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Abstract: We propose a regularized projection score method for estimating the

treatment effects in a quantile regression in the presence of high-dimensional con-

founding covariates. We show that the proposed estimator of the treatment effects

is consistent and asymptotically normal, with a root-n rate of convergence. We also

provide an efficient algorithm for the proposed estimator. This algorithm can be

implemented easily using existing software. Furthermore, we propose and validate

a refitted wild bootstrapping approach for variance estimation. This enables us

to construct confidence intervals for the treatment effects in high-dimensional set-

tings. Simulation studies are carried out to evaluate the finite-sample performance

of the proposed estimator. A GDP growth rate data set is used to demonstrate an

application of the method.
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bootstrap.

1. Introduction

A quantile regression (Koenker and Bassett (1978)) is an important tool for

analyzing the relationship between a response variable and a set of covariates.

It has a wide range of applications in the analysis of non-Gaussian data, which

arise frequently in applied economic research. Unlike a least squares regression,

which models the conditional mean of a response given the covariates, a quantile

regression focuses on the conditional quantiles. Thus, it is able to describe the

conditional distribution of the response, given the covariates. There is an exten-

sive body of literature on the theoretical properties and computational algorithms

for a quantile regression when the number of regressors is fixed or increases at

a lower rate than the sample size; see, for example, Koenker (2005) and the ref-

erences therein. In this study, we estimate low-dimensional treatment effects in

the presence of a high-dimensional nuisance parameter vector.
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There is now a substantial body of work on penalized methods for vari-

able selection in high-dimensional models. Several important penalty functions

have been introduced, including the least absolute shrinkage and selection oper-

ator (Lasso) or `1 penalty (Tibshirani (1996)), smoothly clipped absolute devia-

tion (SCAD) penalty (Fan and Li (2001)), and minimax concave penalty (MCP)

(Zhang (2010)). A common feature of these penalties is that they are capable of

producing exact zero solutions, which automatically leads to variable selection.

The penalized methods also have many attractive theoretical properties related

to selection, estimation, and prediction in a sparse setting (p� n), including the

asymptotic oracle property under certain conditions. However, these methods

provide no computable error assessment of the selection results in finite-sample

situations. The literature on this topic has grown too vast to be adequately

summarized here. Therefore, for results on convex selection, see Bühlmann and

van de Geer (2011), and the references therein, and for concave selection, see Fan

and Li (2001), Zhang (2010), and Zhang and Zhang (2012).

Recently, many authors have studied the problem of statistical inference for

low-dimensional parameters in high-dimensional regression models. Zhang and

Zhang (2014) proposed a semiparametric efficient score approach for construct-

ing confidence intervals of low-dimensional coefficients in high-dimensional linear

models. Van de Geer et al. (2014) considered the same problem using an ap-

proach that inverts the optimization conditions for the Lasso solution, extending

the work of Zhang and Zhang (2014) to include generalized linear models and

problems with convex loss functions. Javanmard and Montanari (2014) consid-

ered the problem of hypothesis testing in a high-dimensional regression using

a method similar to that of Zhang and Zhang (2014). Fang, Ning and Liu

(2016) studied hypothesis testing and confidence intervals in high-dimensional

proportional hazards models. Neykov et al. (2018) proposed a unified theory of

confidence regions and testing for high-dimensional estimating equations. Ning

and Liu (2017) proposed a decorrelated score approach for hypothesis tests and

confidence regions in sparse high-dimensional models. Zhu and Bradic (2018)

proposed an approach for testing linear hypotheses in high-dimensional linear

models without assumptions on the model sparsity or the loading vector repre-

senting the hypothesis. For other related works that use the regularized score

method, refer to Belloni, Chernozhukov and Wei (2013), Dezeure et al. (2015),

Lockhart et al. (2014), Meinshausen (2014), Meinshausen, Meier and Bühlmann

(2009), Ning and Liu (2017), Stucky and van de Geer (2018), and Yang (2017).

