
Statistica Sinica 34 (2024), 27-46
doi:https://doi.org/10.5705/ss.202021.0049

SELECTION OF PROPOSAL DISTRIBUTIONS FOR

MULTIPLE IMPORTANCE SAMPLING

Vivekananda Roy∗ and Evangelos Evangelou

Iowa State University and University of Bath

Abstract: In general, the naive importance sampling (IS) estimator does not work

well in examples involving simultaneous inference on several targets, because the

importance weights can take arbitrarily large values, making the estimator highly

unstable. In such situations, researchers prefer alternative multiple IS estimators

involving samples from multiple proposal distributions. Just like the naive IS,

the success of these multiple IS estimators depends crucially on the choice of

the proposal distributions, which is the focus of this study. We propose three

methods: (i) a geometric space-filling approach, (ii) a minimax variance approach,

and (iii) a maximum entropy approach. The first two methods apply to any IS

estimator, whereas the third approach is described in the context of a two-stage IS

estimator. For the first method, we propose a suitable measure of “closeness”

based on the symmetric Kullback–Leibler divergence and the second and third

approaches use estimates of asymptotic variances of an IS estimator and the reverse

logistic regression estimator, respectively. Thus, when samples from the proposal

distributions are obtained by running Markov chains, we provide consistent spectral

variance estimators for these asymptotic variances. Lastly, we demonstrate the

proposed methods for selecting proposal densities using various detailed examples.

Key words and phrases: Bayes factor, central limit theorem, marginal likelihood,

Markov chain, polynomial ergodicity, reverse logistic regression.

1. Introduction

Importance sampling (IS) is a popular Monte Carlo procedure in which

samples from one distribution are weighted in order to estimate features of other

distributions. Here, we consider IS in the context of the following problem. Let

Π be the family of target densities on the space X with respect to a measure µ,

where π(x) = ν(x)/θ ∈ Π. Here, ν(x) is known, but the normalizing constant

θ =
∫
X
ν(x)µ(dx) is unknown. Let f be a π-integrable, real-valued function

defined on X, for all π ∈ Π. There are two goals. The first goal is to estimate

the normalizing constants θ up to a constant of proportionality for all π ∈ Π.

The second goal is to estimate the integrals Eπf :=
∫
X
f(x)π(x)µ(dx) for all

π ∈ Π. Estimations of normalizing constants play important roles in frequentist

and Bayesian inference, as well as in other areas, such as statistical physics. In

Bayesian statistics, the ratio of normalizing constants for two different posteriors
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is the Bayes factor, which is at the core of Bayesian hypothesis testing and model

selection (Doss (2010)). The empirical Bayes estimate corresponds to the value of

a hyper parameter where the normalizing constant (marginal likelihood) attains

its maximum (Doss (2010); Roy, Evangelou and Zhu (2016)). In latent variable

models, for example, generalized linear mixed models, the ratio of the normalizing

constants is the likelihood ratio used for hypothesis testing (Christensen (2004)).

The normalizing constants also need to be estimated in problems involving

intractable likelihoods, such as exponential random graph models and autologistic

models (Geyer and Thompson (1992)). Similarly, in statistical physics, an

important problem is the estimation of some normalizing constants, known as

the partition function. On the other hand, estimating the (posterior) means of

certain functions f as the posterior density varies is the key issue in Bayesian

sensitivity analysis (Buta and Doss (2011)). In Bayesian penalized regression

methods, plotting regularization paths is equivalent to estimating the means of

the regression coefficients as the penalty parameters vary (Roy and Chakraborty

(2017)).

Our two objectives can be accomplished using naive importance sampling.

Let q1(x) = ϕ1(x)/c1 be another density on X with respect to µ, such that we are

able to generate samples from q1, and ν(x) = 0 whenever ϕ1(x) = 0. Indeed, if

{Xi}ni=1 is either an independent and identically distributed (i.i.d.) samples from

q1 or a positive Harris recurrent Markov chain with invariant density q1, then the

naive IS estimator is consistent; that is,

1

n

n∑
i=1

ν(Xi)

ϕ1(Xi)
a.s.−→

∫
X

ν(x)

ϕ1(x)
q1(x)µ(dx) =

θ

c1

∫
X

ν(x)/θ

ϕ1(x)/c1

q1(x)µ(dx) =
θ

c1

. (1.1)

Similarly, we can estimate Eπf using the ratio of (1/n)
∑n

i=1[f(Xi)ν(Xi)/ϕ1(Xi)]

and the estimator in (1.1). These naive IS estimators suffer from high variance

when the target probability density function (pdf) π is not “close” to the

proposal pdf q1 (Geyer (2011)) because, in that case, the ratio ν(Xi)/ϕ1(Xi)

takes arbitrarily large values for some Xi.

To alleviate this issue, we can use samples from multiple proposals, properly

weighted, as in the variants of multiple importance sampling (Veach and Guibas

(1995); Owen and Zhou (2000); Elvira et al. (2019)), umbrella sampling (Geyer

(2011); Doss (2010)), and parallel, serial, or simulated tempering (George and

Doss (2018); Geyer and Thompson (1995); Marinari and Parisi (1992)). In an

IS estimation based on multiple proposal densities, we usually replace the single

density q1 with a linear combination of k densities (Geyer (2011)). In particular,

let qi(x) = ϕi(x)/ci, for i = 1, . . . , k, be k densities from the set of potential

proposal densities Q ≡ {q(x) = ϕ(x)/c}, where ϕi are known but ci may be

unknown. Let a = (a1, . . . , ak) be a vector of k positive constants such that∑k
i=1 ai = 1, q ≡

∑k
i=1 aiqi, di = ci/c1, for i = 1, 2, . . . , k, with d1 = 1, and
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d ≡ (c2/c1, . . . , ck/c1). For l = 1, . . . , k, let {X(l)
i }nl

i=1 be either i.i.d. samples from

ql or a positive Harris recurrent Markov chain with invariant density ql. Then,

as nl →∞,∀ l,

û ≡
k∑
l=1

al
nl

nl∑
i=1

ν(X
(l)
i )∑k

j=1 ajϕj(X
(l)
i )/dj

a.s.−→
k∑
l=1

al

∫
X

ν(x)∑k
j=1 ajϕj(x)/dj

ql(x)µ(dx)

=
1

c1

∫
X

ν(x)

q(x)
q(x)µ(dx) =

θ

c1

. (1.2)

Similarly, we estimate Eπf using η̂[f ] ≡ v̂[f ]/û, where

v̂[f ] :=
k∑
l=1

al
nl

nl∑
i=1

f(X
(l)
i )ν(X

(l)
i )∑k

j=1 ajϕj(X
(l)
i )/dj

.

