4, respectively.

7. Conclusion

Current-status data obtained from routine survey studies, where continuous

follow-up is rare, allow us to analyze the time-to-event distribution and the

distribution conditional on certain covariate variables (Huang, 1996; Jewell and

van der Laan, 2003). In this work, we extend the regression analysis for current-
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status data to that for data collected using theRRT, including the unrelated-

question RRT of Greenberg et al. (1969) and the related-question RRT of Warner

(1965). The RRT is usually applied in surveys on sensitive issues, and uses some

random perturbation of the target question in a well-designed manner to make

it possible to analyze the target issue while protecting interviewees’ privacy.

Statistical analysis methods for the prevalence of a sensitive event, possibly

adjusting for certain covariates, based on RRT data are available. The main

and novel contribution of this work is that we extend the application of the RRT

to event time analysis.

Our simulation studies reveal that the unrelated-question RRT leads to a

more efficient regression coefficient estimation than that of the related-question

RRT. In particular, the unrelated-question RRT achieves higher efficiency when

the probability c of answering “yes” to the innocuous question is smaller.

However, a smaller value of c would make the group of persons with the sensitive

event easier to identify, which, in turn, would make that group of persons less

willing to answer the sensitive question truthfully, leading to larger bias. In

particular, the extreme case of c = 0 would not be used in practice, because it

would make the group of persons with the sensitive event fully identifiable. On

the other hand, increasing the probability q of selecting the sensitive question,

rather than the innocuous question (in the unrelated-question RRT) or the

complement of the sensitive question (in the related-question RRT), can yiled

higher estimation efficiency; and the extreme case of q = 1 yields the current-

status data exactly for the sensitive event, and hence full efficiency. However,a

larger value of q means less privacy protection, and thus may induce larger bias,

as above. Hence, there is a bias–efficiency trade-off when analyzing survey data

on sensitive issues.

In this work, we assume that interviewees answer the sensitive question

truthfully under the RRT. Relaxing this assumption requires an extension of

the methods proposed here for event time regression analysis, and so is left as

poissible.

Supplementary Materials

The Matlab code implementing the proposed methods and a more detailed

report of the TSCS data analysis are available in the online Supplementary

Material.
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Appendix

We use the notation Pn, P0, and P for the expectations taken under the

empirical distribution, the true underlying distribution, and a given model,

respectively. Assume Z is d-dimensional. The parameter space of β is a compact

subset B of Rd, and the parameter space of H is a set H of all right-continuous

non-decreasing functions that are uniformly bounded on the study period [0, τ ].

The asymptotic theories are based on the following assumptions.

(C1) The covariate vector Z is bounded with E{var(Z|C)} is positive definite.

(C2) The density of survey time C is continuous with support [τ1, τ2] where 0 <

τ1 < τ2 < τ.

(C3) The true parameter β0 is an interior point of its parameter space, and H0

is continuously differentiable and satisfies M−1 < H0(τ1) < H0(τ2) < M.

Our proofs of the theorems are mainly based on the techniques developed in

Huang (1996), van der Vaart (1998), and Korosok (2008). Specifically, we apply

Theorem 5.7 of van der Vaart (1998) and Theorem 3.2.5 of van der Vaart and

Wellner (1996) to establish the consistency and the convergence rate of estimators.

To derive the asymptotic normality of estimators, we first derive the efficient

score for β using techniques similar to Huang (1996), and then follow the well-

known empirical process theory and semiparametric M-estimator theory (e.g.,

Korosok (2008), Korosok (2008), van der Vaart and Wellner (1996)) to obtain

the asymptotic normality of estimators. Without confusion, we also write L(θ) =

L(θ|O),m∗(θ) = m∗(θ|O), L̃(θ) = L̃(θ|Õ), and m̃∗(θ) = m̃∗(θ|Õ).

A.1. Asymptotic properties of the RRT estimator

Proof of Theorem 1.