Belloni et al. (2012) proposed a two-stage selection procedure with post-

double selection to estimate a single treatment effect parameter in a high-dimen-
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sional linear model. Tibshirani et al. (2016) considered the statistical inference

for a forward stepwise and least angle regression in high-dimensional models

after selection. Recently, various researchers have considered post-selection in

the presence of high-dimensional parameters, including Berk, Brown and Zhao

(2009); Berk et al. (2013), Lee et al. (2016), Lee and Taylor (2014), Rügamer and

Greven (2018), and Tibshirani et al. (2016).

Belloni and Chernozhukov (2011) studied the `1-penalized quantile regression

under a high-dimensional setting and established a near-oracle property of the

estimator. Wang, Wu and Li (2012) showed that the oracle property still holds

when SCAD and MCP penalties are used. Zhao, Kolar and Liu (2014) provided

a globally penalized framework for high-dimensional quantile regression models

by employing adaptive `1 penalties; this approach achieved consistent shrinkage

of the regression quantile estimates across a continuous range of quantile levels.

Belloni, Chernozhukov and Kato (2018) considered the robust inference of the

regression coefficients of high-dimensional quantile regression models using an

optimal instrument that is a residual from a density-weighted projection of the

regressor of interest on other regressors. Zheng, Peng and He (2015) proposed a

robust and uniformly honest inference in a high-dimensional quantile regression

using a debiased composite quantile estimator.

Inspired by the work of Zhang and Zhang (2014) and Ning and Liu (2017),

we consider the estimation of a preconceived low-dimensional parameter based

on a projected score approach, and study its statistical inference under linear

quantile regression models. In particular, our proposed approach is similar to the

decorrelated score method of Ning and Liu (2017). In essence, these approaches

extend the efficient score method for dealing with infinite-dimensional nuisance

parameters in semiparametric models (Bickel et al. (1998)) to high-dimensional

settings. However, the decorrelated score method assumes a smooth loss func-

tion with second derivatives, which is not satisfied in the context of a quantile

regression.

The rest of the paper is organized as follows. Section 2 describes the es-

timation method based on regularized projection scores. The asymptotic prop-

erties of the estimates of the preconceived parameters are obtained in Section

3. We then propose a resampling approach based on cross-validation and con-

firm its validity in Section 4. An efficient computation algorithm is given in

Section 5. Based on this algorithm, we propose a one-step estimator in Section

6. Numerical studies are used to assess the finite-sample performance of the

proposed method in Section 7. All proofs are given in the online Supplemen-

tary Material. An R package implementing the proposed method is available at
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https://github.com/xliusufe/pqr.

2. Regularized Projection Score Estimation

Suppose we have observations {(yi, xi, zi), i = 1, . . . , n} that are independent

and identically distributed as (y, x, z), where y ∈ IR is a response variable, x ∈ IRd

is a d-dimensional vector containing the covariates of main interest, and z ∈ IRq

is a q-dimensional covariate with possibly confounding variables. Consider the

linear quantile regression model

Qτ (yi|xi, zi) = x′iβ0 + z′iη0, (2.1)

whereQτ (·|xi, zi) refers to the conditional τth quantile, given the covariate (xi, zi).

Here, for notional simplicity, we assume that an intercept term is included in β0.

We would like to estimate the effect of the covariate vector x, represented by β0,

on the response variable, while taking into account the effect of the covariate z,

represented by η0. We are interested in the case where d is small (fixed), but q

is large, and may be far larger than the sample size n.

In the standard linear quantile regression, the parameters of model (2.1) are

estimated by minimizing

Mn(β, η) = n−1
n∑
i=1

ρτ (yi − x′iβ − z′iη)

with respect to β and η, where ρτ (u) = u{τ − I(u < 0)}. This approach works

well in low-dimensional cases where both d and q are fixed and smaller than n.

However, in the case where q � n, it no longer works, owing to the singularity

of the design matrix. There has been much work on penalized methods for

estimating the parameter vector (β0, η0). An important method is the Lasso

estimator (Tibshirani (1996)),

(β̂lasso, η̂lasso) = argmin
β,η

Mn(β, η) + λ(‖β‖1 + ‖η‖1).

This provides a point estimate of (β0, η0), denoted by (β̂, η̂). Owing to the shrink-

age effect of the `1 penalty, β̂lasso does not converge at the usual root-n rate, and

its asymptotic distributional property is unknown. The penalized estimate β̂lasso
cannot be used directly to make statistical inferences about β0, the main param-

eter of interest.