Estimations using (1.2) have been considered in several works (see, e.g., Gill,

Vardi and Wellner (1988); Kong et al. (2003); Meng and Wong (1996); Tan

(2004); Vardi (1985); Buta and Doss (2011); Geyer (1994); Tan, Doss and Hobert

(2015)). Although alternative weighting schemes have been proposed, such as

the population Monte Carlo of Cappé et al. (2004), none is as widely applicable

as (1.2). If the normalizing constants ci are known, the estimator (1.2) resembles

the balance heuristic estimator of Veach and Guibas (1995), which is discussed

in Owen and Zhou (2000) as a deterministic mixture. On the other hand, in

several applications of IS methods, d in (1.2) is unknown. This occurs when

Q = Π, that is, when samples from a subset of densities of Π are used to

estimate the normalizing constants for the entire family using (1.2). Routine

applications of IS estimation with Q = Π can be found in Monte Carlo maximum

likelihood estimation, Bayesian sensitivity analysis, and model selection (Geyer

and Thompson (1992); Buta and Doss (2011); Doss (2010)). For unknown d,

Doss (2010) proposed a two-stage method. In the first step, using samples from

qi, for i = 1, . . . , k, d is estimated by d̂ using Geyer’s (1994) reverse logistic

regression estimator or Meng and Wong’s (1996) bridge sampling method. Then,

independent of step one, new samples are used to calculate (1.2), with d replaced

by d̂.

The effectiveness of (1.2) depends on the choices of k, a, nl, and the

importance densities q = {q1, . . . , qk}. Here, we focus on choosing the importance

densities, because they are the most crucial. Furthermore, the multiple IS

estimator (1.2), just like the naive IS estimator (1.1), is useless if these densities

are not “close” to some target densities. Although increasing k or nl may lead

to estimators with less variance, doing so results in a higher computational cost.

Therefore, these are often determined based on available computational resources.

On the other hand, for fixed k, a, and nl, we can improve the efficiency and

stability of the estimator (1.2) by choosing the k importance densities q from the
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set Q appropriately.

This study is the first to develop and test systematic methods for selecting

proposal distributions for IS. We propose three approaches. (i) Our first approach

is based on a geometric spatial design method, called the space-filling (SF)

method. In particular, among all subsets q ⊂ Q with |q| = k, we choose the one

that minimizes the gaps between the elements of q and those of Π. The choice of

the distance between the elements of q and Π is crucial, and here we propose using

the symmetric Kullback–Leibler divergence. (ii) The second approach, called

the minimax (MNX) method, chooses q that minimizes the maximum standard

error, or the maximum relative standard error of the estimator û (or η̂[f ]). (iii)

Finally, the third approach is applicable when d in (1.2) is unknown. Here, we

use Doss’s (2010) two-stage IS method. In this approach, called the maximum

entropy (ENT) method, following the maximum entropy criterion of experimental

design, q is chosen by maximizing the determinant of the asymptotic covariance

matrix of d̂. We describe and compare these three methods in Section 3. The

methods apply to different situations. MNX is applicable to any IS estimator for

which valid standard errors are available. Implementing MNX and ENT requires

that we estimate the asymptotic variances in a central limit theorem. In the

absence of such variance estimates, SF can be used. SF does not depend on the

form of the IS estimator (1.2). Thus, the same SF distributions can be used

for any IS estimator. However, a successful implementation of the SF, as shown

later, depends crucially on the choice of the metric. Unlike the MNX design,

which depends on the choice of the function f , the same SF and ENT proposals

work regardless of whether we need to estimate the normalizing constants or

the means. Overall, SF is the most straightforward to implement. However, it

may not always be ideal, because it is independent of the form of the estimator

and the estimand of interest. In our experience, with a properly chosen metric, it

consistently provides desirable results. The three methods are implemented using

the R package geoBayes (Evangelou and Roy (2022)). We illustrate these methods

using several examples involving autologistic models, Bayesian regression models,

and spatial generalized linear mixed models.

Unfortunately, few studies have examined the choice of the importance

densities in multiple IS methods. However, given q, in the special case when

d is known and i.i.d. samples are available from the proposal densities, several

methods exist for selecting the weights a (see, e.g., Li, Tan and Chen (2013)).

One exception is Buta and Doss (2011), who describe an ad-hoc method in

the important special case of Q = Π. Buta and Doss (2011) state that

solving the minimax variance design problem, that is, the one that minimizes

φ(q) = maxπ∈Πσ
2
u(π; q) exactly, where σ2

u(π; q) is the asymptotic variance of û

in (1.2), is “hopeless”. Assuming that a consistent estimator σ̂2
u(π; q) of σ2

u(π; q)

is available, Buta and Doss (2011) propose a procedure in which they compute

σ̂2
u(π; q), for all π ∈ Π starting from some “trial” proposal pdfs. Then, proposal
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densities are either moved to regions of Π where σ̂2
u(π; q) is large, or new proposal

densities from these high variance regions are added by increasing k. Here,

we develop a principled approach, called the sequential method (SEQ), that

formalizes this procedure, and compare its performance with that of the three

proposed methods.

As mentioned above, the MNX, ENT, and SEQ methods use asymptotic

standard errors of d̂ and/or û. A further contribution of this study is the

development of spectral variance (SV) estimators of the asymptotic variances

for d̂ and û. The availability of consistent estimators is important in its own

right, because it allows us to calculate asymptotically valid standard errors of

the IS estimators. Recently, Roy, Tan and Flegal (2018) provided standard error

estimators of d̂ and û using the batch means method. In other numerical examples

(not shown here), we observe that the proposed SV estimators are, in general,

less variable than the batch means estimators. This observation is in line with the

findings of Flegal and Jones (2010), who show that, when estimating the means

of scalar-valued functions, certain SV estimators are less variable than the batch

means estimators by a factor of 1.5.

The rest of this paper is organized as follows. In Section 2, we describe the

multiple IS estimation and the reverse logistic regression estimation. In Section 3,

we describe the proposed methods for selecting the proposal densities for the

IS estimators. Several illustrative examples are given in Section 4. Section 5

concludes the paper. The proofs of the theorems and several other examples are

relegated to the Supplementary Material.