Consistency. First, we apply Theorem 5.7 of van der Vaart (1998) to establish

the consistency of RRT estimator (β̂, Ĥ). Let m(θ) = logL(θ). Since the class

of monotone and uniformly bounded functions is a Donsker class, by Theorem

2.10.6 of van der Vaart and Wellner (1996) and conditions (C1)-(C3), we know

that the class {m(θ)|θ ∈ B × H} is Donsker and hence Glivenko-Cantelli. By

Jensen’s inequality, we have

P0{m(θ)−m(θ0)} ≤ log

[
P0

{
L(θ)

L(θ0)

}]
= 0,

wherein the equality holds only if L(θ) = L(θ0) a.s., or equivalently, θ = θ0 by

model identifiability. This indicates that

sup
{θ: d∗{θ,θ0}>ε}

P0m(θ) < P0m(θ0).
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Furthermore, by definition of θ̂, Pnm(θ0) ≤ Pnm(θ̂). Applying Theorem 5.7 of van

der Vaart (1998), we have β̂→β0 and ∥Ĥ −H0∥2→ 0 in probability. Since H0 is

continuous and strictly monotone, it further implies Ĥ(t)→H0(t) in probability

for every t in (τ1, τ2).

Rate of convergence. Below we apply Theorem 3.2.5 of van der Vaart and

Wellner (1996) to prove d∗(θ̂, θ0) = Op(n
−1/3). Here we follow van der Vaart

(1998) to introduce the bracketing number and bracketing integral. For two

functions l and u, define the bracket [l, u] as the set of all functions f with

l ≤ f ≤ u. An ε-bracket in L2(P ) = {f : Pf2 < ∞} with respect to some

distribution P is then a bracket [l, u] with P (u − l)2 < ε2. For a subclass C of

L2(P ), the bracketing number N[ ](ε, C, L2(P )) is defined as the minimum number

of ε-bracket that is needed to cover C, and the bracketing integral J(δ, C, L2(P ))

is defined as
∫ δ

0
{1 + logN[ ](ε, C, L2(P ))}1/2dε. With the consistency and (C3),

we restrict H to H0 = {H ∈ H |M−1 ≤ H(τ1) ≤ H(τ2) ≤ M}. Let Ψ =

{m(θ) : θ ∈ B ×H0}. Then each element in Ψ is uniformly bounded and satisfies

P0{m(θ) − m(θ0)}2 ⪯ d∗{θ, θ0}2 by the mean value theorem, where ⪯ means

smaller than, up to a constant. Lemma A.1 below gives the bracketing integral

J{δ,Ψ, L2(P )} = O(δ1/2). Consequently, Lemma 19.36 of van der Vaart and

Wellner (1996) gives

P ∗ sup
d∗(ζ,ζ0)<δ

|
√
n(Pn − P0){m(θ)−m(θ0)}| ⪯ δ1/2

(
1 +

δ1/2

δ2
√
n

)
,

where P ∗ is the outer expectation. By the inequality of Kullback-Leibler diver-

gence (van der Vaart and Wellner, 1996, p.62), E{m(θ|O)|C,Z} is maximized

at (θ0, H0(C)). So, its first derivative is equal to zero there. Since (C,Z) has a

bounded support, the parameter spaces are compact, andH is uniformly bounded

from 0 and ∞, a Taylors’s expansion gives P0{m(θ) − m(θ0)} ⪯ −d∗(θ, θ0)
2.

According to Theorem 3.2.5 of van der Vaart and Wellner (1996), we complete

the proof.

Lemma 1. logN[ ](ε,Ψ, L2(P0)) = O(1/ε).

Proof. First consider the functions in Ψ for a fixed β. Given the ε-brackets

HL ≤ H ≤ HU , it is readily to get a bracket (mL,mU) for m(θ) where

mL ≡ log

[
{qF (eβ

′ZHL(C)) + (1− q)c}Y {1− qF (eβ
′ZHU(C))− (1− q)c}1−Y

]
,

mU ≡ log

[
{qF (eβ

′ZHU(C)) + (1− q)c}Y {1− qF (eβ
′ZHL(C))− (1− q)c}1−Y

]
.