To reduce the shrinkage effect of the penalization of the estimation of β0, we

https://github.com/xliusufe/pqr
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consider the semi-penalized estimator,

(β̃, η̃) = argmin
β,η

1

n

n∑
i=1

ρτ (yi − x′iβ − z′iη) + λ1‖η‖1. (2.2)

Note that here β is not penalized. Intuitively, the estimator β̃ should be less

biased than β̂lasso, because it is not subject to penalization. However, because

xi and zi are correlated, the bias in η̃ will still lead to bias in β̃. This can be

observed more clearly by considering the score equations corresponding to (2.2):

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)xi =0, (2.3)

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)zi =λ1∂(‖η‖1), (2.4)

where ψτ (u) = τ − I(u < 0) is the directional derivative of ρτ (u), and ∂(‖η‖1) =

(∂(|η1|), . . . , ∂(|ηq|))′. Here, ∂(|ηj |) is the subdifferential of |ηj |; that is, ∂(|ηj |) = 1

if ηj > 0, ∂(|ηj |) = −1 if ηj < 0, and ∂(|ηj |) ∈ [−1, 1] if ηj = 0. The estimator

(β̃′, η̃′)′ approximately satisfies (2.3) and (2.4). Therefore, β̃ is a solution to

1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)xi = 0.

However, owing to the bias in the estimator η̃ and the correlation between xi and

zi, the estimator β̃ does not have a root-n rate of convergence.

To obtain an estimator of β0 with a root-n rate of convergence and an asymp-

totically normal distribution, we propose a regularized projection score approach.

To describe this approach, we first consider the projection score function for β

based on the loss function ρτ at the population level. The projection score is

defined as the residual of the projection of the score function ψτ (y − x′β − z′η)x

for β onto the closure of the linear span of the score function ψτ (y−x′β−z′η)z for

the nuisance parameter η in the Hilbert space L2(P ), where P is the distribution

of (y, x, z) under model (2.1). That is, we need to find a matrix H0 ∈ Rd×q that

minimizes

E‖ψτ (y − x′β0 − z′η0)x− ψτ (y − x′β0 − z′η0)Hz‖2 = E{ψ2
τ (ε)‖x−Hz‖2}

(2.5)

with respect to H ∈ Rd×q, where ε = y − x′β0 − z′η0. Here, ‖ · ‖ denotes the
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Euclidean norm. Then, the projection score function for β in the direction H0 is

ψτ (y − x′β − z′η)x− ψτ (y − x′β − z′η)H0z = ψτ (y − x′β − z′η)(x−H0z).

(2.6)

In general, (2.5) is a weighted least squares function. Under the quantile

regression model given in (2.1), it can be simplified considerably. By the law of

iterated expectations, we have

E{ψ2
τ (ε)‖x−Hz‖2} = E{E[ψ2

τ (ε)|x, z]‖x−Hz‖2}
= τ(1− τ)E‖x−Hz‖2,

(2.7)

where the last equation follows from (2.1). Thus, minimizing (2.5) is equivalent

to minimizing (2.7). Because τ is independent of H, we have

H0 = argmin
H∈Rd×q

E‖x−Hz‖2.

This is a least squares problem that can be solved explicitly. In particular, H0

satisfies the normal equation E{(x−Hz)z′} = 0, which yields

H0 = E(xz′){E(zz′)}−1.

However, the sample version of E(zz′), which is given by n−1
∑n

i=1 ziz
′
i, is not

invertible if q > n. Therefore, we cannot estimate H0 by simply using the sample

versions of E(xz′) and E(zz′). We need to regularize the projection calculation.

We can use either the standard Lasso or the group Lasso for the multi-response

linear regression (Obozinski, Wainwright and Jordan (2011); Wang, Liang and

Xing (2013)) estimation of the matrix H0. For any H ∈ Rd×q, denote its jth

column by hj . We estimate H0 by

H̃ = argmin
H∈Rd×q

1

2n

n∑
i=1

‖xi −Hzi‖2 + λ2

d∑
j=1

q∑
k=1

|hjk| (2.8)

or

H̃ = argmin
H∈Rd×q

1

2n

n∑
i=1

‖xi −Hzi‖2 + λ2

q∑
j=1

‖hj‖. (2.9)

Note that Zhang and Zhang (2014) and van de Geer et al. (2014) use the standard

Lasso to calculate the approximate projection.
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By the KKT conditions, we obtain∥∥∥∥∥ 1

n

n∑
i=1

(xi − H̃zi)zij

∥∥∥∥∥ ≤ λ2, 1 ≤ j ≤ q.