2. Multiple IS Estimation of Normalizing Constants and Expectations

Recall that Π = {π : π(x) = ν(x)/θ} is a family of target densities on X,

and that f : X → R is a function of interest. Given samples Φl ≡ {X(l)
i }nl

i=1,

for l = 1 . . . , k, from a small number of proposal densities {ql = ϕl(x)/cl, l =

1, . . . , k}, we want to estimate θ (or, rather θ/c1) and Eπf , for all π ∈ Π. Recall

that we estimate u(π, q1) ≡ θ/c1 and Eπf by û(d) ≡ û(π;d) defined in (1.2) and

η̂[f ] ≡ η̂[f ](π;d), respectively. We also consider the more general setting when d

is unknown, which is the case if Q = Π. In such situations, we use the two-stage

IS procedure of Doss (2010), where, d is first estimated using Geyer’s (1994)

reverse logistic regression method (described in Section 2.1) based on Markov

chain samples Φ̃l ≡ {X̃(l)
i }Nl

i=1 with stationary density ql, for l = 1, . . . , k. Once

we have d̂, independent of stage 1, we obtain new samples Φl ≡ {X(l)
i }nl

i=1, for

l = 1 . . . , k, to estimate u(π, q1) and Eπf by û(d̂) and η̂[f ](π; d̂), respectively.

Buta and Doss (2011) quantify the benefits of using the two-stage scheme, rather

than using the same samples to estimate both d and u(π, q1).
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2.1. Reverse logistic regression estimator of d

Let N =
∑k

l=1Nl and al ∈ [0, 1], for l = 1, . . . , k, such that
∑k

l=1 al = 1.

Define

ζl = − log(cl) + log(al), l = 1, . . . , k, (2.1)

and

pl(x, ζ) =
ϕl(x)eζl∑k
s=1 ϕs(x)eζs

, l = 1, . . . , k, (2.2)

where ζ = (ζ1, . . . , ζk). (Note that if al = Nl/N , given that x belongs to the

pooled sample
{
X̃

(l)
i , i = 1, . . . , Nl, l = 1, . . . , k

}
, pl(x, ζ) is the probability that

x comes from the lth distribution.) Following Doss and Tan (2014), consider the

log quasi-likelihood function

`N(ζ) =
k∑
l=1

al
N

Nl

Nl∑
i=1

log
{
pl(X̃

(l)
i , ζ)

}
. (2.3)

Note that adding the same constant to all ζl leaves (2.3) invariant. Let ζ0 ∈ Rk

denote the true ζ normalized to add to zero, that is, ζ0
l = ζl −

(∑k
j=1 ζj

)
/k.

Here, ζl denotes the lth element of ζ. Note that the function g : Rk → Rk−1 that

maps ζ0 into d is given by g(ζ) = (eζ1−ζ2a2/a1, e
ζ1−ζ3a3/a1, . . . , e

ζ1−ζkak/a1)>.

We estimate ζ0 by ζ̂, where

ζ̂ = argmax `N(ζ) subject to
k∑
j=1

ζj = 0,

and thus obtain d̂ = g(ζ̂).

3. Selection of Proposal Distributions

In this section, we propose three criteria for selecting the proposal distribu-

tions q = {q1, . . . , qk} ⊂ Q for efficient use of the multiple IS estimators. For

q ⊂ Q, the proposed criterion is generally denoted by φ(q) and the optimal set

is obtained as follows:

Minimizeφ(q)overq ⊂ Q.

We consider the case where the set Q corresponds to a family of densities

parameterized by ξ ∈ Ξ; thus, searching over Q is equivalent to searching over

Ξ. The variable ξ can be multi-dimensional and the range of ξ can be infinite

in every direction. Thus, for computational purposes, we may need to narrow

down the potential region of the search, depending on the application. Evangelou

and Roy (2019) considered the problem of maximizing (1.2) with respect to ξ. As

mentioned in the Introduction, this is the situation in empirical Bayes methods, so

they used Laplace approximations to identify the region in which the maximizer
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may lie. Thus, using Laplace approximations, as in Evangelou and Roy (2019),

we can narrow Ξ down to a search set Ξ̃. In Section S10 of the Supplementary

Material, we demonstrate an alternative approach to choosing Ξ̃ using preliminary

samples.

Solving the minimization problem is a research problem in its own right. We

implemented two algorithms for searching over Ξ̃, namely, the point-swapping

algorithm of Royle and Nychka (1998), and a simulated annealing algorithm.

Details about these algorithms are given in Section S7 of the Supplementary

Material. The point-swapping algorithm requires more iterations, in general, and

so is better suited to cases in which the design criterion φ can be computed

quickly after a swap, as is often the case for the SF method.

3.1. Space-filling approach

In this method, from among all subsets q = {q1, . . . , qk} of Q, we choose the

one that minimizes the gaps between the elements of q and the elements of Π.

For π ∈ Π, and q ∈ Q, let Υ(π, q) be a suitably chosen metric. Define

ψp(q, π) =

{∑
q∈q

Υ(π, q)p
}1/p

as a measure of “closeness” of q to π. Note that, for p < 0, ψp(q, π) → 0 if π

is allowed to converge to a point in q. The design criterion is to choose q to

minimize

φSF(q) = Ψp,p̃(q) =

{∑
π∈Π

ψp(q, π)p̃
}1/p̃

,

over all subsets q, with |q| = k. In the limit (p → −∞, p̃ → ∞), Ψp,p̃ is related

to the minimax design. However, as Royle and Nychka (1998) show, keeping p

and p̃ finite allows us to quickly evaluate φ after a swap of the point-swapping

algorithm. We use p = −30, and p̃ = 30 in our examples, which allows us to

obtain a near-minimax SF design.