By the mean value theorem, we have |mL − mU |2 ⪯ {HU(C) − HL(C)}2.
Thus, brackets for H of ∥·∥2-size ε can translate into brackets for m(θ) of L2(P0)-

size proportional to ε. By Example 19.11 of van der Vaart (1998), we can cover
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the set of all H by exp(C/ε) brackets of size ε for some constant C. Next we

allow β to vary freely as well. Because β is finite-dimensional and (∂/∂β)m(θ|O)

is uniformly bounded in (θ,O), this increases the entropy only slightly. This

completes the proof.

Proof of Theorem 2.

Efficient score. Recall that w(θ) = qḞ (eβ
′ZH(C))eβ

′ZH(C), E(θ) = qF (eβ
′Z

H(C))+(1−q)c, and V(θ) = E(θ){1−E(θ)}. The score for β, defined by ∂m/∂β,

takes the form m1(θ) = Zw(θ)V(θ)−1{Y − E(θ)}. Consider parametric paths

Hε ∈ H with Hε|ε=0 = H and (∂Hε/∂ε)|ε=0 = g. The score for H, defined

by {∂m(β,Hε)/∂ε}|ε=0, has the form m2(θ)[g] = {g(C)/H(C)}w(θ)V(θ)−1

{Y − E(θ)}. Also define m12(θ)[g] = {∂m1(β,Hε)/∂ε}|ε=0 and m22(θ)[g̃, g]

= {∂m2(β,Hε)[g̃]/∂ε}|ε=0. They have forms

m12(θ)[g] = −Z
g(C)

H(C)

w(θ)2

V(θ)
, m22(θ)[g̃, g] = − g̃(C)

H(C)

g(C)

H(C)

w(θ)2

V(θ)
.

Following semiparametric M-estimator (e.g., Korosok (2008)), the efficient score

is defined by m∗(θ) = m1(θ)−m2(θ)[g
∗], where g∗ satisfies that

P0{m12(θ0)[g]−m22(θ0)[g
∗, g]} = 0, (A.2)

for all g in L2(P0). It immediately gives that

g∗(C) = H0(C)
E
[
Zw(θ0)

2V(θ0)−1|C
]

E
[
w(θ0)2V(θ0)−1|C

] ,

and hence m∗(θ) = w(θ)V(θ)−1 {Z − g∗(C)H(C)−1} {Y − E(θ)} .

Asymptotic Normality. Denote a⊗2 = aa′ for any column vector a. By direct

calculations and the definition of g∗, we have

−P0

{
∂

∂β
m∗(θ0)

}
= E

{
Z

(
Z − g∗(C)

H0(C)

)′
w(θ0)

2

V(θ0)

}

= E

{(
Z − g∗(C)

H0(C)

)⊗2
w(θ0)

2

V(θ0)

}
,

which is positive definite. This implies the invertibility of I.
Applying Taylor expansions of m∗(β0, H(C))(O) at H0(C), we conclude that

P0m
∗(β0, H)

= P0m
∗(θ0) + P0{m12(θ0)[H −H0]−m22(θ0)[g

∗, H −H0]}+Op(∥H −H0∥22).

Using the facts that P0m
∗(θ0) = 0, (A.2), and the rate of convergence of Ĥ, we
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have √
nP0m

∗(β0, Ĥ) = op(1). (A.3)

It is known that the class of uniformly bounded functions of bounded variations is

a Donsker class. By Theorem 2.10.6 of van der Vaart and Wellner (1996), we can

show that {m∗(θ)|θ ∈ B × H0} is a uniformly bounded Donsker class; the proof

of which is technical and hence omitted here. This together with the consistency

of θ̂ implies that
√
n(Pn −P0){m∗(θ̂)−m∗(θ0)} = op(1). Adding (A.3) and using

the fact that P0m
∗(θ0) = Pnm

∗(θ̂) = 0, we obtain

−
√
nP0{m∗(θ̂)−m∗(β0, Ĥ)} =

√
nPnm

∗(θ0) + oP (1).