This implies that the vectors zi and xi − Hzi are nearly orthogonal for a small

λ2. Furthermore, Lemma 1 of the Supplementary Material states that we need

a sparsity assumption on H0 in the sense that λ2
∑q

j=1 ‖h0j‖ is small, where h0j

is the jth column of H0. The orthogonality property is important in establishing

the theoretical properties of the proposed estimator described below.

We are now ready to describe the proposed regularized projection score esti-

mator. Define the score function in the direction H as

Ψn(β, η)[H] ≡ 1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη)(xi −Hzi). (2.10)

Because the parameter η is unknown, we replace it with the initial estimator

η̃ given in (2.2). We also estimate H by H̃. We then define the regularized

projection score function for β as

Ψ̃n(β) ≡ Ψn(β, η̃)[H̃] =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi). (2.11)

Thus, we estimate the parameter β0 based on the following estimating equation:

Ψ̃n(β) = 0. (2.12)

Owing to the nonsmoothness of ψτ , Ψ̃n may not have an exact zero root. In that

case, we need only to solve (2.12) within op(n
−1/2) precision. In Section 5, we

consider a series of minimization problems that corresponds to solving (2.12) in

an iterative way.

We summarize the proposed regularized projection score approach in two

steps:

(S1) estimate the vector η0 and the matrix H0 by solving (2.2) and (2.9), respec-

tively;

(S2) estimate the parameter vector β0 by solving the estimation equation (2.12).
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3. Asymptotic Properties

In this section, we establish the asymptotic results for β̂, where β̂ is a solution

of (2.12). The asymptotic results of the Lasso estimate η̃ and the block Lasso es-

timate H̃ are given by Belloni and Chernozhukov (2011), Obozinski, Wainwright

and Jordan (2011), and Wang, Liang and Xing (2013). To simplify the presenta-

tion, we summarize their regularity conditions below; moreover, we need to make

some additional assumptions.

(A1) z follows N(0,Σz), and the covariance Σ satisfies (x′, z′)′ 0 < cΛ < Λmin(Σ)

< Λmax(Σ) < CΛ <∞. ‖β0‖+ ‖η0‖+ max1≤j≤q ‖h0j‖ ≤ C0, where C0 is a

constant and h0j is the jth column of H0.

(A2) The coefficient η0 is sparse with s = o(n), and λ1 = O(
√

log(q)/n), where

S = {j : η0j 6= 0, j = 1, . . . , q} and s = |S|.

(A3) If the estimated coefficient matrix H̃ is obtained from (2.8), H0 is sparse

with sh,k ≤ sh = o(1), for 1 ≤ k ≤ d, where Sh,k = {j : h0kj 6= 0, j =

1, . . . , q} and sh,k = |Sh,k|. If H̃ is obtained from (2.9), H0 is sparse with

sh = o(1), where Sh = {j : h0j 6= 0, j = 1, . . . , q}, sh = |Sh|. s2
h ∨ s2 =

o (
√
n/ log(q)), and λ2 = O(

√
log(q)/n). There exists a constant c0 ∈ (0, 1]

such that ‖Σ−1
ShSh
‖∞ ≤ c0, where ΣI1I2 is the submatrix of Σ with row and

column index sets I1 and I2, respectively.

(A4) |f(u|x, z) − f(0|x, z)| ≤ C|u|1/2 for some constant C uniformly on (x, z)

in a neighborhood of zero. f(0|x, z) is uniformly bounded from above by

fmax <∞, and from below by fmin > 0, for all (x, z), where f(·|x, z) is the

density function of ε = y − x′β0 − z′η0.