The choice of the metric Υ(π, q) is crucial. For instance, in the binomial robit

model with degrees of freedom parameter ξ (see the example in Section S8 of the

Supplementary Material), the family of target densities Π ≡ {πξ(x) = νξ(x)/θξ :

ξ ∈ Ξ} is indexed by the Student’s t degrees of freedom parameter ξ. Here, the

relevant geometry (with respect to ξ) in R is not Euclidean. Indeed, the degrees

of freedom ξ = 102 and 103 are close, but ξ = 0.5 and ξ = 1 are not. Thus, the SF

based on the Euclidean distance metric (SFE) may not be appropriate unless the

indexing variable is a location parameter. The Euclidean distance is also sensitive

to reparameterizations of the family of proposal distributions. Another choice is

the information metric (Kass (1989); Rao (1982)), which measures the distance

between two parametric distributions using asymptotic standard deviation units
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of the best estimator. The Kullback–Leibler divergence uses the information

metric (Ghosh, Delampady and Samanta (2007)), which may be difficult to

implement in practice, but seems appropriate for this context. Here, we use

the symmetric Kullback–Leibler divergence (SKLD), although it is not a metric,

and denote the corresponding method by SFS. Thus,

Υ(π, q) =

∫
X

π(x) log
ν(x)

ϕ(x)
µ(dx)−

∫
X

q(x) log
ν(x)

ϕ(x)
µ(dx). (3.1)

In the special case when Π ≡ {πξ(x) = νξ(x)/cξ : ξ ∈ Ξ}, that is, the target

family is indexed by some variable ξ and Q = Π, the SKLD between πξ1(x) and

πξ2(x) is

Υ(ξ1, ξ2) =

∫
X

πξ1(x) log
νξ1(x)

νξ2(x)
µ(dx)−

∫
X

πξ2(x) log
νξ1(x)

νξ2(x)
µ(dx) (3.2)

=

∫
X
νξ1(x) log{νξ1(x)/νξ2(x)}µ(dx)∫

X
νξ1(x)µ(dx)

−
∫
X
νξ2(x) log{νξ1(x)/νξ2(x)}µ(dx)∫

X
νξ2(x)µ(dx)

.

(3.3)

In general, the SKLD (3.1) is not available in a closed form. We use a modified

Laplace method (Evangelou, Zhu and Smith (2011)) to approximate (3.3), and

describe the method in Section S1. The second-order approximation described

in the Supplementary Material is exact when πξ1 and πξ2 are any two Gaussian

densities. If X is discrete, or if the target distributions are far from Gaussian, we

can use a Monte Carlo estimate of (3.2) with samples from πξ1 and πξ2 . Indeed,

for some examples considered here, we use the Monte Carlo estimate of (3.2) to

implement SFS.

The SF method does not require any particular form of IS estimator. When

Q = Π, the uniform (with respect to the chosen metric) selection of the proposal

distributions attempts to guarantee that each target density is close to at least

one proposal distribution. In addition, the SF method is attractive, because an IS

estimator is usually used to simultaneously estimate several quantities of interest,

resulting in different optimal design criteria.

3.2. Minimax approach

Our second method is the minimax (MNX) design, based on minimizing

the maximum SE or relative SE of û(π, d̂) or η̂[f ](π; d̂) over π ∈ Π. The

consistency and asymptotic normality of d̂, û(π; d̂), and η̂[f ](π; d̂) are described

in Theorems 1, 2, and 3, respectively, of Roy, Tan and Flegal (2018). Let σ2
u(π, q)

denote the asymptotic variance of û(π, d̂) when the set of proposal densities is

q ⊂ Q. Then, the standard error is σu(π, q)/
√
n, where n =

∑k
l=1 nl. The

minimax approach chooses q that minimizes the largest standard error or the
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relative standard error, given by

φMNX(q) = max
π∈Π

σu(π, q)√
n

, and φMNX(q) = max
π∈Π

σu(π, q)
√
nû(π, d̂)

,

respectively. Similar measures can be derived for η̂[f ](π; d̂), with variance σ2
η(π, q).

In the following, we discuss estimating the asymptotic variances σ2
u(π, q) and

σ2
η(π, q) of these estimators. Note that the ratios of the normalizing constants

(θ/c1) can take large values as π varies in Π, especially when X is multi-

dimensional. The standard errors corresponding to distributions with large ratios

tend to be larger, whereas these standard errors for distributions with small

(relative) normalizing constants can potentially be large relative to the value of

the estimates. Thus, if the goal is to estimate the parameters corresponding to

the largest normalizing constants (as in the empirical Bayes methods; see, e.g.,

Roy, Evangelou and Zhu (2016)), then the first criterion can be used. On the

other hand, if one wants to estimate θ for all π ∈ Π, then the second criterion

(relative standard error) may be preferred.

Spectral variance estimation in reverse logistic regression and multiple

IS methods: First, we provide an SV estimator of the asymptotic covariance

matrix of d̂, because we need it for the asymptotic variances of û(π; d̂) and

η̂[f ](π; d̂). The SV estimator of Var(d̂) is also important in its own right, and is

used in Section 3.3 in our third approach to selecting proposal distributions.

As in Roy, Tan and Flegal (2018), we assume that the Markov chains Φl, and

Φ̃l are polynomially ergodic for l = 1, . . . , k. (The definition of the polynomial

ergodicity of Markov chains can be found in Roy, Tan and Flegal (2018).) They

showed that if the Markov chain Φ̃l is polynomially ergodic of order t > 1, for

l = 1, . . . , k, then ζ̂ and d̂ defined in section 2.1 are consistent and asymptotically

normal as N1, . . . , Nk → ∞; that is, there exist matrices B,Ω ∈ Rk,k and D ∈
Rk,k−1 such that

√
N(ζ̂ − ζ)

d→ N (0, U) and
√
N(d̂− d)

d→ N (0, V ),

where U = B†ΩB† and V = D>UD. Here, for a square matrix C, C† denotes

its Moore–Penrose inverse. The matrices B, Ω, and D are defined in (2.7), (2.8),

and (2.5), respectively, in Roy, Tan and Flegal (2018). Theorem 1 below provides

consistent SV estimators of the asymptotic variances of ζ̂ and d̂.

We now introduce some notation. Assume Nl → ∞, such that limNl/N

∈ (0, 1), for l = 1, . . . , k. Recall that d̂ = g(ζ̂), and its gradient at ζ̂ (in terms

of d̂) is
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D̂ =


d̂2 d̂3 . . . d̂k
−d̂2 0 . . . 0

0 −d̂3 . . . 0
...

...
. . .

...