By the mean value theorem, there exists β̃ lying between β̂ and β0 such that

−
√
nP0

{
∂

∂β
m∗(β̃, Ĥ)

}
(β̂ − β0) =

√
nPnm

∗(θ0) + oP (1).

By the consistency of θ̂ and the invertibility of I, we have

√
n(θ̂ − θ0) = I−1

0

√
nPnm

∗(θ0) + oP (1)
d→ N(0, I−1Σ(I−1)′).

This completes the proof.

A.2. Asymptotic properties of the rRRT estimator

Proof of Theorem 3. Let m̃(θ) = log L̃(θ). The consistency and the rate of

convergence of the rRRT estimator can be obtained using the same argument for

establishing Theorem 1 for the RRT estimator. We skip the most similar part of

the proof except that the construction of the bracket for m̃(θ) needed in Lemma

A.1. Recall that

m̃(θ) = X log
[
(qF + q̄F̄ ){eβ

′ZH(C)}
]
+ X̄ log

[
(q̄F + qF̄ ){eβ

′ZH(C)}
]
.

Given a ε-bracketsHL ≤ H ≤ HU , a bracket (mL,mU) for m̃ can be obtained

by

mL(θ) = X log
{
qF (eβ

′ZHL(C)) + q̄F̄ (eβ
′ZHU(C))

}
+X̄ log

{
q̄F (eβ

′ZHL(C)) + qF̄ (eβ
′ZHU(C))

}
,

mU(θ) = X log
{
qF (eβ

′ZHU(C)) + q̄F̄ (eβ
′ZHL(C))

}
+X̄ log

{
q̄F (eβ

′ZHU(C)) + qF̄ (eβ
′ZHL(C))

}
.

Proof of Theorem 4. The asymptotic normality of the rRRT estimator can be

obtained using the same argument in Theorem 2. Below we derive the efficient

score m̃∗(θ) and show the invertibility of efficient information Ir, but skip the
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much similar remaining part of the proof.

Recall that w̃(θ)=(q−q̄)Ḟ (eβ
′ZH(C))eβ

′ZH(C), Ẽ(θ)=(qF+q̄F̄ ){eβ′ZH(C)},
and Ṽ(θ) = Ẽ(θ){1− Ẽ(θ)}. The score for β takes the form

m̃1(θ) = Zw̃(θ)Ṽ(θ)−1{X − Ẽ(θ)},

and the score for H along direction g takes the form

m̃2(θ)[g] =
g(C)

H(C)
w̃(θ)Ṽ(θ)−1{X − Ẽ(θ)}.

Define m̃12(θ)[g]={∂m̃1(β,Hε)/∂ε}|ε=0 and m̃22(θ)[g̃, g]={∂m̃2(β,Hε)[g̃]/∂ε}|ε=0,

some calculations give

m̃12(θ)[g] = −Z
g(C)

H(C)

w̃(θ)2

Ṽ(θ)
, m̃22(θ)[g̃, g] = − g̃(C)

H(C)

g(C)

H(C)

w̃(θ)2

Ṽ(θ)
.

The efficient score for β is m̃∗(θ) = m̃1(θ)− m̃2(θ)[g̃
∗] with g̃∗ satisfying

P0{m̃12(θ0)[g]− m̃22(θ0)[g̃
∗, g]} = 0.

It immediately gives that

g̃∗(C) = H0(C)
E
[
Zw̃(θ0)

2Ṽ(θ0)
−1
|C
]

E
[
w̃(θ0)2Ṽ(θ0)

−1
|C
] ,

and hence m̃∗(θ) = w̃(θ)Ṽ(θ)
−1
{Z − g̃∗(C)H(C)−1}{X − Ẽ(θ)}. By direct

calculations and the definition of g̃∗, we have

−P0

{
∂

∂β
m̃∗(θ0)

}
= E

[
Z

{
Z − g̃∗(C)

H0(C)

}′
w̃(θ0)

2

Ṽ(θ0)

]

= E

[{
Z − g̃∗(C)

H0(C)

}⊗2
w̃(θ0)

2

Ṽ(θ0)

]
,

which is positive definite. This implies the invertibility of Ir.
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