(A5) max1≤j≤q E{‖(x −H0z)zj‖} = O(1), max1≤j≤d E{‖(x −H0z)xj‖} = O(1),

and {E[‖z‖∞]2}1/2 ≤ ζn, with (s∨ sh)3/2ζnλ2 = o(n1/2) and τn(s∨ sh) log(

ζnshλ2τ
−1/2
n ) = o(1), where τn = (s ∨ sh)(λ1 ∨ λ2). For any wi between

x′i(β̂ − β0) + z′i(η̃ − η0) and zero, and for any H ∈ UH ,

max
1≤j≤q

∥∥∥∥∥n−1
n∑
i=1

f(wi|xi, zi)(xi −Hzi)zij

∥∥∥∥∥ = op(s
−1{log(q)}−1/2),

where UH = {H ∈ Rd×q : n−1/2
∑n

i=1 ‖(H −H0)zi‖ = Op(s log(q)/n)}.

(A6) E {f(0|x, z)(x−H0z)x
′} is an invertible matrix.

Assumption (A1) imposes an eigenvalue restriction on the design matrix. As-

sumption (A2) is the mutual incoherence and self-incoherence condition that
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bounds the difference between the estimator H̃ and the true matrix H0 and

the difference between the estimator η̃ and the true parameter η0. Under As-

sumptions (A1) and (A2), the conditions of Belloni and Chernozhukov (2011),

Obozinski, Wainwright and Jordan (2011), and Wang, Liang and Xing (2013) are

satisfied. Assumption (A3) limits the increasing rate of the covariate dimension

relative to the sample size to ensure that the Bahadur representation of the es-

timator β̂ holds. Assumption (A4) is used to obtain β̂, which is widely used in

the quantile regression literature. Assumption (A5) imposes the orthogonality

of x − H̃z and z, where x − H̃z is the projection of x to the space of z. Be-

cause E {(x−H0z)zj} = 0, from the definition of H0, Assumption (A5) holds if

(x − H0z)zj is weakly correlated with f(0|x, z), the conditional density around

zero. Thus, it is weaker than the assumption of independence between (x, z) and

ε, which is imposed by Zhao, Kolar and Liu (2014) and Bradic and Kolar (2017).

Similar conditions are used in Theorem 3.1 of van de Geer et al. (2014) when

generalized linear models are considered.

Theorem 1. Under model (2.1), if Assumptions (A1)–(A4) hold,

β̂
p−→ β0.

Theorem 2. Under model (2.1), if Assumptions (A1)–(A6) hold,

n1/2(β̂ − β0)
L−→ N(0, Q−1DQ

′−1),

where Q = E {f(0|x, z)(x−H0z)x
′} and D = τ(1− τ)E {(x−H0z)(x−H0z)

′} .

Theorem 2 establishes that the proposed estimator is asymptotically normal.

However, under the high-dimensional setting, it is challenging to estimate the

asymptotic covariance matrix Q−1DQ
′−1, in which the density of the error term

is involved. In the following section, we propose a resampling method that avoids

estimating the error density at zero.

4. Refitted Wild Bootstrap

Adopting the ideas of the refitted cross-validation of Fan, Guo and Hao

(2011) and the wild bootstrap of Feng, He and Hu (2011), we propose a refitted

wild bootstrap method to estimate the asymptotic variance-covariance matrix of

β̂. This resampling method accounts for heterogeneous errors and can bypass

the estimation of different densities of errors at zero. Unlike the method of

Wang, Keilegom and Maidman (2018), which only considered a fixed number

of covariates, the proposed refitted wild bootstrap method can deal with high-
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dimensional confounding covariates with divergent dimension q.

We randomly split the original data set into two even parts and carry out

the refitted wild bootstrapping using the following steps.

(B1) Estimate the parameters using the method described in Section 2 and the

first part of the data set, and denote the estimates as η̃1.

(B2) Use the second part of the data set to estimate the parameters using the

regular quantile regression method based on the nonzero coefficient set de-

termined by the vector η̃1. Denote the estimate as (β̂′2, η̃
′
2), where the vector

η̃2 includes those zero coefficients determined in Step (B1), for notation con-

sistency.