0 0 . . . −d̂k

 . (3.4)

As in Roy, Tan and Flegal (2018), the k × k matrix B̂ is defined by

B̂rr =
k∑
l=1

al

[
1

Nl

Nl∑
i=1

pr(X̃
(l)
i , ζ̂)

{
1− pr(X̃(l)

i , ζ̂)
}]

and

B̂rs = −
k∑
l=1

al

{
1

Nl

Nl∑
i=1

pr(X̃
(l)
i , ζ̂)ps(X̃

(l)
i , ζ̂)

}
, for r 6= s; (3.5)

that is, B̂ denotes the matrix of the second derivatives of −`N(ζ)/N evaluated at

ζ̂, where `N(ζ) is defined in (2.3). Set Z
(l)
i = (p1(X̃

(l)
i , ζ̂), . . . , pk(X̃

(l)
i , ζ̂))>, for

i = 1, . . . , Nl, and Z̄(l) =
∑Nl

i=1 Z
(l)
i /Nl. Define the lag j sample autocovariance

as

γ
(l)
N (j) =

1

Nl

∑
i∈Sj,N

(
Z

(l)
i − Z̄(l)

)(
Z

(l)
i+j − Z̄(l)

)>
, for l = 1, . . . , k, (3.6)

where Sj,N = {1, . . . , N − j} for j ≥ 0, and Sj,N = {(1− j), . . . , N} for j < 0. Let

Σ̂(l) =

bNl
−1∑

j=−(bNl
−1)

wNl
(j)γ

(l)
N (j), (3.7)

where wNl
(·) is the lag window, and bNl

are the truncation points for l = 1, . . . , k.

Finally, define

Ω̂ =
k∑
l=1

N

Nl

a2
l Σ̂

(l). (3.8)

Theorem 1. Assume that the Markov chains Φ̃1, . . . , Φ̃k are polynomially ergodic

of order t > 1, and for all l = 1, . . . , k, wNl
and bNl

satisfy conditions 1–4 in

Vats, Flegal and Jones (2018, Thm. 2). Let D̂, B̂, and Ω̂ be the matrices defined

by (3.4), (3.5), and (3.8), respectively. Then, as Nl → ∞, for all l = 1, . . . , k,

Û := B̂†Ω̂B̂† and V̂ := D̂>ÛD̂ converge almost surely to U and V , respectively.

Next, we estimate the asymptotic variances of û(π; d̂) and η̂[f ](π; d̂). Roy,

Tan and Flegal (2018) showed that, under certain conditions, there exist σ2
u, σ

2
η >

0 such that, as n1, . . . , nk →∞,

√
n{û(π; d̂)− u(π, q1)} d→ N(0, σ2

u) and
√
n(η̂[f ](π; d̂)− Eπf)

d→ N(0, σ2
η).

(3.9)
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In Theorem 2, we provide consistent SV estimators of σ2
u and σ2

η. We first

introduce some notation. Let

uπ(x;d) :=
ν(x)∑k

s=1 asϕs(x)/ds
and v[f ],π(x;d) := f(x)uπ(x;d). (3.10)

Define the vectors c(π;d) and e(π;d) of length k−1 and with (j−1)th coordinate

as

[c(π;d)]j−1 =
u(π, q1)

d2
j

∫
X

ajϕj(x)∑k
s=1 asϕs(x)/ds

π(x)µ(dx) (3.11)

[e(π;d)]j−1 =
aj
d2
j

∫
X

[f(x)− Eπf ]ϕj(x)∑k
s=1 asϕs(x)/ds

π(x)µ(dx), (3.12)

respectively, for j = 2, . . . , k, and their estimators ĉ(π;d) and ê(π;d) as

[ĉ(π;d)]j−1 =
k∑
l=1

1

nl

nl∑
i=1

ajalν(X
(l)
i )ϕj(X

(l)
i )

{
∑k

s=1 asϕs(X
(l)
i )/ds}2d2

j

, (3.13)

[ê(π;d)]j−1

=

∑k
l=1(al/nl)

∑nl

i=1 ajf(X
(l)
i )ν(X

(l)
i )ϕj(X

(l)
i )/[d2

j{
∑k

s=1 asϕs(X
(l)
i )/ds}2]

û(π;d)

− [ĉ(π;d)]j−1η̂
[f ](π;d)

û(π;d)
, (3.14)

respectively. Suppose bnl
are the truncation points, wnl

(j) is the lag window,

ui ≡ ui(d) ≡ uπ(X
(l)
i ;d), v

[f ]
i ≡ v

[f ]
i (d) ≡ v[f ],π(X

(l)
i ;d), and ū ≡ ū(d), and v̄[f ] ≡

v̄[f ](d) are the averages of {uπ(X
(l)
1 ;d), . . . , uπ(X(l)

nl
;d)} and {v[f ],π(X

(l)
1 ;d), . . . ,

v[f ],π(X(l)
nl

;d)}, respectively. (Note that, with a slight abuse of the notation, the

dependence on l is ignored in ui, v
[f ]
i , ū, and v̄[f ].) Let

τ̂ 2
l (π;d) =

1

nl

bnl
−1∑

j=−(bnl
−1)

wnl
(j)

∑
i∈Sj,n

(ui − ū) (ui+j − ū) , and (3.15)

Γ̂l(π;d) =
1

nl

bnl
−1∑

j=−(bnl
−1)

wnl
(j)

∑
i∈Sj,n

{(
v

[f ]
i

ui

)
−
(
v̄[f ]

ū

)}{(
v

[f ]
i+j

ui+j

)
−
(
v̄[f ]

ū

)}>
.

Finally, let τ̂ 2(π;d) =
∑k

l=1(a2
ln/nl)τ̂

2
l (π;d), Γ̂(π;d) =

∑k
l=1(a2

ln/nl)Γ̂l(π;d),

and

ρ̂(π; d̂) = ∇h{v̂[f ](π; d̂), û(d̂)}>Γ̂(π; d̂)∇h{v̂[f ](π; d̂), û(d̂)},

where ∇h(x, y) = (1/y,−x/y2)>.

Theorem 2. Suppose that for Φ̃l, for l = 1, . . . , k, the conditions of Theorem 1

hold and V̂ is the consistent SV estimator of V . Suppose that Nl, nl → ∞, for
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all l = 1, . . . , k, and there exists $ ∈ [0,∞) such that n/N → $. In addition, let

nl/n → sl ∈ (0, 1), for l = 1, . . . , k. Assume that the Markov chains Φ1, . . . ,Φk

are polynomially ergodic of order t ≥ (1+ ε)(1+2/δ), for some ε, δ > 0, such that

Eql |uπ(X;d)|4+δ < ∞, and for each l = 1, . . . , k, wnl
and bnl

satisfy conditions

1–4 in Vats, Flegal and Jones (2018, Thm. 2).