(B3) Independently generate weights ζi satisfying the following conditions:

(B3.1) there are two positive constants c1 and c2 satisfying sup{ζ ∈ G : ζ ≤
0} = −c1 and inf{ζ ∈ G : ζ ≥ 0} = c2, where G is the support of ζ;

(B3.2) the distribution G of ζ satisfies
∫ +∞

0 ζ−1g(ω)dζ = −
∫ 0
−∞ ζ

−1g(ζ)dζ

= 1/2 and Eζ [|ζ|] < ∞, where g(ζ) is the density of ζ and the

expectation Eζ is taken under G;

(B3.3) the τth quantile of the weight ζ is zero.

(B4) Use the second part of the data set to obtain the bootstrapped samples as

y∗i = β̂′2xi + η̃′2zi + ζi|r̂i|, where r̂i = yi − β̂′2xi − η̃′2zi.

(B5) Use the bootstrapped samples to estimate the parameters using the method

of Section 2, and denote the estimate of β0 by β̂∗.

(B6) Repeat (B2)–(B5) B times, and denote the sample variance of B copies of

β̂∗ as V̂2.

Similarly, we use the second part of the data set to determine those variables with

nonzero coefficients, and use the first part to estimate the variance-covariance

matrix using the approach described in (B1)–(B6). Denote the estimated matrix

as V̂1. We use (V̂1 + V̂2)/2 to estimate the variance of β̂, and repeat the above

procedure a certain number of times to reduce the randomness effects of splitting

the data.

The growth rate of the dimension of β in condition (A3) is too fast to ensure

the validity of the refitted wild bootstrap of (B1)–(B6). We need to further limit

the rate to

(A3′) s log(q)/n1/3 → 0.
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Let P ∗ denote the probability under the resampling procedure given in (B1)–(B6).

Theorem 3. Under Assumptions (A1)–(A2), (A4)–(A6), and (A3′), using the

resampling approach described in steps (B1)–(B6), we have

sup
x∈R

∣∣∣∣∣P ∗
((

n

2

)1/2

(β̂∗ − β̂) ≤ x
)
− P

(
n1/2(β̂ − β0) ≤ x

)∣∣∣∣∣ p−→ 0.

Theorem 3 provides a theoretical justification for using the refitted wild boot-

strap to estimate the asymptotic variance-covariance matrix. This makes it pos-

sible to conduct statistical inferences without estimating the error densities. In

the following section, we describe a computational algorithm for solving the esti-

mating equation (2.12).

5. Computation

As pointed out in Section 2, we need to determine how to solve

Ψ̃n(β) =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) = 0. (5.1)

Let ỹi = yi − z′iη̃ and x̃i = xi − H̃zi. Write

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi) =

n∑
i=1

ψτ{ỹi − (H̃zi)
′β − x̃′iβ}x̃i.

Let βk be the value at the kth iteration, for k = 0, 1, 2, . . .. We take the Lasso es-

timator by solving (2.2) as the initial estimator β0, and use the following iterative

steps:

Step 1: Calculate

ỹki = ỹi − (H̃zi)
′βk.

Step 2: Solve

βk+1 = argmin
β

n∑
i=1

ρτ (ỹki − x̃′iβ).

Step 3: Set k ← k+1; go to Step 1 until certain convergence criteria are satisfied.

Note that Step 2 is an optimization problem based on a low-dimensional quantile

regression, so it can be solved using existing software. Refer to Koenker (2005)

for details on its computation.
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6. One-Step Estimator

The procedure given in Section 5 inspired the following one-step estimation

approach.

First, we obtain an initial estimator of β by solving (2.2). Recall that the

projected score function is

Ψ̃n(β) =
1

n

n∑
i=1

ψτ (yi − x′iβ − z′iη̃)(xi − H̃zi),

where H̃ is obtained by solving (2.9). We consider a modified projected score

function

Ψ̃∗n(β) =
1

n

n∑
i=1

ψ{yi − (xi − H̃zi)′β − (H̃zi)
′β̃ − z′iη̃}(xi − H̃zi).

Let ỹi = yi − (H̃zi)
′β̃ − z′iη̃. Then, solving Ψ̃∗(β) = 0 is equivalent to solving

β̂one = argmin
β

1

n

n∑
i=1

ρτ
(
ỹi − (xi − H̃zi)′β

)
.

Clearly, β̂one can be considered a one-step update from the initial estimator β̃.