(a) Then, σ̂2
u = (n/N)ĉ(π; d̂)>V̂ ĉ(π; d̂)+ τ̂ 2(π; d̂) converges almost surely to σ2

u.

(b) In addition, suppose that Eql |v[f ],π(X;d)|4+δ < ∞. Then, σ̂2
η = (n/N)

ê(π; d̂)>V̂ ê(π; d̂) + ρ̂(π; d̂) converges almost surely to σ2
η.

The estimators V̂ , σ̂2
u, and σ̂2

η are implemented using the R package geoBayes

(Evangelou and Roy (2022)). Because we obtain the samples by running the

Markov chains with stationary densities in q, we denote the corresponding reverse

logistic regression estimator of d ≡ dq by d̂q and its asymptotic variance as Vq.

Similarly, in this case, we denote the SV estimators of the asymptotic variances

(3.9) of û(π; d̂q) and η̂[f ](π; d̂q) as σ̂2
u(π; q) and σ̂2

η(π; q), respectively.

When Q = Π, a less computationally demanding approach is the SEQ

method, in which the densities are chosen sequentially from Π, where σ̂2
u(π; q) is

the largest. Specifically, starting with an initial density q1 = {q̃}, suppose that we

have completed the ith step, with the set qi chosen, along with (Markov chain)

samples from each density in qi. If d is unknown, part of this sample (stage

1) is used to calculate the estimator d̂, and the remaining sample is used to

compute σ̂2
u(π; qi) for the remaining densities π ∈ Π \ qi. Then, qi+1 = qi ∪ {πj},

where πj = argmaxπ∈Π\qi σ̂
2
u(π; qi), and the existing (Markov chain) sample is

augmented with samples from πj. Thus, at each step, we choose the density

corresponding to the largest (estimated) asymptotic variance. The process is

repeated until we have selected k densities. The initial q̃ can be the density

that maximizes the multiple IS estimator (1.2) or any other interesting quantity

based on samples from a preliminary SF set (see Section S10 of the Supplementary

Material for an example).

3.3. Maximum entropy approach

The third method uses maximum entropy sampling (Shewry and Wynn

(1987)) to select q. This method is applicable when d is unknown, and is

developed in the context of Doss’s (2010) two-stage IS estimation scheme. We

use the notation Ent(·) to denote the Boltzmann–Shannon entropy of the random

variable inside the brackets. The maximum entropy (ENT) approach chooses q

that minimizes

φENT(q) = −Ent(d̂q).

This is interpreted as sampling those elements of Q that carry the most

uncertainty in d̂q. As shown below, because we use d̂q to calculate both û

and η̂[f ], the optimal q will result in (asymptotically) lower uncertainty in those
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estimators. Note that because d̂q depends on the reference density q1, we assume

that q1 remains fixed, which can be the density q̃ discussed in Section 3.2. In

the following, we assume that the objective is to estimate ratios of normalizing

constants. In the Supplementary Material, we derive similar results under the

objective of estimating the means Eπf .

To derive a formula for Ent(d̂q), we require the asymptotic joint distribution

of d̂q with û over Π. Let û(π; d̂q) be the vector of length |Π| consisting of

û(π; d̂q), for π ∈ Π in any fixed order. Indeed, we refer to this fixed ordering

whenever we write Π in this section. Similarly, define the vector of true (ratios

of) normalizing constants u(π, q1). Let C(π;dq) be the |Π| × (k − 1) matrix

with rows c(π;dq) (defined in (3.11)), for π ∈ Π. Similarly, define Ĉ(π;dq) with

rows ĉ(π;dq) (defined in (3.13)), for π ∈ Π. Let uπ(x;dq) be the |Π|-dimensional

vector consisting of uπ(x;dq) defined in (3.10). Let Tl(dq) be the |Π|×|Π| matrix

with elements

τ 2
l (π, π′;dq) = Covql{uπ(X

(l)
1 ;dq), u

π′
(X

(l)
1 ;dq)} (3.16)

+
∞∑
g=1

Covql{uπ(X
(l)
1 ;dq), u

π′
(X

(l)
1+g;dq)}

+
∞∑
g=1

Covql{uπ(X
(l)
1+g;d), uπ

′
(X

(l)
1 ;dq)}.

Finally, let

T̂l(dq) =
1

nl

bnl
−1∑

j=−(bnl
−1)

wnl
(j)

∑
i∈Sj,n

{
uπ(X

(l)
i ;dq)− ū(dq)

}{
uπ(X

(l)
i+j;dq)− ū(dq)

}>
,

(3.17)

where bnl
are the truncation points, wnl

(j) are the lag windows, and ū(dq) =∑nl

i=1 uπ(X
(l)
i ;dq)/nl.

Theorem 3. Suppose that Nl, nl →∞, for all l = 1, . . . , k, and there exists $ ∈
[0,∞) such that n/N → $. In addition, let nl/n→ sl ∈ (0, 1), for l = 1, . . . , k.

(a) Assume that the stage-1 Markov chains Φ̃l, for l = 1, . . . , k, are polynomially

ergodic of order t > 1. Furthermore, assume that the stage-2 Markov chains

Φl, for l = 1, . . . , k, are polynomially ergodic of order t, and for some δ > 0,

Eql |uπ(X;dq)|2+δ <∞, for each π ∈ Π and l = 1, . . . , k, where t > 1 + 2/δ.

Then, as n1, . . . , nk →∞,

√
n

(
d̂q − dq

û(π; d̂q)− u(π, q1)

)
d→ N

(
0,

(
$Vq Σ12

Σ21 Σ22

))
, (3.18)

where Σ21 = $C(π;dq)Vq, Σ12 = Σ>21, and Σ22 = $C(π;dq)VqC(π;dq)
>+∑k

l=1(a2
l /sl)Tl(dq).
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(b) Suppose that the conditions of Theorem 1 hold for the stage-1 Markov

chains. Let V̂q be the consistent estimator of Vq given in Theorem 1.

Assume that the Markov chains Φl, for l = 1, . . . , k are polynomially

ergodic of order t ≥ (1 + ε)(1 + 2/δ), for some ε, δ > 0, such that

Eql‖uπ(X;dq)‖4+δ < ∞, (‖ · ‖ denotes the Euclidean norm) for all l =

1, . . . , k, and wnl
and bnl

satisfy conditions 1–4 in Vats, Flegal and Jones

(2018, Thm. 2). Then, (n/N)Ĉ(π; d̂q)V̂qĈ(π; d̂q)
>+
∑k

l=1(a2
l /sl)T̂l(d̂q) and

(n/N)Ĉ(π; d̂q)V̂q converge almost surely to Σ22 and Σ21, respectively.