We replace Assumption (A6) with the following assumption:

(A6′) E {f(0|x, z)(x−H0z)(x−H0z)
′} is an invertible matrix.

We then have the following result.

Theorem 4. Under model (2.1), if Assumptions (A1)–(A5) and (A6′) hold, then

n1/2(β̂one − β0)
L−→ N(0, Q̃−1DQ̃−1),

where Q̃ = E {f(0|x, z)(x−H0z)(x−H0z)
′}, and D is defined as in Theorem 2.

Note that Q̃ is different from Q in Theorem 2, owing to the modification of

the score function. In addition, the refitted wild bootstrap method of Section 4

can be used similarly to estimate the asymptotic covariance matrix Q̃−1DQ̃−1.

The computation of this estimator is efficient because no iterations of (Step 1)–

(Step 2) are needed.
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7. Numerical Studies

7.1. A simulation study

We investigate the finite-sample performance of the estimation method of

Section 2 using the variance-covariance matrix estimated by the refitted wild

bootstrap method described in Section 4. Two sample sizes, n = 50 and n = 100,

are used, and two quantile levels, τ = 0.5 and τ = 0.75, are considered.

We simulate data from the model

yi = µ+

3∑
j=1

xijβj +

199∑
k=1

zikηk + ei, i = 1, . . . , n,

where all the covariate variables and the model error ei are generated indepen-

dently from the standard normal distribution. We consider a sparsity structure

with coefficients given as

(µ, β1, β2, β3, η1, η2, η3, . . . , η199) = (3, 3, 3, 3, 3, 3, 0, . . . , 0).

We use the method of Huang, Breheny and Ma (2012) to solve (2.9), using

the Bayesian information criterion for the choice of penalties. Then, we use the

method of Belloni and Chernozhukov (2011) to solve (2.2) at confidence levels

0.7 and 0.8, corresponding to sample sizes n = 50 and n = 100, respectively. We

repeat the bootstrap procedure 1,000 times to estimate the covariance matrix,

where the random weights follow the discrete distribution

P (W = w) =

{
1− τ, w = 2(1− τ)

τ, w = −2τ
,

for 0 < τ < 1. The R packages quantreg and grpreg are used to solve (2.2)

and (2.9), respectively. We generate 1,000 Monte Carlo samples to compare the

performance of the proposed method and the oracle method, where the sparsity

structure is assumed to be known.

We report the biases of the proposed and the oracle estimators, as well as

the relative efficiency, which is the ratio of the mean squared errors of the two

estimators. We also estimate the coverage probabilities of the proposed method

at the 95% confidence level. As shown in Table 1, the bootstrap leads to overall

conservative interval estimates, especially when the quantile level τ = 0.75. When

the sample size is as small as 50, the relative efficiencies vary from 70% to 82%;

these efficiencies can be improved to 82% to 92% when the sample size is doubled.
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Table 1. Estimated coverage probability (CP) at 95% confidence level, and the estimated
relative efficiencies (RE) and biases (Bias) of the proposed estimator (EC) and the oracle
estimator (Oracle).

n = 50 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -9.608 -0.971 0.811 95.9

τ = 0.5 β2 0.945 1.993 0.701 95.8

β3 -3.486 -8.541 0.813 96.2

β1 -2.744 -6.880 0.697 99.0

τ = 0.75 β2 2.891 -0.413 0.617 97.8

β3 -4.957 -12.802 0.690 98.7

n = 100 Parameter Bias of EC (×10−3) Bias of Oracle (×10−3) RE CP (×100%)

β1 -2.245 -1.684 0.992 95.6

τ = 0.5 β2 -2.913 0.455 0.919 96.5

β3 -7.060 -6.316 0.948 96.2

β1 -5.663 -0.863 0.854 97.2

τ = 0.75 β2 1.615 1.790 0.927 97.7

β3 -8.156 -2.809 0.938 97.8

From the results shown in Table 1, the proposed method usually leads to estimates

with smaller biases, probably because of the projection procedure used in our

estimation.