Let Y ≡ (Y T
q , Y

T
Π )T be a random vector following the normal distribution

in (3.18). The Boltzmann–Shannon entropy of Y is Ent(Y ) = constant +

(1/2) log det(Σ), where Σ is the covariance matrix of Y . Note that

log det(Σ) = log det($Vq) + log det{Σ22 −$C(π;dq)VqC(π;dq)
>},

where the second matrix on the right side is the covariance matrix of the

conditional distribution of YΠ|Yq. Because Theorem 3 (b) provides a consistent

estimator of this conditional covariance matrix, we can minimize the determinant

of this estimator matrix to choose q.

As mentioned in Shewry and Wynn (1987), converting this conditional

problem to an unconditional problem yields a significant computational benefit.

In particular, as noted in Shewry and Wynn (1987), minimizing the second term is

equivalent to maximizing log det(Vq). In practice, we replace Vq with its estimator

given in Theorem 1, namely, V̂q, using Markov chain samples from densities in q.

In this case, the ENT criterion simplifies to

φENT(q) = − log det(V̂q).

Unlike the SF, MNX, and SEQ methods, the ENT approach is applicable

only in the context of Doss’s (2010) two-stage IS estimation scheme. In contrast,

if we use the multiple IS estimator (1.2), because ENT avoids the second-stage IS

estimation, it needs fewer samples than the MNX and SEQ methods do, which

require enough samples to be used for both stages. In addition, ENT avoids

having to compute the target un-normalized densities ν for π ∈ Π. However, one

advantage of the MNX and SEQ methods is that, at the end of the procedure, we

have samples from densities in q that can be used in the two-stage IS estimation

scheme.

4. Examples

Autologistic model: Consider the popular autologistic models (Besag (1974)),

which are Markov random field models for binary observations. Let si denote

the ith spatial location, and let nbi ≡ {sj : sj is a neighbor of si} denote the

neighborhood set of si, for i = 1, . . . ,m. Markov random field models for x =
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{x(si), i = 1, . . . ,m} are formulated by specifying the conditional probabilities

pi = P (x(si) = 1|{x(sj) : j 6= i}) = P (x(si) = 1|{x(sj) : sj ∈ nbi}), for i =

1, . . . ,m. For simplicity, we impose that all neighborhoods have the same size w =

|nbi|, for i = 1, . . . ,m. We consider a centered parameterization (Kaiser, Caragea

and Furukawa (2012)) given by logit(pi) = logit(κ) + (γ/w)
∑

sj∈nbi
{x(sj)− κ},

where logit(z) = log{z/(1 − z)}, γ is a dependence parameter, and κ is the

probability of observing one in the absence of statistical dependence. Jointly, the

probability mass function (pmf) π(x|γ, κ) of x is given by (see Section S9.1 of

the Supplementary Material)

π(x|γ, κ) ∝ exp

[
{logit(κ)− γκ}

m∑
i=1

x(si) +
γ

2w

m∑
i=1

∑
sj∈nbi

x(si)x(sj)

]
. (4.1)

The normalizing constant θ ≡ θ(γ, κ) in π(x|γ, κ) is intractable when γ 6= 0.

Sherman, Apanasovich and Carroll (2006) mention that “there is no known simple

way to approximate this normalizing constant”. Here, we use multiple IS to

estimate θ, and then estimate ξ = (γ, κ) using the maximum likelihood method.

We consider a 10 × 10 square lattice on a torus, with a four-nearest (east–

west, north–south) neighborhood structure, with the family of autologistic pmfs

Π = {π(x|γ, κ) : γ = −4,−3.2, . . . , 4, κ = 0.1, 0.2, . . . , 0.9}. In this case, the

family of importance densities Q = Π. Therefore, choosing the importance

densities amounts to choosing the parameters ξ. We choose k = 5 densities

from Q, that is, k different ξ values, one of which must be ξ1 = (0, 0.5). We apply

the multiple IS using the proposal densities from the five methods, namely, SFE,

SFS, MNX, SEQ, and ENT, as well as the naive IS method, NIS. MNX and SEQ

are based on the relative standard error criterion. The computations of the SFS,

MNX, SEQ, and ENT criteria are based on 20,000 stage-1 and 20,000 stage-2

samples, produced from each candidate density using Gibbs sampling (except for

γ = 0, where independent sampling was used), after a burn-in of 4,000 samples

each time. We use the Tukey-Hanning window to compute the SV estimator (see

Section S9.2). We observe that SEQ chooses a skeleton set on the boundary of

the search space for (γ, κ), and that SFS, MNX, and ENT choose some points

close to the boundary (see Section S9.2).

To test the performance of the different methods when used to estimate the

parameters ξ, we simulate from the model for different choices of ξ, as shown

in Table 1, and then estimate these parameters using the maximum likelihood

method. Because the likelihood is intractable, θ(γ, κ)/θ(0, 0.5) is estimated using

(1.2) with the proposal densities derived from each method. To that end, we

took 10,000 samples from each density after a burn-in of 1,000 samples. For NIS,

we took 50,000 samples. We generated 125 realizations (data) for each choice of

(γ, κ) parameters. Some realized data resulted in an unbounded likelihood for

some methods. NIS was most affected, with 39% of the realized values resulting in
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Table 1. Root mean squared error for estimating γ in the autologistic example.

κ γ NIS SFE SFS MNX SEQ ENT

0.2 – 1 7.55 3.68 4.14 4.62 5.19 3.65

0.2 1 10.91 3.63 1.67 1.67 1.74 1.69

0.3 – 2 8.75 1.38 1.61 1.60 9.42 1.37

0.3 2 5.13 1.17 1.19 1.18 1.21 1.18

0.4 – 3 4.51 5.36 1.59 1.52 9.55 1.63

0.4 3 3.76 1.11 1.12 1.11 1.18 1.11

0.5 – 4 10.69 5.65 1.20 1.15 10.13 3.61

0.5 4 4.83 1.04 1.04 1.03 1.06 1.02

0.6 – 3 6.71 1.33 1.21 1.22 6.16 7.59

0.6 3 3.65 1.12 1.12 1.12 1.22 1.12

0.7 – 2 9.62 1.62 1.93 1.79 1.80 5.97

0.7 2 6.09 1.27 1.27 1.26 1.35 1.48

0.8 – 1 14.84 5.37 4.52 3.64 4.38 5.88

0.8 1 11.88 2.14 1.96 1.94 2.06 2.40

an unbounded likelihood, followed by SEQ with 11%, and ENT with 8%. Table 1

shows the root mean squared error for estimating γ, excluding the cases with

unbounded likelihoods for each method. The results show that the multiple IS

methods perform significantly better than NIS. For the multiple IS methods, SEQ

performs worse than MNX, in general, and SFE performs worse than SFS. The

root mean squared error for estimating κ does not show significant differences

between the multiple IS methods, and so is not reported here, however NIS

performed worse than the multiple IS methods did. Further comparisons and

computational details are given in Section S9.2 of the Supplementary Material.

Bayesian negative binomial regression: We consider a Bayesian negative

binomial regression model with response variable yi, for i = 1, . . . , 21, generated

independently from a negative binomial distribution with size parameter ξ and

mean for yi, µi = exp(β0+β1×wi), where wi = −1+0.1×(i−1). Here, x = (β0, β1)

are unknown parameters, assigned a bivariate normal prior with mean zero and

covariance matrix 10(W>W )−1, where W denotes the design matrix. As ξ →∞,

the negative binomial distribution converges to the Poisson distribution. Let the

family of target densities Π be the posterior densities for x for ξ ∈ (0,∞]. Here,

ξ = ∞ corresponds to the Poisson model. We wish to compute the logarithm

of the Bayes factor bξ = log(θξ/θ∞), where θξ denotes the unknown normalizing

constant of the posterior density. The Bayes factor can be used to decide between

the models for given data. We estimate bξ by multiple IS using (1.2), with the

proposal densities chosen from Π, that is, Q = Π, one of which must correspond

to ξ =∞, and two more densities chosen from Ξ̃ = {1, 2, . . . , 40}; that is, k = 3.

The choice of the proposal densities for MNX and SEQ are based on the relative
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Table 2. Average root mean squared difference between the estimates obtained by IS
and the values obtained using numerical integration for bξ. The table shows the original
values multiplied by 100.

0.5 1 2 ∞
NIS 1,214.640 716.045 383.153 129.079

SFE 2.916 2.698 2.080 2.172

SFS 2.337 2.343 1.712 1.850

MNX 2.222 2.161 1.594 1.806

SEQ 2.293 2.307 1.745 1.810

ENT 2.266 2.140 1.626 1.774

standard error of the multiple IS estimator of exp(bξ). For comparison, we also

consider the NIS method with a proposal at ξ =∞.

We generate data from four models, with ξ = 0.5, 1, 2,∞ and (β0, β1) =

(1, 0.5), 400 times from each model. For each data set, we compute the skeleton

set for the five criteria: SFE, SFS, MNX, SEQ, and ENT. We use Nl = nl = 3,600

Monte Carlo samples from the lth proposal, after a burn-in of 1,000 samples, for

l = 1, 2, 3, to compute the spectral variance estimates, and compute the SKLD

using the same samples. The Monte Carlo algorithm is implemented using the R

package rstan (Stan Development Team (2020)). After determining the skeleton

set for each method and data set, we generate an additional 5,000 Monte Carlo

samples from each proposal, discard the first 1,000, and use the remaining 4,000

to compute the estimator of bξ, for all ξ ∈ Ξ̃, using (1.2). For NIS, we use

12,000 samples in total from the proposal density. Alternatively, θξ can be

computed by numerical integration. For this, we use the Gauss–Kronrod method,

as implemented in the R package pracma (Borchers (2021)), with relative error

set to 10−6, from which we compute bξ. We treat the estimates obtained by

numerical integration as the golden standard, against which we compare each

IS estimate. Because the models are very similar for large values of ξ, our

comparison concentrates on the range ξ = 1, . . . , 10. Table 2 shows the average

root mean squared difference between the IS estimate of bξ for each method

and that obtained using numerical integration for the 400 simulations and over

ξ = 1, . . . , 10. The results show that MNX and ENT outperform SEQ, in general,

when estimating both the Bayes factor and the regression coefficient, and that

SFS outperforms SFE. NIS performs significantly worse than the multiple IS

methods.

5. Conclusion

We have considered situations in which we are simultaneously interested

in a large number of target distributions, for example, in model selection and

sensitivity analyses. Multiple IS estimators are particularly useful in this context.



44 ROY AND EVANGELOU

However, few studies have examined how to choose proposal distributions for

these estimators. We provide three systematic techniques to address this issue.

The first method, based on a geometric space-filling criterion, and the second

method, based on the minimax asymptotic standard error, can be used for any

multiple IS estimators. The third method, the maximum entropy method, is

designed for the two-stage multiple IS estimators of Doss (2010). We compare

the performance of these three methods in several examples. Our results show

that a careful choice of the proposal densities, as produced by our methods,

results in estimates that are more accurate.

The proposed minimax and entropy methods use asymptotic standard errors

for the multiple IS and reverse logistic regression estimators, respectively. We

construct consistent SV estimators for these standard errors. These estimators

are important in their own right, because they are valuable for assessing the

quality of the multiple IS estimators and the reverse logistic regression estimator.

Supplementary Material

The online Supplementary Material contains proofs of Theorems 1–3, and a

theorem (and its proof) on entropy decomposition for multiple IS estimators of

means. Here, we also describe the point swapping algorithm and the simulated

annealing algorithm used to find the optimal skeleton sets. We also provide

details on the computation and derivation of the pmf for the autologistic model

and the modified Laplace approximation for the SKLD. Furthermore, we present

two real-data examples, one involving a binomial robit model, and one involving

a spatial generalized linear mixed model. For the binomial robit model, we

also demonstrate the case where the family of proposals Q corresponds to a

multivariate normal family.

Acknowledgments

The authors thank an editor, an anonymous associate editor, and two

anonymous reviewers for several helpful comments. The authors are particularly

grateful to the associate editor for suggestions to improve the exposition of the

article.

References

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Royal

Statist. Soc., Ser. B 36, 192–225.

Borchers, H. W. (2021). pracma: Practical numerical math functions. (R package version 2.3.3).

Buta, E. and Doss, H. (2011). Computational approaches for empirical Bayes methods and

Bayesian sensitivity analysis. Ann. Statist. 39, 2658–2685.
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