7.2. Case study of GDP growth rate

In this section, we analyze the national growth rate of GDP using data col-

lected by Barro and Lee (2013). Their results indicate that in a broad group

of countries, educational attainment serves as a proxy for the stock of human

capital, as well as for economic development. This data set includes 138 coun-

tries and eight broad categories comprising national income, education, popu-

lation/fertility, government expenditure, PPP deflators, political variables, and

trade policy, among others. A detailed description can be found at http://

www.barrolee.com/. Data are presented either quinquennially, for the period

1950–2010, or as averages of five-year sub-periods over 1950–2010.

There is a subset of data including 90 complete observations (by country)

with 61 covariates, which can be downloaded in the R package hdm (Cher-

nozhukov, Hansen and Spindler (2016)). There are 41 observations out of 90

from 1965; the rest are from 1975. In this example, we only consider the 49

observations from 1975. We choose national GDP growth rate per capita as

the response yi, and denote the 61 scaled covariates by x̃i = (x̃i1, . . . , x̃ip)
′, for

i = 1, . . . , n, where n = 49 and p = 61. We first take the logarithm or cubic-root

http://www.barrolee.com/
http://www.barrolee.com/
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Table 2. List of p-values of the two variables for GDP growth rate. The numbers in
parentheses are the estimated coefficients at the corresponding quantile levels. *govsh41:
Ratio of real government “consumption” expenditure to real GDP, and *gvxdxe41: Ratio
of real government “consumption” expenditure, net of spending on defense and education,
to real GDP.

Variable Name τ = 0.25 τ = 0.5 τ = 0.75

govsh41∗ 0.0122 ( 0.8215) 0.2722 ( 0.1971) 0.9356 (-0.00498)

gvxdxe41∗ 0.0043 (-0.6523) 0.0026 (-0.3530) 0.7259 (-0.2403)

transformation such that each predictor’s empirical distribution is more normally

distributed.

There is a large body of literature on the relationship between economic de-

velopment and government consumption expenditure; see Landau (1986), Barro

(1990), Barro (1991), Barro (1989), Devarajan, Swaroop and Zou (1996), d’Agostino,

Dunne and Pieroni (2016), and Dissou, Didic and Yakautsava (2016). Owing to

the correlation between government consumption expenditure and other variables

that characterize population/fertility, political instability, the economic system,

and so on, we need to reduce their influence by using the proposed regularized

projection procedure.

The following two variables are important to understanding the effect of

a country’s government consumption expenditure on its economic growth rate:

the ratio of real government “consumption” expenditure to real GDP (govsh41,

denoted by x̃i1), and the ratio of real government “consumption” expenditure, net

of spending on defense and education, to real GDP (gvxdxe41, denoted by x̃i2).

We use these two variables as treatments, denoted by xi = (x̃i1, x̃i2)′, and the

remaining ones as confounders, denoted by zi, i = 1, . . . , n. Then we consider the

linear quantile regression model (2.1) on these treatments and confounders:

Qτ (yi|xi, zi) = β0 +

2∑
j=1

xijβj +

59∑
k=1

zikηk, i = 1, . . . , 49.

We report the estimated coefficients and the corresponding p-values in Table 2.

Barro (1989, 1990, 1991) found that both variables, govsh41 and gvxdxe41, are

negatively associated with the GDP growth rate. However, our results indicate

that it may be a good strategy to promote GDP growth by increasing the total

government consumption expenditure in slowly growing economies. At the same

time, countries with relatively slow GDP growth rates should limit government

expenditure on defense and education to ensure economic growth.
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8. Conclusion

In this work, we used regularized projection scores to estimate low-dimens-

ional preconceived parameters in high-dimensional quantile regression models.

Our asymptotic results facilitate classical statistical inference in high-dimensional

scenarios, which has been largely overlooked in the quantile regression literature.

In addition, we proposed a refitted wild bootstrapping approach to bypass the

estimation of the variance-covariance matrix of the estimator, which involves the

probability densities of the errors. To the best of our knowledge, this is the first

demonstration of wild bootstrapping in a high-dimensional setting in the quantile

regression literature.

The proposed method can be implemented easily because its computation is

based on existing algorithms, which can be accomplished using R packages. In

practice, we advocate the one-step estimator owing to its computational efficiency

in high-dimensional settings, especially when a resampling approach is needed.

Supplementary Material

The proofs of Theorems 1–4 and related technical details can be found in the

online Supplementary Material.
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